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Abstract. We consider local properties of zero sets dependent of time variable of analytic
solutions of linear second order parabolic equations with two spatial variables. Our aim is to give
several necessary conditions for the zero set at the present to be homeomorphic to those at the
recent past and at the recent future.

1. Introduction.

Let u be a real valued analytic solution of the following equation in a neighbourhood
(−T,T)×U of the origin inRRR3:

∂u
∂ t

= A(t,x,y; ∂/∂x,∂/∂y)u. (1.1)

Here A(t,x,y; ∂/∂x,∂/∂y) is a linear second order partial differential operator with analytic
coefficients whose principal part at the origin is equal to the Laplacian∆ := ∂ 2/∂x2 + ∂ 2/∂y2.
We consider local properties of its zero sets defined by

Z(u(t)) = {(x,y) ∈U ; u(t,x,y) = 0}

and its singular part defined by

S(u(t)) = {(x,y) ∈ Z(u(t)) ; ux(t,x,y) = uy(t,x,y) = 0}.

Watanabe [3] set about a study concerning change ofZ(u(t)) in t and this study in the case of
space dimension≥ 2 is yet to be investigated. When the space dimension is equal to one, such
problem for not necessarily analytic solutions is studied, for example, by Angenent [1] and
Watanabe [4]. Their concern was the non-increasing property of number of zero points. By
other point of view the decreasing property states that the zero setZ(u(t)) certainly is different
from Z(u(−t)) for sufficiently smallt > 0 whenu(0) has a singular point. But in our case it
does not necessarily occur. As a simple example letuλ (t,x,y) be solutions of (1.1) such that
uλ (t,x,y) = y2 +λx2 +(2+2λ )t +O(t2 + |y|3 + |x|3) as|t|+ |y|+ |x| → 0. When−1 6= λ < 0,
for sufficiently small t > 0 and for suitable small neighbourhoodUo of the origin both
Z(u(t))∩Uo andZ(u(−t))∩Uo are one-dimensional smooth manifolds and have two connected
components. Whenλ = 0 andu0(t,x,y) = y2 +x3 +(2+6x) t +O(t2 + |y|3 +y2|x|+ |y|x2 +x4)
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as|t|+ |y|+ |x| → 0, they are connected one-dimensional smooth manifolds.
We are concerned with the problem of deciding whetherZ(u(±t))∩Uo are homeomorphic

to Z(u(0))∩Uo. In the section 3 we shall prove the following results. WhenZ(u(−t))∩Uo is
homeomorphic toZ(u(0))∩Uo for sufficiently smallt > 0, Z(u(t))∩Uo is also homeomorphic
to Z(u(0))∩Uo (Theorem 3.1). Moreover, under some assumption the first non vanishing homo-
geneous term of Taylor expansion ofu(0, ·, ·) in (x,y) at the origin, called the initial form and
denoted byp, is either harmonic or(x2 +y2)q(x,y) for some harmonic polynominalq (Theorem
3.4). If {θ ∈ [0, π) ; p(cosθ , sinθ) = 0} is a set ofm-points wherem is the degree ofp, the
converse statement of Theorem 3.1 holds andp is harmonic (a corollary of Theorem 3.2).

We discuss this problem with the aid of properties of approximate polynominal solution
W(t,x,y) of u which is given by the following.





∂W
∂ t

= ∆W in RRR3,

W
∣∣
t=0 = p(x,y) in RRR2.

(1.2)

Here p is the polynominal stated above. Then we define the Hermite polynominalH and its
conjugate Hermite polynominalH∗ by the following.

H(x,y) = W(−1,x,y), H∗(x,y) = W(1,x,y). (1.3)

We shall use their properties of zero sets due to Watanabe in [5] in order to examineZ(u(t))∩
{(x, y) ; x2 +y2 ≤M| t |} for large constantM.

2. General properties of zero sets.

In this section we recall the general properties of zero sets that are proved in [3] and we give
the notation and some propositions in order to use in the next section.

Without loss of generality we always assume that

∂ mu
∂ym

∣∣∣∣
(0,0,0)

6= 0, m= ν(u(0),(0,0))≥ 2. (2.1)

Here and in the following we denote byν( f ,P) the vanishing order off atP∈ RRR2.
For such solutionu we define the numbersm(0), m(±0) as follows.

DEFINITION 2.1. If the origin is an isolated point ofZ(u(0)), then we putm(0) = 0. If
this is not the case, then by virtue of Puiseux expansion the germ of set at the origin defined
by Z(u(0)) is the union of finite number, saym(0), of curvesγ j ,1 ≤ j ≤ m(0), of the form
(ε jxσ j , f j(x)) whereγ j 6= γk ( j 6= k), ε j =±1, σ j ≥ 1 are integers and wheref j are analytic near
the origin such thatf j(0) = 0. Here we takef j so that it is not even inx if σ j is even. We denote
by ν(γ j) the vanishing order ofu(0) on the germ at the origin given byγ j \{(0,0)}. We define
m(±0) by the following.

m(+0) = the number of{ j ; ν(γ j) is odd}, m(−0) =
m(0)

∑
j=1

ν(γ j).

PutU(δ ) = {(x,y) ; |x| < δ 2, |y| < δ} and takeδ > 0 sufficiently small and fix. Then the
following is proved in [3].
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PROPOSITION2.2. Let |t|> 0 be sufficiently small. Then the following holds.
(1) S(u(t))∩U(δ ) is at most finite and for each point P in this set the initial form of u(t) at

P is harmonic after a linear change of coordinates around P.
(2) When t> 0, Z(u(t))∩U(δ ) is the union of m(+0) regular curves in U(δ ) defined over

the interval(0, 1) whose end points are on the boundary of U(δ ).
(3) When t< 0, Z(u(t))∩U(δ ) is not empty and it is the union ofΓ (t) andΓc(t) where

Γ (t) consists of m(−0) regular curves in U(δ ) defined over(0, 1) whose end points are on the
boundary of U(δ ) and whereΓc(t) is either empty or the union of finite number of closed regular
curves in U(δ ) defined over the circle.

(4) When t1t2 > 0 and|tk|, k= 1,2, are small enough, Z(u(t1))∩U(δ ) is homeomorphic to
Z(u(t2))∩U(δ ).

In the following we always denote byp the initial form ofu(0) at the origin which can be
written in the following form.

p(x,y) =
d

∏
j=1

(y−λ jx)d j , λ j 6= λk for j 6= k. (2.2)

We also define the numbersm(p, 0), m(p,±0) for p in the same way as Definition 2.1. Namely,
m(p, 0) is the number ofj such thatλ j is real. Ifm(p, 0) > 0, by rearrangement we assume that
λ j , j = 1, . . . , m(p, 0), are real. We also denote bym(p,+0) the number ofj ≤m(p, 0) such that
d j is odd and bym(p,−0) the sum ofd j over j ≤m(p, 0). Note that

m(p,+0)≤m(+0)≤m(0)≤m(−0)≤m(p,−0). (2.3)

SetΓ (θ ,ε) = {(x,y) ∈ RRR2 \{(0,0)} ; |arg(x+ iy)−θ | < ε} andλ j = tanθ j . Then we have the
following.

PROPOSITION2.3. For sufficiently smallε > 0 there is a constant M> 0 such that for
sufficiently small|t|> 0 the following holds.

Z(u(t))∩U(δ )⊂ {
(x,y) ; |x|2 ≤M|t|}

⋃
{

⋃

j≤m(p,0)

{
(x,y) ∈ Γ (θ j ,ε)∪Γ (π +θ j ,ε) ; |x|2 > M|t|}

}
.

Moreover, if t< 0, then for each j≤m(p, 0) both

{
(x,y) ∈ Z(u(t))∩Γ (θ j ,ε) ; |x|2 = M|t|}

and

{
(x,y) ∈ Z(u(t))∩Γ (π +θ j ,ε) ; |x|2 = M|t|}

consist of dj points. If t> 0, then they consist of one point in the case where dj is odd and they
are empty in the case where dj is even.

Using the polynominalsW, H, H∗ given by (1.2), (1.3) , we prove the following lemma in
order to use in a proof of Proposition 2.3.
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LEMMA 2.4. Let (ρ(s),γ(s)) be an analytic curve in RRR3 defined near s= 0 such that
γ(0) = (0,0), ρ(0) = 0, ρ 6≡ 0 and lims→0 ν(u(ρ(s)), γ(s)) = n≥ 1. Then the following holds.

(1) Suppose thatlims→0 |γ(s)|/|ρ(s)|1/2 < ∞. If we putω = lims→+0 γ(s)/|ρ(s)|1/2, then
ν(H,ω) ≥ n (resp. ν(H∗,ω) ≥ n) in the case whereρ(s) < 0 (resp. ρ(s) > 0) for sufficiently
small s> 0.

(2) Suppose thatlims→0 |γ(s)|/|ρ(s)|1/2 = ∞. If we putω ′ = lims→+0 γ(s)/|γ(s)|, then
ν(p,ω ′)≥ n and2n < m+2.

PROOF. (1) Suppose thatρ(s) > 0 for sufficiently smalls> 0. Since we have by definition
that as|t|+ |x|+ |y| → 0

u(t, x, y) = W(t, x, y)+O({|t|1/2 + |x|+ |y|}m+1), (2.4)

we obtain that ass→+0

|ρ(s)|−m/2u(ρ(s),γ(s)) = H∗(γ(s)/|ρ(s)|1/2)+O(|ρ(s)|1/2)

and analogous relations for partial derivatives in(x,y) of u. So these imply the conclusion. When
ρ(s) < 0 for sufficiently smalls> 0, by usingH instead ofH∗ we have the desire result.

(2) At first we note that the solutionW of (1.2) can be written in the form:

W(t, x, y) = ∑
k≥0

tk

k!
∆kp(x, y). (2.5)

By calculating the derivatives ins of u(ρ(s), γ(s)), we obtain thatν(ut(ρ(s)),γ(s))≥ n−1 and
that ass→ 0

|γ(s)|−m+2ut(ρ(s),γ(s)) = |γ(s)|−m+2 ∆W(ρ(s),γ(s))+O(|γ(s)|)

= ∆p(γ(s)/|γ(s)|)+O(|ρ(s)|1/2/|γ(s)|)+O(|γ(s)|)

and analogous relations for partial derivatives in(t,x,y) of u. By the same arguments as that for
the assertion (1) we have thatν(∆kp,ω ′)≥ n−k for eachk = 0, . . . ,n−1.

Suppose that2n−2≥m. If 2n−2 = m, by the factν(∆n−1p,ω ′)≥ 1 the constant function
∆n−1p is zero and hence∆n−1p always is identically zero. Take the minimun integerl ≥ 1 such
that ∆l p≡ 0 and putq = ∆l−1 p. Sincel ≤ n−1, this harmonic homogeneous polynominalq
has a singular pointω ′ 6= (0,0) and henceq≡ 0. This is a contradiction against the choice ofl .

¤

REMARK 2.5. If m(p,0) = m(p,−0) ≥ 1, thenm(p,0) = m(p,+0) = m(−0) = m(0) =
m(+0) and for large constantM > 0

Z(u(t))∩Z(uy(t))∩{(x,y) ∈U(δ ) ; x2 > M |t|}= Ø. (2.6)

Because, the assumption implies thatd j = 1 for eachj = 1, . . . ,m(p,0) and so by definition
m(p,0) = m(p,+0) and hence we obtain by (2.3) thatm(p,0) = m(0) = m(+0) = m(−0). Since
Z(p)∩Z(py) = {(0,0)}, the latter assertion can be proved by the same arguments as that in the
proof of Lemma 2.4.
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Using Lemma 2.4 and the notation for a polynominalf in RRR2,

Z( f ) = {P∈ RRR2 ; f (P) = 0}, S( f ) = {P∈ Z( f ) ; fx(P) = fy(P) = 0},

we show Proposition 2.3.

PROOF. It follows from the behavior at the infinity of Hermite and conjugated Hermite
polynominals proved in [5] that for eachε > 0 there is a constantM > 0 such that the following
holds.

{Z(H)∪Z(H∗)}∩{(ξ ,η) ; |ξ |> M} ⊂
⋃

j≤m(p,0)

{
Γ

(
θ j ,

ε
2

)
∪Γ

(
π +θ j ,

ε
2

)}
. (2.7)

Consider the germV of semi analytic set at(0,0,0) defined by

V =
⋂

j≤m(p,0)

{(t,x,y) ; (x,y) ∈ Z(u(t)),

|x|2 > 2M2|t|> 0, (x,y) 6∈ Γ (θ j ,2ε)∪Γ (π +θ j ,2ε)}.

Then we claim that this germ is empty. If this is not the case, by Curve Selection Lemma, (see, for
example, [2]), there is an analytic curveσ(s) such thatσ(s) = (ρ(s),Q(s)) ∈V for sufficiently
smalls> 0 andσ(0) = (0,0,0).

Suppose thatlims→0 |Q(s)|/|ρ(s)|1/2 < ∞. Putting (ξ ,η) = lims→+0Q(s)/|ρ(s)|1/2, we
obtain that |ξ | > M and from Lemma 2.4 thatH∗(ξ ,η)H(ξ ,η) = 0, which is a contra-
diction against (2.7). Nextly we suppose thatlims→0 |Q(s)|/|ρ(s)|1/2 = ∞. Put (ξ ′, η ′) =
lims→+0Q(s)/|Q(s)|, then it follows from Lemma 2.4 thatp(ξ ′,η ′) = 0 and soarg(ξ ′+ i η ′)≡
θ j(modπ) for somej ≤m(p, 0), which is a contradiction we seek. The assertion in the latter half
is a consequence of the behavior at the infnity of Hermite and conjugate Hermite polynominals
that is proved in [5]. ¤

It is worth while to say that the germ of set at the origin inRRR3 given byu(t,x,y)= ux(t,x,y)=
uy(t,x,y) = 0 is at most one-dimensional. On the other hand the germ at the origin inRRR3 given
by ux(t,x,y) = uy(t,x,y) = 0 may be two-dimensional. It is proved in[5] that a necessary and
sufficient condition for{(x,y) ∈ RRR2 ; Hx(x,y) = Hy(x,y) = 0} to be one-dimensional is thatp is
a multiple of either(ax+by)m for m≥ 2 or (x2 +y2)m/2 for evenm≥ 4. Moreover, in this case
bothS(H) andS(H∗) are empty. Using this result, we prove the following.

PROPOSITION2.6. Suppose that S(H) 6= Ø. Then the germV of semi-analytic set at the
origin in RRR3 defined by

{(t,x,y) ; |t|> 0, ux(t,x,y) = uy(t,x,y) = 0}

is either empty or the union of finite number of germs defined by analytic curves of the form:
(εtσ ,γ(t)), whereε =±1, γ(0) = (0,0) andσ is an integer≥ 1.

PROOF. Without loss of generality we assume that∑d
j=1 d j λ j 6= 0. Then by Weierstrauss

preparation theoremux anduy can be expressed in a small neigbourhood of the origin in the
following form.
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ux(t,x,y) = uo(t,x,y) f (t,x;y), f (t,x;y) = ym−1 +
m−2

∑
k=0

uk(t,x)yk,

uy(t,x,y) = vo(t,x,y)1(t,x;y), 1(t,x;y) = ym−1 +
m−2

∑
k=0

vk(t,x)yk.

Hereuo(0,0,0)vo(0,0,0) 6= 0 anduk, vk, k = 1, . . . ,m−1, are real analytic near the origin. Since
the result proved in [5] ensures that the resultant as function inx of polynominals iny of Hx(x,y)
andHy(x,y) does not identitically vanish, also is the resultant as function in(t,x), denoted by
δ (t,x), of polynominals iny of f (t,x;y) and 1(t,x;y). Hence the germV is at most one-
dimensional. Moreover, by virtue of Puiseux expansion the equationδ (t,x) = 0, |t| > 0, can
be expressed byx= h(t1/n) for several holomorphic functionsh and for integersn> 0 and hence
by considering the equationsf (tn,h(t) ;y) = 0 we arrive at the conclusion. ¤

3. Necessary conditions forZZZ(((uuu(((ttt)))))) to be homeomorphic toZZZ(((uuu(((000)))))).

In this section we give several necessary conditions forZ(u(t))∩U(δ ) to be homeomorphic
to Z(u(0)). For the sake of convenience we writeA≈ B whenA is homeomorphic toB.

Before stating our results, we notice the following facts. (1) By virtue of maximum principle
there is no relatively compact (inU(δ )) connected component ofU(δ )\Z(u(t)) for sufficiently
small t > 0. (2) If m(0) = 0, from Proposition 2.2 we have thatZ(u(t))∩U(δ ) is empty (resp.
the union of closed regular curves) for sufficiently smallt > 0 (resp.−t > 0). Namely, in the
case ofm(0) = 0 Z(u(t))∩U(δ ) is not homeomorphic toZ(u(0))∩U(δ ) for sufficiently small
|t|> 0.

We use several times an analytic curveλ (t) defined neart = 0 such thatλ (0) = (0,0),
ν(u(tσ ), λ (t)) = m(0) ≥ 2 for sufficiently small|t| > 0 whereσ > 0 is an odd integer. Such
curves play an important role in the proof mentioned below and we denote them byλ in this
section.

THEOREM 3.1. When Z(u(−t))∩U(δ )≈ Z(u(0))∩U(δ ) for sufficiently small t> 0, then
Z(u(t))∩U(δ )≈ Z(u(0))∩U(δ ).

PROOF. By the assumption and Definition 2.1 we have thatm(0)= m(−0)≥1andν(γ j)=
1 for eachj = 1, . . . ,m(0), which impliesm(0) = m(+0).

Suppose thatm(0) = 1. If S(u(t))∩U(δ ) 6= Ø for sufficiently smallt > 0, by Proposition 2.2
there must be a relatively compact component ofU(δ )\Z(u(t)), which is a contradiction against
the claim (1) stated in the begining of this section. HenceZ(u(t))∩U(δ ) is a one-dimensional
connected manifold.

Suppose thatm(0) > 1. By the assumption and Proposotion 2.2 there is a curve mentioned
aboveλ (t) such thatS(u(tσ ))∩U(δ ) = {λ (t)} for sufficiently small−t > 0. Hence we obtain
the following for sufficiently smallt > 0.

2m(+0)≥ N(U(δ )\Z(u(t)))

= 1+∑{ν(u(t),P)−1; P∈ S(u(t))∩U(δ )}+m(+0)≥ 2m(+0).

Here we have denoted byN(A) the number of connected components of a subsetA of RRR2. As a re-
sult we have thatS(u(tσ ))∩U(δ ) = {λ (t)} for sufficiently smallt > 0. This fact and Proposition
2.2 thus complete the proof. ¤
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Concerning the converse statement of Theorem 3.1, we have the following.

THEOREM 3.2. Suppose that Z(u(t))∩U(δ )≈Z(u(0))∩U(δ ) for sufficiently small t> 0.
If m(0) = m, then Z(u(−t))∩U(δ )≈ Z(u(0))∩U(δ ) and p is harmonic.

PROOF. By assumption we have thatm(0) = m(+0) = m and that there is a curve
λ (t) such thatS(u(t))∩U(δ ) = {λ (t)} for sufficiently smallt > 0. It follows from the as-
sertion (2) in Lemma 2.4 thatlimt→0 |λ (t)|/|t|σ/2 < ∞ and thatν(H∗,ω∗) = m whereω∗ =
limt→+0 λ (t)/|t|σ/2. Using the following fact

2m(p,+0)≥ N(RRR2\Z(H∗))

= 1+∑{ν(H∗,P)−1; P∈ S(H∗)}+m(p,+0), (3.1)

we have thatm(p,+0) = m andS(H∗) = {ω∗}. SinceH∗(x,y) is even (resp. odd) in(x,y) in
the case wherem is even (resp. odd),ω∗ is the origin. By virtue of (2.5) we conclude that
H∗ = p, namelyp is harmonic. Using Weierstrauss preparation theorem, we have fromν(u(tσ ),
λ (t)) = m that in a small neigbourhood of the originu can be written in the form.

u(tσ ,λ (t)+(ξ ,η)) = vo(t,ξ ,η)

{
ηm+

m

∑
k=1

vk(t,ξ )ξ k ηm−k

}
.

Here vo(0,0,0) = 1 and v j , j = 1, . . . ,m, are real analytic near the origin. Sincep(ξ ,η) =
ηm+∑m

k=1 vk(0,0)ξ k ηm−k is harmonic, there existm analytic functionsf j(t,ξ ) near the origin
such thatf j(0,0), j = 1, . . . ,m, are mutually distinct and

u(tσ ,λ (t)+(ξ ,η)) = vo(t,ξ ,η)
m

∏
k=1

{η− f j(t,ξ )ξ},

which completes the proof. ¤

Nextly we consider a necessary condition on the conjugate Hermite polynominalsH∗ and
on the initial formp for Z(u(t))∩U(δ ) to be homeomorphic toZ(u(0))∩U(δ ).

THEOREM 3.3. Suppose that Z(u(t))∩U(δ )≈ Z(u(0))∩U(δ ) for sufficiently small t>
0. Then Z(H∗) is either homeomorphic to Z(u(0))∩U(δ ) or a one-dimensional, connected,
analytic manifold or empty.

PROOF. Suppose thatm(0) = 1. By Proposition 2.3 we havem(p,+0) = 1 and hence
Z(H∗) is a one-dimensional, connected, analytic manifold.

Nextly we suppose thatm(0) ≥ 2. Then there is a curveλ (t) such thatS(u(t))∩U(δ ) =
{λ (t)} for sufficiently smallt > 0. Whenlimt→0 |λ (t)|/|t|σ/2 < ∞, it follows from Lemma 2.4
thatν(H∗,ω)≥m(0) whereω = limt→+0 λ (t)/|t|σ/2. Using (2.3) and (3.1), we obtain

m(+0) = m(0)≤ ν(H∗,ω)≤m(p,+0)≤m(+0),

and soν(H∗,ω) = m(p,+0) = m(0), S(H∗) = {ω} = {(0,0)}. As a result Proposition 2.2
completes the proof in this case.
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Finally we consider the case wherelimt→0 |λ (t)|/|t|σ/2 = ∞. It follows from Proposition
2.3 that for somej ≤m(p,0) and for sufficiently smallt > 0

λ (t) ∈ {Γ (θ j , ε)∪Γ (π +θ j , ε)}∩{(x,y) ; |x|2 ≥M|t|σ}.

Whend j is even,Z(u(t))∩U(δ ) is contained in eitherΓ (θ j , ε)∩{(x,y) ; |x|2 ≥M|t|} or Γ (π +
θ j , ε)∩{(x,y) ; |x|2 ≥ M|t|}, namelym(p, +0) = 0. This means thatZ(H∗) is empty. When
d j is odd, we obtainm(p,+0) = 1 and hence we have the same conclusion as that of the case
m(0) = 1. In this caseZ(H∗) is not homeomorphic toZ(u(0))∩U(δ ). ¤

THEOREM 3.4. Suppose that Z(u(−t))∩U(δ ) ≈ Z(u(0))∩U(δ ) for sufficiently small
t > 0. If m(0)≥m−2≥ 4, then p(x,y) is either harmonic or(x2+y2)q(x,y) for some harmonic
polynominal q.

In order to prove this Theorem we study the singular points of biharmonic homogeneous
polynominals. Consider the functions in the following form.

F(θ) = Csin(mθ +α)+sin{(m−2)θ +β}. (3.2)

HereC 6= 0, α andβ are real constants. Put

M = {θ ∈ RRR; sin(mθ +α) = sin{(m−2)θ +β}= 0}. (3.3)

LEMMA 3.5. Let m≥ 3. (1) F satisfies one of the following conditions.
(1 – 1) F has exactly m simple zeros in[0, π).
(1 – 2) F has exactly both(m−2) simple zeros and one double zero in[0, π).
(1 – 3) F has exactly(m−3) simple zeros and one triple zero in[0, π).
(1 – 4) F has exactly(m−2) simple zeros in[0, π).

(2) WhenM is not empty, it consists of one point(resp. two pointsθk, k = 1,2, such that
|θ1−θ2|= π/2) in the case where m is odd(resp. even).

(3) For eachθ ∗ ∈M we have F(θ ∗−θ) =−F(θ ∗+θ).

PROOF. (1) ConsiderF(t,θ) = e−tm2
sin(mθ +α)±e−t(m−2)2

sin{(m−2)θ +β} which
satisfies∂F/∂ t = ∂ 2F/∂θ 2. Then it follows from the non increasing property of number of zero
points that there is a constantto such that for eacht < to (resp.t > to) F(t) satisfies (1 – 1) (resp.
(1 – 4)) andF(to) has the unique singular point in[0, π) at which it vanishes at most of order 3.
In the last case either (1 – 2) or (1 – 3) holds.

(2) PuttingN = {λ > 0; mλ , (m−2)λ ∈ πZZZ}, λ ∗ = minN andmλ ∗ = aπ, (m−2)λ ∗ =
bπ, we have2≥ 2λ ∗/π = (a−b) and soa−b = 2 (resp. 1) impliesλ ∗ = π (resp.π/2). It is
easy to see thatN = λ ∗NNN and thatM = θ ∗±{N ∪{0}} for eachθ ∗ ∈M .

(3) Put1(θ) = F(θ ∗+θ)+F(θ ∗−θ). Then we have fromθ ∗ ∈M that1(2n)(0) = 0 for
eachn≥ 0 and hence from the fact that1(2n−1)(0) = 0 we obtain1(θ)≡ 0. ¤

New we prove Theorem 3.4.

PROOF. We divide the proof into several steps.
Step (1). By the assumption and by Theorem 3.1 there is a curveλ (t) such that

S(u(tσ ))∩U(δ ) = {λ (t)} for sufficiently small|t|. Since2m(0)−2≥ 2(m−2)−2≥ m, we
obtain from Lemma 2.4 thatlimt→0 |λ (t)|/|t|σ/2 < ∞. As we have mentioned in the proof of
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Theorem 3.3, we have thatZ(H∗)≈ Z(u(0))∩U(δ ), S(H∗) = {(0,0)}, limt→0 |λ (t)|/|t|σ/2 = 0
andν(H∗,(0,0))≥m(0)≥m−2. It follows from the last fact and (2.5) thatm(0) is eitherm or
m−2. Whenm(0) = m, we have from Theorems 3.1 and 3.2 thatp is harmonic.

Suppose thatm(0) = m−2 and thatp is neither harmonic nor(x2+y2)q(x,y) for every har-
monic polynominalq. Thenp is biharmonic, namely∆2p = 0, and so without loss of generality
we assume thatF(θ) := r−mp(r cosθ , r sinθ) is given by (3.2). IfF(θ) satisfies (1–1) in Lemma
3.5, we obtain by Remark 2.5 thatm(0) = m.

Step (2). We claim thatS(H) = {(0,0)}. Putφn = (nπ−β )/(m−2) for n∈ ZZZ. We notice
from the assertion (3) in Lemma 3.5 thatH is odd with respect to the linearg(x+ i y) = θ ∗,
π +θ ∗ for eachθ ∗ ∈M and that forr > 0,θ 6= φn the solutions ofH(r cosθ , r sinθ) = 0 (resp.
H∗(r cosθ , r sinθ) = 0) are given by the following.

4(m−1)
r2 =

F(θ)
sin{(m−2)θ +β} ,

(
resp.

4(m−1)
r2 =

−F(θ)
sin{(m−2)θ +β}

)
(3.4)

Suppose thatS(H) 6= {(0,0)}. Then from (3.4) there isφn ∈M such thatF ′(φn) 6= 0, namely
r(φn)(cosφn,sinφn) ∈ S(H) for somer(φn) > 0. Put

φ ∗ =

{
π/(m−2) if F(θ) 6= 0 in (φn,φn+1),

min{φ > 0; F(φn +φ) = 0} if otherwise.
(3.5)

Whenφ ∗ = π/(m−2), from Lemma 3.5 we haveφn+1 6∈M and soF(φn+1) 6= 0. HenceRRR2 \
Z(H) has a compact component contained inΓ (φn,φ ∗) and henceU(δ ) \ Z(u(t)) has also a
compact component. Whenφ ∗ < π/(m−2), from the fact thatZ(H)∩Γ (φn,φ ∗) is the union of
two unbounded regular curves intersecting at the point inS(H) we arrive at one of the following
two cases. One is thatZ(u(t))∩U(δ ) has at least two components. The other is thatu(t) has a
singular point different fromλ (t). This is a contradiction we seek.

Step (3). We prove thatF(θ) does not satisfy (1–3) in Lemma 3.5. Suppose that there is its
triple zeroψ. Then it is easy to see thatψ = φn ∈M for somen. Using the notation (3.5), we
have by Propostion 2.3, (3.4) and the claim in Step (2) thatZ(H∗)∩Γ (φn,φ ∗) = {(x,y) ; arg(x+
i y) = φn} andZ(H)∩Γ (φn,φ ∗) has three unbounded components. For largeM > 0, small ε,
ρ > 0 and for sufficiently small−t > 0 we have thus that{(x,y) ∈ Z(u(t))∩U(δ )∩Γ (φn,φ ∗+
ε) ; ρ|t|< x2 < M|t|} has three componentsσk, k = 1,2,3, which satisfy the following. One end
point of eachσk is on{(x,y) ∈ Γ (φn,ε); x2 = M|t|}. Whenφ ∗ = π/(m−2), the other end point
of eachσk is on{(x,y); x2 = ρ|t|}. Whenφ ∗ < π/(m−2), the other end point ofσ2 (resp.σ3) is
on{(x,y)∈Γ (φn+φ ∗,ε); x2 = M|t|} ( resp.{(x,y)∈Γ (φn−φ ∗,ε); x2 = M|t|}). It follows from
Proposition 2.3 that for eachj = 1, . . . ,m−2, {(x,y)∈ Z(u(t))∩U(δ )∩Γ (θ j ,ε) ; x2 > M|t|} is a
regular curve over (0, 1) and thus we have the following. Whenφ ∗ = π/(m−2), Z(u(t))∩U(δ )
has either a compact component or a singular point. Whenφ ∗ < π/(m−2), Z(u(t))∩U(δ ) has
either has two component or a singular point. This is a contradiction.

Step (4). We claim thatM = Ø. If φn ∈M , thenF(φn) = F ′′(φn) = 0 and it follows from
(3.4) andS(H) = S(H∗) = {(0,0)} thatF ′(φn) = 0. This is a contradiction against the claim of
Step (3).

Step (5). For eachn we claim thatF has one and only one simple zero in(φn, φn+1). It
follows from Lemma 3.5 and the claim (4) that zeros ofF are at most of order two and that
F(φn) 6= 0 for everyn. If F(θ) 6= 0 in (φn, φn+1), then{Z(H∗)∪Z(H)}∩{(x,y) ; φn < arg(x+
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i y) < φn+1} is bounded and soRRR2 \Z(H) has a compact component contained in{(x,y) ; φn <

arg(x+ i y) < φn+1} and henceU(δ )\Z(u(t)) has also a compact component.
Suppose that there exist two simple zerosψ1, ψ2 of F in (φn, φn+1) such that it has no simple

zero in(ψ1, ψ2). WhenF(θ) 6= 0 in (ψ1, ψ2), {Z(H)∪Z(H∗)}∩{(x,y) ; ψ1 < arg(x+ i y) < ψ2}
is an unbounded regular curve over (0,1) and it does not contain the origin. We have thus that
eitherZ(u(t))∩U(δ ) or Z(u(−t))∩U(δ ) has a components that does not containλ (t). When
F has a double zeroψ0 in (ψ1, ψ2), then it follows from (3.4) thatZ(H)∩{(x,y) ; ψ1 < arg(x+
i y) < ψ2} has two unbounded components which do not contain the origin and from Lemma 3.5
we can find otherm−4 simple zerosψk, k = 3, . . . ,m−2, in [0,π). By Proposition 2.3 we obtain
for eachk = 1, . . . ,m−2, thatZ(u(t))∩{(x,y) ∈U(δ )∩Γ (ψk,ε) ; x2 > M|t|} is a regular curve
over (0, 1) for smallε > 0 and for largeM > 0. This means that

Z(u(t))∩{U(δ )\U(δ/2)}∩Γ (ψo,ε) = Ø. (3.6)

HenceZ(u(t))∩U(δ ) contains a regular cuves over (0, 1) such that it does not containλ (t) and
one of its end points is inΓ (ψ1,ε) and the other inΓ (ψ2,ε). This is a contradiction.

Finally we consider the case where the double zeroψ0 is the unique zero ofF in (φn, φn+1).
Then Z(H)∩ {(x,y) ; φn < arg(x+ i y) < φn+1} has two unbounded componentsσk, k = 1,2,
such that their closures contain the origin and{σ1∪σ2}∩{(x,y) ; x2 > M} ⊂ Γ (ψ0,ε). Hence
it follows from (3.6) thatU(δ )\Z(u(t)) has a compact component.

Final step. From the claim in Step (5) we have that for eachn

C2sin(mφn +α)sin(mφn+1 +α) = F(φn)F(φn+1) < 0

and hence we can find an integerk such that the equationsin(mθ +α) = 0 has at least 3 zeros in
(φk, φk+1), which implies that1/(m−2) > 2/m. This completes the proof of Theorem 3.4.¤

Finally we give an exampleu(t,x,y) of polynominal solution of the heat equation (1.2) with
initial valueu(0,x,y) = r6cos4θ − r12sin12θ in terms of polar coordinates, that is, it is given by
the following.

u(t,x,y) = {r6 +20t r4}cos4θ − r12sin12θ

By parameterizing its zeros byθ it can be shown that this solution satisfies the assumption in
Theorem 3.4 and thatZ(u(t))≈ Z(u(0)) for eacht.
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