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Abstract. If a closed oriented manifold admits an action of a finite gr@phe equivariant
determinant of &-equivariant elliptic operator on the manifold defines a group homomorphism
from G to S'. The equivariant determinant is obtained from the fixed point data of the action by
using the Atiyah-Singer index theorem, and the fact that the equivariant determinant is a group
homomorphism imposes conditions on the fixed point data. In this paper, using the equivariant
determinant, we introduce an obstruction to the existence of a finite group action on the manifold,
which is obtained directly from the relation among the generators of the finite group.

1. Introduction.

Let M be a2m-dimensional closed connected oriented Riemannian manifol@andom-
pact Lie group. In this paper, we define an actiorGoés an orientation-preserving isometric
effective action ofcG on M. It is a classical problem to know whether there exists an acti@ of
on M which preserves some geometric structureMofind various results have been obtained
concerning this existence problem. Assume Matdmits aG-action and leD : " (E) — I (F)
be aG-equivariant elliptic operator whete, F are complexG-vector bundles ovel. Then the
G-equivariant indexnd(D, g) of D evaluated ay € G is defined by the trace of theaction on
kerD, cokemD as follows:

Ind(D,g) = Tr(g|kerD) — Tr(g|cokeD) € C

(cf. [3]), and this equivariant index has been used for the existence problem above. For example,
in [3] Corollary 6.16, it is proved tha¥l does not admit ang-action with the fixed point set of
the dimensior mif mis even and the Euler characteristichfis odd. It is also proved in2]
thatM does not admit ang-action withdimG > 0if M has aSpinstructure and th&—genus of
M does not vanish.

Whenm= 1 andM is a Riemann surface of genas> 2, M is represented as the quotient
U /A of the hyperbolic plané) under the action of a surface Fuchsian graupf genuso
andM admits a biholomorphic action of a finite gro@if and only if G is isomorphic to the
quotient” /A for some Fuchsian group containing/A as a normal subgroup (cf5]f [8]). The
necessary and sufficient condition for the existencg @fhich admits an epimorphisii — G
is obtained for a cyclic groug in [8] and for a dihedral grougs in [5], and this condition
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gives information about the existence@faction onM by combining with the Riemann-Hurwitz
equation. However, it is in general difficult to examine whetleadmits aG-action by using
this method.

Now using the determinant of the action instead of the trace, we can diefiie g) by

detD,g) = det(g| kerD)/ det(g|cokeD) € St c C*

(cf. [15]), which we call the equivariant determinant Dfevaluated ayy € G. The equivariant
determinant can be related to the Atiyah-Singer index as followsGh.efenote the dense subset
of G consisting of elements of finite order. ¢4 = 1 (p > 2) for g € Gy, as was proved in
Appendix of [L5], we have

(1)

detD,g) :exp<2nm v 1 )

B k
o &, 7= Ind(®) —Ind(D.g")}

whereép = ™ 1/P s the primitive p-th root of unity and
Ind(D) = Ind(D, 1) = dimkerD — dimcokeD € Z

is the numerical index dD (cf. [3]). The equality (1) is proved as follows.
Sincey_; £ = —1 (mod p) for any integen, we have

Pfll_gp p—1 A E dp)
= (modp
kzll_fp Z1vzl

for any natural numbek. Let A be anN x N-matrix whosep-th power is the unit matrix and

Ep (1< j £N) its eigenvalues whergj’s are natural numbers such thaK A; < p. Then it
follows from the equality above that

p—1
A4+ AN = z kz (1- Ep (modp),
k=1 _Ep =1
and hence we have
2my/—1°t 1 "
det(A) = exp N — Tr (AY)
( =i }

The equality (1) follows from the equality above.

We assume thda is a finite group hereafter. Then the equality (1) gives a relation between
the equivariant determinant and the fixed point data ofGkection onM and we can obtain a
necessary condition on the fixed point data for the existence@fation onM directly from
the relation among the generators®by virtue of the fact that the equivariant determinant is a
group homomorphism. We apply this method to know whether a finite group can be a subgroup
of the mapping class group of a given germs> 2, namely, whether a finite group can act
biholomorphically on a compact Riemann surface of gemus 2, in section 3 and to examine
whether a finite group can act dhwith m> 2 so that the fixed point set consists only of isolated
points in section 4.
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2. An additive group homomorphism and the calculation formula.
Using the equivariant determinant, we define an invailigrts follows.

DEFINITION 2.1. Forg € G, Ip(g) € R/Z is defined by

Ip(g) = 2n\1/?1 logdet{D,g) (modZ).

Then since the equalities
detD,gh) = detD,g) det D, h)

logde(D,g)N = Nm% logdet(D,g) (modZ)

1
2my/—1

hold, Ip : G — R/Z is an additive group homomorphism and we have the next theorem.

THOREM 2.2. We have
(&) Io(g) +1p(h) —Ip(gh) =0 foranyg,he G,
(b) NlIp(g) =0 for any natural numbeN and anyg € G such thadet D, g)N = 1.

Now for anyp > 2and anyl <k < p—1, we have

11 Vo1 ok

—_— = = cot— 2
L gF 2 2 ?
and hence it follows from (1) that the equality
| ()=p;1|nd(D)—1p§L|nd(D k) (modz) 3)
D= "2p p&1-gc

holds ifgP = 1 (p > 2).

REMARK 2.3. Sincelp is an additive group homomorphism, we hdgég™N) = Nip(g)
andlp(gh) = Ip(hg). In particular,lp(h) = 0 <= det(D, h) = 1 for any element of the com-
mutator subgroup db.

We can calculaténd(D), Ind(D, h) and hencép (h) by using the Atiyah-Singer index theo-
rem. Leth be an element o of orderp andZ,, the cyclic group generated lby For an integer
T, V(1) denotes th@-dimensional reak ,-representation defined by

AV (T) = cos(2mr)/p —sin(2mr)/p
sin(2rr)/p  cos(2mr)/p)

Assume that the fixed point set bfconsists of pointsy;, g, - - -, 0y Then there exist integers
0 < 1jj < p/2 such that the tangent bundlgM of M atg; is isomorphic to the direct sum

TgM = a1,V (1)) 4)
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as a realZp-representation for aniy ThenInd(D) andInd(D,h) are calculated by using the
Atiyah-Singer index theorem. In particular, using the Lefschetz Theorem (3.9) (8de also
[12] Theorem 14.3 in chapter IlI), we obtain the formula:

Ind(D.h) = S Xi(h) ;
e i;n,f"ﬂ(l—f;”)(l—éa“’)

wherey;(h) is the character of the virtual representatieyn— F; evaluated ah.
First we have the next proposition (see (6.17)3D).[

ProOPOSITION2.4. LetD be the signature operator and assume tpas an odd prime
number. Then we have

Ind(D) = Sign(M) , Ind(D,h) = .iﬂ<ﬁwtn;” )
i=1)=

whereSign(M) is the signature oM.

Let Spin2m) be the Spingroup, Spirf(2m) = Spin2m) xz, St the Spirf-group, :
Spirf(2m) — SQO(2m) the projection angp : Spirf(2m) — S the homomorphism defined
by p([s,Z]) = 2 for s€ Spin2m), z S*. Then aSpirf(2m)-principal bundleP overM is called
a Spirf-structure oM if P xgpif(om) R?M is isomorphic to the tangent bundleM (see [12] Ap-
pendix D). It is known thaM has aS pirf-structure if and only if the Bockstein image of the sec-
ond Stiefel-Whitney class,(TM) in H3(M; Z) vanishes. In particulaM has aS pirf-structure
if M has aSpinstructure or an almost complex structure. Assume thaias aS pirf-structure
and letn = P x gpif(2m C be the associated complex line bundle aviedefined byp. Note that
if the Spirf-structure comes from an almost complex structyrés isomorphic to the complex
line bundleA™T M.

There exist a short exact sequence

1—Z, — Spirf(2m) Z8so2m) x St — 1 (5)

and the induced exact sequence

HL(M:Z,) — HY(M; Spirf(2m)) -2~

H1(M;SO2m)) @ HL(M; S = H(M; SQ2m)) & H2(M; Z) -~ H2(M; Z,)

where ¢ (P) is the direct sum of the oriented orthonormal frame bur@le H(M; SQ(2m))

of M and the first Chern clasg(n) € H2(M;Z) and /(¢ (P)) is equal to the sum of the sec-
ond Stiefel-Whitney clase,(T M) and the mod reduction ofci(n) (see 2] (D.2), (D.4) in
Appendix D). Hence the equivalence class @ irf-structure orM is determined by, () if
HY(M;Z,) = 0 and the mo reduction of the difference;(n) — c1(n’) corresponding to two
Spirf-structures vanishes. In particular,Nf has an almost complex structure, there exists an
elementu € H?(M; Z) such thaty(n) = ci(AMTM) +2u = ¢ (TM) + 2u.

In this paper, we call an action @& on aSpirf-manifold M a Spirf-action if the action
lifts to an action on thé& pirf-structure oM. Note that &S pirf-action with respect to ths pirf-
structure which comes from the almost complex structure of an almost complex manifold does
not necessarily preserve the almost complex structure.
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REMARK 2.5. Since any action o6 on M lifts to the differential action on the oriented
orthonormal frame bundl®, an action ofG on M lifts to an action on the& pirf-structureP if
the action orQ lifts to the St-bundleP over Q. Here it follows from Corollaryl.4 in [9] that
any action of a finite Abelian grou@ on Q lifts to an action orP if H(Q;Z) = 0 andcy(n) is
invariant under the action @. For example ifn> 2 andH*(M; Z) = 0, it follows from the Serre
spectral sequence corresponding to the fibrafigem) — Q — M thatH(Q; Z) = 0 because

E;” =HY(M;H(S02m);2)) =0, Ep*=H(M;H}(SQ2m);2)) =0,

and hence that any action of a finite Abelian gr@upfts to a Spirf-action ifc;(n) is invariant
under theG-action.

Assume that there existsSpirf-action ofG on M. Then for any complexs-vector bundle
E overM we can define th&-equivariante-valued Dirac operator

De: (St ®E) — T (S-®E)

by usingG-invariant metric connections @ andE whereS;. = P X gpif(om A+ are the half
spinor bundles. Here we follow the sign convention of the complex half spin representation
A, in [6], [12] so that we can identify the Dirac operator on an almost complex manifold with
the Dolbeault operator (cf. Theorem 3.5.10 @) This sign convention differs from the sign
convention in 1], [3] in the constanf—1)™. Then sincéh acts onS. |g; = A. through an action
onP|g; = Spirf(2m) and an action oR|q; is determined by the induced actionsBM and on

n|agi up to+1 (see (5)), we have the next proposition (sé&eTheorem 8.35 andl2] Theorem
14.11 in chapter lll, (D.19), Theorem D.15 in Appendix D).

PROPOSITION2.6. LetL be a complexG-line bundle over theS pirf-manifoldM and
suppose thah acts on the fiberg |q;, L|g; via multiplications byég', EF' respectively. Then we
have

n m
Ind(Dy) = 1M eM/ZATM)M] md(DLyh>=Z£‘fé‘i55‘/ﬂ1§-m
i= jI=1+—¢6p

whereAis theA-class,[M] is the fundamental cycle ™, & = £1andv = ki — 3., 7).

Note that the numbers, k; in the proposition above depend on fBeaction onP and are
not determined by the fixed point data of tBeaction onM. But if the Spirf-structure comes
from an almost complex structure i and theG-action preserves the almost complex structure,
the G-action on theS pirf-structure is obtained from tHg-action onM and the next proposition
follows from the Riemann-Roch theorem (4.3) and the holomorphic Lefschetz theorem (4.6) in
[3] (see also Theorem 3.5.2, Theorem 3.5.1G5i. [

PROPOSITION2.7. Assume thaM has an almost complex structure and that the action
of G preserves the almost complex structure. ILbe a complexs-line bundle oveM. Suppose
that h acts on the tangent spadg,M via multiplication by a diagonal matrix with diagonal
entries(ff,il, o -,EFT,"“) and acts on the fibelr|g; via multiplication byé,'. Then we have

n ) m 1
Ind(D) = eI Td(TM)[M] , Ind(DL7h):i;E[‘,"ﬂTEp_m
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whereD__ is theL-valued Dirac operator with respect to the natu@pirf-structure ofM andTd
is the Todd class.

The numben of the fixed points of is calculated by using the next proposition.

ProrPoOSITION2.8. We have
n= Z) 1) Tr(hH(M;R)).

PrROOF. Forl<i <n, itfollows from (4) that the eigenvalues @fT;M —h|TqM arel —
&t 1— & ™ ... 1-&fm 1— &, ™™ and hence the determinant@ifiy M — h| Ty M is positive.
Therefore the equallty above is deduced from Theorem Alifsee also p. 455 inl], Theorem
3.9.1(a) in B]). O

3. Finite subgroup of the mapping class group.

Let M be a compact Riemann surface of gelous 2. In this section, an action of a finite
groupG onM is defined to be a biholomorphic actionGfwith respect to some complex struc-
ture of M. Then it is known thaG is not a subgroup of the mapping class grdgpf M does
not admit any action o6 (see [LO)).

Assume thatVl admits an action of the cyclic groud, of order p generated by and
suppose that the quotient map: M — M/Z;, is a branched covering with branch points
Y1, -+, Yo € M/Zp of order(ny, - - -, ny). Forl <i <b, setr; = p/n;. Then the Riemann-Hurwitz
equation

20-2= p(20—2)+i(p—ri)

holds whereo is the genus oM /Z,.
Let L = ®‘TM be the tensor product &TM’s andD, the L-valued Dirac operator ol.
Then applying Theorem 2.2, we have the next theorem.

THOREM 3.1. Assume thal admits an action o6 = Z, = (g). Then forl <i < bthere
exists a natural numbet < t; < n; which is prime tay; such that

Gro(t1,-- ) €Z, NYo(ts, - t) €Z,  Ppats, 1) =lp,(9*) (modZ)

for anyz (1 < z< p) which is prime top and for any/ (0 < ¢ < p) where

Brolts, ) = (1- z>'°2p1<1 0)(2+1)

b 1N 1 Ejzt,i Enjitil
B 7t —jti |
Zln'] 11— En. —'fniJ 1—5' :

b ni—1 E jzt¢l

ol to) = o (1= 0) 20 +1) - 2 L Eha

(&n is the primitiven;-th root of unity andN is a natural number such thaketD,,g)N = 1.
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PROOF. Let x € H2(M;Z) be the first Chern class (T M) of the tangent bundl@ M.

Then since

X 1
= 1 —_
1_ex 172

andx[M] = ¢1(TM)[M] = 2— 20, it follows from Proposition 2.7 that

Ind(D) = <e+ ;) xM] = (1—0)(20+1).

Now let Q (k) be the fixed point set af* (1 < k < p— 1) andg; any point in7r1(y;). Then we
can see thatt1(y;) consists of; pointsg;, g-q;, - -, g ~*- g;, which are fixed points af"i and
therefore it follows that

miy) c QR <= mty)NQK #p=k=rj (j=1,2,-,n—1).

Sinceg acts transitively ot1(y;), ¢" acts on the tangent spaceMfat each point it (y;)

via the same rotation angle and therefore we can suppose'tratts on the tangent space of
M at each point irrt2(y;) via multiplication byE{,‘t‘ wherel <t < n; andt; is prime ton.

Let z be any integer witll < z < p such thatz is prime top. Then since the order af* is p,
M/ (g?) coincides withM /(g) and(g?)" acts on the tangent spaceMfat each point it (y;)

via multiplication by&5", it follows from (3) and Proposition 2.7 that

, p—l 1 b n—1 Egijzﬁe
Ip, =—(1-0)(2+1)——=>r4 —
D((g ) 2p ( )( ) pi; i jzl (1*55””(1*55”]2”
p-1 b 1t &

= VORI D e ™
=io(t1, ) (ModZ).
Therefore it follows from Theorem 2.2 (a) that
0=1p,(9%) —2lp,(9) = Wit -, to) =2 a(ta, -+, to) = Pro(ta, -+, tp)  (MOdZ)
and it follows from Theorem 2.2 (b) that

0=12zNlb,(g9) =Nlp,(9%) = Ny ,(t1,---,t) (modZ). 0

Approximate values oy 5(t1, - --,tp) andy 5(ty, - - -, 1p) are obtained by using a computer
and the approximate values are sufficient to decide whephgts,---,ty) and gy ,(t1,---,t)
are integers if the approximate values are accurate enough. Moreover the precise values of
Poo(ta, -, ty) = Ip,(9%) — Zlp,(g) (ModZ) and Y 5(t1,---,tp) = Ip,(9%) (ModZ) are obtained
by using the next proposition, which is proved in Appendix.

PrROPOSITION3.2. 12plp,(g?) is an integer and we have
12plp,(9%) = 6(p—1)(1—0)(2(+1)

b [((+ni+1)28)/n] ini—1
+eri zt(n —1)(7nm —11) + 6 ; firy ({'] —£—1)
= i=l((e+ 4520 /m1 &
(mod 12p)
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wherefy, (X) = X2 — (n — 2)x— (n — 1)2 and [y] denotes the greatest integer such that<'y.

ExAMPLE 3.3. LetM be a compact Riemann surface of geous hen the necessary and
sufficient condition orM to admit aZ,-action is given in Theorem 4 ir8] (see also Proposition
2.2in [7]). In this example, we consider one hundred cases where, p < 11. Then if

(o,p)=(2,7),(2,11), (3,112), (4,11), (5,7), (7,11), (8,11), (9,11), (6)

the Riemann-Hurwitz equation is not satisfied for @nyb, r; and henceévl does not admit any
Zy-action. Moreover using Theorem 4 ig][ we can see thd#l does not admit any action &,
if and only if (o, p) is contained in (6) or

(o,p)=(2,9), (3,5), (3,10), (4,7), (5,9),(6,11), (11,7). (7)

In this example, using the Riemann-Hurwitz equation and Theorem 3.1, we provd thads
not admit anyZp-action for(a, p) in (7).
Now using the Riemann-Hurwitz equation, we can see that

(0,p) = (2,9) = (b,{ny,---,m}) = (3,{3,3,9})

(0,p) = (3,5 = (b,{ny,---, m}) = (1,{5})

(0,p) = (3,10) = (b,{ng, -, np}) = (3,{5,5,5}), (4,{2,2,2,10})
(0,p) = (4,7) = (b,{ng, -, np}) = (1,{7})

(0,p) = (5,9) = (b,{ny, .-, mp}) = (4,{3,3,3,9}), (1,{9})

(0,p) = (6,11) = (b,{ny,---, mp}) = (1, {11})

(0,p) = (117) = (b,{ns,---,mp}) = (1,{7}).

When(ao,p) = (2,9), (b,{n1, ---, np}) = (3,{3,3,9}), direct computation using Proposi-
tion 3.2 shows that

1<¢12(1,1,1) = 1—96 <2, 1<¢12(2,1,1)=¢12(1,2,1) = %0 <2,
0<912(2,2,1) = g <1
Moreover we have
2<$12(1,1,2) <3, 1< ¢12(2,1,2) = $12(1,2,2) <2, 0< $12(2,2,2) < 1,
2<912(1,1,4) <3,1<¢12(2,1,4) = $12(1,2,4) < 2, 1 < $12(2,2,4) < 2,
1<¢12(1,1,5) <2, 1< $12(2,1,5) = ¢12(1,2,5) <2, 0< ¢12(2,2,5) < 1,
2<¢12(1,1,7) <3, 1< ¢12(2,1,7) = ¢12(1,2,7) < 2,0< $12(2,2,7) < 1,

2<¢12(1,1,8) <3, 1< ¢12(2,1,8) = ¢12(1,2,8) < 2, 1 < $12(2,2,8) < 2,
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and therefore none afi1 »(t1,t,t3) is an integer. Hence it follows from Theorem 3.1 that the
Riemann surface of gen@does not admit any action &.
When(o, p) = (3,5), (b,{n1, ---, np}) = (1,{5}), direct computation shows that

2<¢12(1), $12(2), ¢12(3), $12(4) < 3.

Hence the Riemann surface of gerugoes not admit any action &;s. Therefore it is clear that
the Riemann surface of genB8sloes not admit any action &.
When(o,p) = (4,7), (b,{n1, ---, np}) = (1,{7}), direct computation shows that

3<¢12(1), $12(4), $12(5) <4< $12(2), $12(3), $12(6) <5.

Hence the Riemann surface of gedugoes not admit any action &;.

When (o, p) = (5,9), (b,{ny, ---, np}) = (4,{3,3,3,9}), direct computation shows that
none of g1 2(t1,t,t3,t4) is an integer forl <t; <t, <t3 <2, 1<t4 <8, ts # 3,6. More-
over if (o,p) = (5,9), (b,{n1, ---, np}) = (1,{9}), direct computation also shows that none of
$12(t1) is an integer forl <t; < 8t; # 3, 6. Hence the Riemann surface of gerfudoes not
admit any action oZg.

When (o, p) = (6,11), (b,{n1, ---, np}) = (1,{11}), direct computation shows that none
of ¢12(t1) is an integer forl <t; < 10. Hence the Riemann surface of gerffudoes not admit
any action ofZy1.

When(o,p) = (11,7), (b,{ny, ---, np}) = (1,{7}), direct computation shows that none of
$12(t1) is an integer forl <t; < 6. Hence the Riemann surface of gerdusdoes not admit any
action ofZ.

REMARK 3.4. It also follows from Theorem 7.1 irl] that the compact Riemann surface
of genuso does not admit any action &, if (g, p) = (3,5), (4,7), (6,11), (11,7).

ExamMPLE 3.5. Let M be a compact Riemann surface of gemu$2 < g < 11) which
admits an action aZ, (3 < p < 11). LetG be a finite non-Abelian group and we assume that the
commutator subgroup @ contains an elememtwhich is expressed as the productefs and
sj hj's (0<r,G>g#1,G>hj, 1< | <u) which satisfies the condition that the greatest
common divisord of p andru is less thanp wherep, qi, ---, qu are orders of, hy, ---, hy
respectively angl is the least common multiple @f;, - - -, q,. For example, leG be the dihedral
groupD(2p) generated by, hwhose orders arg, 2 respectively. Then we haye= g th~1gh=
gP~2 and the greatest common divisbof p andr u = p— 2is less tharp. For other example, let
G be the symmetric group gfletters1, 2, ---, p,G> 11 = (1,2), 2= (1,3), ---, Tp_1 = (1,p)
the transpositions anglan element oG defined byy = 1172+ - - Tp_1 = (p,p—1,---,2,1) whose
order isp. Then we havey =1 = gTp_1--- 1271 and the greatest common divisgrof p and
ru=2isless thamp.

Now we assume thafl admits an action o. Then it follows that

1=detDy,y) = detD,,g)"* de{Dy, hy) 1 - - - det(Dy, hy) ¥ = det(D,,g) ™
= detD;,9)" =1 (8)

because the commutator subgroupzok contained in the kernel of the equivariant determinant
(see Remark 2.3). L&k, be the cyclic group generated hyand suppose thad is the branched
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covering space oM/Z, with b branch pointsys, -- -, yp of order(ng,---,ny). Then it follows

from Theorem 3.1 that there exists a natural nunib€it; < n; which is prime ton; for 1L <i <b

such thaty ,(t1, ---, tp) € Zforanyz (1 < z< p) which is prime top and for any! (0 < ¢ < p).
Now it follows from the Riemann-Hurwitz equation and Theorem 4gjrtiat

(0,p) = (2,5) = (b,{ny, .-+, mp}) = (3,{5,5,5})

(0,p) = (7,5) == (b,{ny,---, np}) = (3,{5,5,5})

(0,p) = (3,9) = (b,{ny,---,np}) = (3,{3,9,9})

(0,p) = (4,9) = (b,{ny, ---,mp}) = (3,{9,9,9})

(0,p) = (11,9) = (b,{ng, -, np}) = (5,{3,9,9,9,9})

(o,p)=(7,10) = (b,{ng,---, mp}) = (4,{2,10,10,10}), (5,{2,2,2,5,10})
(g,p)=(511) = (b,{ng,---,np}) =(3,{11,11,11}).

When(a,p) =(2,5), (b,{ns, ---, np}) = (3,{5,5,5}), we haved = 1 because is a divisor
of 5 and direct computation using Proposition 3.2 shows #2ik (1 1(t1,t2,t3) < —1 for any
1<t; <ty <tz <4. Hence none o1 1(t1,t2,t3) is an integer and therefore the Riemann surface
of genus 2 does not admit any action®ff p=>5.

When(o, p) = (7,5), (b,{n, ---, np}) = (3,{5,5,5}), direct computation shows thai8 <
Pr1(ta,to,t3) < —7foranyl <t; <t <tz < 4. Hence the Riemann surface of geffudoes not
admit any action oG if p=>5.

When(ao,p) =(3,9), (b,{n1, ---, np}) = (3,{3,9,9}), direct computation shows that none
of 3yn 1(t1, 2, t3) is an integer and therefore nonei 1 (ty,to,t3) is an integer foll <t; <tp <
t3 < 8,t1,12,13 # 3, 6. Hence the Riemann surface of genus 3 does not admit any act®iif of
p=29.

When(ao, p) = (4,9), (b,{n1, ---, np}) = (3,{9,9,9}), direct computation shows that none
of 3y 1(t1,t2,t3) is an integer fofl <t; <t, <t3 <8, t1,tp,t3 # 3, 6. Hence the Riemann surface
of genus 4 does not admit any action®ff p=9.

When(o, p) = (11,9), (b, {ny, ---, np}) = (5,{3,9,9,9,9}), direct computation shows that
none of3yn 1(t1,t2,t3,ta,ts) isan integer foll <t; <2, 1<ty <tz <ty <t5 <8, tp,t3,t4,t5 # 3, 6.
Hence the Riemann surface of genus 11 does not admit any act@®if gf = 9.

When (o, p) = (7,10), (b,{n1, ---, np}) = (4,{2,10,10,10}), direct computation shows
that none of2yy 1(t1,t2,t3,t4) nor none ofbyy 1(t1,to,t3,t4) is an integer fot; = 1, 1 <ty <
t3<ta <9 trt3,t4#£2,4,5 6,8 When(a,p)=(7,10), (b,{ny, ---, np}) = (5,{2,2,2,5,10}),
direct computation also shows that nonegh 1(ty, to, t3,1s,t5) nor none obYy 1(t1,t2,13,14,15)
isaninteger foty =to =t3=1, 1<t <4,1<t5 <9,t5 # 2, 4,5, 6,8. Hence the Riemann
surface of genus 7 does not admit any actiodff p = 10.

When(o, p) = (5,11), (b,{n1, ---, np}) = (3,{11,11,11}), direct computation shows that

{(te,t2,t3) [ Pra(te,to,t3) € ZF N {(te,t2,t3) | P21 (e, to,t3) € Z} = @

Hence the Riemann surface of genus 5 does not admit any act®if gf = 11.
It follows from the result above that the Riemann surface of genag®es not admit any
action of G if (o,p) = (2,5), (7,5), (3,9), (4,9), (11,9), (7,10), (5,11). Note thatifc =0, 1
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(modp), M can be embedded symmetrically ifR9 with respect to ther-rotation arounc-axis
and2rt/ p-rotation around-axis, and hence the Riemann surface of gemasimits an action of
the dihedral grou(2p). Therefore the list of o, p) above does not contaifo, p) such that
o =0,1(modp).

4. 0-pseudofree action of cyclic groups.

Let Z, be the cyclic group of prime ordgr generated by. Then an action oZ, onM is
called0-pseudofree if it is not free and the fixed point set of &ny Z, (h # 1) consists only
of isolated points (cf. 11], [14]). In this paper0-pseudofree is simply called pseudofree. Then
since the fixed point set af* is independent ok, the action ofZ, is pseudofree if and only if
the fixed point set of consists only of isolated points and the numbef the fixed points of
g¥is independent ok. In this section, applying Theorem 2.2, we examine wheklhedmits a
pseudofree action &p,.

First we have the next theorem.

THOREM4.1. Assume thall admits a pseudofree action &f, = () wherep is an odd
prime number. Lety, 02, - -+, gy be the fixed points af and suppose that the tangent space
TgM (1 <i < n) splits into the direct sum

TgM = oL,V (1)) (O <Tj < Ep)
as a realZ,-representation as i4). Then we have

Pl/2n 2s KT
'J_
=0

2 A

Pl)/2 nkn251

(modZ) if m=2s,

cot— Z |'| cot L=0 (modZ) if m=2s—1.
PrROOF. Let D be the signature operator. Sinpg(g) =0, it follows from (2), (3) and
Proposition 2.4 that
p—1
N> Ind(D,g")
k=1 L= 6p
P /2 1 V=1 k)
= 2Re (— t) (—\/—1cot ”)
kZl { 2 2 P i;]I:ll
(P-1)/2 n 2s TIKT
(—1)8 cot—-1 (m=2s)
el
(p-1)/2 n 2s-1

(71)S cot— 21 I_ll cot

The theorem is deduced from the equality above. O
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COROLLARY 4.2. Assume tha¥l admits a pseudofree action$ and letn be the number
of the fixed points. Themis even om > 3[(M1)/2],

PROOF. Sincecot(rr/3) = 1/+/3 andcot(2r/3) = —1/+/3, it follows from Theorem 4.1

that
5(:3) -0 it (=[5

The result of the corollary immediately follows from the equality above. O

REMARK 4.3. Assume thatM admits a pseudofree action 8§ = (g) and letD be the
signature operator. Then as is known in (6.7), (6.98Inlhd(D, g) is expressed as follows:

Ind(D,g) = Tr(glp™)—Tr(glp~) (if miseven
YT\ Tr(glo) ~Tr(glp)  (if mis odd

wherep® are realZz-representations and a complexZsz-representation. It follows from the
equalities above thdhd(D,g) € Z if mis even and thaind(D,g) € v—3Z if mis odd. The
result in Corollary 4.2 is also deduce from this fact and Proposition 2.4.

For theSpirf-action of cyclic groups, we have the following theorems.

THOREM 4.4. Assume thatl has aSpirf-structure and admits a pseudofrggirf-action
of Z,. If there exists a compleZ,-line bundleL over M such that the indeknd(D, ) of theL-
valued Dirac operatoD, is an odd number, then we haneg> 2™,

ProoF. It follows from Theorem 2.2 (b), (3) and Proposition 2.6 that
0=2Ip, (9) = 1(Ind (Dp) — Zl\/ > (modZz)
for some integeA;. The right-hand side of the equality above is not an integerdfD, ) is odd

andn < 2™, This completes the proof. O

REMARK 4.5. Inthe theorem above, the indnd(D, ) is equal to the indekd(D) of the
non-twisted Dirac operatdD if L is the trivial complex line bundle with the trivi@s-action.

The next theorem is also useful for tB@irf-action ofZ3, Zs.

THOREM 4.6. Assume thatl has aSpirf-structure and admits a pseudofrBgirf-action
of Z, where p is an odd prime number and that the action lifts to an action on a complex
line bundleL over M. Letd be the distance froni(p — 1)/2)Ind(D.) to pZ defined byd =
minscz |((p—1)/2)Ind(DL) — pg whereD_ is theL-valued Dirac operator. Then we have

5 T m+1
n>_———|(2sin— .
~3(p-1) < p)

Moreover ifdefD, ,g) = 1, we have
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PROOF. Set
-1 1 -1 q

K].: T s _k Ind(DL,ng)_ZIHd(DL7gk) ’ K2: 7_Ind(DL7gk)'
kzll—fpk{ } kzll—fpk

Then sincel1 — &f| > [1— &p| for any integert which is not a multiple ofp, it follows from
Proposition 2.6 that

p-1n 1 1 1
Ka| <

PPNl M, 1- &% n, L1- 8]

3n(p—1) 3n(p-1)

=L &™T T (2sin(m/p)™ T
Moreover it follows from Theorem 2.2 (a) and (3) that

-1 1
2lp, (g) — o, (7) = 0 = pz—plnd(DL) +oKi=0 (mod2)

— p%1Ind(DL) +Ky=0 (modp).

Hence we havéK;| > d and therefore it follows that

3n(p—1) 0 _m\™t
Zsinm/p)™t -~ 0 "2 3p 1) (ZS'“p) |

If defDy,9) =1 <= Ip (g9) =0, it follows from (3) that

p—1
2p

Ind(DL)——pKz—O (modZ) «— p%llnd(DL)—KzzO (modp),

which implies thaiKy| > 6. Hence it follows from the same argument as above that

n(p—1) ) o\ ™
5§|K2|§—(Zsin(n/p))”“rl:}nzipfl 23|np .

Under the notation in the theorem above, we obtain the next corollary immediately from
Proposition 2.8.

COROLLARY 4.7. |If

2m J b T m+-1
dimH!(M;R) < — | 2sin— ,
JZO (M:R) 3(p-1) < p)

thenM does not admit ang pirf-action ofZ,. Moreover ifde D, ,g) = 1 and

m+1
%dlmHJ (M;R) < o (ZSinn> ,
p— p

thenM does not admit ang pirf-action ofZ,,.
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EXAMPLE 4.8. Let p be a prime numbeg;, the compact Riemann surfaces of gepls
andS’ the 2-dimensional sphere. L&t= < x --- x & be them — 1-times product ofs* and
Mpk = Zpk x T a2m-dimensional almost complex manifold with

m-1

c1(TMpi) = (2—-2pKly + y 2zj € H2(Mpi Z) = H? (Zp: 2) @ o H (S 2)
=1

wherey is the positive generator dﬁz(zpk; Z)>~Zandz, ---, zZn_1 are the positive generators
of H2(S?;Z) = Z. HenceMy has aSpirf-structure with

m—
c1(n) = (2s+2—2pk)y+ Z (2tj +2)zj € H3(Mpi; Z)

for some integers, t;. If the Spirf-structure ofMpx comes from appropriate almost complex
structures oy, &, the integers, t j's are equal td and both ofZ and & admit pseudofree
Spirf-actions ofZ, with 2 fixed points, and therefore the diago&airf-action ofZ, on My is
pseudofree and h&8" fixed points.

Now since the total Chern clag$T M) is equal to(1+ (2 — 2pk)y) |‘|E“;f(l+ 2z)), it
follows from Proposition 2.6 that

Ind(D) = e 2ita 2200V Ty Mo — (51— pk [ (4 + 1)
1— e—2 2pk)y I_lll e—22J JI:II
m-1

=(s+D[]t+1) (modp).
s JI:L, modp

Hence it follows from Theorem 4.4 that any pseudofggerf-action ofZ, on My hasn fixed
points withn > 2™ if none of s, t;’s is —1 (mod 2. In particular, if theS pirf-structure oMy
comes from the almost complex structuresgf, &, then any pseudofregpirf-action ofZ, on
My has more than or equal &" fixed points. If none o8, tj’s is —1 (mod 3, we haved = 1
and hence it follows from Theorem 4.6 that any pseudo8pef-action of Zz on My hasn
fixed points withn > (2sin(17/3))™"/6. If none ofs, tj’s is —1 (mod 5, we haved = 1 or 2
and hence it also follows from Theorem 4.6 that any pseud&md-action ofZs on Ms, hasn
fixed points withn > (2sin(77/5))™*/12.
Moreover it follows from Corollary 4.2 thatl, does not admit any pseudofree action of

Zzwith 1, 3,5, -+, 3(M1/2 _ 2 fixed points.

EXAMPLE 4.9. LetM = CP? x CPK (k > 3) be the product of complex projective spaces
and assume th&dl admits a pseudofree action of the cyclic grayp= (g) of odd prime order
p. Then we have

H?(M;Z) = H?(CP%Z) ®H2(CPXZ) = (Ax+uy|A, ucZ} =22
wherex € H?(CP?;Z) = Z andy € H?(CPX; Z) = Z are the positive generators and
g H3M;2)=2Z®Z —H?M;2) =202

is represented by2ix 2 integral matrixA = (&) whosep-th power is equal to the unit matri
Since theZ,-action preserves the volume elemeh, it follows thatg* (x2y*) = (¢*x)2(g*y)k =
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X2k € H22+K(M; Z) and hence that theyk-coefficient of(a1x+ ap1y)?(a12x+ azy)K is equal
to 1. Let&y, &y be the eigenvalues @é. Then sinceletA) = 1, it follows thatv = —u and hence
that
2
Z>Tr(A) =2Re(&,) = ZCOSTHU.

ThereforeTr (A) is equal to—1 or 2 if p=3and is equal to 2 ip > 5.

If p=3andTr(A) = —1, it follows from the Hamilton-Cayley’s theorem that + A+ E =
0, which is equivalent to the equalitie§1+ a1+ 1+ appap1 =0, a11 + app = —1. ThereforeA
is expressed as

S t
<—((52+S+l)/t) _(s+1)> (steZ).

Then thex?yX-coefficient of(ag1x + ax1y)?(a12x + aoy)K is equal to

f<s>=§0( BIPES (—Szﬂ”l)jm-(sﬂ))“

= (—D)*(s+1)k2 {SZ(S+ 1)24 2ks(s+1)(+s+1) + k<k72_1)(s2 +s+ 1)2}

2
~ (-1 1>“{52 (434 5E s+ <(k+3) (=+3) +3k4_7> } |

Here we havef (s) =0if s= —1and

2
1f(s)] > 'é‘ ((k+3) (%) +3k4—7> _ k(kz—l) _a

if s# —1, and thereford (s) # 1 for anys. Hence we havér (A) = 2 for any odd primep.
Then using the Hamilton-Cayley's theorem, we can showARat pA— (p—1)E < A=
E by induction and hence thatx = x, g*y = y. Therefore g acts trivially on

24k 2k

O HE (MR = © & (HZ(CP2R) @ HA(CPYR) ) = Rk
r=0 s=0t=0

and hence it follows from Proposition 2.8 tiiahas3(k+ 1) fixed points. For example, K< p,

the fixed point set of th&,-action onCP! (j = 2 or k) defined by

g0z g — (20 & Eiza s E)zy] (9)

consists ofj + 1 points. Hence the diagonal action 8§ on M is pseudofree and hak+ 1)
fixed points.

Now we give aS pirf-structure ofM which comes from the almost complex structure with
c1(n) = c1(TM) = 3x+ (k+1)y. Then sincee1(n) = 3x+ (K+ 1)y is invariant under the action
of Z, andH(M; Z) = 0, the action ofZ,, lifts to an action on thé&pirf-structure as we see in
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Remark 2.5. LeD be the non-twisted Dirac operator dh Then it follows from Proposition
2.6 that

Ind(D) = e+ 1M/2A(M) M]
3 k+1
ok o X y
= x?y¥-coefficient of ( - e—x) (1 — e_y>

—( L i ezdz)( 1 ekWe""dw)
C\2ny-1/aw (€-1)3 21my/—1 Jo,m) (8 — 1)k

(whereCy(2), C2(w) are sufficiently small counterclockwise loops around the oyigin

_< 1 (u+1)2du>( 1 (v+1)kdv>
\2my/-1Jgw W 21my/—1 Jeyv) VKL

(via the substitution=€*—1, v=¢€"—1)

= u?vKk-coefficient of(u+ 1)2(v+ 1)" =1.

Hence we havé = 1 for p=3andd = 2for p=5in Theorem 4.6, and it follows that

7T\ 2+k+1
3(3-1)-3(k+1) > (Zsin§> p=3),
C T\ 2+k+1
3(5—1) - 3(k+1) 22(Zsmg) p=5),

which implies thak <5if p=3and thak < 37if p=5.

Moreover since(k+ 1) < 3[3++1/2 for anyk > 3, it follows from Corollary 4.2 thaM
does not admit any pseudofree actiorZgfif k is even. Henc& does not admit any pseudofree
action ofZ3 if k=4 or k > 6 and any pseudofree action 2§ if k > 38.

Let G be the finite non-Abelian group defined in Example 3.5. Thersf3, 5, the greatest
common divisord is equal tol and hence we havdetD,g) = 1. Therefore ifM admits a
Spirf-action ofG, it follows also from Theorem 4.6 (or Corollary 4.7) that

(3—1)-3(Kk+1) > (25in7—3-[)2+k+1 p=3),
(5—1).3(k+1)22(25in§)2+k+1 p=5).

The inequalities above imply théd does not admit any pseudofr&girf-action of G if p=3
and thak < 29if p=5andM admits a pseudofregpirf-action ofG.

APPENDIX. Here we give the proof of Proposition 3.2. lagthe any complex number such
thata" = 1 anda # 1. Then for|t| < 1, we have

1 00 o n-1

m = i;(i + l)aiti = J;S;(nj +s+ l)astnj+s

o0 n-1 n-1

= J;t’” S;(S-i— 1at®+ nJ;jtnJ ;asts
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Yo g(s+1)ats nt”z”;&asts s (n—s— 1)t”+s+1}a5tS
N 1-tn (1—t")2 (1-t")2

Setg(t) = 02 {(n—s— 1t" +s+ 1} a%ts. Then we have

t) = nZ:{(nz —n-&-9at™s 4 (£ +g)at )

g'(t) = nz: [{=s*—ng+(n—1)%s+n(n—1)%} a2 4 (S —g)at>?]

s=

and hence it follows that

Therefore we have
o T g'(t)
e Mo mmayy e Tamy
_sig{eng (@ o2msinn-12)a ()
= o0 B 2n

S=|

wherefy(s) = & — (n—2)s— (n— 1)2. Hence, ifkmis not a multiple o, it follows that

Kknv Ek(m€+m+l)
n n

_ _ gk(m+my) 1—&km 1
(1-&"Ma —s—km> (1- &1 gkm — " 1-&k (1-&km)2
n-1 n—-1
__gkmemi) ' $ s 1S pims_ (9 © ki stmes)
S zé > on &= ZO Zf

Thus we have

_nil n-1 fo(s m 1ni f (ErstImiiiy)
G (=& "8 20 2n 20
"t n(s) o ck((+s+1)m+1+v)
= —14
Zl') 2n v0< k;)én
_ fin( g 1f milnilg (+s+1)mH1+v)
S Zﬁ " Z) " VZOkZO "

:_2% ijn( ;nzisn(m ) fa(S)
£

where

Fnem(s) =#{veZ|0<v<m-1, ({+s+1)m+1+v = jnfor some integej}

—nfjez) [LESEAM) 4y oy [ (s AT

n

111
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because |1 XFSTIMY) s equal tan if (£ 45+ 1)m-+ 1+ v is a multiple ofn and is equal

to 0 if (/4 s+1)m+ 1+ v is not a multiple ofn.
Here we have

n-1

Z)fn Z)SZ (n— 22) (n—1)22}1=—én(n—1)(7n—11)

n-1 () [((¢+n-2)m) in—1
19(n7é‘7m) S fn(s) - fn ( |: :| - g - 1)
s; i=[((€+%m>/n]+l m

because the set ¢$, j) such that

0<s<n-1, [W]HS]S [(“5:2)"‘}

and

coincides with the set df, j) such that

{(Hl)m} +1<j< [(£+n+1)m} ,s= [Jn_l} —0—1.
n n m
Hence we have
n-1 k¢ m 1 [((n+Dm)/n] jin—1
n
— — — —(n—=1)(Tn—11) + = f ({ }—é—l)
k; (1- & )(1—& ™ 12 = [((Mz L m

and therefore it follows from (3) that

p— 1 b n—1 EJZL[
Io, (g )57( 2041 - =S —
‘ 2p p.Z ' Z (1- &) (1— &%)
pT( —0)(20+1)
b [((+ri1)z8)/m) .
121 {Z“ D -1ty Y fni({’”' _ 1]4—1)}.
P i=[((e+1fZ0) m)1 41 Z
(modZ).

The equality of Proposition 3.2 follows immediately from the equality above.
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