On the fundamental groups of the complements of plane singular sextics

By Christophe Eyral and Mutsuo Oka

(Received May 9, 2003)
(Revised Sept. 5, 2003)

Abstract

Recently, Oka-Pho proved that the fundamental group of the complement of any plane irreducible tame torus sextic is not abelian. We compute here the fundamental groups of the complements of some plane irreducible sextics which are not of torus type. For all our examples, we obtain that the fundamental group is abelian.

Introduction.

In $[\mathbf{Z 1}]$, Zariski proved th at if C is an irreducible sextic in the complex projective plane $\boldsymbol{C} \boldsymbol{P}^{2}$ with 6 cusps situated on a conic, then the fundamental group $\pi_{1}\left(\boldsymbol{C P}{ }^{2}-C\right)$ is isomorphic to the free product $(\boldsymbol{Z} / 2 \boldsymbol{Z}) *(\boldsymbol{Z} / 3 \mathbf{Z})$. He also proved that if there exists an irreducible sextic C^{\prime} in $\boldsymbol{C} \boldsymbol{P}^{2}$ with 6 cusps not situated on a conic, then $\pi_{1}\left(\boldsymbol{C P} \boldsymbol{P}^{2}-C^{\prime}\right)$ is not isomorphic to $(\boldsymbol{Z} / 2 \boldsymbol{Z}) *(\boldsymbol{Z} / 3 \boldsymbol{Z})$. In [Z2], he justified the existence of this second family of curves C^{\prime}, and asserts that $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-C^{\prime}\right)$ is isomorphic to $\mathbf{Z} / 6 \boldsymbol{Z}$. In [O3], Oka gave the first explicit example of such a curve C^{\prime}. A curve C as above (6 cusps on a conic) is an example of the so-called sextics of torus type ${ }^{1}$. On the contrary, the curve C^{\prime} (6 cusps not situated on a conic) is not of torus type.

Conjecture 0.1 (Oka). Let C be an irreducible sextic in $\boldsymbol{C P} \boldsymbol{P}^{2}$ which is not of torus type. Then, we have the three following conjectures.
(i) The generic Alexander polynomial of C is trivial.
(ii) If moreover C has only simple singularities, then the fundamental groups $\pi_{1}\left(\boldsymbol{C P}{ }^{2}-C\right)$ and $\pi_{1}\left(\boldsymbol{C}^{2}-C\right)$ are abelian, isomorphic to $\mathbf{Z} / 6 \mathbf{Z}$ and \mathbf{Z} respectively.
(iii) The fundamental groups $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-C\right)$ and $\pi_{1}\left(\boldsymbol{C}^{2}-C\right)$ are abelian, isomorphic to $\mathbf{Z} / 6 \boldsymbol{Z}$ and \mathbf{Z} respectively (without assuming that the singularities are simple).

Notice that (i) is true for curves having only simple singularities and satisfying the condition $\rho(5) \leq 6$ (cf. [O7]). Observe also that (iii) implies (i), while the reverse is not true (cf. [O7]).

In the present paper, we give a first step toward (ii). More precisely, for each configuration of singularities Ξ in the following list ${ }^{2}$:

$$
\begin{gather*}
\left\{2 A_{8}\right\},\left\{A_{17}\right\},\left\{A_{11}+E_{6}\right\},\left\{A_{14}+A_{2}\right\},\left\{A_{11}+A_{5}\right\}, \tag{0.2}\\
\\
\left\{A_{8}+A_{5}+A_{2}\right\},\left\{A_{8}+E_{6}+A_{2}\right\},
\end{gather*}
$$

[^0]we give an explicit example of an irreducible non-torus sextic $C \subset \boldsymbol{C} \boldsymbol{P}^{2}$ with the configuration Ξ such that $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-C\right)$ and $\pi_{1}\left(\boldsymbol{C}^{2}-C\right)$ are abelian (isomorphic to $\boldsymbol{Z} / 6 \boldsymbol{Z}$ and \boldsymbol{Z} respectively). Then, denoting by $\mathscr{M}(\Xi)$ the moduli space of reduced sextics in $\boldsymbol{C P}{ }^{2}$ with the configuration Ξ, one deduces that, for any curve \mathfrak{C} belonging to the connected component of $\mathscr{M}(\Xi)$ containing our example C, the fundamental groups $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-\mathfrak{C}\right)$ and $\pi_{1}\left(\boldsymbol{C}^{2}-\mathfrak{C}\right)$ are abelian too. Our mains results are stated in Theorem 2.1 and Corollary 2.2. For the proof, we use the Zariski-van Kampen pencils method (cf. Section 1 below). Notice that, in practice, the computation of the fundamental group is not so easy, since it is extremely difficult to read the monodromy relations for curves which are defined over \boldsymbol{C}. Nevertheless, when the curve has many real singular pencil lines, the computation becomes usually easier. Moreover, as our purpose is to show the commutativity of the fundamental group, it is not necessary to consider all the monodromy relations provided we can find a "good" curve. Hereafter, we have chosen curves so that we shall only need to consider the monodromy relations at the real singular pencil lines. But in general if we use an equation which is not "good enough" we have to use the other monodromy relations even to show a commutativity.

Notice that, in [OP], Oka-Pho showed that the fundamental group of the complement of any irreducible tame torus sextic ${ }^{3}$ in $\boldsymbol{C} \boldsymbol{P}^{2}$ is isomorphic to $(\boldsymbol{Z} / \mathbf{Z}) *(\boldsymbol{Z} / 3 \boldsymbol{Z})$ except one class (the exceptional class has the configuration of singularities $\left\{C_{3,9}+3 A_{2}\right\}$ and the fundamental group in this case is bigger than $(\mathbf{Z} / 2 \mathbf{Z}) *(\mathbf{Z} / 3 \mathbf{Z}))$. Concerning the proof, in the case of irreducible tame torus sextics the computation can be in fact reduced to the special case of maximal curves, and it thus becomes easier to check the property since there exist only 7 moduli of maximal reduced tame torus sextics in $\boldsymbol{C P ^ { 2 }}$.

Notice also that, in [O7], the second author proved that the generic Alexander polynomial of any irreducible torus sextic in $\boldsymbol{C} \boldsymbol{P}^{2}$ (not necessarily tame) is not trivial; in particular, this implies that the fundamental group of the complement of such a curve is not abelian.

The paper is organized as follows. In Section 1, we recall the Zariski-van Kampen pencils method. In Section 2, we give the statements of our main results (Theorem 2.1 and Corollary 2.2). Sections 3 to 7 concern the proof of Theorem 2.1.

This paper has been written using the SCURVE program made by Pho Duc Tai for MAPLE 7.

1. Zariski-van Kampen pencils method.

Let $F(X, Y, Z)$ be a reduced homogeneous polynomial of degree d. We denote by

$$
C:=\left\{(X: Y: Z) \in \boldsymbol{C} \boldsymbol{P}^{2} \mid F(X, Y, Z)=0\right\}
$$

the corresponding projective curve in $\boldsymbol{C} \boldsymbol{P}^{2}$. The most effective way to compute the fundamental group $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-\boldsymbol{C}\right)$ is the Zariski-van Kampen pencils method. This method can be briefly described as follows.

Let $l(X, Y, Z), l^{\prime}(X, Y, Z)$ be two independent linear forms. For every point $\tau:=(S: T) \in$ $\boldsymbol{C P} \boldsymbol{P}^{1}$, denote by L_{τ} the projective line of $\boldsymbol{C} \boldsymbol{P}^{2}$ defined by

$$
L_{\tau}:=\left\{(X: Y: Z) \in \boldsymbol{C} \boldsymbol{P}^{2} \mid \operatorname{Tl} l(X, Y, Z)-S l^{\prime}(X, Y, Z)=0\right\} .
$$

[^1]The family of lines $\mathscr{L}:=\left(L_{\tau}\right)_{\tau \in C P^{1}}$ is called the pencil generated by l and l^{\prime}. The point $B_{0}:=$ $L_{(0: 1)} \cap L_{(1: 0)}$ belongs to every line of the pencil; it is called the axis of \mathscr{L}. We assume that $B_{0} \notin C$. A member L_{τ} of \mathscr{L} is called a generic line, with respect to C, if it avoids the singularities of C and if it is transverse to the non-singular part of C; otherwise, it is called a singular line. If L_{τ} is generic, then it intersects C at exactly d points. If L_{τ} is singular, then it intersects C at a singular point or it is tangent to C at some simple point. Notice that the set of singular lines is finite. If necessary, one may consider some generic lines of \mathscr{L} as "singular" ones. Let Σ the set of parameters $\tau \in \boldsymbol{C} \boldsymbol{P}^{1}$ corresponding to the singular lines, and let $L_{\tau_{0}}$ and $L_{\tau_{\infty}}$ be two generic lines (which we have not decided to consider as "singular"). Without loss of generality, we can assume that τ_{∞} is the point at infinity of $\boldsymbol{C} \boldsymbol{P}^{1}$ (i.e., $\tau_{\infty}=(1: 0)$). Hereafter, we identify $\boldsymbol{C} \boldsymbol{P}^{2}-L_{\tau_{\infty}}$ with the affine space \boldsymbol{C}^{2}, and we denote by L_{τ}^{a} the affine line $L_{\tau}-L_{\tau_{\infty}}=L_{\tau}-B_{0}$. Notice that L_{τ}^{a} naturally identifies to \boldsymbol{C}. The complement $L_{\tau_{0}}-C$ (resp. $L_{\tau_{0}}^{a}-C$) is topologically the 2 -sphere \boldsymbol{S}^{2} minus d (resp. $d+1$) points. We take $b_{0}=B_{0}$ as the base point in the case of $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-C\right)$. In the affine case $\pi_{1}\left(\boldsymbol{C}^{2}-\boldsymbol{C}\right)$, we take the base point b_{0} on $L_{\tau_{0}}$ sufficiently close to B_{0} but $b_{0} \neq B_{0}$.

It is well-known that there is a canonical action of $\pi_{1}\left(\boldsymbol{C P} \boldsymbol{P}^{1}-\Sigma, \tau_{0}\right)$ on $\pi_{1}\left(L_{\tau_{0}}-C, b_{0}\right)$ and a canonical action of $\pi_{1}\left(\boldsymbol{C P} \boldsymbol{P}^{1}-\Sigma^{a}, \tau_{0}\right)$ on $\pi_{1}\left(L_{\tau_{0}}^{a}-C, b_{0}\right)$, where $\Sigma^{a}=\Sigma \cup \tau_{\infty}$ (cf. e.g. [O4], [O8]). These actions are called the monodromy actions. For any $\sigma \in \pi_{1}\left(\boldsymbol{C P}{ }^{1}-\Sigma, \tau_{0}\right)$ and any ξ in $\pi_{1}\left(L_{\tau_{0}}-C, b_{0}\right)$, we denote by ξ^{σ} the image of (σ, ξ) by the monodromy action (of $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{1}-\Sigma, \tau_{0}\right)$ on $\left.\pi_{1}\left(L_{\tau_{0}}-C, b_{0}\right)\right)$. The relations

$$
\xi=\xi^{\sigma} \quad \text { for } \quad \sigma \in \pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{1}-\Sigma, \tau_{0}\right) \text { and } \xi \in \pi_{1}\left(L_{\tau_{0}}-C, b_{0}\right)
$$

in the group $\pi_{1}\left(L_{\tau_{0}}-C, b_{0}\right)$ are called the monodromy relations. We use a similar notation and terminology in the affine case. We denote by N (resp. N^{a}) the normal subgroup of $\pi_{1}\left(L_{\tau_{0}}-C, b_{0}\right)$ (resp. $\left.\pi_{1}\left(L_{\tau_{0}}^{a}-C, b_{0}\right)\right)$ generated by

$$
\begin{gathered}
\left\{\xi^{-1} \xi^{\sigma} \mid \sigma \in \pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{1}-\Sigma, \tau_{0}\right), \xi \in \pi_{1}\left(L_{\tau_{0}}-C, b_{0}\right)\right\} \\
\text { (resp. } \left.\left\{\xi^{-1} \xi^{\sigma} \mid \sigma \in \pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{1}-\Sigma^{a}, \tau_{0}\right), \xi \in \pi_{1}\left(L_{\tau_{0}}^{a}-C, b_{0}\right)\right\}\right)
\end{gathered}
$$

THEOREM 1.1 (Zariski-van Kampen). (i) The inclusion map $L_{\tau_{0}}-C \hookrightarrow \boldsymbol{C} \boldsymbol{P}^{2}-C$ induces an isomorphism

$$
\pi_{1}\left(L_{\tau_{0}}-C, b_{0}\right) / N \xrightarrow{\sim} \pi_{1}\left(\boldsymbol{C P} \boldsymbol{P}^{2}-C, b_{0}\right) .
$$

(ii) Similarly, the inclusion map $L_{\tau_{0}}^{a}-C \hookrightarrow \boldsymbol{C}^{2}-C$ induces an isomorphism

$$
\pi_{1}\left(L_{\tau_{0}}^{a}-C, b_{0}\right) / N^{a} \xrightarrow{\sim} \pi_{1}\left(\boldsymbol{C}^{2}-C, b_{0}\right) .
$$

Originally conjectured by Zariski [Z1], this theorem was proved by van Kampen [$\mathbf{v K}$]. For a modern and complete proof, see Chéniot [$\mathbf{C}]$.

The relation between $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-C, b_{0}\right)$ and $\pi_{1}\left(\boldsymbol{C}^{2}-C, b_{0}\right)$ is described by the following result.

Proposition 1.2 (cf. [O1], [O2]). (i) Let $\imath: \boldsymbol{C}^{2}-C \hookrightarrow \boldsymbol{C} \boldsymbol{P}^{2}-C$ be the inclusion map. We have the following central extension:

$$
1 \rightarrow \boldsymbol{Z} \rightarrow \pi_{1}\left(\boldsymbol{C}^{2}-C, b_{0}\right) \xrightarrow{\stackrel{l}{\sharp}} \pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-C, b_{0}\right) \rightarrow 1,
$$

where, of course, \imath_{\sharp} is induced by $l_{\text {. The }}$ generator for $\operatorname{ker} \imath_{\sharp}$ is represented by a lasso for $L_{\tau_{\infty}}$.
(ii) The homomorphism ${ }_{\sharp}$ induces an isomorphism

$$
\mathscr{D}\left(\pi_{1}\left(\boldsymbol{C}^{2}-C, b_{0}\right)\right) \xrightarrow{\sim} \mathscr{D}\left(\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-C, b_{0}\right)\right)
$$

between the commutator subgroups $\mathscr{D}\left(\pi_{1}\left(\boldsymbol{C}^{2}-C, b_{0}\right)\right)$ and $\mathscr{D}\left(\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-C, b_{0}\right)\right)$ of $\pi_{1}\left(\boldsymbol{C}^{2}-\right.$ $\left.C, b_{0}\right)$ and $\pi_{1}\left(\boldsymbol{C P}{ }^{2}-C, b_{0}\right)$ respectively.

We recall that a lasso is defined as follows. Let $\mathfrak{C} \subset \boldsymbol{C} \boldsymbol{P}^{2}$ be a reduced curve and let $\left(\mathfrak{C}_{i}\right)_{i}$ be the irreducible components of \mathfrak{C}. An element $\zeta \in \pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-\mathfrak{C}, *\right)$ is called a lasso oriented counter-clockwise for \mathfrak{C}_{i} if it is represented by a loop written as $\rho \omega \rho^{-1}$, where ω is a loop running once counter-clockwise around the boundary circle of a small closed normal disk Δ of \mathfrak{C} at a simple point such that Δ does not intersect with \mathfrak{C}_{j} for $j \neq i$, and where ρ is a simple path connecting the base point $*$ and the loop ω such that $\operatorname{im} \rho \cap \Delta$ is reduced to a single point (cf. [O4]).

Of course, Proposition 1.2 implies that $\pi_{1}\left(\boldsymbol{C}^{2}-C, b_{0}\right)$ is abelian if and only if $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-\right.$ $\left.C, b_{0}\right)$ is abelian. Moreover, if C is irreducible and if the fundamental groups $\pi_{1}\left(\boldsymbol{C}^{2}-C, b_{0}\right)$ and $\pi_{1}\left(\boldsymbol{C P} \boldsymbol{P}^{2}-C, b_{0}\right)$ are abelian, then we have the following isomorphisms (cf. [O8, Section 2.3]):

$$
\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-C, b_{0}\right) \simeq \boldsymbol{Z} / d \boldsymbol{Z} \quad \text { and } \quad \pi_{1}\left(\boldsymbol{C}^{2}-C, b_{0}\right) \simeq \boldsymbol{Z}
$$

Notation 1.3. (i) For our purpose, we shall use only the pencils $\mathscr{L}_{X, Z}$ and $\mathscr{L}_{Y, Z}$ generated by l_{X}, l_{Z} and l_{Y}, l_{Z} respectively, where

$$
l_{X}(X, Y, Z)=X, \quad l_{Y}(X, Y, Z)=Y, \quad l_{Z}(X, Y, Z)=Z
$$

In these two special cases, $L_{\tau_{\infty}}$ is just the line at infinity $L_{\infty}:=\left\{(X: Y: Z) \in \boldsymbol{C} \boldsymbol{P}^{2} \mid Z=0\right\}$ of $\boldsymbol{C P} \boldsymbol{P}^{2}$. Let $x:=X / Z$ and $y:=Y / Z$ be the affine coordinates on $\boldsymbol{C}^{2}=\boldsymbol{C} \boldsymbol{P}^{2}-L_{\infty}$. Observe that, in \boldsymbol{C}^{2}, the pencils $\mathscr{L}_{X, Z}$ and $\mathscr{L}_{Y, Z}$ are given by $\{x=\eta\}_{\eta \in \boldsymbol{C}}$ and $\{y=\eta\}_{\eta \in \boldsymbol{C}}$ respectively. For any $\tau=(S: T) \in \boldsymbol{C} \boldsymbol{P}^{1}-\tau_{\infty} \simeq \boldsymbol{C}$, we shall also denote the line L_{τ} by L_{η} where $\eta=S / T$. Observe that, in \boldsymbol{C}^{2}, the line L_{η} is given by $x=\eta$ for the pencil $\mathscr{L}_{X, Z}$ and by $y=\eta$ for the pencil $\mathscr{L}_{Y, Z}$.
(ii) Hereafter, we shall consider the affine equation of C, that is the equation $f(x, y)=0$ where $f(x, y):=F(x, y, 1)$.
(iii) Everywhere, we shall always assume that ε is a sufficiently small strictly positive number.
(iv) In the figures, for simplicity of drawing pictures, we shall denote a lasso oriented counter-clockwise just by a path ending with a bullet —— as in [O5], [O6] and [OP] (but of course this is a loop!).

2. Statements of the main results.

For each integer $i, 1 \leq i \leq 7$, we consider the irreducible sextic C_{i} defined by the affine equation $f_{i}(x, y)=0$, where

$$
\begin{aligned}
f_{1}(x, y):= & (1 / 4) x^{6}+(3 / 2) x^{5} y+(26685 / 512) y^{5} x+(87 / 32) x^{4} y^{2}+x^{3} y^{3}+(589 / 1024) y^{6} \\
& -(1 / 2) x^{5}-(1667 / 32) y^{5}-(79 / 32) x^{3} y^{2}-(7743 / 1024) x^{2} y^{4}-(25 / 16) x^{2} y^{3} \\
& -2 x^{4} y+(13 / 2) x y^{4}+(1 / 4) x^{4}+(17 / 16) y^{4}-(7 / 16) x y^{3}-(9 / 4) x^{2} y^{2} \\
& -(1 / 2) x^{3} y+x^{2} y+x y^{2}+y^{3}+y^{2},
\end{aligned}
$$

$$
\begin{aligned}
& f_{2}(x, y):=360 x^{6}+(419 / 144) y^{6}-120 x^{5} y+(295 / 216) y^{5} x+25 x^{4} y^{2}-(1535 / 144) y^{4} x^{2} \\
& +(373 / 6) x^{3} y^{3}+32 x^{5}+(7 / 4) y^{5}+(373 / 3) x^{4} y+(145 / 12) y^{4} x-(59 / 36) x^{3} y^{2} \\
& +(133 / 54) x^{2} y^{3}+(1417 / 36) x^{4}+(1 / 4) y^{4}-(29 / 54) x^{3} y+7 x y^{3}+(161 / 12) x^{2} y^{2} \\
& +(16 / 9) x^{3}+7 x^{2} y+x y^{2}+x^{2}, \\
& f_{3}(x, y):=(-(9 / 8) x-1) y^{5}+\left(-(13 / 48) x^{2}+(27 / 8) x+3\right) y^{4} \\
& +\left(-(83 / 32) x^{3}-(35 / 24) x^{2}-(27 / 8) x-3\right) y^{3} \\
& +\left((271 / 576) x^{4}+(187 / 32) x^{3}+(179 / 48) x^{2}+(9 / 8) x+1\right) y^{2} \\
& +\left(-(61 / 48) x^{5}-(17 / 12) x^{4}-(13 / 4) x^{3}-2 x^{2}\right) y \\
& +(15 / 16) x^{6}+(17 / 8) x^{5}+x^{4}, \\
& f_{4}(x, y):=\frac{13149}{141376} y^{4}-\frac{10177}{6903125} x^{5}+\frac{1}{625} x^{4}-\frac{89779}{22090} y^{4} x-\frac{136993}{141376} y^{6}+\frac{269603}{141376} y^{5} \\
& +\frac{13885}{8836} y^{5} x-\frac{122147}{3534400} y^{4} x^{2}-\frac{287135}{141376} y^{3}+\frac{127723}{1767200} y^{3} x^{2}+\frac{150841}{44180} y^{3} x \\
& +\frac{5207}{110450} y^{3} x^{3}+y^{2}+\frac{296909}{88360000} y^{2} x^{4}+\frac{153509}{3534400} y^{2} x^{2}-\frac{10177}{11045} y^{2} x-\frac{78261}{552250} y^{2} x^{3} \\
& -\frac{11117}{88360000} x^{4} y+\frac{20354}{276125} x^{3} y+\frac{5681}{27612500} x^{5} y+\frac{144743}{2209000000} x^{6}-\frac{2}{25} x^{2} y, \\
& f_{5}(x, y):=y^{6}-3 y^{5}+3 y^{4} x^{2}+2 y^{4} x+4 y^{4}-2 y^{3} x^{3}-13 y^{3} x^{2}-6 y^{3} x-3 y^{3}+9 y^{2} x^{4}+12 y^{2} x^{3} \\
& +13 y^{2} x^{2}+4 y^{2} x+y^{2}-6 y x^{5}-17 y x^{4}-8 y x^{3}-2 y x^{2}+7 x^{6}+4 x^{5}+x^{4}, \\
& f_{6}(x, y):=(5 / 16) y^{6}-(23 / 8) y^{5} x+(23 / 8) y^{5}-(5 / 16) y^{4} x^{2}+(31 / 8) y^{4} x-(123 / 16) y^{4} \\
& +(15 / 8) y^{3} x^{3}+(31 / 8) y^{3} x^{2}-y^{3} x+(11 / 2) y^{3}-(51 / 16) y^{2} x^{4}-(13 / 4) y^{2} x^{3} \\
& -(13 / 4) y^{2} x^{2}-y^{2}+(13 / 4) y x^{5}+2 y x^{3}-x^{6}, \\
& f_{7}(x, y):=(3 / 2) y^{6}-(7 / 3) y^{5} x-3 y^{5}-(71 / 18) y^{4} x^{2}+8 y^{4} x+(1 / 2) y^{4}+(76 / 9) y^{3} x^{3} \\
& +(13 / 3) y^{3} x^{2}-(29 / 3) y^{3} x+2 y^{3}-10 y^{2} x^{4}-(14 / 3) y^{2} x^{3}-(1 / 6) y^{2} x^{2} \\
& +4 y^{2} x-y^{2}+(46 / 9) y x^{5}+(16 / 3) y x^{4}-(8 / 3) y x^{3}-(16 / 9) x^{6} \text {. }
\end{aligned}
$$

For each i, the curve C_{i} is not of torus type. Let us prove this fact for example for the curve C_{1}. If C_{1} was of torus type, then there would exist a conic D_{1} meeting C_{1} only at $(0,0)$ and $(1,0)$ (the two singular points of C_{1}) and such that $I\left(C_{1}, D_{1} ;(0,0)\right)=I\left(C_{1}, D_{1} ;(1,0)\right)=6$ (cf. [P]), where $I\left(C_{1}, D_{1} ;(0,0)\right)$ and $I\left(C_{1}, D_{1} ;(1,0)\right)$ are the intersection multiplicity of C_{1} with D_{1} at $(0,0)$ and $(1,0)$ respectively; but we can easily check that there does not exist such a conic D_{1}. A similar argument can be used for the other curves C_{2}, \ldots, C_{7}; the details are left to the reader.

For each i, we denote by Ξ_{i} the configuration of singularities of the curve C_{i}. We have:
$\Xi_{1}=\left\{2 A_{8}\right\} ; \quad \Xi_{2}=\left\{A_{17}\right\} ;$
$\Xi_{3}=\left\{A_{11}+E_{6}\right\} ; \quad \Xi_{4}=\left\{A_{14}+A_{2}\right\} ; \quad \Xi_{5}=\left\{A_{11}+A_{5}\right\} ;$
$\Xi_{6}=\left\{A_{8}+A_{5}+A_{2}\right\} ; \quad \Xi_{7}=\left\{A_{8}+E_{6}+A_{2}\right\}$.
The examples C_{6} and C_{7} are due to Tu Chanh Nguyen.
Our main result is as follows.
THEOREM 2.1. For each $i, 1 \leq i \leq 7$, we have the following isomorphisms:

$$
\pi_{1}\left(\boldsymbol{C P} \boldsymbol{P}^{2}-C_{i}\right) \simeq \mathbf{Z} / 6 \boldsymbol{Z} \text { and } \pi_{1}\left(\boldsymbol{C}^{2}-C_{i}\right) \simeq \boldsymbol{Z} .
$$

For each i, let $\mathscr{M}\left(\Xi_{i}\right)$ be the moduli space of reduced sextics in $\boldsymbol{C P} \boldsymbol{P}^{2}$ with the configuration of singularities Ξ_{i}, and let $\mathscr{M}_{0}\left(\Xi_{i}\right)$ be the connected component of $\mathscr{M}\left(\Xi_{i}\right)$ containing the curve C_{i}. Since the topology of the complements $\boldsymbol{C} \boldsymbol{P}^{2}-\mathfrak{C}_{i}$ or $\boldsymbol{C}^{2}-\mathfrak{C}_{i}$ is independent on the choice of the curve \mathfrak{C}_{i} in $\mathscr{M}_{0}\left(\Xi_{i}\right)$ (cf. [Z3], [Z4] and [LR]), Theorem 2.1 implies the following result.

Corollary 2.2. For each $i, 1 \leq i \leq 7$, and for any curve \mathfrak{C}_{i} in $\mathscr{M}_{0}\left(\Xi_{i}\right)$, we have the following isomorphisms:

$$
\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-\mathfrak{C}_{i}\right) \simeq \boldsymbol{Z} / 6 \boldsymbol{Z} \quad \text { and } \quad \pi_{1}\left(\boldsymbol{C}^{2}-\mathfrak{C}_{i}\right) \simeq \boldsymbol{Z}
$$

Remarks. (i) Let $\mathscr{M}_{00}\left(\Xi_{1}\right)$ be the set of non-torus irreducible curves \mathfrak{C}_{1} in $\mathscr{M}\left(\Xi_{1}\right)$ such that, for at least one of the two singular points of \mathfrak{C}_{1}, the tangent cone to \mathfrak{C}_{1} at this point passes through the second singularity. One can prove that $\mathscr{M}_{00}\left(\Xi_{1}\right)$ is a connected subspace of $\mathscr{M}\left(\Xi_{1}\right)$ (the proof is computational, very heavy, and cannot be presented here). On the other hand, it is easy to see that our curve C_{1} belongs to this subspace. So, by Corollary 2.2, for any curve \mathfrak{C}_{1} in $\mathscr{M}_{00}\left(\Xi_{1}\right)$, we have $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-\mathfrak{C}_{1}\right) \simeq \boldsymbol{Z} / 6 \boldsymbol{Z}$ and $\pi_{1}\left(\boldsymbol{C}^{2}-\mathfrak{C}_{1}\right) \simeq \boldsymbol{Z}$.
(ii) By [INO], the subset of $\mathscr{M}\left(\Xi_{2}\right)$ consisting of irreducible sextics which are not of torus type is a connected component of $\mathscr{M}\left(\Xi_{2}\right)$. Of course, this component is nothing but $\mathscr{M}_{0}\left(\Xi_{2}\right)$. So, Corollary 2.2 asserts, in particular, that for any irreducible non-torus sextic $\mathfrak{C}_{2} \subset \boldsymbol{C} \boldsymbol{P}^{2}$ with the configuration of singularities Ξ_{2}, we have $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-\mathfrak{C}_{2}\right) \simeq \boldsymbol{Z} / 6 \boldsymbol{Z}$ and $\pi_{1}\left(\boldsymbol{C}^{2}-\mathfrak{C}_{2}\right) \simeq \boldsymbol{Z}$.

It seems that for the other values of i (i.e., $i=1,3,4,5,6,7)$ the subset of $\mathscr{M}\left(\Xi_{i}\right)$ consisting of non-torus irreducible sextics is also a connected component of $\mathscr{M}\left(\Xi_{i}\right)$ (the proof would be computational and very heavy). If yes, then Corollary 2.2 would also provide a complete answer to point (ii) of Conjecture 0.1 for the configurations of singularities $\Xi_{i}, i=1,3,4,5,6,7$.
(iii) Another step toward (ii) of Conjecture 0.1 is [O3, Theorem 5.8]. This theorem contains an example of a non-torus irreducible sextic $\mathfrak{C} \subset \boldsymbol{C} \boldsymbol{P}^{2}$ with the configuration of singularities $\left\{6 A_{2}\right\}$ such that $\pi_{1}\left(\boldsymbol{C P}{ }^{2}-\mathfrak{C}\right)$ and $\pi_{1}\left(\boldsymbol{C}^{2}-\mathfrak{C}\right)$ are also abelian.
(iv) By [OP], for each $i, 1 \leq i \leq 7$, and any irreducible torus sextic \mathfrak{D}_{i} in $\mathscr{M}\left(\Xi_{i}\right)$, the fundamental group $\pi_{1}\left(\boldsymbol{C P} \boldsymbol{P}^{2}-\mathfrak{D}_{i}\right)$ is isomorphic to the free product $(\boldsymbol{Z} / 2 \boldsymbol{Z}) *(\boldsymbol{Z} / 3 \boldsymbol{Z})$. So, if \mathfrak{D}_{i} is such a curve and if \mathfrak{C}_{i} is an element of $\mathscr{M}_{0}\left(\Xi_{i}\right)$, then $\left(\mathfrak{C}_{i}, \mathfrak{D}_{i}\right)$ is a Zariski pair ${ }^{4}$.

Notice that the Zariski pairs found here were in fact already known. Indeed, it is well-known that the generic Alexander polynomial of any irreducible non-torus sextic $\mathfrak{C}_{i} \subset \boldsymbol{C} \boldsymbol{P}^{2}$ with the

[^2]configuration Ξ_{i} is trivial (cf. [O7]), while the generic Alexander polynomial of any irreducible torus sextic $\mathfrak{D}_{i} \subset \boldsymbol{C} \boldsymbol{P}^{2}$ with the configuration Ξ_{i} is given by $\Delta(t)=t^{2}-t+1$ (cf. [OP] and [O7]). This directly implies that $\left(\mathfrak{C}_{i}, \mathfrak{D}_{i}\right)$ is a Zariski pair.

The remaining of the paper concerns the proof of Theorem 2.1. We prove successively that $\pi_{1}\left(\boldsymbol{C P} \boldsymbol{P}^{2}-C_{i}\right)$ is abelian for $i=1,2,3,4,5$. The proofs for $i=6,7$ are essentially the same than for $1 \leq i \leq 5$ and will thus be omitted.

3. Proof of Theorem 2.1 for $i=1$.

The curve C_{1} has exactly two singularities of type A_{8} : one at the origin and one at $(1,0)$. Figure 1 shows the real plane section of C_{1} (in the figures, we do not respect the numerical scale).

We use the Zariski-van Kampen pencils method. Consider the pencil $\mathscr{L}_{Y, Z}$ (cf. Notation 1.3); observe that the point B_{0} (i.e., the axis of the pencil) does not belong to C_{1} and that the line at infinity L_{∞} is generic with respect to C_{1}. As explained in Section 1, it suffices to prove that the fundamental group $\pi_{1}\left(\boldsymbol{C P} \boldsymbol{P}^{2}-C_{1}, b_{0}\right)$ is abelian. The pencil has 5 real singular lines $L_{\eta_{1}}, \ldots, L_{\eta_{5}}$, with respect to C_{1}, which correspond to the 5 real roots $\eta_{1}, \ldots, \eta_{5}$ of the discriminant $\Delta_{x}\left(f_{1}\right)$ of f_{1} as a polynomial in $x\left(\Delta_{x}\left(f_{1}\right)\right.$ is thus a polynomial in $\left.y\right)$:

$$
\eta_{1}=-0.022 \ldots, \eta_{2}=0, \eta_{3}=0.253 \ldots, \eta_{4}=0.326 \ldots, \eta_{5}=0.414 \ldots
$$

We take generators ξ_{1}, \ldots, ξ_{6} of the fundamental group $\pi_{1}\left(L_{\eta_{5}-\varepsilon}-C_{1}, b_{0}\right)$ (which are also generators of $\left.\pi_{1}\left(\boldsymbol{C P} \boldsymbol{P}^{2}-C_{1}, b_{0}\right)\right)$ as in Figure $2 ; \xi_{1}, \ldots, \xi_{6}$ are lassos around the intersection points of $L_{\eta_{5}-\varepsilon}$ with C_{1}.

The line $L_{\eta_{5}}$ is tangent to the curve C_{1} at the simple point p_{0} (cf. Figure 1); the intersection multiplicity $I\left(L_{\eta_{5}}, C_{1} ; p_{0}\right)$ of $L_{\eta_{5}}$ with C_{1} at p_{0} is 2 . So, by the implicit functions theorem, the germs $\left(C_{1}, p_{0}\right)$ and $\left(\left\{y=-x^{2}\right\}, O\right)$ are topologically equivalent. The monodromy relations around $L_{\eta_{5}}$ (obtained by moving y once counter-clockwise on the circle $\left|y-\eta_{5}\right|=\varepsilon$) thus give the relation

$$
\xi_{2}=\xi_{3} .
$$

Figure 1. real plane section of C_{1}.

Figure 2. generators at $y=\eta_{5}-\varepsilon$.

Similarly, we can see easily that the monodromy relations around $L_{\eta_{4}}$ (obtained when y moves on the real axis from $y:=\eta_{5}-\varepsilon \longrightarrow \eta_{4}+\varepsilon$, then runs once counter-clockwise on the circle $\left|y-\eta_{4}\right|=\varepsilon$, and then comes back on the real axis from $y:=\eta_{4}+\varepsilon \longrightarrow \eta_{5}-\varepsilon$) give the relation

$$
\xi_{1}=\xi_{2} .
$$

Figure 3. generators at $y=\eta_{3}-\varepsilon$.

Figure 4. generators at $y=\eta_{2}+\varepsilon$.

Similarly, the monodromy relations around $L_{\eta_{3}}$ (obtained by moving y as follows: on the real axis from $y:=\eta_{5}-\varepsilon \longrightarrow \eta_{4}+\varepsilon$; half-turn counter-clockwise on the circle $\left|y-\eta_{4}\right|=\varepsilon$; on the real axis from $y:=\eta_{4}-\varepsilon \longrightarrow \eta_{3}+\varepsilon$; one turn counter-clockwise on the circle $\left|y-\eta_{3}\right|=\varepsilon$; on the real axis from $y:=\eta_{3}+\varepsilon \longrightarrow \eta_{4}-\varepsilon$; half-turn clockwise on the circle $\left|y-\eta_{4}\right|=\varepsilon$; on the real axis from $y:=\eta_{4}+\varepsilon \longrightarrow \eta_{5}-\varepsilon$) give the relation

$$
\xi_{3}=\xi_{4} .
$$

To read the monodromy relations around $L_{\eta_{2}}$, we first show how the six roots $x_{1}(y), \ldots, x_{6}(y)$ of the equation $f_{1}(x, y)=0$ in x move when y moves on the real axis from $y:=\eta_{3}-\varepsilon \longrightarrow \eta_{2}+\varepsilon$. Figure 3 shows the situation of the generators at $y=\eta_{3}-\varepsilon$, and we have the following lemma.

Lemma 3.1. When y moves on the real axis from $\eta_{3}-\varepsilon$ to $\eta_{2}+\varepsilon$, the six roots $x_{1}(y), \ldots, x_{6}(y)$ of the equation $f_{1}(x, y)=0$ in x are deformed as in Figure 4.

Proof. We consider the polynomial

$$
h(u, v, y):=f_{1}(u+i v, y)
$$

for u, v, y real. We denote by $f_{1 e}(u, v, y)$ and $f_{1 o}(u, v, y)$ the real and the imaginary part of $h(u, v, y)$ respectively. They have degree 6 and 5 respectively in v. Suppose that there exists an $y_{0} \in\left[\eta_{2}+\varepsilon, \eta_{3}-\varepsilon\right]$ such that four complex solutions of the equation (in $\left.x\right) f_{1}\left(x, y_{0}\right)=0$ are on a same vertical line $u=u_{0}$ in the complex plane ($\boldsymbol{C}, x=u+i v$); in other words, assume that there are integers $1 \leq i_{1}<i_{2}<i_{3}<i_{4} \leq 6$ such that

$$
\mathfrak{R}\left(x_{i_{1}}\left(y_{0}\right)\right)=\mathfrak{R}\left(x_{i_{2}}\left(y_{0}\right)\right)=\mathfrak{R}\left(x_{i_{3}}\left(y_{0}\right)\right)=\mathfrak{R}\left(x_{i_{4}}\left(y_{0}\right)\right)=u_{0},
$$

where of course $\mathfrak{R}(\cdot)$ is a notation for the real part. This implies that the equations (in v)

$$
f_{1 e}\left(u_{0}, v, y_{0}\right)=f_{1 o}\left(u_{0}, v, y_{0}\right)=0
$$

have four common real solutions $v_{1}, v_{2}, v_{3}, v_{4}$. These solutions are not 0 since the equation (in y) $\Delta_{x}\left(f_{1}\right)(y)=0$ has no solution on $\left[\eta_{2}+\varepsilon, \eta_{3}-\varepsilon\right]$. Thus, the equations (in v)

$$
f_{1 e}\left(u_{0}, v, y_{0}\right)=f_{1 o o}\left(u_{0}, \boldsymbol{v}, y_{0}\right)=0
$$

where $f_{10 o}(u, v, y):=f_{1 o}(u, v, y) / v$ (notice that v divides $f_{1 o}(u, v, y)$, and thus $f_{1 o o}(u, v, y)$ is a polynomial), have also $v_{1}, v_{2}, v_{3}, v_{4}$ as common solutions. As $f_{1 o o}$ has degree 4 in v, this implies that $f_{1 o o}\left(u_{0}, v, y_{0}\right)$ divides $f_{1 e}\left(u_{0}, v, y_{0}\right)$. Thus, the remainder $R(u, v, y)$ of $f_{1 e}$ by $f_{1 o o}$, as a polynomial of v, must be identically 0 for $u=u_{0}$ and $y=y_{0}$ (of course, R is written as $R=R^{\prime} / R^{\prime \prime}$, where R^{\prime} is a polynomial in u, v, y, while $R^{\prime \prime}$ is a polynomial just depending on u and y). By an easy
computation, we see that $R=\left(R_{2}^{\prime} / R_{2}^{\prime \prime}\right) v^{2}+\left(R_{0}^{\prime} / R_{0}^{\prime \prime}\right)$, where $R_{2}^{\prime}, R_{2}^{\prime \prime}, R_{0}^{\prime}$ and $R_{0}^{\prime \prime}$ are polynomials in u and y. Thus, $\left(u_{0}, y_{0}\right)$ is a common real solution of the equations

$$
\begin{equation*}
R_{2}^{\prime}(u, y)=R_{0}^{\prime}(u, y)=0 . \tag{3.2}
\end{equation*}
$$

This implies that y_{0} is a root of the resultant $\operatorname{Res}(y)$ of the polynomials $u \mapsto R_{2}^{\prime}(u, y)$ and $u \mapsto$ $R_{0}^{\prime}(u, y)$. Note that the condition $\operatorname{Res}\left(y_{0}\right)=0$ is necessary to have a real partner u_{0} such that $R_{2}^{\prime}\left(u_{0}, y_{0}\right)=R_{0}^{\prime}\left(u_{0}, y_{0}\right)=0$, but it is not sufficient since the possible partner u_{0} might be not real. There are two real solutions y_{0}^{1}, y_{0}^{2} of the equation $\operatorname{Res}(y)=0$ on the interval $\left[\eta_{2}+\varepsilon, \eta_{3}-\varepsilon\right]$. Each of them gives a real number, say u_{0}^{1} for y_{0}^{1} and u_{0}^{2} for y_{0}^{2}, such that $\left(u_{0}^{1}, y_{0}^{1}\right)$ and $\left(u_{0}^{2}, y_{0}^{2}\right)$ are two solutions of (3.2). We now have to check if these two solutions give four real roots v of the polynomial $v \mapsto f_{1 o o}\left(u_{0}, v, y_{0}\right)$. Only the solution $\left(u_{0}, y_{0}\right):=(-0.18914 \ldots, 0.12557 \ldots)$ satisfies this requirement. Thus, we can have one (and only one) overcrossing. To check if it is the case, we look at the solutions x of the equation (in $x) f_{1}(x, y)=0$ for some values of y near y_{0}. MAPLE actually gives an overcrossing. This completes the proof of Lemma 3.1.

Now, we look at the Puiseux parametrization of the curve at the origin (for details, see [OP, Section 2.2]):

$$
\left\{\begin{array}{l}
y=t^{4} \\
x=i \sqrt{2} t^{2}-\frac{3}{2} t^{4}-\frac{5}{16} i \sqrt{2} t^{6}-\frac{1}{8} \sqrt{210} \sqrt{i \sqrt{2}} t^{7}+\text { higher terms. }
\end{array}\right.
$$

As explained in [OP, Section 4.1], when $y=\varepsilon \exp (i \theta)$ moves around the origin $\eta_{2}=0$ once counter-clockwise, the topological behavior of the four points $x_{3}(y), x_{4}(y), x_{5}(y), x_{6}(y)$ looks like the movement of four satellites accompanying two planets, two satellites around each planet corresponding to $t=\varepsilon^{1 / 4} \exp (i v), v=\theta / 4, \theta / 4+\pi / 2, \theta / 4+\pi, \theta / 4+(3 \pi) / 2$. The movement of the planets is described by the term $i \sqrt{2} t^{2}$; each of them do ($1 / 2$)-turn around the sun $(\approx$ the origin). The movement of each satellite around its planet is described by the term $-(1 / 8) \sqrt{210} \sqrt{i \sqrt{2}} t^{7}$; each of them does (7/4)-turns around its planet. So, the monodromy relations around $L_{\eta_{2}}$ give the relation

$$
\begin{equation*}
\xi_{6}=(\omega \sigma) \xi_{1}(\omega \sigma)^{-1} \tag{3.3}
\end{equation*}
$$

where $\omega:=\xi_{6} \xi_{5} \xi_{1}^{2}$ and $\sigma:=\xi_{5} \xi_{1} \xi_{5}$.
On the other hand, we can see easily that the monodromy relations around $L_{\eta_{1}}$ give the relation

$$
\xi_{1}=\xi_{5} .
$$

The latter implies $\omega=\xi_{6} \xi_{1}^{3}$ and $\sigma=\xi_{1}^{3}$, and (3.3) then gives $\xi_{6}=\xi_{1}$. So, the fundamental group $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-C_{1}, b_{0}\right)$ is generated by a single generator, and it is thus abelian.

4. Proof of Theorem $\mathbf{2 . 1}$ for $i=2$.

The curve C_{2} has exactly one singularity of type A_{17} at the origin. Figure 5 shows the real plane section of C_{2}.

We consider the pencil $\mathscr{L}_{X, Z}$ (cf. Notation 1.3); observe that the point B_{0} does not belong to C_{2} and that L_{∞} is generic with respect to C_{2}. Again, it suffices to prove that the fundamental group
$\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-C_{2}, b_{0}\right)$ is abelian. The pencil has 5 real singular lines $L_{\eta_{1}}, \ldots, L_{\eta_{5}}$, with respect to C_{2}, which correspond to the 5 real roots $\eta_{1}, \ldots, \eta_{5}$ of the discriminant $\Delta_{y}\left(f_{2}\right)$ of f_{2} as a polynomial in $y\left(\Delta_{y}\left(f_{2}\right)\right.$ is thus a polynomial in $\left.x\right)$:

$$
\eta_{1}=-0.191 \ldots, \eta_{2}=-0.036 \ldots, \eta_{3}=-0.027 \ldots, \eta_{4}=-0.026 \ldots, \eta_{5}=0
$$

We take generators ξ_{1}, \ldots, ξ_{6} of the fundamental group $\pi_{1}\left(L_{\eta_{3}-\varepsilon}-C_{2}, b_{0}\right)$ as in Figure 6; ξ_{1}, \ldots, ξ_{6} are lassos around the intersection points of $L_{\eta_{3}-\varepsilon}$ with C_{2}.

Figure 5. real plane section of C_{2}.

Figure 6. generators at $x=\eta_{3}-\varepsilon$.

The monodromy relations around $L_{\eta_{3}}$ and around $L_{\eta_{2}}$ give the relations

$$
\xi_{3}=\xi_{4} \quad \text { and } \quad \xi_{5}=\xi_{3}^{-1} \xi_{4} \xi_{3}
$$

respectively.

Figure 7. generators at $x=\eta_{1}+\varepsilon$.

Figure 8. generators at $x=\eta_{5}-\varepsilon$.

We show in Figure 7 how our generators at $x=\eta_{2}+\varepsilon$ are deformed when x does half-turn counter-clockwise on the circle $\left|x-\eta_{2}\right|=\varepsilon$, and then moves on the real axis from $x:=\eta_{2}-\varepsilon \longrightarrow$ $\eta_{1}+\varepsilon$. The monodromy relations around $L_{\eta_{1}}$ give the relation

$$
\xi_{3}=\xi_{4}^{-1} \xi_{6} \xi_{4} .
$$

Combined with the foregoing, this shows that

$$
\xi_{3}=\xi_{4}=\xi_{5}=\xi_{6} .
$$

To read the monodromy relations around $L_{\eta_{5}}$, we first show in Figure 8 how the generators at $x=\eta_{3}-\varepsilon$ are deformed when x does half-turn counter-clockwise on the circle $\left|x-\eta_{3}\right|=\varepsilon$, then moves on the real axis from $x:=\eta_{3}+\varepsilon \longrightarrow \eta_{4}-\varepsilon$, then does half-turn counter-clockwise on the circle $\left|x-\eta_{4}\right|=\varepsilon$, and finally moves on the real axis from $x:=\eta_{4}+\varepsilon \longrightarrow \eta_{5}-\varepsilon$. Then we observe that, at the origin, the curve has two branches K_{1} and K_{2}, given by
$K_{1}: x=-\frac{1}{2} y^{2}+\frac{3}{4} y^{5}-\frac{1}{8} y^{6}+\frac{7}{12} y^{7}-\frac{1135}{288} y^{8}+\frac{1}{1728}(4051+162 \sqrt{22}) y^{9}+$ higher terms,
$K_{2}: x=-\frac{1}{2} y^{2}+\frac{3}{4} y^{5}-\frac{1}{8} y^{6}+\frac{7}{12} y^{7}-\frac{1135}{288} y^{8}+\frac{1}{1728}(4051-162 \sqrt{22}) y^{9}+$ higher terms.
An easy computation shows that the Puiseux parametrizations of K_{1} and K_{2} at the origin are given by

$$
\begin{array}{lll}
K_{1}: & x=t^{2}, & y=a_{1} t+\ldots+a_{7} t^{7}+a_{8} t^{8}+\text { higher terms }, \\
K_{2}: & x=t^{2}, & y=a_{1}^{\prime} t+\ldots+a_{7}^{\prime} t^{7}+a_{8}^{\prime} t^{8}+\text { higher terms },
\end{array}
$$

for some complex numbers a_{i} and a_{i}^{\prime} such that $a_{i}=a_{i}^{\prime}$ for $1 \leq i \leq 7$, the number $a_{1}=a_{1}^{\prime}$ is nonzero, and $a_{8} \neq a_{8}^{\prime}$. These equations say us that the topological behavior of the four points which are closed to the origin $0 \in(\boldsymbol{C}, y)$ looks like the movement of four satellites accompanying two planets running around the sun (\approx the origin), two satellites around each planet. Each planet does (1/2)-turn around the origin. Each satellite does 4-turns around its planet. So, the monodromy relations around $L_{\eta_{5}}$ give the relations

$$
\xi_{1}=\xi_{2}=\xi_{3} .
$$

So, the fundamental group $\pi_{1}\left(\boldsymbol{C P}{ }^{2}-C_{2}, b_{0}\right)$ is generated by a single generator, and thus it is abelian.

5. Proof of Theorem 2.1 for $i=3$.

The curve C_{3} has exactly two singularities: one singularity of type A_{11} at the origin and one singularity of type E_{6} at $(0,1)$. Figure 9 shows the real plane section of C_{3}.

We consider the pencil $\mathscr{L}_{Y, Z}$; observe that the point B_{0} does not belong to C_{3} and that L_{∞} is generic with respect to C_{3}. Again, it suffices to prove that the fundamental group $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-\right.$ $\left.C_{3}, b_{0}\right)$ is abelian. The pencil has 5 real singular lines $L_{\eta_{1}}, \ldots, L_{\eta_{5}}$, with respect to C_{3}, which correspond to the 5 real roots $\eta_{1}, \ldots, \eta_{5}$ of the discriminant $\Delta_{x}\left(f_{3}\right)$ of f_{3} as a polynomial in x :

$$
\eta_{1}=0, \eta_{2}=0.297 \ldots, \eta_{3}=0.568 \ldots, \eta_{4}=1, \eta_{5}=1.001 \ldots
$$

We take generators ξ_{1}, \ldots, ξ_{6} of the fundamental group $\pi_{1}\left(L_{\eta_{1}+\varepsilon}-C_{3}, b_{0}\right)$ as in Figure 10 ; ξ_{1}, \ldots, ξ_{6} are lassos around the intersection points of $L_{\eta_{1}+\varepsilon}$ with C_{3}.

To read the monodromy relations at the origin, we first observe that near $(0,0)$ the curve has two branches K_{1} and K_{2} given by

$$
\begin{array}{ll}
K_{1}: & y=x^{2}+\frac{1}{2} x^{3}+\frac{11}{12} x^{4}+\frac{35}{24} x^{5}+\frac{1}{144}(313+4 i \sqrt{6}) x^{6}+\text { higher terms } \\
K_{2}: & y=x^{2}+\frac{1}{2} x^{3}+\frac{11}{12} x^{4}+\frac{35}{24} x^{5}+\frac{1}{144}(313-4 i \sqrt{6}) x^{6}+\text { higher terms. }
\end{array}
$$

An easy computation shows that the Puiseux parametrizations of K_{1} and K_{2} at the origin are given by
$K_{1}: \quad y=t^{2}, \quad x=a_{1} t+\ldots+a_{4} t^{4}+a_{5} t^{5}+$ higher terms,
$K_{2}: \quad y=t^{2}, \quad x=a_{1}^{\prime} t+\ldots+a_{4}^{\prime} t^{4}+a_{5}^{\prime} t^{5}+$ higher terms,
for some complex numbers a_{i} and a_{i}^{\prime} such that $a_{i}=a_{i}^{\prime}$ for $1 \leq i \leq 4$, the number $a_{1}=a_{1}^{\prime}$ is nonzero, and $a_{5} \neq a_{5}^{\prime}$. As above, one deduces from these equations that the monodromy relations around $L_{\eta_{1}}$ give the relations

$$
\begin{align*}
& \xi_{1}=\left(\sigma \xi_{4}\right) \xi_{3}\left(\sigma \xi_{4}\right)^{-1} \\
& \xi_{2}=\sigma^{2} \xi_{4} \sigma^{-2} \tag{5.1}
\end{align*}
$$

where $\sigma:=\xi_{4} \xi_{3}$.

Figure 9. real plane section of C_{3}.

Figure 10. generators at $y=\eta_{1}+\varepsilon$.

REMARK. After the analytic change of coordinates

$$
(x, y) \mapsto\left(x, y+x^{2}+\frac{1}{2} x^{3}+\frac{11}{12} x^{4}+\frac{35}{24} x^{5}\right)
$$

the equation of C_{3} near the origin takes the form

$$
y^{2}-\frac{313}{72} y x^{6}+\frac{98065}{20736} x^{12}+\text { higher terms }=0
$$

As the leading term $y^{2}-(313 / 72) y x^{6}+(98065 / 20736) x^{12}$ has no real factorization, the origin is an isolated point of the real plane section of C_{3}.

When y moves on the real axis from $y:=\eta_{1}+\varepsilon \longrightarrow \eta_{2}-\varepsilon$, the situation of our generators at $y=\eta_{2}-\varepsilon$ is again as in Figure 10. We see easily that the monodromy relations around $L_{\eta_{2}}$ give the relation

$$
\xi_{5}=\xi_{6} .
$$

To read the monodromy relations around $L_{\eta_{3}}$, we first show in Figure 11 how our generators at $y=\eta_{2}-\varepsilon$ are deformed when y does half-turn counter-clockwise on the circle $\left|y-\eta_{2}\right|=$ ε, then moves on the real axis from $y:=\eta_{2}+\varepsilon \longrightarrow \eta_{3}-\varepsilon$. Then, it is easy to see that the monodromy relations around $L \eta_{3}$ give the relation

$$
\xi_{3}=\xi_{4}
$$

The latter, combined with (5.1), gives

$$
\xi_{1}=\xi_{3} \quad \text { and } \quad \xi_{2}=\xi_{3}
$$

To read the monodromy relations around $L_{\eta_{4}}$, we show in Figure 12 how our generators at $y=\eta_{3}-\varepsilon$ are deformed when y does half-turn counter-clockwise on the circle $\left|y-\eta_{3}\right|=\varepsilon$, then
moves on the real axis from $y:=\eta_{3}+\varepsilon \longrightarrow \eta_{4}-\varepsilon$. Then we observe that, after the change of coordinates $(x, y) \mapsto(x, y+1)$, the Newton principal part of f_{3} near $(0,1)$ (cf. [$\left.\left.\mathbf{K}\right]\right)$ is given by

$$
-y^{3}+\frac{31}{576} x^{4} .
$$

We deduce that the monodromy relations around $L_{\eta_{4}}$ give the relation

$$
\begin{equation*}
\xi_{3}=\omega^{-2} \xi_{5} \omega^{2} \tag{5.2}
\end{equation*}
$$

where $\omega:=\xi_{5} \xi_{3} \xi_{5}{ }^{-1}$.

Figure 11. generators at $y=\eta_{3}-\varepsilon$.

Figure 12. generators at $y=\eta_{4}-\varepsilon$.

On the other hand, it is not difficult to see that the monodromy relations around $L_{\eta_{5}}$ give the relation

$$
\xi_{3}=\omega .
$$

The latter, combined with (5.2), implies

$$
\xi_{5}=\xi_{3} .
$$

So, we have proved that the fundamental group $\pi_{1}\left(\boldsymbol{C P} \boldsymbol{P}^{2}-C_{3}, b_{0}\right)$ is generated by a single generator. It is thus abelian.

6. Proof of Theorem 2.1 for $i=4$.

The curve C_{4} has exactly two singularities: one singularity of type A_{14} at the origin and one singularity of type A_{2} at $(0,1)$. Figure 13 shows the real plane section of C_{4}.

We consider the pencil $\mathscr{L}_{X, Z}$; observe that the point B_{0} does not belong to C_{4} and that L_{∞} is generic with respect to C_{4}. Again, it suffices to prove that the fundamental group $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-\right.$ $\left.C_{4}, b_{0}\right)$ is abelian. The pencil has 6 real singular lines $L_{\eta_{1}}, \ldots, L \eta_{6}$, with respect to C_{4}, which correspond to the 6 real roots $\eta_{1}, \ldots, \eta_{6}$ of the discriminant $\Delta_{y}\left(f_{4}\right)$ of f_{4} as a polynomial in y :
$\eta_{1}=-2.016 \ldots, \eta_{2}=-1.973 \ldots, \eta_{3}=-0.137 \ldots, \eta_{4}=0, \eta_{5}=0.050 \ldots, \eta_{6}=2.062 \ldots$
We take generators ξ_{1}, \ldots, ξ_{6} of the fundamental group $\pi_{1}\left(L_{\eta_{3}-\varepsilon}-C_{4}, b_{0}\right)$ as in Figure 14; ξ_{1}, \ldots, ξ_{6} are lassos around the intersection points of $L_{\eta_{3}-\varepsilon}$ with C_{4}.

The monodromy relations around $L_{\eta_{3}}$ and around $L_{\eta_{2}}$ give the relations

$$
\begin{equation*}
\xi_{2}=\xi_{3} \quad \text { and } \quad \xi_{3}=\xi_{4} \tag{6.1}
\end{equation*}
$$

respectively.

Figure 13. real plane section of C_{4}.

Figure 14. generators at $x=\eta_{3}-\varepsilon$.

In order to fix the ideas, we show in Figure 15 how our generators at $x=\eta_{2}+\varepsilon$ are deformed when x does half-turn counter-clockwise on the circle $\left|x-\eta_{2}\right|=\varepsilon$, and then moves on the real axis from $x:=\eta_{2}-\varepsilon \longrightarrow \eta_{1}+\varepsilon$. The monodromy relations around $L_{\eta_{1}}$ give the relation

$$
\xi_{2}=\xi_{3}^{-1} \xi_{5} \xi_{3} .
$$

The latter, combined with (6.1), implies $\xi_{5}=\xi_{3}$. So, we already have

$$
\xi_{2}=\xi_{3}=\xi_{4}=\xi_{5} .
$$

We show in Figure 16 how our generators at $x=\eta_{3}-\varepsilon$ are deformed when x does half-turn counter-clockwise on the circle $\left|x-\eta_{3}\right|=\varepsilon$, then moves on the real axis from $x:=\eta_{3}+\varepsilon \longrightarrow$ $\eta_{4}-\varepsilon$. On the other hand, after the change of coordinates $(x, y) \mapsto(x, y+1)$, we see that the Newton principal part of f_{4} near $(0,1)$ (cf. [$\left.\left.\mathbf{K}\right]\right)$ is given by

$$
-\frac{278369}{141376} y^{3}+\frac{507}{441800} x^{2} .
$$

One deduces that the monodromy relations around $L_{\eta_{4}}$ give the new relation

$$
\xi_{3}=\xi_{1} .
$$

Figure 15. generators at $x=\eta_{1}+\varepsilon$.

Figure 16. generators at $x=\eta_{4}-\varepsilon$.

Now, knowing that $\xi_{1}=\xi_{2}=\xi_{3}=\xi_{4}=\xi_{5}$, the big circle relation (i.e., the vanishing relation at infinity) obviously gives the new relation

$$
\xi_{6}=\xi_{1}^{-5}
$$

So, the fundamental group $\pi_{1}\left(\boldsymbol{C P} \boldsymbol{P}^{2}-C_{4}, b_{0}\right)$ is generated by a single generator, and thus it is abelian.

7. Proof of Theorem 2.1 for $i=5$.

The curve C_{5} has exactly two singularities: one singularity of type A_{11} at the origin and one singularity of type A_{5} at $(0,1)$. Figure 17 shows the real plane section of C_{5}.

We consider the pencil $\mathscr{L}_{Y, Z}$; observe that the point B_{0} does not belong to C_{5} and that L_{∞} is generic with respect to C_{5}. Again, it suffices to prove that the fundamental group $\pi_{1}\left(\boldsymbol{C P} \boldsymbol{P}^{2}-\right.$ $\left.C_{5}, b_{0}\right)$ is abelian. The pencil has 6 real singular lines $L_{\eta_{1}}, \ldots, L_{\eta_{6}}$, with respect to C_{5}, which correspond to the 6 real roots $\eta_{1}, \ldots, \eta_{6}$ of the discriminant $\Delta_{x}\left(f_{5}\right)$ of f_{5} as a polynomial in x :

$$
\eta_{1}=0, \eta_{2}=0.847 \ldots, \eta_{3}=1, \eta_{4}=1.203 \ldots, \eta_{5}=1.286 \ldots, \eta_{6}=1.844 \ldots
$$

We take generators ξ_{1}, \ldots, ξ_{6} of the fundamental group $\pi_{1}\left(L_{\eta_{3}+\varepsilon}-C_{5}, b_{0}\right)$ as in Figure 18; ξ_{1}, \ldots, ξ_{6} are lassos around the intersection points of $L_{\eta_{3}+\varepsilon}$ with C_{5}.

It is not difficult to see that the monodromy relations around $L_{\eta_{4}}, L_{\eta_{5}}$ and $L_{\eta_{6}}$ give the relations

$$
\begin{equation*}
\xi_{3}=\xi_{2}, \quad \xi_{1}=\xi_{2}^{-1} \xi_{4} \xi_{2} \quad \text { and } \quad \xi_{6}=\xi_{5} \tag{7.1}
\end{equation*}
$$

respectively.

Figure 17. real plane section of C_{5}.

Figure 18. generators at $y=\eta_{3}+\varepsilon$.

To read the monodromy relations around $L_{\eta_{3}}$, we first observe that near the point $(0,1)$ the curve has two branches K_{1} and K_{2} given by

$$
\begin{array}{ll}
K_{1}: & y=1+x-x^{2}+(-1+\sqrt{3}) x^{3}+\text { higher terms } \\
K_{2}: & y=1+x-x^{2}+(-1-\sqrt{3}) x^{3}+\text { higher terms }
\end{array}
$$

An easy computation shows that the Puiseux parametrizations of K_{1} and K_{2} near $(0,1)$ are given by

$$
\begin{array}{lll}
K_{1}: & y=1+t, & x=a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\text { higher terms }, \\
K_{2}: & y=1+t, & x=a_{1}^{\prime} t+a_{2}^{\prime} t^{2}+a_{3}^{\prime} t^{3}+\text { higher terms }
\end{array}
$$

for some complex numbers a_{i} and a_{i}^{\prime} such that $a_{i}=a_{i}^{\prime}$ for $1 \leq i \leq 2$, the number $a_{1}=a_{1}^{\prime}$ is non-zero, and $a_{3} \neq a_{3}^{\prime}$. These equations show that the monodromy relations around $L_{\eta_{3}}$ give the relation

$$
\xi_{3}=\left(\xi_{4} \xi_{3}\right)^{2} \xi_{4} \xi_{3} \xi_{4}^{-1}\left(\xi_{4} \xi_{3}\right)^{-2} .
$$

To read the monodromy relations around $L_{\eta_{2}}$, we first show in Figure 19 how our generators
at $y=\eta_{3}+\varepsilon$ are deformed when y does half-turn counter-clockwise on the circle $\left|y-\eta_{3}\right|=\varepsilon$. Then we introduce, in the fibre $L_{\eta_{3}-\varepsilon}$, the lassos μ and v defined by

$$
\begin{aligned}
\mu & :=\left(\xi_{4} \xi_{3}\right)^{-1} \xi_{3}\left(\xi_{4} \xi_{3}\right) \\
v & :=\left(\xi_{4} \xi_{3} \mu\right)^{-1} \xi_{4}\left(\xi_{4} \xi_{3} \mu\right)
\end{aligned}
$$

Lassos μ and v are drawn in Figure 20. Owing to these new lassos, it is easy to see that the monodromy relations around $L_{\eta_{2}}$ give the relation

$$
\mu=\xi_{5} .
$$

The latter, combined with (7.1), implies

$$
\begin{equation*}
v=\xi_{5}^{-1} \xi_{1} \xi_{5} \tag{7.2}
\end{equation*}
$$

Figure 19. generators at $y=\eta_{3}-\varepsilon$.

Figure 20. new generators at $y=\eta_{3}-\varepsilon$.

To read the monodromy relations around $L_{\eta_{1}}$, we first show in Figure 21 how the generators at $y=\eta_{2}+\varepsilon$ are deformed when y does half-turn counter-clockwise on the circle $\left|y-\eta_{2}\right|=\varepsilon$, then moves on the real axis from $y:=\eta_{2}-\varepsilon \longrightarrow \eta_{1}+\varepsilon$. Then, we observe that at the origin the curve has two branches K_{1}^{\prime} and K_{2}^{\prime} given by

$$
\begin{array}{ll}
K_{1}^{\prime}: & y=x^{2}+\left(\frac{5}{2}+\frac{1}{2} \sqrt{21}\right) x^{6}+\text { higher terms, } \\
K_{2}^{\prime}: & y=x^{2}+\left(\frac{5}{2}-\frac{1}{2} \sqrt{21}\right) x^{6}+\text { higher terms. }
\end{array}
$$

An easy computation shows that the Puiseux parametrizations of K_{1}^{\prime} and K_{2}^{\prime} at the origin are given by

$$
\begin{array}{ll}
K_{1}^{\prime}: & y=t^{2}, \\
K_{2}^{\prime}: & y=a_{1} t+\ldots+a_{4} t^{4}+a_{5} t^{5}+\text { higher terms }, \\
a_{1}^{\prime} t+\ldots+a_{4}^{\prime} t^{4}+a_{5}^{\prime} t^{5}+\text { higher terms }
\end{array}
$$

for some complex numbers a_{i} and a_{i}^{\prime} such that $a_{i}=a_{i}^{\prime}$ for $1 \leq i \leq 4$, the number $a_{1}=a_{1}^{\prime}$ is non-zero, and $a_{5} \neq a_{5}^{\prime}$. These equations show that the monodromy relations around $L_{\eta_{1}}$ give the relation

$$
\begin{align*}
\xi_{1} & =\left(\xi_{5} v\right)^{2} \xi_{5}\left(\xi_{5} v\right)^{-2} \\
& =\left(\xi_{1} \xi_{5}\right)^{2} \xi_{5}\left(\xi_{1} \xi_{5}\right)^{-2} \quad(\text { by }(7.2)) \tag{7.3}
\end{align*}
$$

Figure 21. generators at $y=\eta_{1}+\varepsilon$.
Now, we are ready to prove that $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-C_{5}, b_{0}\right)$ is abelian. The big circle relation $\xi_{6} \xi_{5} \xi_{4} \xi_{3} \xi_{2} \xi_{1}=1$, combined with (7.1), gives

$$
\begin{equation*}
\left(\xi_{2} \xi_{1}\right)^{2}=\xi_{5}^{-2} \tag{7.4}
\end{equation*}
$$

But, at $y=\eta_{1}+\varepsilon$, the big circle relation is also written as $\xi_{5}^{3} v \xi_{2} \xi_{1}=1$. Combined with (7.2), this gives $\xi_{1} \xi_{5}=\xi_{5}^{-2}\left(\xi_{2} \xi_{1}\right)^{-1}$, which in turn implies (using (7.4)) that $\xi_{1} \xi_{5}=\xi_{2} \xi_{1}$. So, again using (7.4), one deduces that $\left(\xi_{1} \xi_{5}\right)^{2}=\xi_{5}^{-2}$. The relation (7.3) then gives $\xi_{1}=\xi_{5}$. The equality $\xi_{1} \xi_{5}=\xi_{2} \xi_{1}$ thus implies $\xi_{2}=\xi_{1}$, and using the second equality in (7.1) one deduces that $\xi_{4}=\xi_{1}$.

So, we have proved that the fundamental group $\pi_{1}\left(\boldsymbol{C} \boldsymbol{P}^{2}-C_{5}, b_{0}\right)$ is generated by a single generator. It is thus abelian.

Acknowledgement. The first author was supported by a fellowship from the Japan Society for the Promotion of Science (JSPS) to which he expresses his deep gratitude. He also thanks the staff of the department of Mathematics of the Tokyo Metropolitan University for their warm hospitality. Both authors thank the referee for several comments and suggestions which allowed them to improve the exposition of this paper.

References

[A] E. Artal Bartolo, Sur les couples de Zariski, J. Algebraic Geom., 3 (1994), 223-247.
[C] D. Chéniot, Une démonstration du théorème de Zariski sur les sections hyperplanes d'une hypersurface projective et du théorème de van Kampen sur le groupe fondamental du complémentaire d'une courbe projective plane, Compositio Math., 27 (1973), 141-158.
[Di] A. Dimca, Singularities and topology of hypersurfaces, Springer, New-York, 1992.
[INO] M. Ishikawa, T. C. Nguyen and M. Oka, On topological types of reduced sextics, TMU-preprint, 20, Tokyo Metropolitan Univ., 2003.
[K] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math., 32 (1976), 1-31.
[LR] D. T. Lê and C. P. Ramanujam, The invariance of Milnor number implies the invariance of the topological type, Amer. J. Math., 98 (1976), 67-78.
[O1] M. Oka, The monodromy of a curve with ordinary double points, Invent. Math., 27 (1974), 157-164.
[O2] M. Oka, On the fundamental group of the complement of a reducible curve in \boldsymbol{P}^{2}, J. London Math. Soc., 2 (1976), 239-252.
[O3] M. Oka, Symmetric plane curves with nodes and cusps, J. Math. Soc. Japan, 44 (1992), 375-414.
[O4] M. Oka, Two transforms of plane curves and their fundamental groups, J. Math. Sci. Univ. Tokyo, 3 (1996), 399-443.
[O5] M. Oka, Geometry of cuspidal sextics and their dual curves, In: Singularities - Sapporo 1998, (eds. J.-P. Brasselet and T. Suwa), Adv. Stud. Pure Math., 29, Math. Soc. Japan, 2000 pp. 247-277.
[O6] M. Oka, Flex curves and their applications, Geom. Dedicata, 75 (1999), 67-100.
[O7] M. Oka, Alexander polynomials of sextics, J. Knot Theory Ramifications, 12 (2003), no. 5, 619-636.
[O8] M. Oka, A survey on Alexander polynomials of plane curves, Singularités Franco-Japonaises, Marseille, 2002, to appear in Séminaires et Congrès, Soc. Math. France, 2005.
[OP] M. Oka and D. T. Pho, Fundamental groups of sextics of torus type, In: Trends in singularities, Trends Math., Birkhäuser, Basel, 2002, 151-180.
[P] D. T. Pho, Classification of singularities on torus curves of type (2,3), Kodai Math. J., 24 (2001), 259-284.
[vK] E. R. van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math., 55 (1933), 255-260.
[Z1] O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math., 51 (1929), 305-328.
[Z2] O. Zariski, The topological discriminant group of a Riemann surface of genus p, Amer. J. Math., $\mathbf{5 9}$ (1937), 335-358.
[Z3] O. Zariski, Studies in equisingularity II. Equisingularity in codimension 1 (and characterictic zero), Amer. J. Math., 87 (1965), 972-1006.
[Z4] O. Zariski, Contribution to the problem of equisingularity, In: Questions on Algebraic Varieties (Ed. Cremonese), Roma, 1970, C.I.M.E., III Ciclo, Varenna, 1969, 261-343.

Christophe EyRAL
Department of Mathematics Tokyo Metropolitan University Minami-Ohsawa 1-1, Hachioji-shi Tokyo, 192-0397
Japan
E-mail: eyralchr@yahoo.com

Mutsuo Oka
Department of Mathematics
Tokyo Metropolitan University
Minami-Ohsawa 1-1, Hachioji-shi
Tokyo, 192-0397
Japan
E-mail: oka@comp.metro-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 14H30
 Key Words and Phrases. fundamental groups, complements of plane singular curves, Zariski-van Kampen theorem, pencils of lines, monodromies.
 ${ }^{1} \mathrm{~A}$ sextic $\left\{(X: Y: Z) \in \boldsymbol{C} \boldsymbol{P}^{2} ; F(X, Y, Z)=0\right\}$ is said of torus type if there is an expression $F(X, Y, Z)=F_{2}(X, Y, Z)^{3}+$ $F_{3}(X, Y, Z)^{2}$, where F_{2} and F_{3} are homogeneous polynomials of degree 2 and 3 respectively.
 ${ }^{2}$ We recall that a point p of a curve \mathfrak{C} is called a singularity of type A_{n}, where n is an integer ≥ 1, if the germ (\mathfrak{C}, p) is topologically equivalent to the germ $\left(\left\{x^{2}+y^{n+1}=0\right\}, O\right)$ as embedded germs (for the definition of "topologically equivalent", see e.g. [Di, Definition 1.4]). It is called a singularity of type E_{6} if (\mathfrak{C}, p) is topologically equivalent to $\left(\left\{x^{3}+y^{4}=0\right\}, O\right)$.

[^1]: ${ }^{3}$ A sextic of torus type $\left\{(X: Y: Z) \in \boldsymbol{C P} \boldsymbol{P}^{2} ; F_{2}(X, Y, Z)^{3}+F_{3}(X, Y, Z)^{2}=0\right\}$ is said tame if its singularities are sitting only at the intersection of the conic and the cubic defined by $F_{2}(X, Y, Z)=0$ and $F_{3}(X, Y, Z)=0$ respectively.

[^2]: ${ }^{4}$ We recall that a pair of irreducible curves $(\mathfrak{C}, \mathfrak{D})$ in $\boldsymbol{C} \boldsymbol{P}^{2}$ is called a Zariski pair if \mathfrak{C} and \mathfrak{D} have the same degree and if there exist regular neighbourhoods $T(\mathfrak{C})$ and $T(\mathfrak{D})$ of \mathfrak{C} and \mathfrak{D}, respectively, such that the pairs $(T(\mathfrak{C}), \mathfrak{C})$ and $(T(\mathfrak{D}), \mathfrak{D})$ are homeomorphic, while the pairs $\left(\boldsymbol{C P} \boldsymbol{P}^{2}, \mathfrak{C}\right)$ and $\left(\boldsymbol{C} \boldsymbol{P}^{2}, \mathfrak{D}\right)$ are not homeomorphic (cf. $\left.[\mathbf{A}]\right)$.

