A conjecture in relation to Loewner's conjecture

By Naoya ANDO

(Received Jan. 8, 2003)
(Revised Aug. 29, 2003)

Abstract

Let f be a smooth function of two variables x, y and for each positive integer n, let $d^{n} f$ be a symmetric tensor field of type $(0, n)$ defined by $d^{n} f:=\sum_{i=0}^{n}\binom{n}{i}\left(\partial_{x}^{n-i} \partial_{y}^{i} f\right) d x^{n-i} d y^{i}$ and $\tilde{\mathscr{D}}_{d^{n} f}$ a finitely many-valued one-dimensional distribution obtained from $d^{n} f$: for example, $\tilde{\mathscr{D}}_{d^{1} f}$ is the one-dimensional distribution defined by the gradient vector field of $f ; \tilde{\mathscr{D}}_{d^{2} f}$ consists of two one-dimensional distributions obtained from one-dimensional eigenspaces of Hessian of f. In the present paper, we shall study the behavior of $\tilde{\mathscr{D}}_{d^{n} f}$ around its isolated singularity in ways which appear in [1]-[4]. In particular, we shall introduce and study a conjecture which asserts that the index of an isolated singularity with respect to $\tilde{\mathscr{D}}_{d^{n} f}$ is not more than one.

1. Introduction.

Let f be a smooth function on a domain D of \boldsymbol{R}^{2} and set $\partial_{\bar{z}}:=(\partial / \partial x+\sqrt{-1} \partial / \partial y) / 2$. Then Loewner's conjecture for a positive integer $n \in N$ asserts that if a vector field $\boldsymbol{V}_{f}^{(n)}$: $=\operatorname{Re}\left(\partial_{\bar{z}}^{n} f\right) \partial / \partial x+\operatorname{Im}\left(\partial_{\bar{z}}^{n} f\right) \partial / \partial y$ has an isolated zero point, then its index with respect to $\boldsymbol{V}_{f}^{(n)}$ is not more than n. Loewner's conjecture for $n=1$ is easily and affirmatively solved; Loewner's conjecture for $n=2$ is equivalent to a conjecture which asserts that the index of an isolated umbilical point on a surface is not more than one (this conjecture is called the index conjecture or the Local Carathéodory's conjecture). If the index conjecture is true, then by Hopf-Poincaré's theorem, we may affirmatively solve Carathéodory's conjecture, which asserts that there exist at least two umbilical points on a compact, strictly convex surface in \boldsymbol{R}^{3}. We may find $[\mathbf{5}],[6],[9],[\mathbf{1 0}],[11]$ and $[\mathbf{1 2}]$ as recent papers in relation to Carathéodory's and Loewner's conjectures.

For each positive integer n, let $d^{n} f$ be a symmetric tensor field of type $(0, n)$ defined by

$$
\begin{equation*}
d^{n} f:=\sum_{i=0}^{n}\binom{n}{i} \frac{\partial^{n} f}{\partial x^{n-i} \partial y^{i}} d x^{n-i} d y^{i} \tag{1}
\end{equation*}
$$

For a number $\phi \in \boldsymbol{R}$ and a point $p \in D$, we set

$$
\begin{equation*}
\boldsymbol{U}_{\phi}:=\cos \phi \frac{\partial}{\partial x}+\sin \phi \frac{\partial}{\partial y}, \quad\left(\widehat{d^{n} f}\right)_{p}(\phi):=\left(d^{n} f\right)_{p}\left(\boldsymbol{U}_{\phi}, \ldots, \boldsymbol{U}_{\phi}\right) . \tag{2}
\end{equation*}
$$

A one-dimensional subspace L of the tangent plane at $p \in D$ is called a critical direction of $d^{n} f$ at p if there exists a critical point ϕ_{0} of $\left(\widehat{d^{n} f}\right)_{p}$ satisfying $\boldsymbol{U}_{\phi_{0}}(p) \in L$. A point p_{0} of D is called an umbilical point of $d^{n} f$ if $\left(\widehat{d^{n} f}\right)_{p_{0}}$ is constant. Let $\tilde{\mathscr{D}}_{d^{n} f}$ be a finitely many-valued one-dimensional distribution on an open set of non-umbilical points of $d^{n} f$ such that $\tilde{\mathscr{D}}_{d^{n} f}$ gives all the critical

[^0]directions of $d^{n} f$ at each point. For example, $\tilde{\mathscr{D}}_{d^{1} f}$ is the one-dimensional distribution defined by the gradient vector field of $f ; \tilde{\mathscr{D}}_{d^{2} f}$ consists of two one-dimensional distributions obtained from one-dimensional eigenspaces of Hessian of f at each point. The purpose of the present paper is to study the behavior of $\tilde{\mathscr{D}}_{d^{n} f}$ around an isolated umbilical point of $d^{n} f$ in ways which appear in [1]-[4]. In particular, we shall define and study the index of an isolated umbilical point with respect to $\tilde{\mathscr{D}}_{d^{n}} f$. We shall see that the index is a rational number and not always represented as the half of an integer. We conjecture that the index of an isolated umbilical point with respect to $\tilde{\mathscr{D}}_{d^{n} f}$ is not more than one. We shall see that for $n \in\{1,2\}$ (respectively, $n \geqq 3$), this conjecture is equivalent to (respectively, distinct from) Loewner's conjecture. We shall affirmatively solve the former conjecture in the case where f is a homogeneous polynomial. In addition, we shall study this conjecture in the case where f is a real-analytic function.

Acknowledgement. The author is grateful to the referees for their helpful comments and suggestions. This work was supported by the Japan Society for the Promotion of Science.

2. Many-valued one-dimensional distributions.

Let \mathscr{D} be a continuous one-dimensional distribution on a domain U of a smooth twodimensional manifold S. In the present paper, a pair (\mathscr{D}, U) is called a distribution element. A distribution element $\left(\mathscr{D}_{0}, U_{0}\right)$ is called a direct continuation of (\mathscr{D}, U) if $U_{0} \cap U \neq \varnothing$ and if $\mathscr{D}_{0} \equiv \mathscr{D}$ on $U_{0} \cap U$. A set of distribution elements $\left\{\left(\mathscr{D}_{i}, U_{i}\right)\right\}_{i \in N}$ is called a continuation if $\left(\mathscr{D}_{i+1}, U_{i+1}\right)$ is a direct continuation of $\left(\mathscr{D}_{i}, U_{i}\right)$ for any $i \in \boldsymbol{N}$.

For a point $p \in S$, let X_{p} be the set of the distribution elements such that each $(\mathscr{D}, U) \in X_{p}$ satisfies $p \in U$. We introduce an equivalence relation \sim into X_{p} : for two $\left(\mathscr{D}_{1}, U_{1}\right),\left(\mathscr{D}_{2}, U_{2}\right) \in$ X_{p}, we write $\left(\mathscr{D}_{1}, U_{1}\right) \sim\left(\mathscr{D}_{2}, U_{2}\right)$ if there exists a neighborhood U_{0} of p in $U_{1} \cap U_{2}$ satisfying $\mathscr{D}_{1} \equiv \mathscr{D}_{2}$ on U_{0}. We denote by \tilde{X}_{p} the set of the equivalence classes in relation to the equivalence relation \sim.

Let D be a domain of S. A correspondence $\tilde{\mathscr{D}}$ of each $p \in D$ to a subset $\tilde{\mathscr{D}}(p)$ of \tilde{X}_{p} is called a many-valued one-dimensional distribution on D. For a many-valued one-dimensional distribution $\tilde{\mathscr{D}}$ on D and a distribution element (\mathscr{D}, U), we write $(\mathscr{D}, U) \subset(\tilde{\mathscr{D}}, D)$ if $U \subset D$ and if (\mathscr{D}, U) represents an element of $\tilde{\mathscr{D}}(q)$ for any $q \in U$. A many-valued one-dimensional distribution $\tilde{\mathscr{D}}$ is called continuous if for each $p \in D$ and each $\omega \in \tilde{\mathscr{D}}(p)$, there exists a distribution element $(\mathscr{D}, U) \in \omega$ satisfying $(\mathscr{D}, U) \subset(\tilde{\mathscr{D}}, D)$; a many-valued one-dimensional distribution $\tilde{\mathscr{D}}$ is called complete if the following holds: if a convergent sequence $\left\{p_{i}\right\}_{i \in N}$ in D and a continuation $\left\{\left(\mathscr{D}_{i}, U_{i}\right)\right\}_{i \in N}$ satisfy $p_{i} \in U_{i}$ and $\left(\mathscr{D}_{i}, U_{i}\right) \subset(\mathscr{\mathscr { D }}, D)$ for any $i \in N$, then there exists a distribution element $\left(\mathscr{D}_{0}, U_{0}\right)$ satisfying $\lim _{i \rightarrow \infty} p_{i} \in U_{0},\left(\mathscr{D}_{0}, U_{0}\right) \subset(\tilde{\mathscr{D}}, D)$ and the condition that there exists a number $i_{0} \in \boldsymbol{N}$ such that $\left(\mathscr{D}_{0}, U_{0}\right)$ is a direct continuation of $\left(\mathscr{D}_{i}, U_{i}\right)$ for any $i \geqq i_{0}$; a many-valued one-dimensional distribution $\tilde{\mathscr{D}}$ is called separated if distinct two distribution elements $\left(\mathscr{D}_{1}, U\right),\left(\mathscr{D}_{2}, U\right) \subset(\tilde{\mathscr{D}}, D)$ represent distinct elements of $\tilde{\mathscr{D}}(q)$ for any $q \in U$; a many-valued one-dimensional distribution $\tilde{\mathscr{D}}$ is called pointwise separated if $\mathscr{D}_{1}(q) \neq \mathscr{D}_{2}(q)$ for distinct two distribution elements $\left(\mathscr{D}_{1}, U\right),\left(\mathscr{D}_{2}, U\right) \subset(\mathscr{D}, D)$ and any $q \in U$; a many-valued one-dimensional distribution $\tilde{\mathscr{D}}$ is called pointwise separable if $\tilde{\mathscr{D}}$ is separated and if the following holds: if two distribution elements $\left(\mathscr{D}_{1}, U\right),\left(\mathscr{D}_{2}, U\right) \subset(\tilde{D}, D)$ satisfy $\mathscr{D}_{1}\left(q_{0}\right)=\mathscr{D}_{2}\left(q_{0}\right)$ for some $q_{0} \in U$, then there exist a neighborhood $O_{q_{0}}$ of q_{0} in U and continuous functions ϕ_{1}, ϕ_{2} on $O_{q_{0}}$ satisfying the following:
(a) $\phi_{1}\left(q_{0}\right)=\phi_{2}\left(q_{0}\right)$;
(b) $\boldsymbol{U}_{\phi_{i}}=\left(\cos \phi_{i}\right) \partial / \partial x+\left(\sin \phi_{i}\right) \partial / \partial y$ represents $\left(\mathscr{D}_{i}, O_{q_{0}}\right)$ for $i \in\{1,2\}$;
(c) there exists a nonzero number $c \neq 0$ satisfying $c\left(\phi_{1}-\phi_{2}\right) \geqq 0$ on $O_{q_{0}}$, where (x, y) are local coordinates on $O_{q_{0}}$.

Let $\tilde{\mathscr{D}}$ be a continuous, complete, separated many-valued one-dimensional distribution on D. Then $\tilde{\mathscr{D}}$ is called connected if there do not exist two continuous, complete, separated many-valued one-dimensional distributions $\tilde{\mathscr{D}}_{1}, \tilde{\mathscr{D}}_{2}$ on D satisfying $\tilde{\mathscr{D}}(p)=\tilde{\mathscr{D}}_{1}(p) \cup \tilde{\mathscr{D}}_{2}(p)$ and $\tilde{\mathscr{D}}_{1}(p) \cap \tilde{\mathscr{D}}_{2}(p)=\emptyset$ for any $p \in D$. If $\tilde{\mathscr{D}}$ is not connected, then there exists a set of connected, continuous, complete, separated many-valued one-dimensional distributions $\left\{\tilde{\mathscr{D}}_{\lambda}\right\}_{\lambda \in \Lambda}$ satisfying $\tilde{\mathscr{D}}(p)=\cup_{\lambda \in \Lambda} \tilde{\mathscr{D}}_{\lambda}(p)$ and $\tilde{\mathscr{D}}_{\lambda_{1}}(p) \cap \tilde{\mathscr{D}}_{\lambda_{2}}(p)=\emptyset$ for arbitrary distinct two $\lambda_{1}, \lambda_{2} \in \Lambda$ and any $p \in D$. Each $\tilde{\mathscr{D}}_{\lambda}$ is called a connected component of $\tilde{\mathscr{D}}$.

Let $\tilde{\mathscr{D}}$ be a continuous, complete, separated many-valued one-dimensional distribution on D. Then we see that if there exists a positive integer $n_{0} \in N$ satisfying $\sharp \tilde{\mathscr{D}}\left(p_{0}\right)=n_{0}$ for some $p_{0} \in D$, then $\sharp \tilde{\mathscr{D}}(p)=n_{0}$ for any $p \in D$. If such a positive integer exists, then $\tilde{\mathscr{D}}$ is in particular called n_{0}-valued or finitely many-valued. We see that if $\tilde{\mathscr{D}}$ is n_{0}-valued and pointwise separable, then there exists a divisor $n_{\tilde{\mathscr{D}}}$ of n_{0} such that any connected component of $\tilde{\mathscr{D}}$ is $n_{\tilde{\mathscr{D}}}$-valued.

Let $\tilde{\mathscr{D}}$ be a continuous, complete, pointwise separable n_{0}-valued one-dimensional distribution on a domain D for some $n_{0} \in N$ and suppose that there exists an isolated complement p_{0} of D for S, i.e., p_{0} is a point of $S \backslash D$ such that a punctured neighborhood of p_{0} in S is contained in D. Then p_{0} may be an isolated singularity of $\tilde{\mathscr{D}}$, i.e., it is possible that $\tilde{\mathscr{D}}$ may not be completely extended to p_{0}. Let (x, y) be local coordinates on a neighborhood of p_{0} such that p_{0} corresponds to $(0,0)$ and r_{0} a positive number satisfying $\left\{0<x^{2}+y^{2}<r_{0}^{2}\right\} \subset D$. Let $\Phi_{\tilde{\mathscr{D}} ; p_{0}}$ denote the set of the continuous functions on $\left(0, r_{0}\right) \times \boldsymbol{R}$ such that for each $\phi_{\tilde{\mathscr{D}} ; p_{0}} \in \Phi_{\tilde{\mathscr{D}} ; p_{0}}$ and each $(r, \boldsymbol{\theta}) \in\left(0, r_{0}\right) \times \boldsymbol{R}$, there exists a distribution element $(\mathscr{D}, U) \subset(\tilde{\mathscr{D}}, D)$ satisfying $(r \cos \theta, r \sin \theta) \in U$ and the condition that for any $\left(r^{\prime}, \theta^{\prime}\right) \in\left(0, r_{0}\right) \times(\theta-\pi / 2, \theta+\pi / 2)$ satisfying $\left(r^{\prime} \cos \theta^{\prime}, r^{\prime} \sin \theta^{\prime}\right) \in U$,

$$
\boldsymbol{U}_{\phi_{\tilde{\mathscr{F}} ; p_{0}}\left(r^{\prime}, \boldsymbol{\theta}^{\prime}\right)}=\cos \phi_{\tilde{\mathscr{Z}} ; p_{0}}\left(r^{\prime}, \boldsymbol{\theta}^{\prime}\right) \frac{\partial}{\partial x}+\sin \phi_{\tilde{\mathscr{T}} ; p_{0}}\left(r^{\prime}, \boldsymbol{\theta}^{\prime}\right) \frac{\partial}{\partial y} \in \mathscr{D}
$$

holds at $\left(r^{\prime} \cos \theta^{\prime}, r^{\prime} \sin \theta^{\prime}\right)$. We see that there exists an integer $m_{0} \in \boldsymbol{Z}$ satisfying

$$
m_{0}=\frac{\phi_{\tilde{\mathscr{D}} ; p_{0}}\left(r, \theta+2 n_{0} \pi\right)-\phi_{\tilde{\mathscr{D}} ; p_{0}}(r, \boldsymbol{\theta})}{\pi}
$$

for any $\phi_{\tilde{\mathscr{D}} ; p_{0}} \in \Phi_{\tilde{\mathscr{D}} ; p_{0}}$ and any $(r, \theta) \in\left(0, r_{0}\right) \times \boldsymbol{R}$. Since $\tilde{\mathscr{D}}$ is pointwise separable, we see that the integer m_{0} is uniquely determined. The number

$$
\operatorname{ind}_{p_{0}}(\tilde{\mathscr{D}}):=\frac{m_{0}}{2 n_{0}}
$$

is called the index of p_{0} with respect to $\tilde{\mathscr{D}}$.
REMARK. The definition of $\operatorname{ind}_{p_{0}}(\tilde{\mathscr{D}})$ does not depend on the choice of local coordinates (x, y).

REMARK. If $n_{0}=1$, then we see that $\tilde{\mathscr{D}}$ may be considered as a continuous onedimensional distribution in the usual sense and that $\operatorname{ind}_{p_{0}}(\tilde{\mathscr{D}})$ is equal to the index of p_{0} with respect to $\tilde{\mathscr{D}}$ also in the usual sense.

Remark. We set

$$
m_{\tilde{\mathscr{D}}}:=\frac{\phi_{\tilde{\mathscr{D}} ; p_{0}}\left(r, \theta+2 n_{\tilde{\mathscr{D}}} \pi\right)-\phi_{\tilde{\mathscr{D}} ; p_{0}}(r, \theta)}{\pi}
$$

for $\phi_{\tilde{\mathscr{D}} ; p_{0}} \in \Phi_{\tilde{\mathscr{D}} ; p_{0}}$ and $(r, \boldsymbol{\theta}) \in\left(0, r_{0}\right) \times \boldsymbol{R}$. Then $m_{\tilde{\mathscr{D}}}$ is an integer such that $m_{\tilde{\mathscr{D}}}$ and $n_{\tilde{\mathscr{D}}}$ are relatively prime. The number $m_{\tilde{\mathscr{D}}} / 2 n_{\tilde{\mathscr{D}}}$ is the index of p_{0} with respect to any connected component of $\tilde{\mathscr{D}}$ and equal to $\operatorname{ind}_{p_{0}}(\tilde{\mathscr{D}})$.

REmARK. If we adopt the above definition of the index of an isolated singularity, then referring to [7, pp. 112-113], we may obtain an analogue of Hopf-Poincaré's theorem for a continuous, complete, pointwise separable finitely many-valued one-dimensional distribution.

3. Symmetric tensor fields.

Let n be a positive integer and T a smooth, symmetric tensor field of type $(0, n)$ on a domain D of \boldsymbol{R}^{2}. Then T is represented as follows:

$$
\mathrm{T}=\sum_{i=0}^{n}\binom{n}{i} \mathrm{~T}_{i} d x^{n-i} d y^{i}
$$

where T_{i} is a smooth function on D. For a number $\phi \in \boldsymbol{R}$ and a point $p \in D$, we set

$$
\hat{\mathrm{T}}_{p}(\phi):=\mathrm{T}_{p}\left(\boldsymbol{U}_{\phi}, \ldots, \boldsymbol{U}_{\phi}\right) .
$$

Then

$$
\hat{\mathrm{T}}_{p}(\phi)=\sum_{i=0}^{n}\binom{n}{i} \mathrm{~T}_{i}(p) \cos ^{n-i} \phi \sin ^{i} \phi .
$$

A one-dimensional subspace L of the tangent plane at $p \in D$ is called a critical direction of T at p if there exists a critical point ϕ_{0} of $\hat{\mathrm{T}}_{p}$ satisfying $\boldsymbol{U}_{\phi_{0}}(p) \in L$. A tensor field T is called umbilical at p or p is called an umbilical point of T if $\hat{\mathrm{T}}_{p}$ is constant, i.e., if any one-dimensional subspace of the tangent plane at p is a critical direction of T. The set of the umbilical points of T is denoted by $\operatorname{Umb}(\mathrm{T})$. An umbilical point p_{0} of T is called isolated if p_{0} is an isolated complement of $D \backslash \operatorname{Umb}(\mathrm{~T})$. There exists a continuous, complete, pointwise separable, finitely many-valued one-dimensional distribution $\tilde{\mathscr{D}}_{\mathrm{T}}$ on a neighborhood U of each point of $D \backslash \mathrm{Umb}(\mathrm{T})$ formed by critical directions of T at each $p \in U$. If $n=1$ or 2 , then $\tilde{\mathscr{D}}_{\mathrm{T}}$ is always well-defined on $D \backslash \operatorname{Umb}(\mathrm{~T})$ and consists of one or two continuous one-dimensional distributions on $D \backslash \operatorname{Umb}(\mathrm{~T})$ and we see that if $\sharp \tilde{\mathscr{D}}_{\mathrm{T}}=2$, then the two one-dimensional distributions are perpendicular to each other at any point with respect to the Euclidean metric on $D \backslash \operatorname{Umb}(\mathrm{~T})$. On the other hand, if $n \geqq 3$, then it is possible that $\tilde{\mathscr{D}}_{\mathrm{T}}$ may not be well-defined on $D \backslash \operatorname{Umb}(\mathrm{~T})$.

For a smooth function f on D and each positive integer n, we have defined a symmetric tensor field $d^{n} f$ of type $(0, n)$ as in (1). The following are examples of $\tilde{\mathscr{D}}_{d^{n} f}$.

Example. We see that $\tilde{\mathscr{D}}_{d^{1} f}$ is just the continuous one-dimensional distribution given by the gradient vector field of f and that $\tilde{\mathscr{D}}_{d^{2} f}$ consists of one or two continuous one-dimensional distributions obtained from one-dimensional eigenspaces of Hessian of f at each point.

Example. Let f be a harmonic function on D, i.e., let f satisfy $\partial^{2} f / \partial x^{2}+\partial^{2} f / \partial y^{2} \equiv 0$ on D. Then noticing

$$
\left(\widehat{d^{n} f}\right)(\phi)=\frac{\partial^{n} f}{\partial x^{n}} \cos n \phi+\frac{\partial^{n} f}{\partial x^{n-1} \partial y} \sin n \phi,
$$

we see that for each $p \in D \backslash \operatorname{Umb}\left(d^{n} f\right)$, there exists a number $\alpha_{p} \in \boldsymbol{R}$ such that each critical point of $\left(\widehat{d^{n} f}\right)_{p}$ is represented by $\alpha_{p}+m \pi / n$ for some integer $m \in \mathbf{Z}$. Therefore we see that there exists a continuous, complete, pointwise separated n-valued one-dimensional distribution $\tilde{\mathscr{D}}_{d^{n} f}$ on $D \backslash \operatorname{Umb}\left(d^{n} f\right)$. Suppose that f is a spherical harmonic function of degree $k>n$. Then we may suppose $D=\boldsymbol{R}^{2}$ and we see that $(0,0)$ is the only umbilical point of $d^{n} f$ on \boldsymbol{R}^{2}. In Section 4, we shall see that the index $\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} f}\right)$ of $(0,0)$ with respect to $\tilde{\mathscr{D}}_{d^{n} f}$ is equal to $1-k / n$. Therefore we see that $n_{\tilde{\mathscr{D}}_{d_{f}}}$ is equal to $n /(2 k, n)$, where $(2 k, n)$ is the greatest common divisor of $2 k$ and n. In particular, we see that if $2 k / n$ is not any integer, then $\tilde{\mathscr{D}}_{d^{n} f}$ does not consist of n continuous one-dimensional distributions on $\boldsymbol{R}^{2} \backslash\{(0,0)\}$ and that if $2 k$ and n are relatively prime, then $\tilde{\mathscr{D}}_{d^{n} f}$ is connected.

Example. We set $f:=x^{4}+y^{4}$. Then for any $(x, y) \in \boldsymbol{R}^{2}$, we obtain

$$
\frac{1}{24}\left(\widehat{d^{3} f}\right)_{(x, y)}(\phi)=x \cos ^{3} \phi+y \sin ^{3} \phi
$$

Therefore we obtain

$$
\frac{1}{72} \frac{d\left(\widehat{d^{3} f}\right)_{(\cos \theta, \sin \theta)}}{d \phi}(\phi)=-\cos \phi \sin \phi \cos (\theta+\phi) .
$$

We see that $(0,0)$ is the only umbilical point of $d^{3} f$ on \boldsymbol{R}^{2} and that there exists a connected, continuous, complete, pointwise separable (but not pointwise separated) 3-valued one-dimensional distribution $\tilde{\mathscr{D}}_{d^{3} f}$ on $\boldsymbol{R}^{2} \backslash\{(0,0)\}$ such that the index $\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{3} f}\right)$ of $(0,0)$ with respect to $\tilde{\mathscr{D}}_{d^{3} f}$ is equal to $-1 / 3$.

REMARK. We set $f:=x^{4}+18 x^{2} y^{2}+2 y^{4}$. Then we may suppose $D=\boldsymbol{R}^{2}$. For any $(x, y) \in$ R^{2}, we obtain

$$
\frac{1}{24}\left(\widehat{d d^{3} f}\right)_{(x, y)}(\phi)=x \cos ^{3} \phi+3 y \cos ^{2} \phi \sin \phi+3 x \cos \phi \sin ^{2} \phi+2 y \sin ^{3} \phi .
$$

Therefore we obtain

$$
\frac{1}{72} \frac{d\left(\widehat{d^{3} f}\right)_{(\cos \theta, \sin \theta)}}{d \phi}(\phi)=\cos \theta \sin \phi\left(\cos ^{2} \phi-\sin ^{2} \phi\right)+\sin \theta \cos ^{3} \phi .
$$

We see that $(0,0)$ is the only umbilical point of $d^{3} f$ on \boldsymbol{R}^{2}. We shall show that $\tilde{\mathscr{D}}_{d^{3} f}$ may not be well-defined on $\boldsymbol{R}^{2} \backslash\{(0,0)\}$. We see that there exist
(a) a number $\theta_{0} \in(0, \pi / 2)$,
(b) a continuous increasing function η_{1} on $\bar{I}_{1}:=\left[-\pi / 2, \theta_{0}\right]$,
(c) a continuous decreasing function η_{2} on $\bar{I}_{2}:=\left[-\theta_{0}, \theta_{0}\right]$, and
(d) a continuous increasing function η_{3} on $\bar{I}_{3}:=\left[-\theta_{0}, \pi / 2\right]$
satisfying

$$
\frac{d\left(\widehat{d^{3} f}\right)_{(\cos \theta, \sin \theta)}}{d \phi}\left(\eta_{i}(\theta)\right)=0
$$

for any $\theta \in \bar{I}_{i}$ and

$$
\begin{aligned}
\eta_{1}(-\pi / 2) & =-\pi / 2, & \eta_{1}\left(\theta_{0}\right) & =\eta_{2}\left(\theta_{0}\right) \in(-\pi / 2,0) \\
\eta_{3}(\pi / 2) & =\pi / 2, & \eta_{2}\left(-\theta_{0}\right) & =\eta_{3}\left(-\theta_{0}\right) \in(0, \pi / 2)
\end{aligned}
$$

In addition, we see that if a number $\phi_{0} \in[-\pi / 2, \pi / 2)$ satisfies

$$
\frac{d\left(\widehat{d^{3} f}\right)_{(\cos \theta, \sin \theta)}}{d \phi}\left(\phi_{0}\right)=0
$$

for some $\theta \in[-\pi / 2, \pi / 2)$, then $\phi_{0}=\eta_{i}(\theta)$ for some $i \in\{1,2,3\}$. Therefore we see that $\tilde{\mathscr{D}}_{d^{3} f}$ may not be well-defined on $\boldsymbol{R}^{2} \backslash\{(0,0)\}$.

Let f be a smooth function on a domain D of \boldsymbol{R}^{2} and p_{0} an isolated umbilical point of $d^{n} f$ such that there exists a neighborhood U of p_{0} in D satisfying $U \cap \operatorname{Umb}\left(d^{n} f\right)=\left\{p_{0}\right\}$ and the condition that there exists a continuous, complete, pointwise separable, finitely many-valued one-dimensional distribution $\tilde{\mathscr{D}}_{d^{n} f}$ on $U \backslash\left\{p_{0}\right\}$ formed by all the critical directions of $d^{n} f$ at each point of $U \backslash\left\{p_{0}\right\}$ (for example, if the sum of the multiplicities of the critical points of $\left.\widehat{\left(d^{n} f\right.}\right)_{p}$ in $[0, \pi)$ does not depend on the choice of $p \in U \backslash\left\{p_{0}\right\}$ and if f is real-analytic, then this condition is satisfied). In the following sections, we shall study the behavior of $\tilde{\mathscr{D}}_{d^{n} f}$ around p_{0} and

CONJECTURE 3.1. The index $\operatorname{ind}_{p_{0}}\left(\tilde{\mathscr{D}}_{d^{n} f}\right)$ of p_{0} with respect to $\tilde{\mathscr{D}}_{d^{n} f}$ is not more than one.

REMARK. We set $\boldsymbol{V}_{f}^{(n)}:=\operatorname{Re}\left(\partial_{\bar{z}}^{n} f\right) \partial / \partial x+\operatorname{Im}\left(\partial_{\bar{z}}^{n} f\right) \partial / \partial y$ as in Section 1. We obtain

$$
\boldsymbol{V}_{f}^{(1)}=\frac{1}{2}\left\{\frac{\partial f}{\partial x} \frac{\partial}{\partial x}+\frac{\partial f}{\partial y} \frac{\partial}{\partial y}\right\}
$$

We see that $\boldsymbol{V}_{f}^{(1)}$ is the half of the gradient vector field of f. Therefore Conjecture 3.1 for $n=1$ is equivalent to Loewner's conjecture for $n=1$. The following holds:

$$
\boldsymbol{V}_{f}^{(2)}=\frac{1}{4}\left\{\left(\frac{\partial^{2} f}{\partial x^{2}}-\frac{\partial^{2} f}{\partial y^{2}}\right) \frac{\partial}{\partial x}+2 \frac{\partial^{2} f}{\partial x \partial y} \frac{\partial}{\partial y}\right\}
$$

Then we see that for a point $p \in D$, the following are mutually equivalent:
(a) p is a zero point of $\boldsymbol{V}_{f}^{(2)}$;
(b) at p, Hessian Hess_{f} of f is represented by the unit matrix up to a constant;
(c) p is an umbilical point of $d^{2} f$.

In addition, noticing that for any $\phi \in \boldsymbol{R}$,

$$
\begin{aligned}
-\left(\frac{\partial^{2} f}{\partial x^{2}}-\frac{\partial^{2} f}{\partial y^{2}}\right) \sin \phi+2 \frac{\partial^{2} f}{\partial x \partial y} \cos \phi & =2\left\langle\operatorname{Hess}_{f}\binom{\cos (\phi / 2)}{\sin (\phi / 2)},\binom{-\sin (\phi / 2)}{\cos (\phi / 2)}\right\rangle \\
& =\frac{d\left(\widehat{\left.d^{2} f\right)}\right.}{d \phi}(\phi / 2)
\end{aligned}
$$

(where \langle,$\rangle is the scalar product in \boldsymbol{R}^{2}$), we see that for a number $\phi \in \boldsymbol{R}$ and at a point of D, the following are mutually equivalent:
(a) $\boldsymbol{V}_{f}^{(2)}$ is represented by \boldsymbol{U}_{ϕ} up to a constant;
(b) ${ }^{t}(\cos (\phi / 2), \sin (\phi / 2))$ is an eigenvector of Hess_{f};
(c) $\boldsymbol{U}_{\phi / 2}$ is in a critical direction of $d^{2} f$.

In particular, we see that the index of an isolated zero point p_{0} of $\boldsymbol{V}_{f}^{(2)}$ is twice the index of an isolated umbilical point p_{0} of $d^{2} f$. Hence we see that Conjecture 3.1 for $n=2$ is equivalent to Loewner's conjecture for $n=2$. However, if $n \geqq 3$, then $\operatorname{Re}\left(\partial_{z}^{n} f\right)=\operatorname{Im}\left(\partial_{z}^{n} f\right)=0$ at a point do not always imply that $d^{n} f$ is umbilical at the same point: if n is even, then for a polynomial

$$
f(x, y):=x^{n}(1+x)+x^{n-1} y-(-1)^{(n-2) / 2} x y^{n-1}(1+y)-(-1)^{n / 2} y^{n}
$$

we obtain

$$
\boldsymbol{V}_{f}^{(n)}=\frac{n!}{2^{n}}\left((n+1) x \frac{\partial}{\partial x}-n y \frac{\partial}{\partial y}\right)
$$

which implies that $(0,0)$ is a (unique) zero point of $\boldsymbol{V}_{f}^{(n)}$, while there exists no umbilical point of $d^{n} f$; if n is odd, then for a polynomial

$$
f(x, y):=x^{n}(1+x)+x^{n-1} y-(-1)^{(n-1) / 2} x y^{n-1}-(-1)^{(n-1) / 2} y^{n}(1+y)
$$

we obtain the same conclusion. In addition, if $n \geqq 3$, then an isolated umbilical point of $d^{n} f$ is not always an isolated zero point of $\boldsymbol{V}_{f}^{(n)}$: if we set $f(x, y):=\left(x^{2}+y^{2}\right)^{l}$, where $l:=[n / 2]+1$, then $(0,0)$ is a unique umbilical point of $d^{n} f$ and $\tilde{\mathscr{D}}_{d^{n} f}$ is well-defined on $\boldsymbol{R}^{2} \backslash\{(0,0)\}$, while $\boldsymbol{V}_{f}^{(n)}$ is identically zero. Hence we see that the solution of one of Conjecture 3.1 and Loewner's conjecture for $n \geqq 3$ does not give any solution of the other.

In the next section, we shall study and affirmatively solve Conjecture 3.1 in the case where f is a homogeneous polynomial. The following lemma shall be useful in the next section.

Lemma 3.2. Let ϕ_{0}, a, b be real numbers and $\left(x^{\prime}, y^{\prime}\right)$ orthogonal coordinates on \boldsymbol{R}^{2} satisfying

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
\cos \phi_{0} & -\sin \phi_{0} \\
\sin \phi_{0} & \cos \phi_{0}
\end{array}\right)\binom{x}{y}+\binom{a}{b}
$$

at any point of \boldsymbol{R}^{2}. Then for any $\phi \in \boldsymbol{R}$,

$$
\begin{aligned}
& \sum_{i=0}^{n}\binom{n}{i} \frac{\partial^{n} f}{\partial x^{n-i} \partial y^{i}}(x, y) \cos ^{n-i} \phi \sin ^{i} \phi \\
& \quad=\sum_{i=0}^{n}\binom{n}{i} \frac{\partial^{n} f}{\partial\left(x^{\prime}\right)^{n-i} \partial\left(y^{\prime}\right)^{i}}\left(x^{\prime}, y^{\prime}\right) \cos ^{n-i}\left(\phi+\phi_{0}\right) \sin ^{i}\left(\phi+\phi_{0}\right)
\end{aligned}
$$

We may prove Lemma 3.2 by induction with respect to $n \in \boldsymbol{N}$.

4. Homogeneous polynomials.

4.1. Results.

Let n be a positive integer and g a homogeneous polynomial of degree $k>n$ such that there exists a continuous, complete, pointwise separable, finitely many-valued one-dimensional distribution $\tilde{\mathscr{D}}_{d^{n} g}$ on $\boldsymbol{R}^{2} \backslash\{(0,0)\}$ formed by all the critical directions of $d^{n} g$ at each point of $\boldsymbol{R}^{2} \backslash \operatorname{Umb}\left(d^{n} g\right)$. In order to grasp the behavior of $\tilde{\mathscr{D}}_{d^{n} g}$ around $(0,0)$, we shall first notice a point at which the "position vector field" $x \partial / \partial x+y \partial / \partial y$ is in a critical direction of $d^{n} g$.

For each $\theta \in \boldsymbol{R}, \operatorname{set} \tilde{g}(\theta):=g(\cos \theta, \sin \theta)$. Then by Euler's identity, we obtain
Lemma 4.1. For any $\boldsymbol{\theta} \in \boldsymbol{R}$,

$$
\begin{align*}
\left(\widehat{d^{n} g}\right)_{(\cos \theta, \sin \theta)}(\theta) & =\left\{\prod_{i=0}^{n-1}(k-i)\right\} \tilde{g}(\theta), \tag{3}\\
\frac{d\left(\widehat{d^{n} g}\right)_{(\cos \theta, \sin \theta)}}{d \phi}(\theta) & =\left\{\frac{n}{k} \prod_{i=0}^{n-1}(k-i)\right\} \frac{d \tilde{g}}{d \theta}(\theta) . \tag{4}
\end{align*}
$$

By Lemma 4.1, we see that for a number θ_{0}, the position vector field is in a critical direction of $d^{n} g$ at $\left(\cos \theta_{0}, \sin \theta_{0}\right)$ if and only if θ_{0} satisfies $(d \tilde{g} / d \theta)\left(\theta_{0}\right)=0$. We denote by R_{g} the set of the numbers at which $d \tilde{g} / d \theta=0$. Let η be a continuous function on \boldsymbol{R} such that for any $\theta \in \boldsymbol{R}, \boldsymbol{U}_{\eta(\theta)}$ is in a critical direction of $d^{n} g$ at $(\cos \theta, \sin \theta)$ and $E_{d^{n} g}$ the set of such continuous functions as η. Let $R\left(d^{n} g\right)$ be the set of the numbers θ_{0} such that there exists an element $\eta_{\theta_{0}} \in E_{d^{n} g}$ satisfying $\theta_{0}=\eta_{\theta_{0}}\left(\theta_{0}\right)$. Then $R\left(d^{n} g\right) \subset R_{g}$ holds. We are interested in the relation between the function θ (of one variable θ) and $\eta_{\theta_{0}}$ around $\theta_{0} \in R\left(d^{n} g\right)$.

Suppose $R_{g}=\boldsymbol{R}$. Then k is even and g is represented by $\left(x^{2}+y^{2}\right)^{k / 2}$ up to a constant. We obtain $\theta \in E_{d^{n} g}$, i.e., $R\left(d^{n} g\right)=\boldsymbol{R}$. In addition, by Lemma 3.2, we see that $\tilde{\mathscr{D}}_{d^{n} g}$ is pointwise separated. Therefore we obtain ind ${ }_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} g}\right)=1$.

In the following, suppose $R_{q} \neq \boldsymbol{R}$. Then for each $\theta_{0} \in R_{g}$, there exists a positive integer μ satisfying $\left(d^{\mu+1} \tilde{g} / d \theta^{\mu+1}\right)\left(\theta_{0}\right) \neq 0$. The minimum of such integers is denoted by $\mu_{g}\left(\theta_{0}\right)$. An element $\theta_{0} \in R_{g}$ is said to be
(a) related if θ_{0} satisfies $\tilde{g}\left(\theta_{0}\right)=0$ or if $\mu_{g}\left(\theta_{0}\right)$ is odd;
(b) non-related if θ_{0} satisfies $\tilde{g}\left(\theta_{0}\right) \neq 0$ and if $\mu_{g}\left(\theta_{0}\right)$ is even.

In the next subsection, we shall prove
Lemma 4.2. Let θ_{0} be an element of $R\left(d^{n} g\right)$ and $I_{\theta_{0}}$ an open interval satisfying $I_{\theta_{0}} \cap$ $R\left(d^{n} g\right)=\left\{\theta_{0}\right\}$. Then the following hold:
(a) if θ_{0} is related, then there exists a nonzero number $c_{g}^{(n)}\left(\theta_{0}\right)$ satisfying

$$
c_{g}^{(n)}\left(\theta_{0}\right)\left(\theta-\eta_{\theta_{0}}(\theta)\right)\left(\theta-\theta_{0}\right)>0
$$

for any $\theta \in I_{\theta_{0}} \backslash\left\{\theta_{0}\right\}$ and any $\eta_{\theta_{0}} \in E_{d^{n} g}$ satisfying $\eta_{\theta_{0}}\left(\theta_{0}\right)=\theta_{0}$;
(b) if θ_{0} is non-related, then there exists a nonzero number $\tilde{c}_{g}^{(n)}\left(\theta_{0}\right)$ satisfying

$$
\tilde{c}_{g}^{(n)}\left(\theta_{0}\right)\left(\theta-\eta_{\theta_{0}}(\theta)\right)>0
$$

for any $\theta \in I_{\theta_{0}} \backslash\left\{\theta_{0}\right\}$ and $\eta_{\theta_{0}} \in E_{d^{n} g}$ satisfying $\eta_{\theta_{0}}\left(\theta_{0}\right)=\theta_{0}$.

For a related element $\theta_{0} \in R\left(d^{n} g\right)$, the sign of $c_{g}^{(n)}\left(\theta_{0}\right)$ in (a) of Lemma 4.2 is called the sign of θ_{0} and denoted by $\operatorname{sign}_{g}^{(n)}\left(\theta_{0}\right)$.

For each element $\theta_{0} \in R\left(d^{n} g\right)$ and the interval $I_{\theta_{0}}$, we may suppose that if η_{1}, η_{2} are elements of $E_{d^{n} g}$ satisfying $\eta_{1}=\eta_{2}$ at some point θ of $I_{\theta_{0}} \backslash\left\{\theta_{0}\right\}$, then $\eta_{1} \equiv \eta_{2}$ on the connected component of $I_{\theta_{0}} \backslash\left\{\theta_{0}\right\}$ containing θ. Then there exists a positive integer $N_{g}^{(n)}\left(\theta_{0}\right) \in \boldsymbol{N}$ such that $N_{g}^{(n)}\left(\theta_{0}\right)^{2}$ is the number of the elements $\eta \in E_{d^{n} g}$ restricted on $I_{\theta_{0}}$ satisfying $\eta\left(\theta_{0}\right)=\theta_{0}$.

Let $R_{+}\left(d^{n} g\right)\left(\right.$ respectively, $R_{-}\left(d^{n} g\right)$) be the set of the related elements of $R\left(d^{n} g\right)$ with positive (respectively, negative) sign and for $\varepsilon \in\{+,-\}$, we set

$$
N_{\mathcal{E}}\left(d^{n} g\right):=\sum_{\theta_{0} \in R_{\varepsilon}\left(d^{n} g\right) \cap[\theta, \theta+\pi)} N_{g}^{(n)}\left(\theta_{0}\right) .
$$

In the next subsection, we shall prove the following:
THEOREM 4.3. The index $\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} g}\right)$ is represented as follows:

$$
\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} g}\right)=1-\frac{N_{+}\left(d^{n} g\right)-N_{-}\left(d^{n} g\right)}{N_{d^{n} g}},
$$

where $N_{d^{n} g}$ is a positive integer such that $\tilde{\mathscr{D}}_{d^{n} g}$ is $N_{d^{n} g^{\prime}}$-valued.
In addition, we shall prove
LEmma 4.4. $\quad N_{+}\left(d^{n} g\right) \geqq N_{-}\left(d^{n} g\right)$.
REmARK. In [1], we may find the prototypes of Lemma 4.2, Theorem 4.3 and Lemma 4.4, respectively. In [4], we proved Lemma 4.2 for $n=2$.

By Theorem 4.3 together with Lemma 4.4, we obtain

$$
\begin{equation*}
\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} g}\right) \leqq 1 \tag{5}
\end{equation*}
$$

From (5), we obtain the affirmative answer to Conjecture 3.1 in the case where f is a homogeneous polynomial. Indeed, (5) is a reason why we have reached Conjecture 3.1.

4.2. Proofs.

Let n, g be as in the previous subsection. For numbers $\theta, \phi \in \boldsymbol{R}$, we set

$$
\begin{equation*}
\tilde{D}_{d^{n} g}(\theta, \phi):=\frac{1}{n} \frac{d\left(\widehat{d^{n} g}\right)_{(\cos \theta, \sin \theta)}}{d \phi}(\phi) . \tag{6}
\end{equation*}
$$

Then for any $\eta \in E_{d^{n} g}$ and any $\theta \in \boldsymbol{R}, \tilde{D}_{d^{n} g}(\theta, \eta(\theta))=0$. In the following, suppose $R_{g} \neq \boldsymbol{R}$.
Suppose that for $\theta_{0} \in R_{g}, d^{n} g$ is not umbilical at $\left(\cos \theta_{0}, \sin \theta_{0}\right)$. Then there exists a positive integer v satisfying $\left(\partial^{v} \tilde{D}_{d^{n} g} / \partial \phi^{v}\right)\left(\theta_{0}, \theta_{0}\right) \neq 0$. The minimum of such integers is denoted by $v_{g}^{(n)}\left(\theta_{0}\right)$. Suppose that for $\theta_{0} \in R_{g}, d^{n} g$ is umbilical at $\left(\cos \theta_{0}, \sin \theta_{0}\right)$. Then we write $v_{g}^{(n)}\left(\theta_{0}\right)=$ ∞. We obtain a map $v_{g}^{(n)}$ from R_{g} into $N \cup\{\infty\}$. We immediately obtain

Lemma 4.5. For $\theta_{0} \in R_{g}$, the following are mutually equivalent:
(a) $\theta_{0} \in R_{g} \backslash R\left(d^{1} g\right)$;
(b) $\tilde{g}\left(\theta_{0}\right)=0$;
(c) $v_{g}^{(1)}\left(\theta_{0}\right)=\infty$.

For a related element $\theta_{0} \in R_{g}$, it is said that the critical sign of θ_{0} is positive (respectively, negative) if the following holds:

$$
\tilde{g}\left(\theta_{0}\right) \frac{d^{\mu_{g}\left(\theta_{0}\right)+1} \tilde{g}}{d \theta^{\mu_{g}\left(\theta_{0}\right)+1}}\left(\theta_{0}\right) \leqq 0(\text { respectively },>0) .
$$

The critical sign of θ_{0} is denoted by $\mathrm{c}-\operatorname{sign}_{g}\left(\theta_{0}\right)$. We shall prove
Lemma 4.6. Suppose $n \geqq 2$ and let θ_{0} be an element of R_{g} satisfying $\tilde{g}\left(\theta_{0}\right) \neq 0$. Then
(a) $\theta_{0} \in R\left(d^{n} g\right)$ holds if and only if $v_{g}^{(n)}\left(\theta_{0}\right)$ is an odd integer;
(b) if $\theta_{0} \in R_{g} \backslash R\left(d^{n} g\right)$, then θ_{0} is related and satisfies $\mathrm{c}-\operatorname{sign}_{g}\left(\theta_{0}\right)=-$ and $v_{g}^{(n)}\left(\theta_{0}\right)=\infty$.

Proof. By (4), (6) and the implicit function theorem, we obtain $\theta_{0} \in R\left(d^{n} g\right)$ for an element θ_{0} of R_{g} satisfying $v_{g}^{(n)}\left(\theta_{0}\right)=1$.

We shall prove $\nu_{g}^{(n)}\left(\theta_{0}\right)=1$ for an element θ_{0} of R_{g} satisfying $\tilde{g}\left(\theta_{0}\right) \neq 0$ and $\mu_{g}\left(\theta_{0}\right) \geqq 2$. Noticing Lemma 3.2, we may suppose $\theta_{0}=0$. If we represent g as $g=\sum_{i=0}^{k} a_{i} x^{k-i} y^{i}$, then we obtain $a_{0} \neq 0$ by $\tilde{g}(0) \neq 0$, and we obtain $a_{1}=0$ by $0 \in R_{g}$. In addition, by

$$
\begin{equation*}
\frac{d^{2} \tilde{g}}{d \theta^{2}}(0)=2 a_{2}-k a_{0} \tag{7}
\end{equation*}
$$

together with $\mu_{g}(0) \geqq 2$, we obtain

$$
\begin{equation*}
a_{2}=\frac{k}{2} a_{0} . \tag{8}
\end{equation*}
$$

The following hold:

$$
\begin{align*}
\frac{\partial \tilde{D}_{d^{n} g}}{\partial \phi}(0,0) & =-\frac{\partial^{n} g}{\partial x^{n}}(1,0)+(n-1) \frac{\partial^{n} g}{\partial x^{n-2} \partial y^{2}}(1,0), \tag{9}\\
\frac{\partial^{n} g}{\partial x^{n}}(1,0) & =\left\{\prod_{i=0}^{n-1}(k-i)\right\} a_{0}, \tag{10}\\
\frac{\partial^{n} g}{\partial x^{n-2} \partial y^{2}}(1,0) & =\left\{\frac{2}{k(k-1)} \prod_{i=0}^{n-1}(k-i)\right\} a_{2} . \tag{11}
\end{align*}
$$

Applying (10) and (11) to (9), we obtain

$$
\begin{equation*}
\frac{\partial \tilde{D}_{d^{n} g}}{\partial \phi}(0,0)=\left\{\prod_{i=0}^{n-1}(k-i)\right\}\left\{-a_{0}+\frac{2(n-1)}{k(k-1)} a_{2}\right\} . \tag{12}
\end{equation*}
$$

By (8) together with (12), we obtain

$$
\frac{\partial \tilde{D}_{d^{n} g}}{\partial \phi}(0,0)=-\left\{\frac{1}{k-1} \prod_{i=0}^{n}(k-i)\right\} a_{0} .
$$

Since $a_{0} \neq 0$, we obtain $v_{g}^{(n)}(0)=1$.
We shall prove $v_{g}^{(n)}(0)=1$ if 0 is a related element of R_{g} satisfying $\tilde{g}(0) \neq 0$ and $\mathrm{c}-\mathrm{sign}_{g}(0)=+$. By (7) together with $\mathrm{c}-\operatorname{sign}_{g}(0)=+$, we obtain

$$
\begin{equation*}
\frac{a_{2}}{a_{0}} \leqq \frac{k}{2} \tag{13}
\end{equation*}
$$

By (12), (13) and $n<k$, we obtain $\left(\partial \tilde{D}_{d^{n} g} / \partial \phi\right)(0,0) \neq 0$, i.e., $v_{g}^{(n)}(0)=1$.
We shall prove $0 \notin R\left(d^{n} g\right)$ if 0 is a related element of R_{g} satisfying c-sign $(0)=-$ and $v_{g}^{(n)}(0)=\infty$. We see that n is even and we obtain

$$
a_{i}= \begin{cases}0, & \text { if } i \in\{1,3, \ldots, n-1\}, \\ C(n, k, i) a_{0}, & \text { if } i \in\{0,2, \ldots, n\}\end{cases}
$$

where

$$
C(n, k, i):=\binom{n / 2}{i / 2}\binom{k}{i} /\binom{n}{i} .
$$

Therefore we obtain

$$
\begin{aligned}
& \left(\widehat{d^{n} g}\right)_{(\cos \theta, \sin \theta)}(\phi) \\
& =\left\{\prod_{i=0}^{n-1}(k-i)\right\} a_{0} \cos ^{k-n} \theta \\
& \quad+\left\{A_{2} \cos ^{n-1} \phi \sin \phi+\alpha(\phi) \sin ^{2} \phi\right\} \cos ^{k-n-1} \theta \sin \theta+\beta(\theta, \phi) \sin ^{2} \theta,
\end{aligned}
$$

where $A_{2} \in \boldsymbol{R} \backslash\{0\}$ and α, β are smooth functions. In addition, we obtain

$$
n \tilde{D}_{d^{n} g}(\theta, \phi)=\left\{\left(A_{2} \cos ^{n} \phi+\hat{\alpha}(\phi) \sin \phi\right) \cos ^{k-n-1} \theta+\frac{\partial \beta}{\partial \phi}(\theta, \phi) \sin \theta\right\} \sin \theta
$$

where $\hat{\alpha}$ is a smooth function. Hence we obtain $0 \notin R\left(d^{n} g\right)$.
Let 0 be a related element of R_{g} satisfying c-sign $(0)=-$ and $v_{g}^{(n)}(0) \in \boldsymbol{N} \backslash\{1\}$. Then we obtain

$$
a_{i}= \begin{cases}0, & \text { if } i \in\left\{1,3, \ldots, 2\left[\left(v_{g}^{(n)}(0)+1\right) / 2\right]-1\right\}, \\ C(n, k, i) a_{0}, & \text { if } i \in\left\{0,2, \ldots, 2\left[v_{g}^{(n)}(0) / 2\right]\right\}\end{cases}
$$

and

$$
a_{v_{g}^{(n)}(0)+1} \neq \begin{cases}0, & \text { if } v_{g}^{(n)}(0) \text { is even }, \\ C\left(n, k, v_{g}^{(n)}(0)+1\right) a_{0}, & \text { if } v_{g}^{(n)}(0) \text { is odd }\end{cases}
$$

Then we may represent $\tilde{D}_{d^{n}} g(\theta, \phi)$ as

$$
\tilde{D}_{d^{n} g}(\theta, \phi)=\sum_{i, j \geqslant 0} B_{i j} \theta^{i} \phi^{j}
$$

where $B_{10} \neq 0, B_{0 j}=0$ for $j \in\left\{0,1, \ldots, v_{g}^{(n)}(0)-1\right\}$ and $B_{0 v_{g}^{(n)}(0)} \neq 0$. Therefore we obtain $\left(\partial \tilde{D}_{d^{n g}} / \partial \theta\right)(0,0) \neq 0$. By the implicit function theorem, we see that there exist a positive number $\varepsilon>0$ and a smooth function γ of one variable satisfying

$$
\begin{equation*}
\gamma(\phi)=-\frac{B_{0 v_{g}^{(n)}(0)}}{B_{10}} \phi^{v_{g}^{(n)}(0)}+o\left(\phi^{v_{g}^{(n)}(0)}\right) \tag{14}
\end{equation*}
$$

and

$$
\left\{(\theta, \phi) \in(-\varepsilon, \varepsilon)^{2} ; \tilde{D}_{d^{n} g}(\theta, \phi)=0\right\}=\{(\gamma(\phi), \phi) ; \phi \in(-\varepsilon, \varepsilon)\} .
$$

Therefore if $v_{g}^{(n)}(0)$ is odd, then 0 is an element of $R\left(d^{n} g\right)$; if $v_{g}^{(n)}(0)$ is even, then there does not exist any distribution as $\tilde{\mathscr{D}}_{d^{n} g}$ on $\boldsymbol{R}^{2} \backslash\{(0,0)\}$.

Hence we obtain Lemma 4.6.
REMARK. In [3], we may find the prototype of Lemma 4.6. In [4], we proved that for an element θ_{0} of $R_{g}, \theta_{0} \in R_{g} \backslash R\left(d^{2} g\right)$ holds if and only if $\tilde{g}\left(\theta_{0}\right) \neq 0$ and $v_{g}^{(2)}\left(\theta_{0}\right)=\infty$ hold.

Proof of Lemma 4.2. Let θ_{0} be an element of $R\left(d^{n} g\right)$ satisfying $v_{g}^{(n)}\left(\theta_{0}\right)=1$. Then by the implicit function theorem, we see that if $\eta_{\theta_{0}}$ is an element of $E_{d^{n} g}$ satisfying $\eta_{\theta_{0}}\left(\theta_{0}\right)=\theta_{0}$, then $\eta_{\theta_{0}}$ is smooth at θ_{0} and satisfies

$$
\begin{equation*}
\frac{d^{\mu}\left(\theta-\eta_{\theta_{0}}\right)}{d \theta^{\mu}}\left(\theta_{0}\right)=\left\{\frac{1}{k} \prod_{i=0}^{n-1}(k-i)\right\} \frac{d^{\mu+1} \tilde{g}}{d \theta^{\mu+1}}\left(\theta_{0}\right) / \frac{\partial \tilde{D}_{d^{n} g}}{\partial \phi}\left(\theta_{0}, \theta_{0}\right) \tag{15}
\end{equation*}
$$

for any $\mu \in\left\{0,1, \ldots, \mu_{g}\left(\theta_{0}\right)\right\}$. Therefore we obtain Lemma 4.2.
Let 0 be an element of $R\left(d^{n} g\right)$ satisfying $\tilde{g}(0) \neq 0$ and $v_{g}^{(n)}(0) \geqq 2$. Then 0 is related and $v_{g}^{(n)}(0)$ is odd. Noticing (14), we obtain

$$
\begin{equation*}
\frac{B_{0 v_{g}^{(n)}(0)}}{B_{10}}\left(\theta-\eta_{0}(\theta)\right) \theta>0 \tag{16}
\end{equation*}
$$

for any $\theta \in I_{0} \backslash\{0\}$ and $\eta_{0} \in E_{d^{n} g}$ satisfying $\eta_{0}(0)=0$. Therefore we obtain Lemma 4.2.
Let 0 be an element of $R\left(d^{n} g\right)$ satisfying $\tilde{g}(0)=0$ and $v_{g}^{(n)}(0)=\infty$. Then we see that there exists an integer $i_{0}>n$ satisfying $a_{i}=0$ for $i \in\left\{0,1, \ldots, i_{0}-1\right\}$ and $a_{i_{0}} \neq 0$. Therefore we may represent $\tilde{D}_{d^{n} g}$ as

$$
\tilde{D}_{d^{n} g}(\theta, \phi)=\theta^{i_{0}-n} \sum_{i \geqq n-1} \tilde{D}_{d^{n} g}^{(i)}(\theta, \phi),
$$

where $\tilde{D}_{d^{n} g}^{(i)}$ is a homogeneous polynomial of degree i in two variables θ, ϕ. We obtain $\tilde{D}_{d^{n} g}^{(n-1)} \not \equiv 0$. If we represent $\tilde{D}_{d^{n} g}^{(i)}$ as

$$
\tilde{D}_{d^{n} g}^{(i)}(\theta, \phi)=\sum_{j=0}^{i} \tilde{D}_{d^{n} g}^{(i, j)} \theta^{i-j} \phi^{j},
$$

then we obtain $\tilde{D}_{d^{n} g}^{\left(n-1, j_{1}\right)} \tilde{D}_{d^{n} g}^{\left(n-1, j_{2}\right)} \geqq 0$ for arbitrary two $j_{1}, j_{2} \in\{0,1, \ldots, n-1\}$. Then we obtain $\left(\theta-\eta_{0}(\theta)\right) \theta>0$ for any $\theta \in I_{0} \backslash\{0\}$ and any $\eta_{0} \in E_{d^{n} g}$ satisfying $\eta_{0}(0)=0$. Similarly, we see that if 0 is an element of $R\left(d^{n} g\right)$ satisfying $\tilde{g}(0)=0$ and $v_{g}^{(n)}(0) \in \boldsymbol{N}$, then $\left(\theta-\eta_{0}(\theta)\right) \theta>0$ for any $\theta \in I_{0} \backslash\{0\}$ and any $\eta_{0} \in E_{d^{n} g}$ satisfying $\eta_{0}(0)=0$. Hence we obtain Lemma 4.2.

We shall prove
Proposition 4.7. Let θ_{0} be a related element of $R\left(d^{n} g\right)$.
(a) If $\tilde{g}\left(\theta_{0}\right) \neq 0$, then the sign of the nonzero number

$$
\delta_{g}^{(n)}\left(\theta_{0}\right):=\frac{d^{\mu_{g}\left(\theta_{0}\right)+1} \tilde{g}}{d \theta^{\mu_{g}\left(\theta_{0}\right)+1}}\left(\theta_{0}\right) \frac{\partial^{(n)}\left(\theta_{0}\right)}{\tilde{D}_{d^{n}}}\left(\theta_{0}, \theta_{0}\right)
$$

gives the sign of θ_{0};
(b) if $\tilde{g}\left(\theta_{0}\right)=0$, then the sign of θ_{0} is positive.

Proof. Let θ_{0} be a related element of $R\left(d^{n} g\right)$ satisfying $\tilde{g}\left(\theta_{0}\right) \neq 0$ and $v_{g}^{(n)}\left(\theta_{0}\right)=1$. Then by (15), we obtain (a). Let 0 be a related element of $R\left(d^{n} g\right)$ satisfying $\tilde{g}(0)=0$. Then in the proof of Lemma 4.2, we have proved $\operatorname{sign}_{g}^{(n)}(0)=+$. Let 0 be a related element of $R\left(d^{n} g\right)$ satisfying $\tilde{g}(0) \neq 0$ and $v_{g}^{(n)}(0) \geqq 2$. Then noticing (16), we see that the sign of the nonzero number $B_{0 v_{g}^{(n)}(0)} B_{10}$ gives the sign of 0 . We obtain

$$
B_{0 v_{g}^{(n)}(0)}=\frac{1}{v_{g}^{(n)}(0)!} \frac{\partial^{v_{g}^{(n)}(0)} \tilde{D}_{d^{n} g}}{\partial \phi^{v_{g}^{(n)}(0)}}(0,0), \quad B_{10} \tilde{g}(0)>0
$$

Since $\mathrm{c}-\operatorname{sign}_{g}(0)=-$, we see that the sign of $\delta_{g}^{(n)}(0)$ gives the sign of 0 . Hence we obtain Proposition 4.7.

Remark. In [1], we may find the prototype of Proposition 4.7. In [4], we proved Proposition 4.7 for $n=2$.

We shall prove
Proposition 4.8. Let θ_{0} be a related element of $R\left(d^{n} g\right)$ satisfying $\mathrm{c}-\operatorname{sign}_{g}\left(\theta_{0}\right)=+$. Then $\operatorname{sign}_{g}^{(n)}\left(\theta_{0}\right)=+$.

Proof. Let θ_{0} be a related element of $R\left(d^{n} g\right)$ with $\mathrm{c}-\operatorname{sign}_{g}\left(\theta_{0}\right)=+$. Suppose $n=1$. Then we obtain

$$
\frac{\partial \tilde{D}_{d^{1} g}}{\partial \phi}\left(\theta_{0}, \theta_{0}\right)=-k \tilde{g}\left(\theta_{0}\right)
$$

Since c-sign $\sin _{g}\left(\theta_{0}\right)=+$, we obtain $\delta_{g}^{(1)}\left(\theta_{0}\right)>0$. Therefore from Proposition 4.7, we obtain $\operatorname{sign}_{g}^{(1)}\left(\theta_{0}\right)=+$. In the following, suppose $n \geqq 2$. In addition, noticing (b) of Proposition 4.7, we may suppose $\tilde{g}\left(\theta_{0}\right) \neq 0$. Then since $v_{g}^{(n)}\left(\theta_{0}\right)=1$, we may represent $\delta_{g}^{(n)}\left(\theta_{0}\right)$ as

$$
\begin{equation*}
\delta_{g}^{(n)}\left(\theta_{0}\right)=\left(\tilde{g}\left(\theta_{0}\right) \frac{d^{\mu_{g}\left(\theta_{0}\right)+1} \tilde{g}}{d \theta^{\mu_{g}\left(\theta_{0}\right)+1}}\left(\theta_{0}\right)\right)\left(\frac{1}{\tilde{g}\left(\theta_{0}\right)} \frac{\partial \tilde{D}_{d^{n} g}}{\partial \phi}\left(\theta_{0}, \theta_{0}\right)\right) . \tag{17}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
(n-1) \frac{1}{\tilde{g}\left(\theta_{0}\right)} \frac{d^{2} \tilde{g}}{d \theta^{2}}\left(\theta_{0}\right)=\frac{k(k-1)}{\left\{\prod_{i=0}^{n-1}(k-i)\right\}}\left(\frac{1}{\tilde{g}\left(\theta_{0}\right)} \frac{\partial \tilde{D}_{d^{n} g}}{\partial \phi}\left(\theta_{0}, \theta_{0}\right)\right)+k(k-n) . \tag{18}
\end{equation*}
$$

Since c-sign ${ }_{g}\left(\theta_{0}\right)=+$, we obtain

$$
\frac{1}{\tilde{g}\left(\theta_{0}\right)} \frac{\partial \tilde{D}_{d^{n} g}}{\partial \phi}\left(\theta_{0}, \theta_{0}\right)<0
$$

and $\delta_{g}^{(n)}\left(\theta_{0}\right)>0$. Therefore from Proposition 4.7, we obtain Proposition 4.8.
By (17) together with (18), we obtain
Proposition 4.9. Let θ_{0} be a related element of $R\left(d^{n} g\right)$ satisfying $\mathrm{c}-\operatorname{sign}_{g}\left(\theta_{0}\right)=-$ and

$$
(n-1) \frac{d^{2} \tilde{g}}{d \theta^{2}}\left(\theta_{0}\right) \neq(k(k-n)) \tilde{g}\left(\theta_{0}\right) .
$$

Then $\operatorname{sign}_{g}^{(n)}\left(\theta_{0}\right)=+($ respectively, -$)$ is equivalent to

$$
(n-1) \frac{d^{2} \tilde{g}}{d \theta^{2}}\left(\theta_{0}\right) / \tilde{g}\left(\theta_{0}\right) \in(k(k-n), \infty)(\text { respectively, }[0, k(k-n))) .
$$

REmARK. Let θ_{0} be a related element of R_{g} satisfying c-sign ${ }_{g}\left(\theta_{0}\right)=-$. Then from Lemma 4.5, we obtain $\theta_{0} \in R\left(d^{1} g\right)$ and from Proposition 4.9, we obtain $\operatorname{sign}_{g}^{(1)}\left(\theta_{0}\right)=-$.

REmARK. Let θ_{0} be a related element of $R\left(d^{n} g\right)$ satisfying $\mathrm{c}-\operatorname{sign}_{g}\left(\theta_{0}\right)=-$. We see by (18) that

$$
(n-1) \frac{d^{2} \tilde{g}}{d \theta^{2}}\left(\theta_{0}\right) / \tilde{g}\left(\theta_{0}\right)=k(k-n)
$$

is equivalent to $v_{g}^{(n)}\left(\theta_{0}\right) \geqq 2$. If $v_{g}^{(n)}\left(\theta_{0}\right) \geqq 2$, then both $\operatorname{sign}_{g}^{(n)}\left(\theta_{0}\right)=+\operatorname{and}_{\operatorname{sign}}^{g}{ }^{(n)}\left(\theta_{0}\right)=-$ may happen and we may grasp the sign of θ_{0} by (a) of Proposition 4.7.

Remark. In [1], we may find the prototype of Proposition 4.8; in [2], we may find the prototype of Proposition 4.9. In [4], we proved Proposition 4.8 for $n=2$.

We shall prove
LEMMA 4.10. For an element $\theta_{0} \in R\left(d^{n} g\right)$ satisfying $\tilde{g}\left(\theta_{0}\right) \neq 0, N_{g}^{(n)}\left(\theta_{0}\right)=1$ holds.
Proof. If $v_{g}^{(n)}\left(\theta_{0}\right)=1$, then by the implicit function theorem, we obtain $N_{g}^{(n)}\left(\theta_{0}\right)=1$. Suppose $v_{g}^{(n)}\left(\theta_{0}\right) \geqq 2$. Then we obtain $n \geqq 2$ and referring to the proof of Lemma 4.6, we obtain $N_{g}^{(n)}\left(\theta_{0}\right)=1$.

REMARK. For any element $\theta_{0} \in R\left(d^{2} g\right), N_{g}^{(2)}\left(\theta_{0}\right)=1$ (see [4]).
Proof of Lemma 4.4. Let θ_{1}, θ_{2} be two related elements of $R\left(d^{n} g\right)$ satisfying $\theta_{2}>\theta_{1}$ and the condition that in $\left(\theta_{1}, \theta_{2}\right)$, there exists no related element of $R\left(d^{n} g\right)$. Then either c$\operatorname{sign}_{g}\left(\theta_{1}\right)=+$ or c-sign $\left(\theta_{2}\right)=+$ holds. Therefore from Proposition 4.8, we see that either $\operatorname{sign}_{g}\left(\theta_{1}\right)=+$ or $\operatorname{sign}_{g}\left(\theta_{2}\right)=+$ holds. Noticing (b) of Proposition 4.7 and Lemma 4.10, we obtain Lemma 4.4.

Proof of Theorem 4.3. We first suppose that $\tilde{\mathscr{D}}_{d^{n} g}$ is pointwise separated. Let $N\left(d^{n} g\right)$ be the number of the related elements of $R\left(d^{n} g\right)$ in $[0, \pi)$ and $\theta_{1}, \theta_{2}, \ldots, \theta_{N\left(d^{n} g\right)}$ related elements of $R\left(d^{n} g\right)$ satisfying

$$
0 \leqq \theta_{1}<\theta_{2}<\cdots<\theta_{N\left(d^{n} g\right)}<\pi
$$

In addition, for $i \in\left\{1,2, \ldots, N\left(d^{n} g\right)\right\}$ and $j \in \mathbf{Z}$, set $\theta_{i+j N\left(d^{n} g\right)}:=\theta_{i}+j \pi$. Then for $i \in \boldsymbol{Z}$, we see that in $\left(\theta_{i-1}, \theta_{i}\right)$, there exists no related element of $R\left(d^{n} g\right)$. Let $\phi_{d^{n} g}$ be an element of $\Phi_{\tilde{\mathscr{D}}_{d^{n}} ;} ;(0,0)$ satisfying $\phi_{d^{n} g}\left(r, \theta_{1}\right)=\theta_{1}$ for any $r>0$. Then we see that if both $\operatorname{sign}_{g}^{(n)}\left(\theta_{1}\right)=$ $+\operatorname{and} \operatorname{sign}_{g}^{(n)}\left(\theta_{2}\right)=+$ hold, then $\phi_{d^{n} g}\left(r, \theta_{2}\right)<\theta_{2}$ and that if just one of $\operatorname{sign}_{g}{ }^{(n)}\left(\theta_{1}\right)=+$ and $\operatorname{sign}_{g}^{(n)}\left(\theta_{2}\right)=+$ holds, then $\phi_{d^{n} g}\left(r, \theta_{2}\right)=\theta_{2}$. We suppose $\operatorname{sign}_{g}^{(n)}\left(\theta_{1}\right)=+$. For $i_{0} \in \boldsymbol{N}$, suppose that the sign of $\theta_{i_{0}}$ is positive and that the number of the related elements of $R\left(d^{n} g\right)$ in $\left[\theta_{1}, \theta_{i_{0}}\right)$ with positive sign minus the number of the related elements of $R\left(d^{n} g\right)$ in $\left[\theta_{1}, \theta_{i_{0}}\right)$ with negative sign is equal to $l_{0} N_{d^{n} g}$ for some $l_{0} \in \boldsymbol{N} \cup\{0\}$. Then for any $r>0$, we obtain

$$
\theta_{i_{0}}-\phi_{d^{n} g}\left(r, \theta_{i_{0}}\right)=l_{0} \pi
$$

We see that $2 N_{d^{n}}{ }_{g} N\left(d^{n} g\right)+1$ is such a positive integer as i_{0} and that the corresponding integer l_{0} is equal to $2\left(N_{+}\left(d^{n} g\right)-N_{-}\left(d^{n} g\right)\right)$. Therefore we obtain

$$
\theta_{2 N_{d^{n} g} N\left(d^{n} g\right)+1}-\phi_{d^{n} g}\left(r, \theta_{2 N_{d^{n}} N\left(d^{n} g\right)+1}\right)=2\left(N_{+}\left(d^{n} g\right)-N_{-}\left(d^{n} g\right)\right) \pi
$$

for any $r>0$. This implies

$$
\frac{\phi_{d^{n} g}\left(r, \theta_{1}+2 N_{d^{n} g} \pi\right)-\phi_{d^{n} g}\left(r, \theta_{1}\right)}{2 N_{d^{n} g} \pi}=1-\frac{N_{+}\left(d^{n} g\right)-N_{-}\left(d^{n} g\right)}{N_{d^{n} g}} .
$$

Hence we obtain Theorem 4.3.
We suppose that $\tilde{\mathscr{D}}_{d^{n} g}$ is not always pointwise separated. Let $\theta_{1} \in R\left(d^{n} g\right)$ satisfy $\tilde{g}\left(\theta_{1}\right) \neq 0$. Then $N_{g}^{(n)}\left(\theta_{1}\right)=1$. Let $\phi_{d^{n} g}^{(1)}$ be an element of $\Phi_{\tilde{\mathscr{D}}_{d^{n}} ;} ;(0,0)$ satisfying $\phi_{d^{n} g}^{(1)}\left(r, \theta_{1}\right)=\theta_{1}$ for any $r>0$. For each integer $i \geqq 2$, let $\phi_{d^{n} g}^{(i)}$ be an element of $\boldsymbol{\Phi}_{\tilde{D}_{d^{n} g} ;(0,0)}$ such that for any $(r, \theta) \in(0, \infty) \times \boldsymbol{R}$ and any $i \in N$, the following hold:
(a) $\phi_{d^{n} g}^{(i+1)}(r, \theta) \geqq \phi_{d^{n} g}^{(i)}(r, \theta)$;
(b) the following give all the critical directions of $d^{n} g$ at $(r \cos \theta, r \sin \theta)$:

$$
\phi_{d^{n} g}^{(i)}(r, \theta), \phi_{d^{n} g}^{(i+1)}(r, \theta), \phi_{d^{n} g}^{(i+2)}(r, \theta), \ldots, \phi_{d^{n} g}^{\left(i+N_{d^{n} g}-1\right)}(r, \theta) ;
$$

(c) $\phi_{d^{n} g}^{\left(i+N_{d} n_{g}\right)}(r, \theta)=\phi_{d^{n} g}^{(i)}(r, \theta)+\pi$.

Then we obtain

$$
\phi_{d^{n} g}^{\left(2 l\left(N_{+}\left(d^{n} g\right)-N_{-}\left(d^{n} g\right)\right)+1\right)}\left(r, \theta_{1}+2 l \pi\right)=\theta_{1}+2 l \pi
$$

for any $l \in\left\{1,2, \ldots, N_{d^{n} g}\right\}$. In particular, we obtain

$$
\phi_{d^{n} g}^{(1)}\left(r, \theta_{1}+2 N_{d^{n} g} \pi\right)+2\left(N_{+}\left(d^{n} g\right)-N_{-}\left(d^{n} g\right)\right) \pi=\phi_{d^{n} g}^{(1)}\left(r, \theta_{1}\right)+2 N_{d^{n} g} \pi,
$$

i.e.,

$$
\frac{\phi_{d^{n} g}^{(1)}\left(r, \theta_{1}+2 N_{d^{n} g} \pi\right)-\phi_{d^{n} g}^{(1)}\left(r, \theta_{1}\right)}{2 N_{d^{n} g} \pi}=1-\frac{N_{+}\left(d^{n} g\right)-N_{-}\left(d^{n} g\right)}{N_{d^{n} g}}
$$

Hence we obtain Theorem 4.3.
EXAMPLE. Let g be a spherical harmonic function of degree k. We shall compute the index of $(0,0)$ with respect to $\tilde{\mathscr{D}}_{d^{n} g}$. We see that any $\theta_{0} \in R_{g}$ is related and satisfies $\tilde{g}\left(\theta_{0}\right) \neq 0$ and c-sign ${ }_{g}\left(\theta_{0}\right)=+$. Therefore from Lemma 4.6, we obtain $R\left(d^{n} g\right)=R_{g}$ and by Proposition 4.8 together with Lemma 4.10, we obtain $\left(N_{+}\left(d^{n} g\right), N_{-}\left(d^{n} g\right)\right)=(k, 0)$. Since $N_{d^{n} g}=n$, we obtain $\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} g}\right)=1-k / n$.

5. Real-analytic functions.

Let n be a positive integer and r_{0} a positive number. Let F be a real-analytic function on a neighborhood $U:=\left\{x^{2}+y^{2}<r_{0}^{2}\right\}$ of $(0,0)$ in \boldsymbol{R}^{2} satisfying the following:
(a) $(0,0)$ is an umbilical point of $d^{n} F$;
(b) F is represented as $F:=\sum_{i \geqq n} F^{(i)}$, where $F^{(i)}$ is a homogeneous polynomial of degree i. We see that if n is odd, then $F^{(n)}$ is identically zero. Suppose that $(0,0)$ is the only umbilical point of $d^{n} F$ on U and that there exists a continuous, complete, pointwise separable, finitely manyvalued one-dimensional distribution $\tilde{\mathscr{D}}_{d^{n} F}$ on $U \backslash\{(0,0)\}$ formed by all the critical directions of $d^{n} F$ at each point of $U \backslash\{(0,0)\}$. We set

$$
m_{F}:=\min \left\{i>n ; F^{(i)} \not \equiv 0\right\}, \quad g_{F}:=F^{\left(m_{F}\right)}
$$

Let $\phi_{d^{n} F}$ be an element of $\Phi_{\tilde{\mathscr{D}}_{d^{n} F} ;(0,0)}$. We shall prove
PROPOSITION 5.1. For each number $\theta_{0} \in \boldsymbol{R}$,
(a) there exists a number $\phi_{d^{n} F, o}\left(\theta_{0}\right)$ satisfying

$$
\lim _{r \rightarrow 0} \phi_{d^{n} F}\left(r, \theta_{0}\right)=\phi_{d^{n} F, o}\left(\theta_{0}\right)
$$

and $\phi_{d^{n} F, o}\left(\theta_{0}\right)$ is a critical point of $\left(\widehat{d^{n} g_{F}}\right)\left(\cos \theta_{0}, \sin \theta_{0}\right)$;
(b) there exist numbers $\phi_{d^{n} F, o}\left(\theta_{0}+0\right), \phi_{d^{n} F, o}\left(\theta_{0}-0\right)$ satisfying

$$
\lim _{\theta \rightarrow \theta_{0} \pm 0} \phi_{d^{n} F, o}(\theta)=\phi_{d^{n} F, o}\left(\theta_{0} \pm 0\right)
$$

Let $S\left(d^{n} g_{F}\right)$ denote the set of the numbers θ_{0} such that $d^{n} g_{F}$ is umbilical at $\left(\cos \theta_{0}, \sin \theta_{0}\right)$. Then $S\left(d^{n} g_{F}\right) \subset R_{g_{F}}$. In the following, suppose the following:
(a) each critical point of $\left(\widehat{d^{n} g_{F}}\right)_{\left(\cos \theta_{0}, \sin \theta_{0}\right)}$ for each $\theta_{0} \in \boldsymbol{R} \backslash S\left(d^{n} g_{F}\right)$ is obtained as in (a) of Proposition 5.1 from some $\phi_{d^{n} F} \in \Phi_{\tilde{\mathscr{D}}_{d^{n}} ;(0,0)}$;
(b) there exists a continuous, complete, pointwise separable, finitely many-valued onedimensional distribution $\tilde{\mathscr{D}}_{d^{n} g_{F}}$ on $\boldsymbol{R}^{2} \backslash\{(0,0)\}$ formed by all the critical directions of $d^{n} g_{F}$ at each point of $\boldsymbol{R}^{2} \backslash \operatorname{Umb}\left(d^{n} g_{F}\right)$;
(c) $\tilde{\mathscr{D}}_{d^{n} F}$ is $N_{d^{n} g_{F}}$-valued.

REMARK. If $n \in\{1,2\}$, then conditions (a)-(c) are always satisfied.

For each $\theta_{0} \in \boldsymbol{R}$, we set

$$
\Gamma_{d^{n} F, o}\left(\theta_{0}\right):=\phi_{d^{n} F, o}\left(\theta_{0}+0\right)-\phi_{d^{n} F, o}\left(\theta_{0}-0\right) .
$$

We shall prove
Proposition 5.2. (a) If $\theta_{0} \in \boldsymbol{R}$ satisfies $\Gamma_{d^{n} F, o}\left(\theta_{0}\right) \neq 0$, then $\theta_{0} \in S\left(d^{n} g_{F}\right)$;
(b) $\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} F}\right)$ is represented as follows:

$$
\begin{aligned}
& \operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} F}\right) \\
& \quad=\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} g_{F}}\right)+\frac{1}{2 N_{d^{n} g_{F}} \pi} \sum_{\theta_{0} \in S\left(d^{n} g_{F}\right) \cap^{\prime}\left[\theta, \theta+2 N_{d^{n}{ }^{n} F} \pi\right)} \Gamma_{d^{n} F, o}\left(\theta_{0}\right) .
\end{aligned}
$$

Proof of Proposition 5.1. We represent $d^{n} F$ as

$$
d^{n} F=\sum_{i \geqq n} d^{n} F^{(i)}
$$

Then we obtain

$$
\left(\widehat{d^{n} F}\right)_{\left(r \cos \theta_{0}, r \sin \theta_{0}\right)}=\sum_{i \geqq n} r^{i-n}\left(\widehat{d^{n} F^{(i)}}\right)\left(\cos \theta_{0}, \sin \theta_{0}\right)
$$

for any $r \in\left(0, r_{0}\right)$ and any $\theta_{0} \in \boldsymbol{R}$. Therefore we see that for an arbitrary positive number $\varepsilon>0$, there exists a positive number $r_{0}>0$ such that for any $r \in\left(0, r_{0}\right)$ and any $\phi \in \boldsymbol{R}$,

In particular, we obtain

$$
\begin{equation*}
n\left|\tilde{D}_{d^{n} g_{F}}\left(\theta_{0}, \phi_{d^{n} F}\left(r, \theta_{0}\right)\right)\right|<\varepsilon \tag{19}
\end{equation*}
$$

for any $r \in\left(0, r_{0}\right)$. If $\theta_{0} \in \boldsymbol{R} \backslash S\left(d^{n} g_{F}\right)$, then each critical point of $\left(\widehat{d^{n} g_{F}}\right)_{\left(\cos \theta_{0}, \sin \theta_{0}\right)}$ is isolated. Therefore by (19), we obtain (a) of Proposition 5.1 in the case where $\theta_{0} \in \boldsymbol{R} \backslash S\left(d^{n} g_{F}\right)$. Let θ_{0} be an element of $S\left(d^{n} g_{F}\right)$. Since $(0,0)$ is an isolated umbilical point of $d^{n} F$, we see that there exists an integer $m_{F}\left(\theta_{0}\right)>m_{F}$ satisfying the following:
(a) for any integer i satisfying $m_{F} \leqq i \leqq m_{F}\left(\theta_{0}\right)-1, d^{n} F^{(i)}$ is umbilical at $\left(\cos \theta_{0}, \sin \theta_{0}\right)$;
(b) $d^{n} F^{\left(m_{F}\left(\theta_{0}\right)\right)}$ is not umbilical at $\left(\cos \theta_{0}, \sin \theta_{0}\right)$.

Then we see that for an arbitrary positive number $\varepsilon>0$, there exists a positive number $r_{0}>0$ such that for any $r \in\left(0, r_{0}\right)$,

$$
\left|\tilde{D}_{d^{n} F^{\left(m_{F}\left(\theta_{0}\right)\right)}}\left(\theta_{0}, \phi_{d^{n} F}\left(r, \theta_{0}\right)\right)\right|<\varepsilon .
$$

Since $d^{n} g_{F}$ is umbilical at $\left(\cos \theta_{0}, \sin \theta_{0}\right)$, we obtain (a) of Proposition 5.1 in the case where $\theta_{0} \in S\left(d^{n} g_{F}\right)$. In addition, by (a) of Proposition 5.1, we obtain (b) of Proposition 5.1.

Proof of Proposition 5.2. If $\theta_{0} \in \boldsymbol{R} \backslash S\left(d^{n} g_{F}\right)$, then noticing Proposition 5.1, we obtain $\Gamma_{d^{n} F, o}\left(\theta_{0}\right)=0$. Hence we obtain (a) of Proposition 5.2. For $\theta \in \boldsymbol{R}$, the following holds:

$$
\begin{equation*}
\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} F}\right)=\frac{\phi_{d^{n} F, o}\left(\theta+2 N_{d^{n} g_{F}} \pi\right)-\phi_{d^{n} F, o}(\theta)}{2 N_{d^{n} g_{F}} \pi} \tag{20}
\end{equation*}
$$

In addition, for any $r>0$, the following holds:

$$
\begin{align*}
& \phi_{d^{n} F, o}\left(\theta+2 N_{d^{n} g_{F}} \pi\right)-\phi_{d^{n} F, o}(\theta) \\
& \quad=\phi_{d^{n} g_{F}}\left(r, \theta+2 N_{d^{n} g_{F}} \pi\right)-\phi_{d^{n} g_{F}}(r, \theta)+\sum_{\theta_{0} \in S\left(d^{n} g_{F}\right) \cap\left[\theta, \theta+2 N_{d^{n}}{ }_{g_{F}} \pi\right)} \Gamma_{d^{n} F, o}\left(\theta_{0}\right) . \tag{2}
\end{align*}
$$

From (20) and (21), we obtain (b) of Proposition 5.2.
Remark. In [4], we proved the prototypes of Propositions 5.1 and 5.2 for $n=2$, respectively.

By Theorem 4.3, Lemma 4.4 and Proposition 5.2, we see that if F satisfies $S\left(d^{n} g_{F}\right)=\emptyset$, then $\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} F}\right) \leqq 1$.

We shall prove
Theorem 5.3. Suppose

$$
\begin{equation*}
\sum_{i=0}^{N_{d^{n}} g_{F}-1} \Gamma_{d^{n} F, o}\left(\theta_{0}+2 i \pi\right) \leqq \pi \tag{22}
\end{equation*}
$$

for any $\theta_{0} \in S\left(d^{n} g_{F}\right)$. Then $\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} F}\right) \leqq 1$.
Proof. By Theorem 4.3, Lemma 4.5, Lemma 4.6 and Proposition 4.8, we obtain

$$
\begin{equation*}
\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} g_{F}}\right) \leqq 1-N_{S}\left(d^{n} g_{F}\right) / N_{d^{n} g_{F}}, \tag{23}
\end{equation*}
$$

where $N_{s}\left(d^{n} g_{F}\right):=\sharp\left\{S\left(d^{n} g_{F}\right) \cap[\theta, \theta+\pi)\right\}$. If (22) holds for any $\theta_{0} \in S\left(d^{n} g_{F}\right)$, then by (b) of Proposition 5.2 together with (23), we obtain $\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} F}\right) \leqq 1$. Hence we obtain Theorem 5.3.

REMARK. We see that (22) is always true for $n=1$.
REmARK. In [4], we proved the prototype of Theorem 5.3 for $n=2$ on condition that the right hand side of (22) is equal to 2π.

We shall prove
THEOREM 5.4. Suppose that $\tilde{g}_{F}\left(\theta_{0}\right) \neq 0$ for any $\theta_{0} \in S\left(d^{n} g_{F}\right)$ and that $\tilde{\mathscr{D}}_{d^{n} F}$ is pointwise separated. Then $\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} F}\right) \leqq 1$.

In order to prove Theorem 5.4, we need a lemma.
For $n \geqq 2$, we set

$$
\begin{aligned}
\varpi_{d^{n} F}:=\frac{1}{n} \sum_{i=0}^{n}\binom{n}{i} \frac{\partial^{n} F}{\partial x^{n-i} \partial y^{i}}\{ & \left(\frac{\partial F}{\partial x}\right)^{n-i+1}\left(\frac{\partial F}{\partial y}\right)^{i-1} \\
& \left.-(n-i)\left(\frac{\partial F}{\partial x}\right)^{n-i-1}\left(\frac{\partial F}{\partial y}\right)^{i+1}\right\} .
\end{aligned}
$$

We see that for a point $p \in U, \omega_{d^{n} F}(p)=0$ holds if and only if the gradient vector field $(\partial F / \partial x) \partial / \partial x+(\partial F / \partial y) \partial / \partial y$ of F is in a critical direction of $d^{n} F$ at p. We set

$$
\tilde{\varpi}_{d^{n} F}(r, \theta):=\varpi_{d^{n} F}(r \cos \theta, r \sin \theta)
$$

and

$$
m_{d^{n} F}:= \begin{cases}(n+1) m_{F}-2 n, & \text { if } F^{(n)} \equiv 0, \\ m_{F}+n(n-2), & \text { if } F^{(n)} \not \equiv 0 .\end{cases}
$$

Then we see that $\tilde{\omega}_{d^{n} F} / r^{m_{d^{n} F}}$ may be continuously extended to $\{r=0\}$. By the implicit function theorem, we obtain

Lemma 5.5. Let θ_{0} be an element of $S\left(d^{n} g_{F}\right)$ satisfying $\tilde{g}_{F}\left(\theta_{0}\right) \neq 0$. Then there exist a neighborhood $V_{\theta_{0}}$ of $\left(0, \theta_{0}\right)$ in \boldsymbol{R}^{2} and a real-analytic curve $C_{\theta_{0}}$ in $V_{\theta_{0}}$ through $\left(0, \theta_{0}\right)$ satisfying
(a) $C_{\theta_{0}}=\left\{(r, \theta) \in V_{\theta_{0}} ; \tilde{\mathscr{\omega}}_{d^{n} F}(r, \theta) / r^{m_{d} n_{F}}=0\right\}$;
(b) $C_{\theta_{0}}$ is not tangent to the θ-axis at $\left(0, \theta_{0}\right)$.

Remark. In [4], we proved Lemma 5.5 for $n=2$.
Proof of Theorem 5.4. Suppose $n \geqq 2$. Then noticing Lemma 5.5 and that $\tilde{\mathscr{D}}_{d^{n} F}$ is pointwise separated, we see that there exists a nonzero number $c_{d^{n} F, o}\left(\theta_{0}\right)$ satisfying

$$
c_{d^{n} F, o}\left(\theta_{0}\right) \Gamma_{d^{n} F, o}\left(\theta_{0}+2 i \pi\right) \geqq 0
$$

for any $i \in \mathbf{Z}$ and

$$
\sum_{i=0}^{N_{d^{n}} g_{F}-1} \Gamma_{d^{n} F, o}\left(\theta_{0}+2 i \pi\right) \in\{-\pi, 0, \pi\} .
$$

Therefore from Theorem 5.3, we obtain $\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n} F}\right) \leqq 1$. Suppose $n=1$. Then Lemma 4.5 says that for $\theta_{0} \in R_{g_{F}}, \tilde{g}_{F}\left(\theta_{0}\right)=0$ is equivalent to $\theta_{0} \in S\left(d^{1} g_{F}\right)$. This implies that the first assumption in Theorem 5.4 is always false for $n=1$. Hence we obtain Theorem 5.4.

REMARK. In [4], we proved the prototype of Theorem 5.4 for $n=2$.

References

[1] N. Ando, An isolated umbilical point of the graph of a homogeneous polynomial, Geom. Dedicata, 82 (2000), 115-137.
[2] N. Ando, The behavior of the principal distributions around an isolated umbilical point, J. Math. Soc. Japan, 53 (2001), 237-260.
[3] N. Ando, The behavior of the principal distributions on the graph of a homogeneous polynomial, Tohoku Math. J., 54 (2002), 163-177.
[4] N. Ando, The behavior of the principal distributions on a real-analytic surface, J. Math. Soc. Japan, 56 (2004), 201-214.
[5] L. Bates, A weak counterexample to the Carathéodory's conjecture, Differential Geom. Appl., 15 (2001), 79-80.
[6] C. Gutierrez and F. Sanchez-Bringas, Planer vector field versions of Carathéodory's and Loewner's conjectures, Publ. Mat., 41 (1997), no. 1, 169-179.
[7] H. Hopf, Differential geometry in the large, Lecture Notes in Math., vol. 1000, Springer, Berlin-NewYork, 1989.
[8] T. Klotz, On G. Bol's proof of Carathéodory's conjecture, Comm. Pure Appl. Math., 12 (1959), 277-311.
[9] H. Scherbel, A new proof of Hamburger's index theorem on umbilical points, Dissertation, ETH, Zürich, No. 10281, 1994.
[10] B. Smyth and F. Xavier, A sharp geometric estimate for the index of an umbilic on a smooth surface, Bull. London Math. Soc., 24 (1992), 176-180.
[11] B. Smyth and F. Xavier, Real solvability of the equation $\partial_{\bar{z}}^{2} \omega=\rho g$ and the topology of isolated umbilics, J. Geom. Anal., 8 (1998), 655-671.
[12] B. Smyth and F. Xavier, Eigenvalue estimates and the index of Hessian fields, Bull. London Math. Soc., 33 (2001), 109-112.
[13] C. J. Titus, A proof of a conjecture of Loewner and of the conjecture of Carathéodory on umbilic points, Acta Math., 131 (1973), 43-77.

Naoya Ando
Faculty of Science
Kumamoto University
2-39-1 Kurokami
Kumamoto 860-8555
Japan
E-mail: ando@math.sci.kumamoto-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 37E35; Secondary 53A05, 53B25.
 Key Words and Phrases. Loewner's conjecture, the index conjecture, Carathéodory's conjecture, symmetric tensor field, critical direction, umbilical point, many-valued one-dimensional distribution, index.

