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Abstract. Let f be a smooth function of two variablesx, y and for each positive integern,
let dn f be a symmetric tensor field of type(0,n) defined bydn f := ∑n

i=0

(n
i

) (
∂ n−i

x ∂ i
y f

)
dxn−idyi

andD̃dn f a finitely many-valued one-dimensional distribution obtained fromdn f : for example,
D̃d1 f is the one-dimensional distribution defined by the gradient vector field off ; D̃d2 f consists
of two one-dimensional distributions obtained from one-dimensional eigenspaces of Hessian off .
In the present paper, we shall study the behavior ofD̃dn f around its isolated singularity in ways
which appear in [1]–[4]. In particular, we shall introduce and study a conjecture which asserts that
the index of an isolated singularity with respect toD̃dn f is not more than one.

1. Introduction.

Let f be a smooth function on a domainD of RRR2 and set∂z := (∂/∂x+
√−1∂/∂y)/2.

Then Loewner’s conjecturefor a positive integern ∈ NNN asserts that if a vector fieldVVV(n)
f :

= Re(∂ n
z f )∂/∂x + Im(∂ n

z f )∂/∂y has an isolated zero point, then its index with respect to
VVV(n)

f is not more thann. Loewner’s conjecture forn = 1 is easily and affirmatively solved;
Loewner’s conjecture forn = 2 is equivalent to a conjecture which asserts that the index of an
isolated umbilical point on a surface is not more than one (this conjecture is called theindex
conjectureor the Local Carath́eodory’s conjecture). If the index conjecture is true, then by
Hopf-Poincaŕe’s theorem, we may affirmatively solveCarath́eodory’s conjecture, which asserts
that there exist at least two umbilical points on a compact, strictly convex surface inRRR3. We may
find [5], [6], [9], [10], [11] and [12] as recent papers in relation to Carathéodory’s and Loewner’s
conjectures.

For each positive integern, let dn f be a symmetric tensor field of type(0,n) defined by

dn f :=
n

∑
i=0

(
n
i

)
∂ n f

∂xn−i∂yi dxn−idyi . (1)

For a numberφ ∈ RRRand a pointp∈ D, we set

UUUφ := cosφ
∂
∂x

+sinφ
∂
∂y

, (d̂n f )p(φ) := (dn f )p(UUUφ , . . . ,UUUφ ). (2)

A one-dimensional subspaceL of the tangent plane atp∈ D is called acritical direction of dn f
at p if there exists a critical pointφ0 of (d̂n f )p satisfyingUUUφ0(p)∈ L. A point p0 of D is called an

umbilical pointof dn f if (d̂n f )p0 is constant. LetD̃dn f be a finitely many-valued one-dimensional
distribution on an open set of non-umbilical points ofdn f such thatD̃dn f gives all the critical
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directions ofdn f at each point. For example,̃Dd1 f is the one-dimensional distribution defined by

the gradient vector field off ; D̃d2 f consists of two one-dimensional distributions obtained from
one-dimensional eigenspaces of Hessian off at each point. The purpose of the present paper is
to study the behavior of̃Ddn f around an isolated umbilical point ofdn f in ways which appear
in [1]–[4]. In particular, we shall define and study the index of an isolated umbilical point with
respect toD̃dn f . We shall see that the index is a rational number and not always represented as
the half of an integer. We conjecture thatthe index of an isolated umbilical point with respect to
D̃dn f is not more than one. We shall see that forn∈ {1,2} (respectively,n = 3), this conjecture
is equivalent to (respectively, distinct from) Loewner’s conjecture. We shall affirmatively solve
the former conjecture in the case wheref is a homogeneous polynomial. In addition, we shall
study this conjecture in the case wheref is a real-analytic function.

ACKNOWLEDGEMENT. The author is grateful to the referees for their helpful comments
and suggestions. This work was supported by the Japan Society for the Promotion of Science.

2. Many-valued one-dimensional distributions.

Let D be a continuous one-dimensional distribution on a domainU of a smooth two-
dimensional manifoldS. In the present paper, a pair(D ,U) is called adistribution element.
A distribution element(D0,U0) is called adirect continuationof (D ,U) if U0∩U 6= Ø and
if D0 ≡ D on U0∩U . A set of distribution elements{(Di ,Ui)}i∈NNN is called acontinuationif
(Di+1,Ui+1) is a direct continuation of(Di ,Ui) for any i ∈ NNN.

For a pointp∈ S, let Xp be the set of the distribution elements such that each(D ,U) ∈ Xp

satisfiesp ∈U . We introduce an equivalence relation∼ into Xp: for two (D1,U1),(D2,U2) ∈
Xp, we write (D1,U1) ∼ (D2,U2) if there exists a neighborhoodU0 of p in U1∩U2 satisfying
D1≡D2 onU0. We denote bỹXp the set of the equivalence classes in relation to the equivalence
relation∼.

Let D be a domain ofS. A correspondencẽD of eachp ∈ D to a subsetD̃(p) of X̃p is
called amany-valued one-dimensional distributionon D. For a many-valued one-dimensional
distributionD̃ on D and a distribution element(D ,U), we write(D ,U)⊂ (

D̃ ,D
)

if U ⊂ D and
if (D ,U) represents an element ofD̃(q) for anyq∈U . A many-valued one-dimensional distri-
bution D̃ is calledcontinuousif for each p∈ D and eachω ∈ D̃(p), there exists a distribution
element(D ,U) ∈ ω satisfying(D ,U) ⊂ (

D̃ ,D
)
; a many-valued one-dimensional distribution

D̃ is calledcompleteif the following holds: if a convergent sequence{pi}i∈NNN in D and a con-
tinuation{(Di ,Ui)}i∈NNN satisfy pi ∈ Ui and (Di ,Ui) ⊂

(
D̃ ,D

)
for any i ∈ NNN, then there exists

a distribution element(D0,U0) satisfyinglim i→∞ pi ∈U0, (D0,U0) ⊂
(
D̃ ,D

)
and the condition

that there exists a numberi0 ∈ NNN such that(D0,U0) is a direct continuation of(Di ,Ui) for any
i = i0; a many-valued one-dimensional distributionD̃ is calledseparatedif distinct two distri-
bution elements(D1,U),(D2,U) ⊂ (

D̃ ,D
)

represent distinct elements of̃D(q) for anyq∈U ;
a many-valued one-dimensional distributionD̃ is calledpointwise separatedif D1(q) 6= D2(q)
for distinct two distribution elements(D1,U),(D2,U)⊂ (

D̃ ,D
)

and anyq∈U ; a many-valued
one-dimensional distributioñD is calledpointwise separableif D̃ is separated and if the follow-
ing holds: if two distribution elements(D1,U),(D2,U) ⊂ (

D̃ ,D
)

satisfyD1(q0) = D2(q0) for
someq0 ∈U , then there exist a neighborhoodOq0 of q0 in U and continuous functionsφ1, φ2 on
Oq0 satisfying the following:



A conjecture in relation to Loewner’s conjecture 3

(a) φ1(q0) = φ2(q0);
(b) UUUφi = (cosφi)∂/∂x+(sinφi)∂/∂y represents(Di ,Oq0) for i ∈ {1,2};
(c) there exists a nonzero numberc 6= 0 satisfyingc(φ1−φ2) = 0 onOq0,

where(x,y) are local coordinates onOq0.
Let D̃ be a continuous, complete, separated many-valued one-dimensional distribution

on D. ThenD̃ is calledconnectedif there do not exist two continuous, complete, separated
many-valued one-dimensional distributionsD̃1, D̃2 on D satisfyingD̃(p) = D̃1(p)∪ D̃2(p) and
D̃1(p)∩ D̃2(p) = Ø for any p∈ D. If D̃ is not connected, then there exists a set of connected,
continuous, complete, separated many-valued one-dimensional distributions

{
D̃λ

}
λ∈Λ satisfy-

ing D̃(p) = ∪λ∈Λ D̃λ (p) andD̃λ1
(p)∩ D̃λ2

(p) = Ø for arbitrary distinct twoλ1,λ2 ∈Λ and any
p∈ D. EachD̃λ is called aconnected componentof D̃ .

Let D̃ be a continuous, complete, separated many-valued one-dimensional distribution on
D. Then we see that if there exists a positive integern0 ∈ NNN satisfying]D̃(p0) = n0 for some
p0 ∈ D, then]D̃(p) = n0 for any p∈ D. If such a positive integer exists, theñD is in particular
calledn0-valuedor finitely many-valued. We see that ifD̃ is n0-valued and pointwise separable,
then there exists a divisornD̃ of n0 such that any connected component ofD̃ is nD̃ -valued.

Let D̃ be a continuous, complete, pointwise separablen0-valued one-dimensional distribu-
tion on a domainD for somen0 ∈ NNN and suppose that there exists an isolated complementp0 of
D for S, i.e.,p0 is a point ofS\D such that a punctured neighborhood ofp0 in Sis contained inD.
Thenp0 may be an isolated singularity of̃D , i.e., it is possible that̃D may not be completely ex-
tended top0. Let (x,y) be local coordinates on a neighborhood ofp0 such thatp0 corresponds to
(0,0) andr0 a positive number satisfying

{
0< x2+y2 < r2

0

}⊂D. LetΦD̃ ;p0
denote the set of the

continuous functions on(0, r0)×RRRsuch that for eachφD̃ ;p0
∈ΦD̃ ;p0

and each(r,θ)∈ (0, r0)×RRR,

there exists a distribution element(D ,U)⊂ (
D̃ ,D

)
satisfying(r cosθ , r sinθ) ∈U and the con-

dition that for any(r ′,θ ′) ∈ (0, r0)× (θ −π/2,θ +π/2) satisfying(r ′ cosθ ′, r ′ sinθ ′) ∈U ,

UUUφD̃ ;p0
(r ′,θ ′) = cosφD̃ ;p0

(r ′,θ ′)
∂
∂x

+sinφD̃ ;p0
(r ′,θ ′)

∂
∂y

∈D

holds at(r ′ cosθ ′, r ′ sinθ ′). We see that there exists an integerm0 ∈ ZZZ satisfying

m0 =
φD̃ ;p0

(r,θ +2n0π)−φD̃ ;p0
(r,θ)

π

for anyφD̃ ;p0
∈ ΦD̃ ;p0

and any(r,θ) ∈ (0, r0)×RRR. SinceD̃ is pointwise separable, we see that
the integerm0 is uniquely determined. The number

indp0

(
D̃

)
:=

m0

2n0

is called theindexof p0 with respect toD̃ .

REMARK . The definition ofindp0

(
D̃

)
does not depend on the choice of local coordi-

nates(x,y).

REMARK . If n0 = 1, then we see thatD̃ may be considered as a continuous one-
dimensional distribution in the usual sense and thatindp0

(
D̃

)
is equal to the index ofp0 with

respect toD̃ also in the usual sense.
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REMARK . We set

mD̃ :=
φD̃ ;p0

(r,θ +2nD̃π)−φD̃ ;p0
(r,θ)

π

for φD̃ ;p0
∈ ΦD̃ ;p0

and(r,θ) ∈ (0, r0)×RRR. ThenmD̃ is an integer such thatmD̃ andnD̃ are rela-
tively prime. The numbermD̃/2nD̃ is the index ofp0 with respect to any connected component
of D̃ and equal toindp0

(
D̃

)
.

REMARK . If we adopt the above definition of the index of an isolated singularity, then
referring to [7, pp. 112–113], we may obtain an analogue of Hopf-Poincaré’s theorem for a con-
tinuous, complete, pointwise separable finitely many-valued one-dimensional distribution.

3. Symmetric tensor fields.

Let n be a positive integer andT a smooth, symmetric tensor field of type(0,n) on a domain
D of RRR2. ThenT is represented as follows:

T =
n

∑
i=0

(
n
i

)
Tidxn−idyi ,

whereTi is a smooth function onD. For a numberφ ∈ RRRand a pointp∈ D, we set

T̂p(φ) := Tp(UUUφ , . . . ,UUUφ ).

Then

T̂p(φ) =
n

∑
i=0

(
n
i

)
Ti(p)cosn−i φ sini φ .

A one-dimensional subspaceL of the tangent plane atp ∈ D is called acritical direction of T
at p if there exists a critical pointφ0 of T̂p satisfyingUUUφ0(p) ∈ L. A tensor fieldT is called
umbilicalat p or p is called anumbilical pointof T if T̂p is constant, i.e., if any one-dimensional
subspace of the tangent plane atp is a critical direction of T. The set of the umbilical points
of T is denoted byUmb(T). An umbilical point p0 of T is calledisolated if p0 is an isolated
complement ofD \Umb(T). There exists a continuous, complete, pointwise separable, finitely
many-valued one-dimensional distributionD̃T on a neighborhoodU of each point ofD\Umb(T)
formed by critical directions ofT at eachp∈U . If n= 1 or 2, thenD̃T is always well-defined on
D\Umb(T) and consists of one or two continuous one-dimensional distributions onD\Umb(T)
and we see that if]D̃T = 2, then the two one-dimensional distributions are perpendicular to each
other at any point with respect to the Euclidean metric onD \Umb(T). On the other hand, if
n = 3, then it is possible that̃DT may not be well-defined onD\Umb(T).

For a smooth functionf on D and each positive integern, we have defined a symmetric
tensor fielddn f of type(0,n) as in (1). The following are examples ofD̃dn f .

EXAMPLE . We see thatD̃d1 f is just the continuous one-dimensional distribution given by

the gradient vector field off and thatD̃d2 f consists of one or two continuous one-dimensional
distributions obtained from one-dimensional eigenspaces of Hessian off at each point.
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EXAMPLE . Let f be a harmonic function onD, i.e., let f satisfy∂ 2 f
/

∂x2+∂ 2 f
/

∂y2≡ 0
onD. Then noticing

(d̂n f )(φ) =
∂ n f
∂xn cosnφ +

∂ n f
∂xn−1∂y

sinnφ ,

we see that for eachp ∈ D \Umb(dn f ), there exists a numberαp ∈ RRR such that each critical

point of (d̂n f )p is represented byαp + mπ/n for some integerm∈ Z. Therefore we see that
there exists a continuous, complete, pointwise separatedn-valued one-dimensional distribution
D̃dn f on D\Umb(dn f ). Suppose thatf is a spherical harmonic function of degreek > n. Then
we may supposeD = RRR2 and we see that(0,0) is the only umbilical point ofdn f on RRR2. In
Section 4, we shall see that the indexind(0,0)

(
D̃dn f

)
of (0,0) with respect toD̃dn f is equal to

1−k/n. Therefore we see thatnD̃dn f
is equal ton/(2k,n), where(2k,n) is the greatest common

divisor of2k andn. In particular, we see that if2k/n is not any integer, theñDdn f does not consist
of n continuous one-dimensional distributions onRRR2 \{(0,0)} and that if2k andn are relatively
prime, thenD̃dn f is connected.

EXAMPLE . We setf := x4 +y4. Then for any(x,y) ∈ RRR2, we obtain

1
24

(d̂3 f )(x,y)(φ) = xcos3 φ +ysin3 φ .

Therefore we obtain

1
72

d(d̂3 f )(cosθ ,sinθ)

dφ
(φ) =−cosφ sinφ cos(θ +φ).

We see that(0,0) is the only umbilical point ofd3 f onRRR2 and that there exists a connected, con-
tinuous, complete, pointwise separable (but not pointwise separated)3-valued one-dimensional
distributionD̃d3 f onRRR2\{(0,0)} such that the indexind(0,0)

(
D̃d3 f

)
of (0,0) with respect toD̃d3 f

is equal to−1/3.

REMARK . We setf := x4+18x2y2+2y4. Then we may supposeD = RRR2. For any(x,y) ∈
RRR2, we obtain

1
24

(d̂3 f )(x,y)(φ) = xcos3 φ +3ycos2 φ sinφ +3xcosφ sin2 φ +2ysin3 φ .

Therefore we obtain

1
72

d(d̂3 f )(cosθ ,sinθ)

dφ
(φ) = cosθ sinφ(cos2 φ −sin2 φ)+sinθ cos3 φ .

We see that(0,0) is the only umbilical point ofd3 f on RRR2. We shall show that̃Dd3 f may not be

well-defined onRRR2\{(0,0)}. We see that there exist
(a) a numberθ0 ∈ (0,π/2),
(b) a continuous increasing functionη1 on I1 := [−π/2,θ0],
(c) a continuous decreasing functionη2 on I2 := [−θ0,θ0], and
(d) a continuous increasing functionη3 on I3 := [−θ0,π/2]
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satisfying

d(d̂3 f )(cosθ ,sinθ)

dφ
(ηi(θ)) = 0

for anyθ ∈ I i and

η1(−π/2) =−π/2, η1(θ0) = η2(θ0) ∈ (−π/2,0),
η3(π/2) = π/2, η2(−θ0) = η3(−θ0) ∈ (0,π/2).

In addition, we see that if a numberφ0 ∈ [−π/2,π/2) satisfies

d(d̂3 f )(cosθ ,sinθ)

dφ
(φ0) = 0

for someθ ∈ [−π/2,π/2), thenφ0 = ηi(θ) for somei ∈ {1,2,3}. Therefore we see that̃Dd3 f

may not be well-defined onRRR2\{(0,0)}.
Let f be a smooth function on a domainD of RRR2 and p0 an isolated umbilical point of

dn f such that there exists a neighborhoodU of p0 in D satisfyingU ∩Umb(dn f ) = {p0} and
the condition that there exists a continuous, complete, pointwise separable, finitely many-valued
one-dimensional distributioñDdn f onU \{p0} formed by all the critical directions ofdn f at each

point ofU \{p0} (for example, if the sum of the multiplicities of the critical points of(d̂n f )p in
[0,π) does not depend on the choice ofp∈U \{p0} and if f is real-analytic, then this condition
is satisfied). In the following sections, we shall study the behavior ofD̃dn f aroundp0 and

CONJECTURE3.1. The indexindp0

(
D̃dn f

)
of p0 with respect toD̃dn f is not more than

one.

REMARK . We setVVV(n)
f := Re(∂ n

z f )∂/∂x+ Im(∂ n
z f )∂/∂y as in Section 1. We obtain

VVV(1)
f =

1
2

{
∂ f
∂x

∂
∂x

+
∂ f
∂y

∂
∂y

}
.

We see thatVVV(1)
f is the half of the gradient vector field off . Therefore Conjecture 3.1 forn = 1

is equivalent to Loewner’s conjecture forn = 1. The following holds:

VVV(2)
f =

1
4

{(
∂ 2 f
∂x2 −

∂ 2 f
∂y2

)
∂
∂x

+2
∂ 2 f

∂x∂y
∂
∂y

}
.

Then we see that for a pointp∈ D, the following are mutually equivalent:

(a) p is a zero point ofVVV(2)
f ;

(b) at p, Hessian Hessf of f is represented by the unit matrix up to a constant;
(c) p is an umbilical point ofd2 f .

In addition, noticing that for anyφ ∈ RRR,

−
(

∂ 2 f
∂x2 −

∂ 2 f
∂y2

)
sinφ +2

∂ 2 f
∂x∂y

cosφ = 2

〈
Hessf

(
cos(φ/2)
sin(φ/2)

)
,

(
−sin(φ/2)

cos(φ/2)

)〉

=
d(d̂2 f )

dφ
(φ/2)
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(where〈 , 〉 is the scalar product inRRR2), we see that for a numberφ ∈ RRR and at a point ofD, the
following are mutually equivalent:

(a) VVV(2)
f is represented byUUUφ up to a constant;

(b) t(cos(φ/2),sin(φ/2)) is an eigenvector ofHessf ;
(c) UUUφ/2 is in a critical direction ofd2 f .

In particular, we see that the index of an isolated zero pointp0 of VVV(2)
f is twice the index of an

isolated umbilical pointp0 of d2 f . Hence we see that Conjecture 3.1 forn = 2 is equivalent to
Loewner’s conjecture forn = 2. However, ifn = 3, thenRe(∂ n

z f ) = Im(∂ n
z f ) = 0 at a point do

not always imply thatdn f is umbilical at the same point: ifn is even, then for a polynomial

f (x,y) := xn(1+x)+xn−1y− (−1)(n−2)/2xyn−1(1+y)− (−1)n/2yn,

we obtain

VVV(n)
f =

n!
2n

(
(n+1)x

∂
∂x
−ny

∂
∂y

)
,

which implies that(0,0) is a (unique) zero point ofVVV(n)
f , while there exists no umbilical point of

dn f ; if n is odd, then for a polynomial

f (x,y) := xn(1+x)+xn−1y− (−1)(n−1)/2xyn−1− (−1)(n−1)/2yn(1+y),

we obtain the same conclusion. In addition, ifn = 3, then an isolated umbilical point ofdn f is

not always an isolated zero point ofVVV(n)
f : if we set f (x,y) :=

(
x2 + y2

)l
, wherel := [n/2]+ 1,

then(0,0) is a unique umbilical point ofdn f andD̃dn f is well-defined onRRR2 \ {(0,0)}, while

VVV(n)
f is identically zero. Hence we see that the solution of one of Conjecture 3.1 and Loewner’s

conjecture forn = 3 does not give any solution of the other.

In the next section, we shall study and affirmatively solve Conjecture 3.1 in the case where
f is a homogeneous polynomial. The following lemma shall be useful in the next section.

LEMMA 3.2. Let φ0, a, b be real numbers and(x′,y′) orthogonal coordinates onRRR2

satisfying
(

x′

y′

)
=

(
cosφ0 −sinφ0

sinφ0 cosφ0

)(
x
y

)
+

(
a
b

)

at any point ofRRR2. Then for anyφ ∈ RRR,

n

∑
i=0

(
n
i

)
∂ n f

∂xn−i∂yi (x,y)cosn−i φ sini φ

=
n

∑
i=0

(
n
i

)
∂ n f

∂ (x′)n−i∂ (y′)i (x
′,y′)cosn−i(φ +φ0)sini(φ +φ0).

We may prove Lemma 3.2 by induction with respect ton∈ NNN.
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4. Homogeneous polynomials.

4.1. Results.
Let n be a positive integer and1 a homogeneous polynomial of degreek > n such that

there exists a continuous, complete, pointwise separable, finitely many-valued one-dimensional
distribution D̃dn1 on RRR2 \ {(0,0)} formed by all the critical directions ofdn1 at each point of
RRR2\Umb(dn1). In order to grasp the behavior of̃Ddn1 around(0,0), we shall first notice a point
at which the “position vector field”x∂/∂x+y∂/∂y is in a critical direction ofdn1.

For eachθ ∈ RRR, set1̃(θ) := 1(cosθ ,sinθ). Then by Euler’s identity, we obtain

LEMMA 4.1. For anyθ ∈ RRR,

(d̂n1)(cosθ ,sinθ)(θ) =

{
n−1

∏
i=0

(k− i)

}
1̃(θ), (3)

d(d̂n1)(cosθ ,sinθ)

dφ
(θ) =

{
n
k

n−1

∏
i=0

(k− i)

}
d1̃
dθ

(θ). (4)

By Lemma 4.1, we see that for a numberθ0, the position vector field is in a critical direction
of dn1 at(cosθ0,sinθ0) if and only if θ0 satisfies(d1̃/dθ)(θ0) = 0. We denote byR1 the set of the
numbers at whichd1̃/dθ = 0. Letη be a continuous function onRRRsuch that for anyθ ∈RRR,UUUη(θ)
is in a critical direction ofdn1 at(cosθ ,sinθ) andEdn1 the set of such continuous functions asη .
Let R(dn1) be the set of the numbersθ0 such that there exists an elementηθ0 ∈ Edn1 satisfying
θ0 = ηθ0(θ0). ThenR(dn1)⊂ R1 holds. We are interested in the relation between the functionθ
(of one variableθ ) andηθ0 aroundθ0 ∈ R(dn1).

SupposeR1 = RRR. Thenk is even and1 is represented by(x2 +y2)k/2 up to a constant. We
obtainθ ∈ Edn1, i.e., R(dn1) = RRR. In addition, by Lemma 3.2, we see thatD̃dn1 is pointwise
separated. Therefore we obtainind(0,0)

(
D̃dn1

)
= 1.

In the following, supposeR1 6= RRR. Then for eachθ0 ∈ R1, there exists a positive integerµ
satisfying(dµ+11̃/dθ µ+1)(θ0) 6= 0. The minimum of such integers is denoted byµ1(θ0). An
elementθ0 ∈ R1 is said to be

(a) relatedif θ0 satisfies̃1(θ0) = 0 or if µ1(θ0) is odd;
(b) non-relatedif θ0 satisfies̃1(θ0) 6= 0 and if µ1(θ0) is even.

In the next subsection, we shall prove

LEMMA 4.2. Let θ0 be an element ofR(dn1) and Iθ0 an open interval satisfyingIθ0 ∩
R(dn1) = {θ0}. Then the following hold:

(a) if θ0 is related, then there exists a nonzero numberc(n)
1 (θ0) satisfying

c(n)
1 (θ0)(θ −ηθ0(θ))(θ −θ0) > 0

for anyθ ∈ Iθ0 \{θ0} and anyηθ0 ∈ Edn1 satisfyingηθ0(θ0) = θ0;

(b) if θ0 is non-related, then there exists a nonzero numberc̃(n)
1 (θ0) satisfying

c̃(n)
1 (θ0)(θ −ηθ0(θ)) > 0

for anyθ ∈ Iθ0 \{θ0} andηθ0 ∈ Edn1 satisfyingηθ0(θ0) = θ0.
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For a related elementθ0 ∈R(dn1), the sign ofc(n)
1 (θ0) in (a) of Lemma 4.2 is called thesign

of θ0 and denoted bysign(n)
1 (θ0).

For each elementθ0 ∈ R(dn1) and the intervalIθ0, we may suppose that ifη1, η2 are ele-
ments ofEdn1 satisfyingη1 = η2 at some pointθ of Iθ0 \ {θ0}, thenη1 ≡ η2 on the connected

component ofIθ0 \{θ0} containingθ . Then there exists a positive integerN(n)
1 (θ0)∈NNN such that

N(n)
1 (θ0)2 is the number of the elementsη ∈ Edn1 restricted onIθ0 satisfyingη(θ0) = θ0.

Let R+(dn1)(respectively,R−(dn1)) be the set of the related elements ofR(dn1) with posi-
tive (respectively, negative) sign and forε ∈ {+,−}, we set

Nε(dn1) := ∑
θ0∈Rε (dn1)∩[θ ,θ+π)

N(n)
1 (θ0).

In the next subsection, we shall prove the following:

THEOREM 4.3. The indexind(0,0)
(
D̃dn1

)
is represented as follows:

ind(0,0)
(
D̃dn1

)
= 1− N+(dn1)−N−(dn1)

Ndn1

,

whereNdn1 is a positive integer such that̃Ddn1 is Ndn1-valued.

In addition, we shall prove

LEMMA 4.4. N+(dn1) = N−(dn1).

REMARK . In [1], we may find the prototypes of Lemma 4.2, Theorem 4.3 and Lemma
4.4, respectively. In [4], we proved Lemma 4.2 forn = 2.

By Theorem 4.3 together with Lemma 4.4, we obtain

ind(0,0)
(
D̃dn1

)
5 1. (5)

From (5), we obtain the affirmative answer to Conjecture 3.1 in the case wheref is a homoge-
neous polynomial. Indeed, (5) is a reason why we have reached Conjecture 3.1.

4.2. Proofs.
Let n, 1 be as in the previous subsection. For numbersθ ,φ ∈ RRR, we set

D̃dn1(θ ,φ) :=
1
n

d(d̂n1)(cosθ ,sinθ)

dφ
(φ). (6)

Then for anyη ∈ Edn1 and anyθ ∈ RRR, D̃dn1(θ ,η(θ)) = 0. In the following, supposeR1 6= RRR.
Suppose that forθ0 ∈R1, dn1 is not umbilical at(cosθ0,sinθ0). Then there exists a positive

integerν satisfying
(
∂ ν D̃dn1/∂φ ν)

(θ0,θ0) 6= 0. The minimum of such integers is denoted by

ν(n)
1 (θ0). Suppose that forθ0 ∈R1, dn1 is umbilical at(cosθ0,sinθ0). Then we writeν(n)

1 (θ0) =
∞. We obtain a mapν(n)

1 from R1 into NNN∪{∞}. We immediately obtain

LEMMA 4.5. For θ0 ∈ R1, the following are mutually equivalent:
(a) θ0 ∈ R1 \R(d11);
(b) 1̃(θ0) = 0;

(c) ν(1)
1 (θ0) = ∞.
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For a related elementθ0 ∈ R1, it is said that thecritical sign of θ0 is positive (respectively,
negative) if the following holds:

1̃(θ0)
dµ1(θ0)+11̃

dθ µ1(θ0)+1
(θ0) 5 0 (respectively,> 0).

The critical sign ofθ0 is denoted by c-sign1(θ0). We shall prove

LEMMA 4.6. Supposen = 2 and letθ0 be an element ofR1 satisfying1̃(θ0) 6= 0. Then

(a) θ0 ∈ R(dn1) holds if and only ifν(n)
1 (θ0) is an odd integer;

(b) if θ0 ∈ R1 \R(dn1), thenθ0 is related and satisfiesc-sign1(θ0) =− andν(n)
1 (θ0) = ∞.

PROOF. By (4), (6) and the implicit function theorem, we obtainθ0 ∈ R(dn1) for an

elementθ0 of R1 satisfyingν(n)
1 (θ0) = 1.

We shall proveν(n)
1 (θ0) = 1 for an elementθ0 of R1 satisfying1̃(θ0) 6= 0 andµ1(θ0) = 2.

Noticing Lemma 3.2, we may supposeθ0 = 0. If we represent1 as1 = ∑k
i=0aixk−iyi , then we

obtaina0 6= 0 by 1̃(0) 6= 0, and we obtaina1 = 0 by 0∈ R1. In addition, by

d21̃

dθ 2 (0) = 2a2−ka0 (7)

together withµ1(0) = 2, we obtain

a2 =
k
2

a0. (8)

The following hold:

∂ D̃dn1

∂φ
(0,0) =−∂ n1

∂xn (1,0)+(n−1)
∂ n1

∂xn−2∂y2 (1,0), (9)

∂ n1

∂xn (1,0) =

{
n−1

∏
i=0

(k− i)

}
a0, (10)

∂ n1

∂xn−2∂y2 (1,0) =

{
2

k(k−1)

n−1

∏
i=0

(k− i)

}
a2. (11)

Applying (10) and (11) to (9), we obtain

∂ D̃dn1

∂φ
(0,0) =

{
n−1

∏
i=0

(k− i)

}{
−a0 +

2(n−1)
k(k−1)

a2

}
. (12)

By (8) together with (12), we obtain

∂ D̃dn1

∂φ
(0,0) =−

{
1

k−1

n

∏
i=0

(k− i)

}
a0.

Sincea0 6= 0, we obtainν(n)
1 (0) = 1.

We shall proveν(n)
1 (0) = 1 if 0 is a related element ofR1 satisfying 1̃(0) 6= 0 and

c-sign1(0) = +. By (7) together with c-sign1(0) = +, we obtain
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a2

a0
5 k

2
. (13)

By (12), (13) andn < k, we obtain
(
∂ D̃dn1/∂φ

)
(0,0) 6= 0, i.e.,ν(n)

1 (0) = 1.
We shall prove0 /∈ R(dn1) if 0 is a related element ofR1 satisfying c-sign1(0) = − and

ν(n)
1 (0) = ∞. We see thatn is even and we obtain

ai =

{
0, if i ∈ {1,3, . . . ,n−1},
C(n,k, i)a0, if i ∈ {0,2, . . . ,n},

where

C(n,k, i) :=

(
n/2
i/2

)(
k
i

)/(
n
i

)
.

Therefore we obtain

(d̂n1)(cosθ ,sinθ)(φ)

=

{
n−1

∏
i=0

(k− i)

}
a0cosk−n θ

+
{

A2cosn−1 φ sinφ +α(φ)sin2 φ
}

cosk−n−1 θ sinθ +β (θ ,φ)sin2 θ ,

whereA2 ∈ RRR\{0} andα, β are smooth functions. In addition, we obtain

nD̃dn1(θ ,φ) =
{

(A2cosn φ + α̂(φ)sinφ)cosk−n−1 θ +
∂β
∂φ

(θ ,φ)sinθ
}

sinθ ,

whereα̂ is a smooth function. Hence we obtain0 /∈ R(dn1).
Let 0 be a related element ofR1 satisfying c-sign1(0) =− andν(n)

1 (0) ∈ NNN\{1}. Then we
obtain

ai =





0, if i ∈ {
1,3, . . . ,2

[(
ν(n)
1 (0)+1

)/
2
]−1

}
,

C(n,k, i)a0, if i ∈ {
0,2, . . . ,2

[
ν(n)
1 (0)/2

]}

and

a
ν(n)
1 (0)+1

6=




0, if ν(n)
1 (0) is even,

C
(
n,k,ν(n)

1 (0)+1
)
a0, if ν(n)

1 (0) is odd.

Then we may representD̃dn1(θ ,φ) as

D̃dn1(θ ,φ) = ∑
i, j=0

Bi j θ iφ j ,

whereB10 6= 0, B0 j = 0 for j ∈ {
0,1, . . . ,ν(n)

1 (0)−1
}

andB
0ν(n)

1 (0)
6= 0. Therefore we obtain(

∂ D̃dn1

/
∂θ

)
(0,0) 6= 0. By the implicit function theorem, we see that there exist a positive

numberε > 0 and a smooth functionγ of one variable satisfying
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γ(φ) =−
B

0ν(n)
1 (0)

B10
φ ν(n)

1 (0) +o
(
φ ν(n)

1 (0)) (14)

and
{
(θ ,φ) ∈ (−ε,ε)2 ; D̃dn1(θ ,φ) = 0

}
= {(γ(φ),φ) ; φ ∈ (−ε,ε)}.

Therefore ifν(n)
1 (0) is odd, then0 is an element ofR(dn1); if ν(n)

1 (0) is even, then there does not
exist any distribution as̃Ddn1 onRRR2\{(0,0)}.

Hence we obtain Lemma 4.6. ¤

REMARK . In [3], we may find the prototype of Lemma 4.6. In [4], we proved that for an

elementθ0 of R1, θ0 ∈ R1 \R(d21) holds if and only if1̃(θ0) 6= 0 andν(2)
1 (θ0) = ∞ hold.

PROOF OFLEMMA 4.2. Let θ0 be an element ofR(dn1) satisfyingν(n)
1 (θ0) = 1. Then by

the implicit function theorem, we see that ifηθ0 is an element ofEdn1 satisfyingηθ0(θ0) = θ0,
thenηθ0 is smooth atθ0 and satisfies

dµ(θ −ηθ0)
dθ µ (θ0) =

{
1
k

n−1

∏
i=0

(k− i)

}
dµ+11̃

dθ µ+1 (θ0)

/
∂ D̃dn1

∂φ
(θ0,θ0) (15)

for anyµ ∈ {0,1, . . . ,µ1(θ0)}. Therefore we obtain Lemma 4.2.

Let 0 be an element ofR(dn1) satisfying1̃(0) 6= 0 andν(n)
1 (0) = 2. Then0 is related and

ν(n)
1 (0) is odd. Noticing (14), we obtain

B
0ν(n)

1 (0)

B10
(θ −η0(θ))θ > 0 (16)

for anyθ ∈ I0\{0} andη0 ∈ Edn1 satisfyingη0(0) = 0. Therefore we obtain Lemma 4.2.

Let 0 be an element ofR(dn1) satisfying1̃(0) = 0 andν(n)
1 (0) = ∞. Then we see that there

exists an integeri0 > n satisfyingai = 0 for i ∈ {0,1, . . . , i0−1} andai0 6= 0. Therefore we may
represent̃Ddn1 as

D̃dn1(θ ,φ) = θ i0−n ∑
i=n−1

D̃(i)
dn1(θ ,φ),

whereD̃(i)
dn1 is a homogeneous polynomial of degreei in two variablesθ , φ . We obtainD̃(n−1)

dn1 6≡0.

If we represent̃D(i)
dn1 as

D̃(i)
dn1(θ ,φ) =

i

∑
j=0

D̃(i, j)
dn1 θ i− jφ j ,

then we obtainD̃(n−1, j1)
dn1 D̃(n−1, j2)

dn1 = 0 for arbitrary two j1, j2 ∈ {0,1, . . . ,n−1}. Then we obtain
(θ −η0(θ))θ > 0 for anyθ ∈ I0\{0} and anyη0 ∈ Edn1 satisfyingη0(0) = 0. Similarly, we see

that if 0 is an element ofR(dn1) satisfying1̃(0) = 0 andν(n)
1 (0) ∈NNN, then(θ −η0(θ))θ > 0 for

anyθ ∈ I0\{0} and anyη0 ∈ Edn1 satisfyingη0(0) = 0. Hence we obtain Lemma 4.2. ¤
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We shall prove

PROPOSITION4.7. Let θ0 be a related element ofR(dn1).
(a) If 1̃(θ0) 6= 0, then the sign of the nonzero number

δ (n)
1 (θ0) :=

dµ1(θ0)+11̃

dθ µ1(θ0)+1
(θ0)

∂ ν(n)
1 (θ0)D̃dn1

∂φ ν(n)
1 (θ0)

(θ0,θ0)

gives the sign ofθ0;
(b) if 1̃(θ0) = 0, then the sign ofθ0 is positive.

PROOF. Let θ0 be a related element ofR(dn1) satisfying 1̃(θ0) 6= 0 and ν(n)
1 (θ0) = 1.

Then by (15), we obtain (a). Let0 be a related element ofR(dn1) satisfying1̃(0) = 0. Then in

the proof of Lemma 4.2, we have provedsign(n)
1 (0) = +. Let 0 be a related element ofR(dn1)

satisfying1̃(0) 6= 0 andν(n)
1 (0) = 2. Then noticing (16), we see that the sign of the nonzero

numberB
0ν(n)

1 (0)
B10 gives the sign of0. We obtain

B
0ν(n)

1 (0)
=

1

ν(n)
1 (0)!

∂ ν(n)
1 (0)D̃dn1

∂φ ν(n)
1 (0)

(0,0), B101̃(0) > 0.

Since c-sign1(0) = −, we see that the sign ofδ (n)
1 (0) gives the sign of0. Hence we obtain

Proposition 4.7. ¤

REMARK . In [1], we may find the prototype of Proposition 4.7. In [4], we proved Propo-
sition 4.7 forn = 2.

We shall prove

PROPOSITION4.8. Let θ0 be a related element ofR(dn1) satisfyingc-sign1(θ0) = +.

Thensign(n)
1 (θ0) = +.

PROOF. Let θ0 be a related element ofR(dn1) with c-sign1(θ0) = +. Supposen= 1. Then
we obtain

∂ D̃d11

∂φ
(θ0,θ0) =−k1̃(θ0).

Since c-sign1(θ0) = +, we obtainδ (1)
1 (θ0) > 0. Therefore from Proposition 4.7, we obtain

sign(1)
1 (θ0) = +. In the following, supposen = 2. In addition, noticing (b) of Proposition 4.7,

we may supposẽ1(θ0) 6= 0. Then sinceν(n)
1 (θ0) = 1, we may representδ (n)

1 (θ0) as

δ (n)
1 (θ0) =

(
1̃(θ0)

dµ1(θ0)+11̃

dθ µ1(θ0)+1
(θ0)

)(
1

1̃(θ0)
∂ D̃dn1

∂φ
(θ0,θ0)

)
. (17)

We obtain

(n−1)
1

1̃(θ0)
d21̃

dθ 2 (θ0) =
k(k−1){

∏n−1
i=0 (k− i)

}
(

1
1̃(θ0)

∂ D̃dn1

∂φ
(θ0,θ0)

)
+k(k−n). (18)
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Since c-sign1(θ0) = +, we obtain

1
1̃(θ0)

∂ D̃dn1

∂φ
(θ0,θ0) < 0,

andδ (n)
1 (θ0) > 0. Therefore from Proposition 4.7, we obtain Proposition 4.8. ¤

By (17) together with (18), we obtain

PROPOSITION4.9. Let θ0 be a related element ofR(dn1) satisfyingc-sign1(θ0) =− and

(n−1)
d21̃

dθ 2 (θ0) 6= (k(k−n))1̃(θ0).

Thensign(n)
1 (θ0) = + (respectively,−) is equivalent to

(n−1)
d21̃

dθ 2 (θ0)
/
1̃(θ0) ∈ (k(k−n),∞) (respectively,[0,k(k−n))).

REMARK . Let θ0 be a related element ofR1 satisfying c-sign1(θ0) = −. Then from

Lemma 4.5, we obtainθ0 ∈ R(d11) and from Proposition 4.9, we obtainsign(1)
1 (θ0) =−.

REMARK . Let θ0 be a related element ofR(dn1) satisfying c-sign1(θ0) = −. We see by
(18) that

(n−1)
d21̃

dθ 2 (θ0)
/
1̃(θ0) = k(k−n)

is equivalent toν(n)
1 (θ0) = 2. If ν(n)

1 (θ0) = 2, then bothsign(n)
1 (θ0) = + andsign(n)

1 (θ0) = −
may happen and we may grasp the sign ofθ0 by (a) of Proposition 4.7.

REMARK . In [1], we may find the prototype of Proposition 4.8; in [2], we may find the
prototype of Proposition 4.9. In [4], we proved Proposition 4.8 forn = 2.

We shall prove

LEMMA 4.10. For an elementθ0 ∈ R(dn1) satisfying1̃(θ0) 6= 0, N(n)
1 (θ0) = 1 holds.

PROOF. If ν(n)
1 (θ0) = 1, then by the implicit function theorem, we obtainN(n)

1 (θ0) = 1.

Supposeν(n)
1 (θ0) = 2. Then we obtainn = 2 and referring to the proof of Lemma 4.6, we obtain

N(n)
1 (θ0) = 1. ¤

REMARK . For any elementθ0 ∈ R(d21), N(2)
1 (θ0) = 1 (see [4]).

PROOF OFLEMMA 4.4. Let θ1, θ2 be two related elements ofR(dn1) satisfyingθ2 > θ1

and the condition that in(θ1,θ2), there exists no related element ofR(dn1). Then either c-
sign1(θ1) = + or c-sign1(θ2) = + holds. Therefore from Proposition 4.8, we see that either
sign1(θ1) = + or sign1(θ2) = + holds. Noticing (b) of Proposition 4.7 and Lemma 4.10, we
obtain Lemma 4.4. ¤
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PROOF OFTHEOREM 4.3. We first suppose that̃Ddn1 is pointwise separated. LetN(dn1)
be the number of the related elements ofR(dn1) in [0,π) andθ1, θ2, . . . ,θN(dn1) related elements
of R(dn1) satisfying

0 5 θ1 < θ2 < · · ·< θN(dn1) < π.

In addition, for i ∈ {1,2, . . . ,N(dn1)} and j ∈ ZZZ, set θi+ jN(dn1) := θi + jπ. Then for i ∈ ZZZ,
we see that in(θi−1,θi), there exists no related element ofR(dn1). Let φdn1 be an element

of ΦD̃dn1;(0,0) satisfyingφdn1(r,θ1) = θ1 for any r > 0. Then we see that if both sign(n)
1 (θ1) =

+ and sign(n)
1 (θ2) = + hold, thenφdn1(r,θ2) < θ2 and that if just one of sign(n)

1 (θ1) = + and

sign(n)
1 (θ2) = + holds, thenφdn1(r,θ2) = θ2. We suppose sign(n)

1 (θ1) = +. For i0 ∈ NNN, suppose
that the sign ofθi0 is positive and that the number of the related elements ofR(dn1) in [θ1,θi0)
with positive sign minus the number of the related elements ofR(dn1) in [θ1,θi0) with negative
sign is equal tol0Ndn1 for somel0 ∈ NNN∪{0}. Then for anyr > 0, we obtain

θi0−φdn1(r,θi0) = l0π.

We see that2Ndn1N(dn1)+1 is such a positive integer asi0 and that the corresponding integerl0
is equal to2(N+(dn1)−N−(dn1)). Therefore we obtain

θ2Ndn1N(dn1)+1−φdn1

(
r,θ2Ndn1N(dn1)+1

)
= 2(N+(dn1)−N−(dn1))π

for anyr > 0. This implies

φdn1(r,θ1 +2Ndn1π)−φdn1(r,θ1)
2Ndn1π

= 1− N+(dn1)−N−(dn1)
Ndn1

.

Hence we obtain Theorem 4.3.
We suppose that̃Ddn1 is not always pointwise separated. Letθ1 ∈R(dn1) satisfy1̃(θ1) 6= 0.

ThenN(n)
1 (θ1) = 1. Let φ (1)

dn1 be an element ofΦD̃dn1;(0,0) satisfyingφ (1)
dn1(r,θ1) = θ1 for anyr > 0.

For each integeri = 2, let φ (i)
dn1 be an element ofΦD̃dn1;(0,0) such that for any(r,θ) ∈ (0,∞)×RRR

and anyi ∈ NNN, the following hold:

(a) φ (i+1)
dn1 (r,θ) = φ (i)

dn1(r,θ);
(b) the following give all the critical directions ofdn1 at (r cosθ , r sinθ):

φ (i)
dn1(r,θ), φ (i+1)

dn1 (r,θ), φ (i+2)
dn1 (r,θ), . . . , φ (i+Ndn1−1)

dn1 (r,θ);

(c) φ (i+Ndn1)
dn1 (r,θ) = φ (i)

dn1(r,θ)+π.

Then we obtain

φ (2l(N+(dn1)−N−(dn1))+1)
dn1 (r,θ1 +2lπ) = θ1 +2lπ

for any l ∈ {1,2, . . . ,Ndn1}. In particular, we obtain

φ (1)
dn1(r,θ1 +2Ndn1π)+2(N+(dn1)−N−(dn1))π = φ (1)

dn1(r,θ1)+2Ndn1π,

i.e.,
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φ (1)
dn1(r,θ1 +2Ndn1π)−φ (1)

dn1(r,θ1)

2Ndn1π
= 1− N+(dn1)−N−(dn1)

Ndn1

.

Hence we obtain Theorem 4.3. ¤

EXAMPLE . Let 1 be a spherical harmonic function of degreek. We shall compute the
index of (0,0) with respect toD̃dn1. We see that anyθ0 ∈ R1 is related and satisfies̃1(θ0) 6= 0
and c-sign1(θ0) = +. Therefore from Lemma 4.6, we obtainR(dn1) = R1 and by Proposition 4.8
together with Lemma 4.10, we obtain

(
N+(dn1),N−(dn1)

)
= (k,0). SinceNdn1 = n, we obtain

ind(0,0)
(
D̃dn1

)
= 1−k/n.

5. Real-analytic functions.

Let n be a positive integer andr0 a positive number. LetF be a real-analytic function on a
neighborhoodU :=

{
x2 +y2 < r2

0

}
of (0,0) in RRR2 satisfying the following:

(a) (0,0) is an umbilical point ofdnF ;
(b) F is represented asF:= ∑i=nF(i), whereF(i) is a homogeneous polynomial of degreei.

We see that ifn is odd, thenF(n) is identically zero. Suppose that(0,0) is the only umbilical point
of dnF on U and that there exists a continuous, complete, pointwise separable, finitely many-
valued one-dimensional distributioñDdnF onU \{(0,0)} formed by all the critical directions of
dnF at each point ofU \{(0,0)}. We set

mF := min
{

i > n ; F(i) 6≡ 0
}
, 1F := F(mF ).

Let φdnF be an element ofΦD̃dnF ;(0,0). We shall prove

PROPOSITION5.1. For each numberθ0 ∈ RRR,
(a) there exists a numberφdnF,o(θ0) satisfying

lim
r→0

φdnF(r,θ0) = φdnF,o(θ0),

andφdnF,o(θ0) is a critical point of (d̂n1F)(cosθ0,sinθ0);
(b) there exist numbersφdnF,o(θ0 +0), φdnF,o(θ0−0) satisfying

lim
θ→θ0±0

φdnF,o(θ) = φdnF,o(θ0±0).

Let S(dn1F) denote the set of the numbersθ0 such thatdn1F is umbilical at(cosθ0,sinθ0).
ThenS(dn1F)⊂ R1F . In the following, suppose the following:

(a) each critical point of(d̂n1F)(cosθ0,sinθ0) for eachθ0 ∈ RRR\S(dn1F) is obtained as in (a)
of Proposition 5.1 from someφdnF ∈ΦD̃dnF ;(0,0);

(b) there exists a continuous, complete, pointwise separable, finitely many-valued one-
dimensional distributionD̃dn1F

on RRR2 \ {(0,0)} formed by all the critical directions ofdn1F at
each point ofRRR2\Umb(dn1F);

(c) D̃dnF is Ndn1F
-valued.

REMARK . If n∈ {1,2}, then conditions (a)–(c) are always satisfied.
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For eachθ0 ∈ RRR, we set

ΓdnF,o(θ0) := φdnF,o(θ0 +0)−φdnF,o(θ0−0).

We shall prove

PROPOSITION5.2. (a) If θ0 ∈ RRRsatisfiesΓdnF,o(θ0) 6= 0, thenθ0 ∈ S(dn1F);
(b) ind(0,0)

(
D̃dnF

)
is represented as follows:

ind(0,0)
(
D̃dnF

)

= ind(0,0)
(
D̃dn1F

)
+

1
2Ndn1F

π ∑
θ0∈S(dn1F )∩[θ ,θ+2Ndn1F

π)
ΓdnF,o(θ0).

PROOF OFPROPOSITION5.1. We representdnF as

dnF = ∑
i=n

dnF(i).

Then we obtain

(d̂nF)(r cosθ0,r sinθ0) = ∑
i=n

r i−n(d̂nF(i))(cosθ0,sinθ0)

for anyr ∈ (0, r0) and anyθ0 ∈ RRR. Therefore we see that for an arbitrary positive numberε > 0,
there exists a positive numberr0 > 0 such that for anyr ∈ (0, r0) and anyφ ∈ RRR,

∣∣∣∣∣
1

rmF−n

d(d̂nF)(r cosθ0,r sinθ0)

dφ
(φ)−nD̃dn1F

(θ0,φ)

∣∣∣∣∣ < ε.

In particular, we obtain

n
∣∣D̃dn1F

(θ0,φdnF(r,θ0))
∣∣ < ε (19)

for any r ∈ (0, r0). If θ0 ∈ RRR\S(dn1F), then each critical point of(d̂n1F)(cosθ0,sinθ0) is isolated.
Therefore by (19), we obtain (a) of Proposition 5.1 in the case whereθ0 ∈ RRR\S(dn1F). Let θ0

be an element ofS(dn1F). Since(0,0) is an isolated umbilical point ofdnF , we see that there
exists an integermF(θ0) > mF satisfying the following:

(a) for any integeri satisfyingmF 5 i 5 mF(θ0)−1, dnF(i) is umbilical at(cosθ0,sinθ0);
(b) dnF(mF (θ0)) is not umbilical at(cosθ0,sinθ0).

Then we see that for an arbitrary positive numberε > 0, there exists a positive numberr0 > 0
such that for anyr ∈ (0, r0),

∣∣D̃dnF(mF (θ0))(θ0,φdnF(r,θ0))
∣∣ < ε.

Sincedn1F is umbilical at(cosθ0,sinθ0), we obtain (a) of Proposition 5.1 in the case where
θ0 ∈ S(dn1F). In addition, by (a) of Proposition 5.1, we obtain (b) of Proposition 5.1. ¤

PROOF OFPROPOSITION5.2. If θ0 ∈ RRR\S(dn1F), then noticing Proposition 5.1, we ob-
tainΓdnF,o(θ0) = 0. Hence we obtain (a) of Proposition 5.2. Forθ ∈ RRR, the following holds:
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ind(0,0)
(
D̃dnF

)
=

φdnF,o
(
θ +2Ndn1F

π
)−φdnF,o(θ)

2Ndn1F
π

. (20)

In addition, for anyr > 0, the following holds:

φdnF,o
(
θ +2Ndn1F

π
)−φdnF,o(θ)

= φdn1F

(
r,θ +2Ndn1F

π
)−φdn1F

(r,θ)+ ∑
θ0∈S(dn1F )∩[θ ,θ+2Ndn1F

π)
ΓdnF,o(θ0). (21)

From (20) and (21), we obtain (b) of Proposition 5.2. ¤

REMARK . In [4], we proved the prototypes of Propositions 5.1 and 5.2 forn = 2, respec-
tively.

By Theorem 4.3, Lemma 4.4 and Proposition 5.2, we see that ifF satisfiesS(dn1F) = Ø,
thenind(0,0)

(
D̃dnF

)
5 1.

We shall prove

THEOREM 5.3. Suppose

Ndn1F
−1

∑
i=0

ΓdnF,o(θ0 +2iπ) 5 π (22)

for anyθ0 ∈ S(dn1F). Thenind(0,0)
(
D̃dnF

)
5 1.

PROOF. By Theorem 4.3, Lemma 4.5, Lemma 4.6 and Proposition 4.8, we obtain

ind(0,0)
(
D̃dn1F

)
5 1−Ns(dn1F)

/
Ndn1F

, (23)

whereNs(dn1F) := ]{S(dn1F)∩ [θ ,θ + π)}. If (22) holds for anyθ0 ∈ S(dn1F), then by (b)
of Proposition 5.2 together with (23), we obtainind(0,0)

(
D̃dnF

)
5 1. Hence we obtain Theorem

5.3. ¤

REMARK . We see that (22) is always true forn = 1.

REMARK . In [4], we proved the prototype of Theorem 5.3 forn = 2 on condition that the
right hand side of (22) is equal to2π.

We shall prove

THEOREM 5.4. Suppose that̃1F(θ0) 6= 0 for anyθ0 ∈S(dn1F) and thatD̃dnF is pointwise
separated. Thenind(0,0)

(
D̃dnF

)
5 1.

In order to prove Theorem 5.4, we need a lemma.
Forn = 2, we set

ϖdnF :=
1
n

n

∑
i=0

(
n
i

)
∂ nF

∂xn−i∂yi

{
i

(
∂F
∂x

)n−i+1(∂F
∂y

)i−1

− (n− i)
(

∂F
∂x

)n−i−1(∂F
∂y

)i+1
}

.
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We see that for a pointp ∈ U , ϖdnF(p) = 0 holds if and only if the gradient vector field
(∂F/∂x)∂/∂x+(∂F/∂y)∂/∂y of F is in a critical direction ofdnF at p. We set

ϖ̃dnF(r,θ) := ϖdnF(r cosθ , r sinθ)

and

mdnF :=

{
(n+1)mF −2n, if F(n) ≡ 0,

mF +n(n−2), if F(n) 6≡ 0.

Then we see that̃ϖdnF
/

r mdnF may be continuously extended to{r = 0}. By the implicit function
theorem, we obtain

LEMMA 5.5. Let θ0 be an element ofS(dn1F) satisfying1̃F(θ0) 6= 0. Then there exist a
neighborhoodVθ0 of (0,θ0) in RRR2 and a real-analytic curveCθ0 in Vθ0 through(0,θ0) satisfying

(a)Cθ0 =
{
(r,θ) ∈Vθ0 ; ϖ̃dnF(r,θ)

/
r mdnF = 0

}
;

(b) Cθ0 is not tangent to theθ -axis at(0,θ0).

REMARK . In [4], we proved Lemma 5.5 forn = 2.

PROOF OFTHEOREM 5.4. Supposen = 2. Then noticing Lemma 5.5 and that̃DdnF is
pointwise separated, we see that there exists a nonzero numbercdnF,o(θ0) satisfying

cdnF,o(θ0)ΓdnF,o(θ0 +2iπ) = 0

for any i ∈ Z and
Ndn1F

−1

∑
i=0

ΓdnF,o(θ0 +2iπ) ∈ {−π,0,π}.

Therefore from Theorem 5.3, we obtainind(0,0)
(
D̃dnF

)
5 1. Supposen = 1. Then Lemma 4.5

says that forθ0 ∈ R1F , 1̃F(θ0) = 0 is equivalent toθ0 ∈ S(d11F). This implies that the first
assumption in Theorem 5.4 is always false forn = 1. Hence we obtain Theorem 5.4. ¤

REMARK . In [4], we proved the prototype of Theorem 5.4 forn = 2.
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