# A conjecture in relation to Loewner's conjecture

By Naoya Ando

(Received Jan. 8, 2003) (Revised Aug. 29, 2003)

**Abstract.** Let *f* be a smooth function of two variables *x*, *y* and for each positive integer *n*, let  $d^n f$  be a symmetric tensor field of type (0,n) defined by  $d^n f := \sum_{i=0}^n {n \choose i} (\partial_x^{n-i} \partial_y^i f) dx^{n-i} dy^i$  and  $\tilde{\mathscr{D}}_{d^n f}$  a finitely many-valued one-dimensional distribution obtained from  $d^n f$ : for example,  $\tilde{\mathscr{D}}_{d^1 f}$  is the one-dimensional distribution defined by the gradient vector field of f;  $\tilde{\mathscr{D}}_{d^2 f}$  consists of two one-dimensional distributions obtained from one-dimensional eigenspaces of Hessian of *f*. In the present paper, we shall study the behavior of  $\tilde{\mathscr{D}}_{d^n f}$  around its isolated singularity in ways which appear in [1]–[4]. In particular, we shall introduce and study a conjecture which asserts that the index of an isolated singularity with respect to  $\tilde{\mathscr{D}}_{d^n f}$  is not more than one.

## 1. Introduction.

Let f be a smooth function on a domain D of  $\mathbf{R}^2$  and set  $\partial_{\overline{z}} := (\partial/\partial x + \sqrt{-1}\partial/\partial y)/2$ . Then Loewner's conjecture for a positive integer  $n \in \mathbf{N}$  asserts that if a vector field  $\mathbf{V}_f^{(n)}$ :  $= \operatorname{Re}(\partial_{\overline{z}}^n f)\partial/\partial x + \operatorname{Im}(\partial_{\overline{z}}^n f)\partial/\partial y$  has an isolated zero point, then its index with respect to  $\mathbf{V}_f^{(n)}$  is not more than n. Loewner's conjecture for n = 1 is easily and affirmatively solved; Loewner's conjecture for n = 2 is equivalent to a conjecture which asserts that the index of an isolated umbilical point on a surface is not more than one (this conjecture is called the *index* conjecture or the Local Carathéodory's conjecture). If the index conjecture, which asserts that there exist at least two umbilical points on a compact, strictly convex surface in  $\mathbf{R}^3$ . We may find [5], [6], [9], [10], [11] and [12] as recent papers in relation to Carathéodory's and Loewner's conjectures.

For each positive integer n, let  $d^n f$  be a symmetric tensor field of type (0,n) defined by

$$d^{n}f := \sum_{i=0}^{n} \binom{n}{i} \frac{\partial^{n}f}{\partial x^{n-i}\partial y^{i}} dx^{n-i} dy^{i}.$$
 (1)

For a number  $\phi \in \mathbf{R}$  and a point  $p \in D$ , we set

$$\boldsymbol{U}_{\phi} := \cos\phi \frac{\partial}{\partial x} + \sin\phi \frac{\partial}{\partial y}, \qquad (\widehat{d^{n}f})_{p}(\phi) := (d^{n}f)_{p}(\boldsymbol{U}_{\phi}, \dots, \boldsymbol{U}_{\phi}).$$
(2)

A one-dimensional subspace *L* of the tangent plane at  $p \in D$  is called a *critical direction* of  $d^n f$  at *p* if there exists a critical point  $\phi_0$  of  $(\widehat{d^n f})_p$  satisfying  $U_{\phi_0}(p) \in L$ . A point  $p_0$  of *D* is called an *umbilical point* of  $d^n f$  if  $(\widehat{d^n f})_{p_0}$  is constant. Let  $\tilde{\mathscr{D}}_{d^n f}$  be a finitely many-valued one-dimensional distribution on an open set of non-umbilical points of  $d^n f$  such that  $\tilde{\mathscr{D}}_{d^n f}$  gives all the critical

<sup>2000</sup> Mathematics Subject Classification. Primary 37E35; Secondary 53A05, 53B25.

Key Words and Phrases. Loewner's conjecture, the index conjecture, Carathéodory's conjecture, symmetric tensor field, critical direction, umbilical point, many-valued one-dimensional distribution, index.

directions of  $d^n f$  at each point. For example,  $\tilde{\mathscr{D}}_{d^1 f}$  is the one-dimensional distribution defined by the gradient vector field of f;  $\tilde{\mathscr{D}}_{d^2 f}$  consists of two one-dimensional distributions obtained from one-dimensional eigenspaces of Hessian of f at each point. The purpose of the present paper is to study the behavior of  $\tilde{\mathscr{D}}_{d^n f}$  around an isolated umbilical point of  $d^n f$  in ways which appear in [1]–[4]. In particular, we shall define and study the index of an isolated umbilical point with respect to  $\tilde{\mathscr{D}}_{d^n f}$ . We shall see that the index is a rational number and not always represented as the half of an integer. We conjecture that *the index of an isolated umbilical point with respect to*  $\tilde{\mathscr{D}}_{d^n f}$  *is not more than one*. We shall see that for  $n \in \{1,2\}$  (respectively,  $n \ge 3$ ), this conjecture is equivalent to (respectively, distinct from) Loewner's conjecture. We shall affirmatively solve the former conjecture in the case where f is a homogeneous polynomial. In addition, we shall study this conjecture in the case where f is a real-analytic function.

ACKNOWLEDGEMENT. The author is grateful to the referees for their helpful comments and suggestions. This work was supported by the Japan Society for the Promotion of Science.

#### 2. Many-valued one-dimensional distributions.

Let  $\mathscr{D}$  be a continuous one-dimensional distribution on a domain U of a smooth twodimensional manifold S. In the present paper, a pair  $(\mathscr{D}, U)$  is called a *distribution element*. A distribution element  $(\mathscr{D}_0, U_0)$  is called a *direct continuation* of  $(\mathscr{D}, U)$  if  $U_0 \cap U \neq \emptyset$  and if  $\mathscr{D}_0 \equiv \mathscr{D}$  on  $U_0 \cap U$ . A set of distribution elements  $\{(\mathscr{D}_i, U_i)\}_{i \in \mathbb{N}}$  is called a *continuation* if  $(\mathscr{D}_{i+1}, U_{i+1})$  is a direct continuation of  $(\mathscr{D}_i, U_i)$  for any  $i \in \mathbb{N}$ .

For a point  $p \in S$ , let  $X_p$  be the set of the distribution elements such that each  $(\mathcal{D}, U) \in X_p$ satisfies  $p \in U$ . We introduce an equivalence relation  $\sim$  into  $X_p$ : for two  $(\mathcal{D}_1, U_1), (\mathcal{D}_2, U_2) \in X_p$ , we write  $(\mathcal{D}_1, U_1) \sim (\mathcal{D}_2, U_2)$  if there exists a neighborhood  $U_0$  of p in  $U_1 \cap U_2$  satisfying  $\mathcal{D}_1 \equiv \mathcal{D}_2$  on  $U_0$ . We denote by  $\tilde{X}_p$  the set of the equivalence classes in relation to the equivalence relation  $\sim$ .

Let D be a domain of S. A correspondence  $\tilde{\mathscr{D}}$  of each  $p \in D$  to a subset  $\tilde{\mathscr{D}}(p)$  of  $\tilde{X}_p$  is called a many-valued one-dimensional distribution on D. For a many-valued one-dimensional distribution  $\tilde{\mathscr{D}}$  on D and a distribution element  $(\mathscr{D}, U)$ , we write  $(\mathscr{D}, U) \subset (\tilde{\mathscr{D}}, D)$  if  $U \subset D$  and if  $(\mathcal{D}, U)$  represents an element of  $\hat{\mathcal{D}}(q)$  for any  $q \in U$ . A many-valued one-dimensional distribution  $\widehat{\mathscr{D}}$  is called *continuous* if for each  $p \in D$  and each  $\omega \in \widehat{\mathscr{D}}(p)$ , there exists a distribution element  $(\mathscr{D}, U) \in \omega$  satisfying  $(\mathscr{D}, U) \subset (\widehat{\mathscr{D}}, D)$ ; a many-valued one-dimensional distribution  $\tilde{\mathscr{D}}$  is called *complete* if the following holds: if a convergent sequence  $\{p_i\}_{i\in\mathbb{N}}$  in D and a continuation  $\{(\mathscr{D}_i, U_i)\}_{i \in \mathbf{N}}$  satisfy  $p_i \in U_i$  and  $(\mathscr{D}_i, U_i) \subset (\tilde{\mathscr{D}}, D)$  for any  $i \in \mathbf{N}$ , then there exists a distribution element ( $\mathscr{D}_0, U_0$ ) satisfying  $\lim_{i\to\infty} p_i \in U_0$ ,  $(\mathscr{D}_0, U_0) \subset (\hat{\mathscr{D}}, D)$  and the condition that there exists a number  $i_0 \in \mathbf{N}$  such that  $(\mathscr{D}_0, U_0)$  is a direct continuation of  $(\mathscr{D}_i, U_i)$  for any  $i \ge i_0$ ; a many-valued one-dimensional distribution  $\hat{\mathscr{D}}$  is called *separated* if distinct two distribution elements  $(\mathscr{D}_1, U), (\mathscr{D}_2, U) \subset (\widehat{\mathscr{D}}, D)$  represent distinct elements of  $\widehat{\mathscr{D}}(q)$  for any  $q \in U$ ; a many-valued one-dimensional distribution  $\hat{\mathscr{D}}$  is called *pointwise separated* if  $\mathscr{D}_1(q) \neq \mathscr{D}_2(q)$ for distinct two distribution elements  $(\mathscr{D}_1, U), (\mathscr{D}_2, U) \subset (\tilde{\mathscr{D}}, D)$  and any  $q \in U$ ; a many-valued one-dimensional distribution  $\tilde{\mathscr{D}}$  is called *pointwise separable* if  $\tilde{\mathscr{D}}$  is separated and if the following holds: if two distribution elements  $(\mathscr{D}_1, U), (\mathscr{D}_2, U) \subset (\widehat{\mathscr{D}}, D)$  satisfy  $\mathscr{D}_1(q_0) = \mathscr{D}_2(q_0)$  for some  $q_0 \in U$ , then there exist a neighborhood  $O_{q_0}$  of  $q_0$  in U and continuous functions  $\phi_1, \phi_2$  on  $O_{q_0}$  satisfying the following:

(a)  $\phi_1(q_0) = \phi_2(q_0);$ 

(b)  $\boldsymbol{U}_{\phi_i} = (\cos \phi_i) \partial / \partial x + (\sin \phi_i) \partial / \partial y$  represents  $(\mathcal{D}_i, O_{q_0})$  for  $i \in \{1, 2\}$ ;

(c) there exists a nonzero number  $c \neq 0$  satisfying  $c(\phi_1 - \phi_2) \ge 0$  on  $O_{q_0}$ ,

where (x, y) are local coordinates on  $O_{q_0}$ .

Let  $\tilde{\mathscr{D}}$  be a continuous, complete, separated many-valued one-dimensional distribution on D. Then  $\tilde{\mathscr{D}}$  is called *connected* if there do not exist two continuous, complete, separated many-valued one-dimensional distributions  $\tilde{\mathscr{D}}_1$ ,  $\tilde{\mathscr{D}}_2$  on D satisfying  $\tilde{\mathscr{D}}(p) = \tilde{\mathscr{D}}_1(p) \cup \tilde{\mathscr{D}}_2(p)$  and  $\tilde{\mathscr{D}}_1(p) \cap \tilde{\mathscr{D}}_2(p) = \emptyset$  for any  $p \in D$ . If  $\tilde{\mathscr{D}}$  is not connected, then there exists a set of connected, continuous, complete, separated many-valued one-dimensional distributions  $\{\tilde{\mathscr{D}}_{\lambda}\}_{\lambda \in \Lambda}$  satisfying  $\tilde{\mathscr{D}}(p) = \bigcup_{\lambda \in \Lambda} \tilde{\mathscr{D}}_{\lambda}(p)$  and  $\tilde{\mathscr{D}}_{\lambda_1}(p) \cap \tilde{\mathscr{D}}_{\lambda_2}(p) = \emptyset$  for arbitrary distinct two  $\lambda_1, \lambda_2 \in \Lambda$  and any  $p \in D$ . Each  $\tilde{\mathscr{D}}_{\lambda}$  is called a *connected component* of  $\tilde{\mathscr{D}}$ .

Let  $\tilde{\mathscr{D}}$  be a continuous, complete, separated many-valued one-dimensional distribution on D. Then we see that if there exists a positive integer  $n_0 \in \mathbb{N}$  satisfying  $\sharp \tilde{\mathscr{D}}(p_0) = n_0$  for some  $p_0 \in D$ , then  $\sharp \tilde{\mathscr{D}}(p) = n_0$  for any  $p \in D$ . If such a positive integer exists, then  $\tilde{\mathscr{D}}$  is in particular called  $n_0$ -valued or *finitely many-valued*. We see that if  $\tilde{\mathscr{D}}$  is  $n_0$ -valued and pointwise separable, then there exists a divisor  $n_{\tilde{\mathscr{D}}}$  of  $n_0$  such that any connected component of  $\tilde{\mathscr{D}}$  is  $n_{\tilde{\mathscr{D}}}$ -valued.

Let  $\hat{\mathscr{D}}$  be a continuous, complete, pointwise separable  $n_0$ -valued one-dimensional distribution on a domain D for some  $n_0 \in \mathbb{N}$  and suppose that there exists an isolated complement  $p_0$  of D for S, i.e.,  $p_0$  is a point of  $S \setminus D$  such that a punctured neighborhood of  $p_0$  in S is contained in D. Then  $p_0$  may be an isolated singularity of  $\tilde{\mathscr{D}}$ , i.e., it is possible that  $\tilde{\mathscr{D}}$  may not be completely extended to  $p_0$ . Let (x, y) be local coordinates on a neighborhood of  $p_0$  such that  $p_0$  corresponds to (0,0) and  $r_0$  a positive number satisfying  $\{0 < x^2 + y^2 < r_0^2\} \subset D$ . Let  $\Phi_{\tilde{\mathscr{D}};p_0}$  denote the set of the continuous functions on  $(0, r_0) \times \mathbb{R}$  such that for each  $\phi_{\tilde{\mathscr{D}};p_0} \in \Phi_{\tilde{\mathscr{D}};p_0}$  and each  $(r, \theta) \in (0, r_0) \times \mathbb{R}$ , there exists a distribution element  $(\mathscr{D}, U) \subset (\tilde{\mathscr{D}}, D)$  satisfying  $(r \cos \theta, r \sin \theta) \in U$  and the condition that for any  $(r', \theta') \in (0, r_0) \times (\theta - \pi/2, \theta + \pi/2)$  satisfying  $(r' \cos \theta', r' \sin \theta') \in U$ ,

$$\boldsymbol{U}_{\phi_{\tilde{\mathscr{D}};p_0}(r',\theta')} = \cos\phi_{\tilde{\mathscr{D}};p_0}(r',\theta')\frac{\partial}{\partial x} + \sin\phi_{\tilde{\mathscr{D}};p_0}(r',\theta')\frac{\partial}{\partial y} \in \mathscr{D}$$

holds at  $(r' \cos \theta', r' \sin \theta')$ . We see that there exists an integer  $m_0 \in \mathbb{Z}$  satisfying

$$m_0 = \frac{\phi_{\widetilde{\mathscr{D}};p_0}(r,\theta+2n_0\pi) - \phi_{\widetilde{\mathscr{D}};p_0}(r,\theta)}{\pi}$$

for any  $\phi_{\tilde{\mathscr{D}};p_0} \in \Phi_{\tilde{\mathscr{D}};p_0}$  and any  $(r,\theta) \in (0,r_0) \times \mathbb{R}$ . Since  $\tilde{\mathscr{D}}$  is pointwise separable, we see that the integer  $m_0$  is uniquely determined. The number

$$\operatorname{ind}_{p_0}(\tilde{\mathscr{D}}) := \frac{m_0}{2n_0}$$

is called the *index* of  $p_0$  with respect to  $\hat{\mathcal{D}}$ .

**REMARK.** The definition of  $\operatorname{ind}_{p_0}(\tilde{\mathscr{D}})$  does not depend on the choice of local coordinates (x, y).

REMARK. If  $n_0 = 1$ , then we see that  $\tilde{\mathscr{D}}$  may be considered as a continuous onedimensional distribution in the usual sense and that  $\operatorname{ind}_{p_0}(\tilde{\mathscr{D}})$  is equal to the index of  $p_0$  with respect to  $\tilde{\mathscr{D}}$  also in the usual sense. REMARK. We set

$$m_{\widetilde{\mathscr{D}}} := rac{\phi_{\widetilde{\mathscr{D}};p_0}(r, heta+2n_{\widetilde{\mathscr{D}}}\pi)-\phi_{\widetilde{\mathscr{D}};p_0}(r, heta)}{\pi}$$

for  $\phi_{\widehat{\mathscr{D}};p_0} \in \Phi_{\widehat{\mathscr{D}};p_0}$  and  $(r,\theta) \in (0,r_0) \times \mathbb{R}$ . Then  $m_{\widehat{\mathscr{D}}}$  is an integer such that  $m_{\widehat{\mathscr{D}}}$  and  $n_{\widehat{\mathscr{D}}}$  are relatively prime. The number  $m_{\widehat{\mathscr{D}}}/2n_{\widehat{\mathscr{D}}}$  is the index of  $p_0$  with respect to any connected component of  $\widehat{\mathscr{D}}$  and equal to  $ind_{p_0}(\widehat{\mathscr{D}})$ .

**REMARK.** If we adopt the above definition of the index of an isolated singularity, then referring to [7, pp. 112–113], we may obtain an analogue of Hopf-Poincaré's theorem for a continuous, complete, pointwise separable finitely many-valued one-dimensional distribution.

#### 3. Symmetric tensor fields.

Let *n* be a positive integer and T a smooth, symmetric tensor field of type (0, n) on a domain *D* of  $\mathbb{R}^2$ . Then T is represented as follows:

$$\mathbf{T} = \sum_{i=0}^{n} \binom{n}{i} \mathbf{T}_{i} dx^{n-i} dy^{i},$$

where  $T_i$  is a smooth function on *D*. For a number  $\phi \in \mathbf{R}$  and a point  $p \in D$ , we set

$$\hat{\mathrm{T}}_p(\boldsymbol{\phi}) := \mathrm{T}_p(\boldsymbol{U}_{\boldsymbol{\phi}}, \dots, \boldsymbol{U}_{\boldsymbol{\phi}}).$$

Then

$$\hat{\mathbf{T}}_p(\phi) = \sum_{i=0}^n \binom{n}{i} \mathbf{T}_i(p) \cos^{n-i} \phi \sin^i \phi.$$

A one-dimensional subspace *L* of the tangent plane at  $p \in D$  is called a *critical direction* of T at *p* if there exists a critical point  $\phi_0$  of  $\hat{T}_p$  satisfying  $U_{\phi_0}(p) \in L$ . A tensor field T is called *umbilical* at *p* or *p* is called an *umbilical point* of T if  $\hat{T}_p$  is constant, i.e., if any one-dimensional subspace of the tangent plane at *p* is a critical direction of T. The set of the umbilical points of T is denoted by Umb(T). An umbilical point  $p_0$  of T is called *isolated* if  $p_0$  is an isolated complement of  $D \setminus \text{Umb}(T)$ . There exists a continuous, complete, pointwise separable, finitely many-valued one-dimensional distribution  $\tilde{\mathscr{D}}_T$  on a neighborhood *U* of each point of  $D \setminus \text{Umb}(T)$  formed by critical directions of T at each  $p \in U$ . If n = 1 or 2, then  $\tilde{\mathscr{D}}_T$  is always well-defined on  $D \setminus \text{Umb}(T)$  and consists of one or two continuous one-dimensional distributions are perpendicular to each other at any point with respect to the Euclidean metric on  $D \setminus \text{Umb}(T)$ . On the other hand, if  $n \ge 3$ , then it is possible that  $\tilde{\mathscr{D}}_T$  may not be well-defined on  $D \setminus \text{Umb}(T)$ .

For a smooth function f on D and each positive integer n, we have defined a symmetric tensor field  $d^n f$  of type (0,n) as in (1). The following are examples of  $\tilde{\mathscr{D}}_{d^n f}$ .

EXAMPLE. We see that  $\hat{\mathscr{D}}_{d^1f}$  is just the continuous one-dimensional distribution given by the gradient vector field of f and that  $\tilde{\mathscr{D}}_{d^2f}$  consists of one or two continuous one-dimensional distributions obtained from one-dimensional eigenspaces of Hessian of f at each point.

EXAMPLE. Let f be a harmonic function on D, i.e., let f satisfy  $\partial^2 f / \partial x^2 + \partial^2 f / \partial y^2 \equiv 0$  on D. Then noticing

$$(\widehat{d^n f})(\phi) = \frac{\partial^n f}{\partial x^n} \cos n\phi + \frac{\partial^n f}{\partial x^{n-1} \partial y} \sin n\phi,$$

we see that for each  $p \in D \setminus \text{Umb}(d^n f)$ , there exists a number  $\alpha_p \in \mathbf{R}$  such that each critical point of  $(\widehat{d^n f})_p$  is represented by  $\alpha_p + m\pi/n$  for some integer  $m \in \mathbf{Z}$ . Therefore we see that there exists a continuous, complete, pointwise separated *n*-valued one-dimensional distribution  $\widehat{\mathscr{D}}_{d^n f}$  on  $D \setminus \text{Umb}(d^n f)$ . Suppose that f is a spherical harmonic function of degree k > n. Then we may suppose  $D = \mathbf{R}^2$  and we see that (0,0) is the only umbilical point of  $d^n f$  on  $\mathbf{R}^2$ . In Section 4, we shall see that the index  $\operatorname{ind}_{(0,0)}(\widehat{\mathscr{D}}_{d^n f})$  of (0,0) with respect to  $\widehat{\mathscr{D}}_{d^n f}$  is equal to 1 - k/n. Therefore we see that  $n_{\widehat{\mathscr{D}}_{d^n f}}$  is equal to n/(2k,n), where (2k,n) is the greatest common divisor of 2k and *n*. In particular, we see that if 2k/n is not any integer, then  $\widehat{\mathscr{D}}_{d^n f}$  does not consist of *n* continuous one-dimensional distributions on  $\mathbf{R}^2 \setminus \{(0,0)\}$  and that if 2k and *n* are relatively prime, then  $\widehat{\mathscr{D}}_{d^n f}$  is connected.

EXAMPLE. We set  $f := x^4 + y^4$ . Then for any  $(x, y) \in \mathbf{R}^2$ , we obtain

$$\frac{1}{24}(\widehat{d^3f})_{(x,y)}(\phi) = x\cos^3\phi + y\sin^3\phi.$$

Therefore we obtain

$$\frac{1}{72}\frac{d(d^3\hat{f})_{(\cos\theta,\sin\theta)}}{d\phi}(\phi) = -\cos\phi\sin\phi\cos(\theta+\phi).$$

We see that (0,0) is the only umbilical point of  $d^3 f$  on  $\mathbb{R}^2$  and that there exists a connected, continuous, complete, pointwise separable (but not pointwise separated) 3-valued one-dimensional distribution  $\tilde{\mathscr{D}}_{d^3f}$  on  $\mathbb{R}^2 \setminus \{(0,0)\}$  such that the index  $\operatorname{ind}_{(0,0)}(\tilde{\mathscr{D}}_{d^3f})$  of (0,0) with respect to  $\tilde{\mathscr{D}}_{d^3f}$  is equal to -1/3.

REMARK. We set  $f := x^4 + 18x^2y^2 + 2y^4$ . Then we may suppose  $D = \mathbf{R}^2$ . For any  $(x, y) \in \mathbf{R}^2$ , we obtain

$$\frac{1}{24}(\widehat{d^3f})_{(x,y)}(\phi) = x\cos^3\phi + 3y\cos^2\phi\sin\phi + 3x\cos\phi\sin^2\phi + 2y\sin^3\phi.$$

Therefore we obtain

$$\frac{1}{72}\frac{d(d^3f)_{(\cos\theta,\sin\theta)}}{d\phi}(\phi) = \cos\theta\sin\phi(\cos^2\phi - \sin^2\phi) + \sin\theta\cos^3\phi$$

We see that (0,0) is the only umbilical point of  $d^3 f$  on  $\mathbb{R}^2$ . We shall show that  $\tilde{\mathcal{D}}_{d^3 f}$  may not be well-defined on  $\mathbb{R}^2 \setminus \{(0,0)\}$ . We see that there exist

- (a) a number  $\theta_0 \in (0, \pi/2)$ ,
- (b) a continuous increasing function  $\eta_1$  on  $\overline{I}_1 := [-\pi/2, \theta_0]$ ,
- (c) a continuous decreasing function  $\eta_2$  on  $\overline{I}_2 := [-\theta_0, \theta_0]$ , and
- (d) a continuous increasing function  $\eta_3$  on  $\overline{I}_3 := [-\theta_0, \pi/2]$

satisfying

 $\frac{d(\widehat{d^3f})_{(\cos\theta,\sin\theta)}}{d\phi}(\eta_i(\theta)) = 0$ 

for any  $\theta \in \overline{I}_i$  and

$$\begin{array}{ll} \eta_1(-\pi/2) = -\pi/2, & \eta_1(\theta_0) = \eta_2(\theta_0) \in (-\pi/2,0), \\ \eta_3(\pi/2) = \pi/2, & \eta_2(-\theta_0) = \eta_3(-\theta_0) \in (0,\pi/2). \end{array}$$

In addition, we see that if a number  $\phi_0 \in [-\pi/2, \pi/2)$  satisfies

$$\frac{d(\widehat{d^3f})_{(\cos\theta,\sin\theta)}}{d\phi}(\phi_0) = 0$$

for some  $\theta \in [-\pi/2, \pi/2)$ , then  $\phi_0 = \eta_i(\theta)$  for some  $i \in \{1, 2, 3\}$ . Therefore we see that  $\tilde{\mathscr{D}}_{d^3f}$  may not be well-defined on  $\mathbb{R}^2 \setminus \{(0, 0)\}$ .

Let f be a smooth function on a domain D of  $\mathbb{R}^2$  and  $p_0$  an isolated umbilical point of  $d^n f$  such that there exists a neighborhood U of  $p_0$  in D satisfying  $U \cap \text{Umb}(d^n f) = \{p_0\}$  and the condition that there exists a continuous, complete, pointwise separable, finitely many-valued one-dimensional distribution  $\tilde{\mathscr{D}}_{d^n f}$  on  $U \setminus \{p_0\}$  formed by all the critical directions of  $d^n f$  at each point of  $U \setminus \{p_0\}$  (for example, if the sum of the multiplicities of the critical points of  $(\widehat{d^n f})_p$  in  $[0, \pi)$  does not depend on the choice of  $p \in U \setminus \{p_0\}$  and if f is real-analytic, then this condition is satisfied). In the following sections, we shall study the behavior of  $\tilde{\mathscr{D}}_{d^n f}$  around  $p_0$  and

CONJECTURE 3.1. The index  $\operatorname{ind}_{p_0}(\tilde{\mathcal{D}}_{d^n f})$  of  $p_0$  with respect to  $\tilde{\mathcal{D}}_{d^n f}$  is not more than one.

REMARK. We set  $\mathbf{V}_{f}^{(n)} := \operatorname{Re}(\partial_{\overline{z}}^{n} f) \partial / \partial x + \operatorname{Im}(\partial_{\overline{z}}^{n} f) \partial / \partial y$  as in Section 1. We obtain

$$\boldsymbol{V}_{f}^{(1)} = \frac{1}{2} \left\{ \frac{\partial f}{\partial x} \frac{\partial}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial}{\partial y} \right\}.$$

We see that  $\mathbf{V}_{f}^{(1)}$  is the half of the gradient vector field of f. Therefore Conjecture 3.1 for n = 1 is equivalent to Loewner's conjecture for n = 1. The following holds:

$$\boldsymbol{V}_{f}^{(2)} = \frac{1}{4} \left\{ \left( \frac{\partial^{2} f}{\partial x^{2}} - \frac{\partial^{2} f}{\partial y^{2}} \right) \frac{\partial}{\partial x} + 2 \frac{\partial^{2} f}{\partial x \partial y} \frac{\partial}{\partial y} \right\}.$$

Then we see that for a point  $p \in D$ , the following are mutually equivalent:

- (a) *p* is a zero point of  $\boldsymbol{V}_{f}^{(2)}$ ;
- (b) at p, Hessian Hess<sub>f</sub> of f is represented by the unit matrix up to a constant;
- (c) *p* is an umbilical point of  $d^2 f$ .

In addition, noticing that for any  $\phi \in \mathbf{R}$ ,

$$-\left(\frac{\partial^2 f}{\partial x^2} - \frac{\partial^2 f}{\partial y^2}\right)\sin\phi + 2\frac{\partial^2 f}{\partial x \partial y}\cos\phi = 2\left\langle \operatorname{Hess}_f \begin{pmatrix} \cos(\phi/2)\\\sin(\phi/2) \end{pmatrix}, \begin{pmatrix} -\sin(\phi/2)\\\cos(\phi/2) \end{pmatrix} \right\rangle$$
$$= \frac{d(\widehat{d^2 f})}{d\phi}(\phi/2)$$

(where  $\langle , \rangle$  is the scalar product in  $\mathbf{R}^2$ ), we see that for a number  $\phi \in \mathbf{R}$  and at a point of *D*, the following are mutually equivalent:

- (a)  $\boldsymbol{V}_{f}^{(2)}$  is represented by  $\boldsymbol{U}_{\phi}$  up to a constant;
- (b)  $t(\cos(\phi/2), \sin(\phi/2))$  is an eigenvector of Hess<sub>f</sub>;
- (c)  $\boldsymbol{U}_{\phi/2}$  is in a critical direction of  $d^2 f$ .

In particular, we see that the index of an isolated zero point  $p_0$  of  $V_f^{(2)}$  is twice the index of an isolated umbilical point  $p_0$  of  $d^2 f$ . Hence we see that Conjecture 3.1 for n = 2 is equivalent to Loewner's conjecture for n = 2. However, if  $n \ge 3$ , then  $\operatorname{Re}(\partial_{\overline{z}}^n f) = \operatorname{Im}(\partial_{\overline{z}}^n f) = 0$  at a point do not always imply that  $d^n f$  is umbilical at the same point: if n is even, then for a polynomial

$$f(x,y) := x^{n}(1+x) + x^{n-1}y - (-1)^{(n-2)/2}xy^{n-1}(1+y) - (-1)^{n/2}y^{n},$$

we obtain

$$\boldsymbol{V}_{f}^{(n)} = \frac{n!}{2^{n}} \left( (n+1)x \frac{\partial}{\partial x} - ny \frac{\partial}{\partial y} \right),$$

which implies that (0,0) is a (unique) zero point of  $\mathbf{V}_{f}^{(n)}$ , while there exists no umbilical point of  $d^{n}f$ ; if *n* is odd, then for a polynomial

$$f(x,y) := x^{n}(1+x) + x^{n-1}y - (-1)^{(n-1)/2}xy^{n-1} - (-1)^{(n-1)/2}y^{n}(1+y),$$

we obtain the same conclusion. In addition, if  $n \ge 3$ , then an isolated umbilical point of  $d^n f$  is not always an isolated zero point of  $\mathbf{V}_f^{(n)}$ : if we set  $f(x,y) := (x^2 + y^2)^l$ , where l := [n/2] + 1, then (0,0) is a unique umbilical point of  $d^n f$  and  $\tilde{\mathcal{D}}_{d^n f}$  is well-defined on  $\mathbf{R}^2 \setminus \{(0,0)\}$ , while  $\mathbf{V}_f^{(n)}$  is identically zero. Hence we see that the solution of one of Conjecture 3.1 and Loewner's conjecture for  $n \ge 3$  does not give any solution of the other.

In the next section, we shall study and affirmatively solve Conjecture 3.1 in the case where f is a homogeneous polynomial. The following lemma shall be useful in the next section.

LEMMA 3.2. Let  $\phi_0$ , a, b be real numbers and (x', y') orthogonal coordinates on  $\mathbb{R}^2$  satisfying

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \phi_0 & -\sin \phi_0 \\ \sin \phi_0 & \cos \phi_0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}$$

at any point of  $\mathbf{R}^2$ . Then for any  $\phi \in \mathbf{R}$ ,

$$\sum_{i=0}^{n} \binom{n}{i} \frac{\partial^{n} f}{\partial x^{n-i} \partial y^{i}}(x, y) \cos^{n-i} \phi \sin^{i} \phi$$
$$= \sum_{i=0}^{n} \binom{n}{i} \frac{\partial^{n} f}{\partial (x')^{n-i} \partial (y')^{i}}(x', y') \cos^{n-i} (\phi + \phi_{0}) \sin^{i} (\phi + \phi_{0}).$$

We may prove Lemma 3.2 by induction with respect to  $n \in \mathbf{N}$ .

#### 4. Homogeneous polynomials.

# 4.1. Results.

Let *n* be a positive integer and *g* a homogeneous polynomial of degree k > n such that there exists a continuous, complete, pointwise separable, finitely many-valued one-dimensional distribution  $\tilde{\mathscr{D}}_{d^n g}$  on  $\mathbb{R}^2 \setminus \{(0,0)\}$  formed by all the critical directions of  $d^n g$  at each point of  $\mathbb{R}^2 \setminus \text{Umb}(d^n g)$ . In order to grasp the behavior of  $\tilde{\mathscr{D}}_{d^n g}$  around (0,0), we shall first notice a point at which the "position vector field"  $x\partial/\partial x + y\partial/\partial y$  is in a critical direction of  $d^n g$ .

For each  $\theta \in \mathbf{R}$ , set  $\tilde{g}(\theta) := g(\cos \theta, \sin \theta)$ . Then by Euler's identity, we obtain

LEMMA 4.1. For any  $\theta \in \mathbf{R}$ ,

$$(\widehat{d^n g})_{(\cos\theta,\sin\theta)}(\theta) = \left\{ \prod_{i=0}^{n-1} (k-i) \right\} \widetilde{g}(\theta),$$
(3)

$$\frac{d(\widehat{d^n g})_{(\cos\theta,\sin\theta)}}{d\phi}(\theta) = \left\{\frac{n}{k}\prod_{i=0}^{n-1}(k-i)\right\}\frac{d\tilde{g}}{d\theta}(\theta).$$
(4)

By Lemma 4.1, we see that for a number  $\theta_0$ , the position vector field is in a critical direction of  $d^n g$  at  $(\cos \theta_0, \sin \theta_0)$  if and only if  $\theta_0$  satisfies  $(d\tilde{g}/d\theta)(\theta_0) = 0$ . We denote by  $R_g$  the set of the numbers at which  $d\tilde{g}/d\theta = 0$ . Let  $\eta$  be a continuous function on **R** such that for any  $\theta \in \mathbf{R}$ ,  $U_{\eta(\theta)}$ is in a critical direction of  $d^n g$  at  $(\cos \theta, \sin \theta)$  and  $E_{d^n g}$  the set of such continuous functions as  $\eta$ . Let  $R(d^n g)$  be the set of the numbers  $\theta_0$  such that there exists an element  $\eta_{\theta_0} \in E_{d^n g}$  satisfying  $\theta_0 = \eta_{\theta_0}(\theta_0)$ . Then  $R(d^n g) \subset R_g$  holds. We are interested in the relation between the function  $\theta$ (of one variable  $\theta$ ) and  $\eta_{\theta_0}$  around  $\theta_0 \in R(d^n g)$ .

Suppose  $R_g = \mathbf{R}$ . Then k is even and g is represented by  $(x^2 + y^2)^{k/2}$  up to a constant. We obtain  $\theta \in E_{d^n g}$ , i.e.,  $R(d^n g) = \mathbf{R}$ . In addition, by Lemma 3.2, we see that  $\tilde{\mathscr{D}}_{d^n g}$  is pointwise separated. Therefore we obtain  $\operatorname{ind}_{(0,0)}(\tilde{\mathscr{D}}_{d^n g}) = 1$ .

In the following, suppose  $R_g \neq \mathbf{R}$ . Then for each  $\theta_0 \in R_g$ , there exists a positive integer  $\mu$  satisfying  $(d^{\mu+1}\tilde{g}/d\theta^{\mu+1})(\theta_0) \neq 0$ . The minimum of such integers is denoted by  $\mu_g(\theta_0)$ . An element  $\theta_0 \in R_g$  is said to be

(a) *related* if  $\theta_0$  satisfies  $\tilde{g}(\theta_0) = 0$  or if  $\mu_g(\theta_0)$  is odd;

(b) *non-related* if  $\theta_0$  satisfies  $\tilde{g}(\theta_0) \neq 0$  and if  $\mu_g(\theta_0)$  is even. In the next subsection, we shall prove

LEMMA 4.2. Let  $\theta_0$  be an element of  $R(d^ng)$  and  $I_{\theta_0}$  an open interval satisfying  $I_{\theta_0} \cap R(d^ng) = \{\theta_0\}$ . Then the following hold:

(a) if  $\theta_0$  is related, then there exists a nonzero number  $c_g^{(n)}(\theta_0)$  satisfying

$$c_{q}^{(n)}(\theta_{0})(\theta - \eta_{\theta_{0}}(\theta))(\theta - \theta_{0}) > 0$$

for any  $\theta \in I_{\theta_0} \setminus \{\theta_0\}$  and any  $\eta_{\theta_0} \in E_{d^n g}$  satisfying  $\eta_{\theta_0}(\theta_0) = \theta_0$ ;

(b) if  $\theta_0$  is non-related, then there exists a nonzero number  $\tilde{c}_g^{(n)}(\theta_0)$  satisfying

$$\tilde{c}_{a}^{(n)}(\theta_{0})(\theta-\eta_{\theta_{0}}(\theta))>0$$

for any  $\theta \in I_{\theta_0} \setminus \{\theta_0\}$  and  $\eta_{\theta_0} \in E_{d^n q}$  satisfying  $\eta_{\theta_0}(\theta_0) = \theta_0$ .

For a related element  $\theta_0 \in R(d^n g)$ , the sign of  $c_g^{(n)}(\theta_0)$  in (a) of Lemma 4.2 is called the *sign* of  $\theta_0$  and denoted by  $\operatorname{sign}_g^{(n)}(\theta_0)$ .

For each element  $\theta_0 \in R(d^n g)$  and the interval  $I_{\theta_0}$ , we may suppose that if  $\eta_1$ ,  $\eta_2$  are elements of  $E_{d^n g}$  satisfying  $\eta_1 = \eta_2$  at some point  $\theta$  of  $I_{\theta_0} \setminus \{\theta_0\}$ , then  $\eta_1 \equiv \eta_2$  on the connected component of  $I_{\theta_0} \setminus \{\theta_0\}$  containing  $\theta$ . Then there exists a positive integer  $N_g^{(n)}(\theta_0) \in \mathbf{N}$  such that  $N_g^{(n)}(\theta_0)^2$  is the number of the elements  $\eta \in E_{d^n g}$  restricted on  $I_{\theta_0}$  satisfying  $\eta(\theta_0) = \theta_0$ .

Let  $R_+(d^n g)$  (respectively,  $R_-(d^n g)$ ) be the set of the related elements of  $R(d^n g)$  with positive (respectively, negative) sign and for  $\varepsilon \in \{+, -\}$ , we set

$$N_{arepsilon}(d^ng):=\sum_{ heta_0\in R_{arepsilon}(d^ng)\cap [ heta, heta+\pi)}N_g^{(n)}( heta_0).$$

In the next subsection, we shall prove the following:

THEOREM 4.3. The index  $\operatorname{ind}_{(0,0)}(\tilde{\mathscr{D}}_{d^nq})$  is represented as follows:

$$\operatorname{ind}_{(0,0)}(\tilde{\mathscr{D}}_{d^ng}) = 1 - \frac{N_+(d^ng) - N_-(d^ng)}{N_{d^ng}},$$

where  $N_{d^n q}$  is a positive integer such that  $\tilde{\mathcal{D}}_{d^n q}$  is  $N_{d^n q}$ -valued.

In addition, we shall prove

LEMMA 4.4.  $N_+(d^n g) \ge N_-(d^n g)$ .

**REMARK.** In [1], we may find the prototypes of Lemma 4.2, Theorem 4.3 and Lemma 4.4, respectively. In [4], we proved Lemma 4.2 for n = 2.

By Theorem 4.3 together with Lemma 4.4, we obtain

$$\operatorname{ind}_{(0,0)}(\hat{\mathscr{D}}_{d^ng}) \leq 1. \tag{5}$$

From (5), we obtain the affirmative answer to Conjecture 3.1 in the case where f is a homogeneous polynomial. Indeed, (5) is a reason why we have reached Conjecture 3.1.

#### 4.2. Proofs.

Let *n*, *g* be as in the previous subsection. For numbers  $\theta, \phi \in \mathbf{R}$ , we set

$$\tilde{D}_{d^n g}(\theta, \phi) := \frac{1}{n} \frac{d(\tilde{d^n g})_{(\cos \theta, \sin \theta)}}{d\phi}(\phi).$$
(6)

Then for any  $\eta \in E_{d^n g}$  and any  $\theta \in \mathbf{R}$ ,  $\tilde{D}_{d^n g}(\theta, \eta(\theta)) = 0$ . In the following, suppose  $R_q \neq \mathbf{R}$ .

Suppose that for  $\theta_0 \in R_g$ ,  $d^n g$  is not umbilical at  $(\cos \theta_0, \sin \theta_0)$ . Then there exists a positive integer v satisfying  $(\partial^v \tilde{D}_{d^n g} / \partial \phi^v)(\theta_0, \theta_0) \neq 0$ . The minimum of such integers is denoted by  $v_g^{(n)}(\theta_0)$ . Suppose that for  $\theta_0 \in R_g$ ,  $d^n g$  is umbilical at  $(\cos \theta_0, \sin \theta_0)$ . Then we write  $v_g^{(n)}(\theta_0) = \infty$ . We obtain a map  $v_q^{(n)}$  from  $R_g$  into  $\mathbf{N} \cup \{\infty\}$ . We immediately obtain

- LEMMA 4.5. For  $\theta_0 \in R_a$ , the following are mutually equivalent:
- (a)  $\theta_0 \in R_g \setminus R(d^1g);$
- (b)  $\tilde{g}(\theta_0) = 0;$
- (c)  $v_g^{(1)}(\theta_0) = \infty$ .

For a related element  $\theta_0 \in R_g$ , it is said that the *critical sign* of  $\theta_0$  is positive (respectively, negative) if the following holds:

$$\tilde{g}(\theta_0) rac{d^{\mu_g(\theta_0)+1} \tilde{g}}{d \theta^{\mu_g(\theta_0)+1}}(\theta_0) \leq 0 \ ( ext{respectively}, > 0).$$

The critical sign of  $\theta_0$  is denoted by  $c\text{-sign}_q(\theta_0)$ . We shall prove

- LEMMA 4.6. Suppose  $n \ge 2$  and let  $\theta_0$  be an element of  $R_g$  satisfying  $\tilde{g}(\theta_0) \neq 0$ . Then
- (a)  $\theta_0 \in R(d^ng)$  holds if and only if  $v_g^{(n)}(\theta_0)$  is an odd integer;
- (b) if  $\theta_0 \in R_g \setminus R(d^n g)$ , then  $\theta_0$  is related and satisfies  $\operatorname{c-sign}_g(\theta_0) = -$  and  $v_g^{(n)}(\theta_0) = \infty$ .

PROOF. By (4), (6) and the implicit function theorem, we obtain  $\theta_0 \in R(d^n g)$  for an element  $\theta_0$  of  $R_q$  satisfying  $v_q^{(n)}(\theta_0) = 1$ .

We shall prove  $v_g^{(n)}(\theta_0) = 1$  for an element  $\theta_0$  of  $R_g$  satisfying  $\tilde{g}(\theta_0) \neq 0$  and  $\mu_g(\theta_0) \ge 2$ . Noticing Lemma 3.2, we may suppose  $\theta_0 = 0$ . If we represent g as  $g = \sum_{i=0}^k a_i x^{k-i} y^i$ , then we obtain  $a_0 \neq 0$  by  $\tilde{g}(0) \neq 0$ , and we obtain  $a_1 = 0$  by  $0 \in R_g$ . In addition, by

$$\frac{d^2\tilde{g}}{d\theta^2}(0) = 2a_2 - ka_0 \tag{7}$$

together with  $\mu_g(0) \ge 2$ , we obtain

$$a_2 = \frac{k}{2}a_0. \tag{8}$$

The following hold:

$$\frac{\partial \tilde{D}_{d^{n_g}}}{\partial \phi}(0,0) = -\frac{\partial^n g}{\partial x^n}(1,0) + (n-1)\frac{\partial^n g}{\partial x^{n-2}\partial y^2}(1,0),\tag{9}$$

$$\frac{\partial^n g}{\partial x^n}(1,0) = \left\{ \prod_{i=0}^{n-1} (k-i) \right\} a_0, \tag{10}$$

$$\frac{\partial^n g}{\partial x^{n-2} \partial y^2}(1,0) = \left\{ \frac{2}{k(k-1)} \prod_{i=0}^{n-1} (k-i) \right\} a_2.$$
(11)

Applying (10) and (11) to (9), we obtain

$$\frac{\partial \tilde{D}_{d^{n_{g}}}}{\partial \phi}(0,0) = \left\{\prod_{i=0}^{n-1} (k-i)\right\} \left\{-a_{0} + \frac{2(n-1)}{k(k-1)}a_{2}\right\}.$$
(12)

By (8) together with (12), we obtain

$$\frac{\partial \tilde{D}_{d^n g}}{\partial \phi}(0,0) = -\left\{\frac{1}{k-1}\prod_{i=0}^n (k-i)\right\}a_0.$$

Since  $a_0 \neq 0$ , we obtain  $v_g^{(n)}(0) = 1$ .

We shall prove  $v_g^{(n)}(0) = 1$  if 0 is a related element of  $R_g$  satisfying  $\tilde{g}(0) \neq 0$  and  $c\text{-sign}_g(0) = +$ . By (7) together with  $c\text{-sign}_g(0) = +$ , we obtain

A conjecture in relation to Loewner's conjecture

$$\frac{a_2}{a_0} \le \frac{k}{2}.\tag{13}$$

By (12), (13) and n < k, we obtain  $\left(\partial \tilde{D}_{d^n g} / \partial \phi\right)(0,0) \neq 0$ , i.e.,  $v_g^{(n)}(0) = 1$ . We shall prove  $0 \notin R(d^n g)$  if 0 is a related element of  $R_g$  satisfying c-sign<sub>g</sub>(0) = - and  $v_g^{(n)}(0) = \infty$ . We see that *n* is even and we obtain

$$a_i = \begin{cases} 0, & \text{if } i \in \{1, 3, \dots, n-1\}, \\ C(n, k, i)a_0, & \text{if } i \in \{0, 2, \dots, n\}, \end{cases}$$

where

$$C(n,k,i) := \binom{n/2}{i/2} \binom{k}{i} / \binom{n}{i}.$$

Therefore we obtain

$$\begin{split} (\widehat{d^n g})_{(\cos\theta,\sin\theta)}(\phi) \\ &= \left\{ \prod_{i=0}^{n-1} (k-i) \right\} a_0 \cos^{k-n}\theta \\ &+ \left\{ A_2 \cos^{n-1}\phi \sin\phi + \alpha(\phi) \sin^2\phi \right\} \cos^{k-n-1}\theta \sin\theta + \beta(\theta,\phi) \sin^2\theta, \end{split}$$

where  $A_2 \in \mathbf{R} \setminus \{0\}$  and  $\alpha, \beta$  are smooth functions. In addition, we obtain

$$n\tilde{D}_{d^{n}g}(\theta,\phi) = \left\{ (A_{2}\cos^{n}\phi + \hat{\alpha}(\phi)\sin\phi)\cos^{k-n-1}\theta + \frac{\partial\beta}{\partial\phi}(\theta,\phi)\sin\theta \right\}\sin\theta,$$

where  $\hat{\alpha}$  is a smooth function. Hence we obtain  $0 \notin R(d^n g)$ .

Let 0 be a related element of  $R_g$  satisfying c-sign<sub>g</sub>(0) = - and  $v_g^{(n)}(0) \in \mathbf{N} \setminus \{1\}$ . Then we obtain

$$a_{i} = \begin{cases} 0, & \text{if } i \in \{1, 3, \dots, 2\left[\left(\mathbf{v}_{g}^{(n)}(0) + 1\right)/2\right] - 1\}, \\ C(n, k, i)a_{0}, & \text{if } i \in \{0, 2, \dots, 2\left[\mathbf{v}_{g}^{(n)}(0)/2\right]\} \end{cases}$$

and

$$a_{v_g^{(n)}(0)+1} \neq \begin{cases} 0, & \text{if } v_g^{(n)}(0) \text{ is even} \\ C(n,k,v_g^{(n)}(0)+1)a_0, & \text{if } v_g^{(n)}(0) \text{ is odd.} \end{cases}$$

Then we may represent  $ilde{D}_{d^ng}( heta,\phi)$  as

$$ilde{D}_{d^ng}( heta,\phi) = \sum_{i,j \geqq 0} B_{ij} heta^i \phi^j,$$

where  $B_{10} \neq 0$ ,  $B_{0j} = 0$  for  $j \in \{0, 1, \dots, v_g^{(n)}(0) - 1\}$  and  $B_{0v_g^{(n)}(0)} \neq 0$ . Therefore we obtain  $(\partial \tilde{D}_{d^n g} / \partial \theta)(0, 0) \neq 0$ . By the implicit function theorem, we see that there exist a positive number  $\varepsilon > 0$  and a smooth function  $\gamma$  of one variable satisfying

$$\gamma(\phi) = -\frac{B_{0v_g^{(n)}(0)}}{B_{10}}\phi^{v_g^{(n)}(0)} + o\left(\phi^{v_g^{(n)}(0)}\right)$$
(14)

and

$$\left\{(\theta,\phi)\in(-\varepsilon,\varepsilon)^2\,;\,\tilde{D}_{d^ng}(\theta,\phi)=0\right\}=\{(\gamma(\phi),\phi)\,;\,\phi\in(-\varepsilon,\varepsilon)\}.$$

Therefore if  $v_g^{(n)}(0)$  is odd, then 0 is an element of  $R(d^ng)$ ; if  $v_g^{(n)}(0)$  is even, then there does not exist any distribution as  $\tilde{\mathcal{D}}_{d^ng}$  on  $\mathbb{R}^2 \setminus \{(0,0)\}$ .

Hence we obtain Lemma 4.6.

REMARK. In [3], we may find the prototype of Lemma 4.6. In [4], we proved that for an element  $\theta_0$  of  $R_g$ ,  $\theta_0 \in R_g \setminus R(d^2g)$  holds if and only if  $\tilde{g}(\theta_0) \neq 0$  and  $v_g^{(2)}(\theta_0) = \infty$  hold.

PROOF OF LEMMA 4.2. Let  $\theta_0$  be an element of  $R(d^n g)$  satisfying  $v_g^{(n)}(\theta_0) = 1$ . Then by the implicit function theorem, we see that if  $\eta_{\theta_0}$  is an element of  $E_{d^n g}$  satisfying  $\eta_{\theta_0}(\theta_0) = \theta_0$ , then  $\eta_{\theta_0}$  is smooth at  $\theta_0$  and satisfies

$$\frac{d^{\mu}(\theta - \eta_{\theta_0})}{d\theta^{\mu}}(\theta_0) = \left\{ \frac{1}{k} \prod_{i=0}^{n-1} (k-i) \right\} \frac{d^{\mu+1}\tilde{g}}{d\theta^{\mu+1}}(\theta_0) \left/ \frac{\partial \tilde{D}_{d^n g}}{\partial \phi}(\theta_0, \theta_0) \right.$$
(15)

for any  $\mu \in \{0, 1, \dots, \mu_g(\theta_0)\}$ . Therefore we obtain Lemma 4.2.

Let 0 be an element of  $R(d^n g)$  satisfying  $\tilde{g}(0) \neq 0$  and  $v_g^{(n)}(0) \ge 2$ . Then 0 is related and  $v_g^{(n)}(0)$  is odd. Noticing (14), we obtain

$$\frac{B_{0v_{g}^{(n)}(0)}}{B_{10}}(\theta - \eta_{0}(\theta))\theta > 0$$
(16)

for any  $\theta \in I_0 \setminus \{0\}$  and  $\eta_0 \in E_{d^n g}$  satisfying  $\eta_0(0) = 0$ . Therefore we obtain Lemma 4.2.

Let 0 be an element of  $R(d^n g)$  satisfying  $\tilde{g}(0) = 0$  and  $v_g^{(n)}(0) = \infty$ . Then we see that there exists an integer  $i_0 > n$  satisfying  $a_i = 0$  for  $i \in \{0, 1, \dots, i_0 - 1\}$  and  $a_{i_0} \neq 0$ . Therefore we may represent  $\tilde{D}_{d^n g}$  as

$$ilde{D}_{d^ng}(oldsymbol{ heta}, \phi) = oldsymbol{ heta}^{i_0-n} \sum_{i \geqq n-1} ilde{D}_{d^ng}^{(i)}(oldsymbol{ heta}, \phi),$$

where  $\tilde{D}_{d^ng}^{(i)}$  is a homogeneous polynomial of degree *i* in two variables  $\theta$ ,  $\phi$ . We obtain  $\tilde{D}_{d^ng}^{(n-1)} \neq 0$ . If we represent  $\tilde{D}_{d^ng}^{(i)}$  as

$$ilde{D}^{(i)}_{d^ng}( heta,\phi) = \sum_{j=0}^i ilde{D}^{(i,j)}_{d^ng} heta^{i-j} \phi^j,$$

then we obtain  $\tilde{D}_{d^n g}^{(n-1,j_1)} \tilde{D}_{d^n g}^{(n-1,j_2)} \geq 0$  for arbitrary two  $j_1, j_2 \in \{0, 1, \dots, n-1\}$ . Then we obtain  $(\theta - \eta_0(\theta))\theta > 0$  for any  $\theta \in I_0 \setminus \{0\}$  and any  $\eta_0 \in E_{d^n g}$  satisfying  $\eta_0(0) = 0$ . Similarly, we see that if 0 is an element of  $R(d^n g)$  satisfying  $\tilde{g}(0) = 0$  and  $v_g^{(n)}(0) \in \mathbf{N}$ , then  $(\theta - \eta_0(\theta))\theta > 0$  for any  $\theta \in I_0 \setminus \{0\}$  and any  $\eta_0 \in E_{d^n g}$  satisfying  $\eta_0(0) = 0$ . Hence we obtain Lemma 4.2.

We shall prove

PROPOSITION 4.7. Let  $\theta_0$  be a related element of  $R(d^ng)$ . (a) If  $\tilde{g}(\theta_0) \neq 0$ , then the sign of the nonzero number

$$\delta_g^{(n)}(\theta_0) := \frac{d^{\mu_g(\theta_0)+1}\tilde{g}}{d\theta^{\mu_g(\theta_0)+1}}(\theta_0) \frac{\partial^{\nu_g^{(n)}(\theta_0)}\tilde{D}_{d^ng}}{\partial \phi^{\nu_g^{(n)}(\theta_0)}}(\theta_0,\theta_0)$$

gives the sign of  $\theta_0$ ;

(b) if  $\tilde{g}(\theta_0) = 0$ , then the sign of  $\theta_0$  is positive.

PROOF. Let  $\theta_0$  be a related element of  $R(d^ng)$  satisfying  $\tilde{g}(\theta_0) \neq 0$  and  $v_g^{(n)}(\theta_0) = 1$ . Then by (15), we obtain (a). Let 0 be a related element of  $R(d^ng)$  satisfying  $\tilde{g}(0) = 0$ . Then in the proof of Lemma 4.2, we have proved  $\operatorname{sign}_g^{(n)}(0) = +$ . Let 0 be a related element of  $R(d^ng)$  satisfying  $\tilde{g}(0) \neq 0$  and  $v_g^{(n)}(0) \geq 2$ . Then noticing (16), we see that the sign of the nonzero number  $B_{0v_g^{(n)}(0)}B_{10}$  gives the sign of 0. We obtain

$$B_{0m{\nu}_g^{(n)}(0)} = rac{1}{m{
u}_g^{(n)}(0)!} rac{\partial^{m{
u}_g^{(n)}(0)} ilde{D}_{d^ng}}{\partial \phi^{m{
u}_g^{(n)}(0)}}(0,0), \qquad B_{10} ilde{g}(0) > 0.$$

Since  $c\text{-sign}_g(0) = -$ , we see that the sign of  $\delta_g^{(n)}(0)$  gives the sign of 0. Hence we obtain Proposition 4.7.

**REMARK.** In [1], we may find the prototype of Proposition 4.7. In [4], we proved Proposition 4.7 for n = 2.

We shall prove

PROPOSITION 4.8. Let  $\theta_0$  be a related element of  $R(d^ng)$  satisfying  $c\text{-sign}_g(\theta_0) = +$ . Then  $\operatorname{sign}_g^{(n)}(\theta_0) = +$ .

PROOF. Let  $\theta_0$  be a related element of  $R(d^n g)$  with  $c\text{-sign}_g(\theta_0) = +$ . Suppose n = 1. Then we obtain

$$rac{\partial ilde{D}_{d^1g}}{\partial \phi}( heta_0, heta_0) = -k ilde{g}( heta_0).$$

Since  $c\text{-sign}_g(\theta_0) = +$ , we obtain  $\delta_g^{(1)}(\theta_0) > 0$ . Therefore from Proposition 4.7, we obtain  $\operatorname{sign}_g^{(1)}(\theta_0) = +$ . In the following, suppose  $n \ge 2$ . In addition, noticing (b) of Proposition 4.7, we may suppose  $\tilde{g}(\theta_0) \neq 0$ . Then since  $v_g^{(n)}(\theta_0) = 1$ , we may represent  $\delta_g^{(n)}(\theta_0)$  as

$$\delta_{g}^{(n)}(\theta_{0}) = \left(\tilde{g}(\theta_{0})\frac{d^{\mu_{g}(\theta_{0})+1}\tilde{g}}{d\theta^{\mu_{g}(\theta_{0})+1}}(\theta_{0})\right) \left(\frac{1}{\tilde{g}(\theta_{0})}\frac{\partial\tilde{D}_{d^{n}g}}{\partial\phi}(\theta_{0},\theta_{0})\right).$$
(17)

We obtain

$$(n-1)\frac{1}{\tilde{g}(\theta_0)}\frac{d^2\tilde{g}}{d\theta^2}(\theta_0) = \frac{k(k-1)}{\left\{\prod_{i=0}^{n-1}(k-i)\right\}} \left(\frac{1}{\tilde{g}(\theta_0)}\frac{\partial\tilde{D}_{d^ng}}{\partial\phi}(\theta_0,\theta_0)\right) + k(k-n).$$
(18)

Since c-sign<sub>*q*</sub>( $\theta_0$ ) = +, we obtain

$$rac{1}{ ilde{g}( heta_0)}rac{\partial ilde{D}_{d^ng}}{\partial\phi}( heta_0, heta_0)<0,$$

and  $\delta_q^{(n)}(\theta_0) > 0$ . Therefore from Proposition 4.7, we obtain Proposition 4.8.

By (17) together with (18), we obtain

**PROPOSITION 4.9.** Let  $\theta_0$  be a related element of  $R(d^ng)$  satisfying c-sign<sub>a</sub>( $\theta_0$ ) = - and

$$(n-1)rac{d^2 ilde{g}}{d heta^2}( heta_0) 
eq (k(k-n)) ilde{g}( heta_0).$$

Then  $\operatorname{sign}_{g}^{(n)}(\theta_{0}) = +$  (respectively, -) is equivalent to

$$(n-1)\frac{d^2\tilde{g}}{d\theta^2}(\theta_0) \Big/ \tilde{g}(\theta_0) \in (k(k-n),\infty) \text{ (respectively, } [0,k(k-n))).$$

REMARK. Let  $\theta_0$  be a related element of  $R_g$  satisfying  $c\text{-sign}_g(\theta_0) = -$ . Then from Lemma 4.5, we obtain  $\theta_0 \in R(d^1g)$  and from Proposition 4.9, we obtain  $\operatorname{sign}_g^{(1)}(\theta_0) = -$ .

REMARK. Let  $\theta_0$  be a related element of  $R(d^n g)$  satisfying  $c-sign_g(\theta_0) = -$ . We see by (18) that

$$(n-1)\frac{d^2\tilde{g}}{d\theta^2}(\theta_0) / \tilde{g}(\theta_0) = k(k-n)$$

is equivalent to  $v_g^{(n)}(\theta_0) \ge 2$ . If  $v_g^{(n)}(\theta_0) \ge 2$ , then both  $\operatorname{sign}_g^{(n)}(\theta_0) = +$  and  $\operatorname{sign}_g^{(n)}(\theta_0) = -$  may happen and we may grasp the sign of  $\theta_0$  by (a) of Proposition 4.7.

**REMARK.** In [1], we may find the prototype of Proposition 4.8; in [2], we may find the prototype of Proposition 4.9. In [4], we proved Proposition 4.8 for n = 2.

We shall prove

LEMMA 4.10. For an element  $\theta_0 \in R(d^ng)$  satisfying  $\tilde{g}(\theta_0) \neq 0$ ,  $N_g^{(n)}(\theta_0) = 1$  holds.

PROOF. If  $v_g^{(n)}(\theta_0) = 1$ , then by the implicit function theorem, we obtain  $N_g^{(n)}(\theta_0) = 1$ . Suppose  $v_g^{(n)}(\theta_0) \ge 2$ . Then we obtain  $n \ge 2$  and referring to the proof of Lemma 4.6, we obtain  $N_g^{(n)}(\theta_0) = 1$ .

REMARK. For any element  $\theta_0 \in R(d^2g)$ ,  $N_g^{(2)}(\theta_0) = 1$  (see [4]).

PROOF OF LEMMA 4.4. Let  $\theta_1$ ,  $\theta_2$  be two related elements of  $R(d^ng)$  satisfying  $\theta_2 > \theta_1$ and the condition that in  $(\theta_1, \theta_2)$ , there exists no related element of  $R(d^ng)$ . Then either csign<sub>g</sub> $(\theta_1) = +$  or c-sign<sub>g</sub> $(\theta_2) = +$  holds. Therefore from Proposition 4.8, we see that either sign<sub>g</sub> $(\theta_1) = +$  or sign<sub>g</sub> $(\theta_2) = +$  holds. Noticing (b) of Proposition 4.7 and Lemma 4.10, we obtain Lemma 4.4.

PROOF OF THEOREM 4.3. We first suppose that  $\tilde{\mathcal{D}}_{d^n g}$  is pointwise separated. Let  $N(d^n g)$  be the number of the related elements of  $R(d^n g)$  in  $[0, \pi)$  and  $\theta_1, \theta_2, \ldots, \theta_{N(d^n g)}$  related elements of  $R(d^n g)$  satisfying

$$0 \leq \theta_1 < \theta_2 < \cdots < \theta_{N(d^n q)} < \pi.$$

In addition, for  $i \in \{1, 2, ..., N(d^ng)\}$  and  $j \in \mathbb{Z}$ , set  $\theta_{i+jN(d^ng)} := \theta_i + j\pi$ . Then for  $i \in \mathbb{Z}$ , we see that in  $(\theta_{i-1}, \theta_i)$ , there exists no related element of  $R(d^ng)$ . Let  $\phi_{d^ng}$  be an element of  $\Phi_{\widehat{\mathcal{D}}_{d^ng};(0,0)}$  satisfying  $\phi_{d^ng}(r,\theta_1) = \theta_1$  for any r > 0. Then we see that if both  $\operatorname{sign}_g^{(n)}(\theta_1) = +$  and  $\operatorname{sign}_g^{(n)}(\theta_2) = +$  hold, then  $\phi_{d^ng}(r,\theta_2) < \theta_2$  and that if just one of  $\operatorname{sign}_g^{(n)}(\theta_1) = +$  and  $\operatorname{sign}_g^{(n)}(\theta_2) = +$  holds, then  $\phi_{d^ng}(r,\theta_2) = \theta_2$ . We suppose  $\operatorname{sign}_g^{(n)}(\theta_1) = +$ . For  $i_0 \in \mathbb{N}$ , suppose that the sign of  $\theta_{i_0}$  is positive and that the number of the related elements of  $R(d^ng)$  in  $[\theta_1, \theta_{i_0})$  with positive sign minus the number of the related elements of  $R(d^ng)$  in  $[\theta_1, \theta_{i_0})$  with negative sign is equal to  $l_0 N_{d^ng}$  for some  $l_0 \in \mathbb{N} \cup \{0\}$ . Then for any r > 0, we obtain

$$\theta_{i_0} - \phi_{d^n g}(r, \theta_{i_0}) = l_0 \pi$$

We see that  $2N_{d^ng}N(d^ng) + 1$  is such a positive integer as  $i_0$  and that the corresponding integer  $l_0$  is equal to  $2(N_+(d^ng) - N_-(d^ng))$ . Therefore we obtain

$$\theta_{2N_{d^ng}N(d^ng)+1} - \phi_{d^ng}(r, \theta_{2N_{d^ng}N(d^ng)+1}) = 2(N_+(d^ng) - N_-(d^ng))\pi$$

for any r > 0. This implies

$$\frac{\phi_{d^ng}(r,\theta_1+2N_{d^ng}\pi)-\phi_{d^ng}(r,\theta_1)}{2N_{d^ng}\pi}=1-\frac{N_+(d^ng)-N_-(d^ng)}{N_{d^ng}}$$

Hence we obtain Theorem 4.3.

We suppose that  $\tilde{\mathscr{D}}_{d^n g}$  is not always pointwise separated. Let  $\theta_1 \in R(d^n g)$  satisfy  $\tilde{g}(\theta_1) \neq 0$ . Then  $N_g^{(n)}(\theta_1) = 1$ . Let  $\phi_{d^n g}^{(1)}$  be an element of  $\Phi_{\tilde{\mathscr{D}}_{d^n g};(0,0)}$  satisfying  $\phi_{d^n g}^{(1)}(r,\theta_1) = \theta_1$  for any r > 0. For each integer  $i \geq 2$ , let  $\phi_{d^n g}^{(i)}$  be an element of  $\Phi_{\tilde{\mathscr{D}}_{d^n g};(0,0)}$  such that for any  $(r,\theta) \in (0,\infty) \times \mathbb{R}$ and any  $i \in \mathbb{N}$ , the following hold:

- (a)  $\phi_{d^n q}^{(i+1)}(r,\theta) \ge \phi_{d^n q}^{(i)}(r,\theta);$
- (b) the following give all the critical directions of  $d^n g$  at  $(r \cos \theta, r \sin \theta)$ :

$$\phi_{d^ng}^{(i)}(r,\theta), \ \phi_{d^ng}^{(i+1)}(r,\theta), \ \phi_{d^ng}^{(i+2)}(r,\theta), \ \dots, \ \phi_{d^ng}^{(i+N_{d^ng}-1)}(r,\theta);$$

(c)  $\phi_{d^n g}^{(i+N_{d^n g})}(r,\theta) = \phi_{d^n g}^{(i)}(r,\theta) + \pi.$ 

Then we obtain

$$\phi_{d^ng}^{(2l(N_+(d^ng)-N_-(d^ng))+1)}(r,\theta_1+2l\pi) = \theta_1 + 2l\pi$$

for any  $l \in \{1, 2, ..., N_{d^ng}\}$ . In particular, we obtain

$$\phi_{d^ng}^{(1)}(r,\theta_1+2N_{d^ng}\pi)+2(N_+(d^ng)-N_-(d^ng))\pi=\phi_{d^ng}^{(1)}(r,\theta_1)+2N_{d^ng}\pi,$$

i.e.,

$$\frac{\phi_{d^ng}^{(1)}(r,\theta_1+2N_{d^ng}\pi)-\phi_{d^ng}^{(1)}(r,\theta_1)}{2N_{d^ng}\pi}=1-\frac{N_+(d^ng)-N_-(d^ng)}{N_{d^ng}}.$$

Hence we obtain Theorem 4.3.

EXAMPLE. Let *g* be a spherical harmonic function of degree *k*. We shall compute the index of (0,0) with respect to  $\tilde{\mathscr{D}}_{d^n g}$ . We see that any  $\theta_0 \in R_g$  is related and satisfies  $\tilde{g}(\theta_0) \neq 0$  and c-sign<sub>*g*</sub>( $\theta_0$ ) = +. Therefore from Lemma 4.6, we obtain  $R(d^n g) = R_g$  and by Proposition 4.8 together with Lemma 4.10, we obtain  $(N_+(d^n g), N_-(d^n g)) = (k, 0)$ . Since  $N_{d^n g} = n$ , we obtain  $\operatorname{ind}_{(0,0)}(\tilde{\mathscr{D}}_{d^n g}) = 1 - k/n$ .

## 5. Real-analytic functions.

Let *n* be a positive integer and  $r_0$  a positive number. Let *F* be a real-analytic function on a neighborhood  $U := \{x^2 + y^2 < r_0^2\}$  of (0,0) in **R**<sup>2</sup> satisfying the following:

(a) (0,0) is an umbilical point of  $d^n F$ ;

(b) *F* is represented as  $F := \sum_{i \ge n} F^{(i)}$ , where  $F^{(i)}$  is a homogeneous polynomial of degree *i*. We see that if *n* is odd, then  $F^{(n)}$  is identically zero. Suppose that (0,0) is the only umbilical point of  $d^n F$  on *U* and that there exists a continuous, complete, pointwise separable, finitely many-valued one-dimensional distribution  $\tilde{\mathscr{D}}_{d^n F}$  on  $U \setminus \{(0,0)\}$  formed by all the critical directions of  $d^n F$  at each point of  $U \setminus \{(0,0)\}$ . We set

$$m_F := \min\{i > n; F^{(i)} \neq 0\}, \qquad q_F := F^{(m_F)}$$

Let  $\phi_{d^n F}$  be an element of  $\Phi_{\tilde{\mathcal{D}}_{d^n F};(0,0)}$ . We shall prove

PROPOSITION 5.1. For each number  $\theta_0 \in \mathbf{R}$ , (a) there exists a number  $\phi_{d^n F, o}(\theta_0)$  satisfying

$$\lim_{r\to 0} \phi_{d^n F}(r,\theta_0) = \phi_{d^n F,o}(\theta_0),$$

and  $\phi_{d^n F,o}(\theta_0)$  is a critical point of  $(\widehat{d^n g_F})_{(\cos \theta_0, \sin \theta_0)}$ ;

(b) there exist numbers  $\phi_{d^n F,o}(\theta_0 + 0)$ ,  $\phi_{d^n F,o}(\theta_0 - 0)$  satisfying

$$\lim_{\theta\to\theta_0\pm0}\phi_{d^nF,o}(\theta)=\phi_{d^nF,o}(\theta_0\pm0)$$

Let  $S(d^n g_F)$  denote the set of the numbers  $\theta_0$  such that  $d^n g_F$  is umbilical at  $(\cos \theta_0, \sin \theta_0)$ . Then  $S(d^n g_F) \subset R_{g_F}$ . In the following, suppose the following:

(a) each critical point of  $(\widehat{d^n g_F})_{(\cos \theta_0, \sin \theta_0)}$  for each  $\theta_0 \in \mathbf{R} \setminus S(d^n g_F)$  is obtained as in (a) of Proposition 5.1 from some  $\phi_{d^n F} \in \Phi_{\widehat{\mathcal{D}}_{d^n F};(0,0)}$ ;

(b) there exists a continuous, complete, pointwise separable, finitely many-valued onedimensional distribution  $\tilde{\mathscr{D}}_{d^n g_F}$  on  $\mathbb{R}^2 \setminus \{(0,0)\}$  formed by all the critical directions of  $d^n g_F$  at each point of  $\mathbb{R}^2 \setminus \text{Umb}(d^n g_F)$ ;

(c)  $\tilde{\mathscr{D}}_{d^n F}$  is  $N_{d^n q_F}$ -valued.

REMARK. If  $n \in \{1, 2\}$ , then conditions (a)–(c) are always satisfied.

For each  $\theta_0 \in \mathbf{R}$ , we set

$$\Gamma_{d^nF,o}(\theta_0) := \phi_{d^nF,o}(\theta_0 + 0) - \phi_{d^nF,o}(\theta_0 - 0)$$

We shall prove

PROPOSITION 5.2. (a) If  $\theta_0 \in \mathbf{R}$  satisfies  $\Gamma_{d^n F,o}(\theta_0) \neq 0$ , then  $\theta_0 \in S(d^n g_F)$ ; (b)  $\operatorname{ind}_{(0,0)}(\tilde{\mathscr{D}}_{d^n F})$  is represented as follows:

$$\begin{split} & \operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n}F}\right) \\ &= \operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n}g_{F}}\right) + \frac{1}{2N_{d^{n}g_{F}}\pi} \sum_{\theta_{0} \in S(d^{n}g_{F}) \cap [\theta, \theta+2N_{d^{n}g_{F}}\pi)} \varGamma_{d^{n}F,o}(\theta_{0}). \end{split}$$

**PROOF OF PROPOSITION 5.1.** We represent  $d^n F$  as

$$d^n F = \sum_{i \ge n} d^n F^{(i)}.$$

Then we obtain

$$(\widehat{d^n F})_{(r\cos\theta_0, r\sin\theta_0)} = \sum_{i \ge n} r^{i-n} (\widehat{d^n F^{(i)}})_{(\cos\theta_0, \sin\theta_0)}$$

for any  $r \in (0, r_0)$  and any  $\theta_0 \in \mathbf{R}$ . Therefore we see that for an arbitrary positive number  $\varepsilon > 0$ , there exists a positive number  $r_0 > 0$  such that for any  $r \in (0, r_0)$  and any  $\phi \in \mathbf{R}$ ,

$$\left|\frac{1}{r^{m_F-n}}\frac{d(d^nF)_{(r\cos\theta_0,r\sin\theta_0)}}{d\phi}(\phi)-n\tilde{D}_{d^ng_F}(\theta_0,\phi)\right|<\varepsilon.$$

In particular, we obtain

$$n\left|\tilde{D}_{d^{n}g_{F}}(\theta_{0},\phi_{d^{n}F}(r,\theta_{0}))\right| < \varepsilon$$
<sup>(19)</sup>

for any  $r \in (0, r_0)$ . If  $\theta_0 \in \mathbf{R} \setminus S(d^n g_F)$ , then each critical point of  $(\widehat{d^n g_F})_{(\cos \theta_0, \sin \theta_0)}$  is isolated. Therefore by (19), we obtain (a) of Proposition 5.1 in the case where  $\theta_0 \in \mathbf{R} \setminus S(d^n g_F)$ . Let  $\theta_0$  be an element of  $S(d^n g_F)$ . Since (0,0) is an isolated umbilical point of  $d^n F$ , we see that there exists an integer  $m_F(\theta_0) > m_F$  satisfying the following:

- (a) for any integer *i* satisfying  $m_F \leq i \leq m_F(\theta_0) 1$ ,  $d^n F^{(i)}$  is umbilical at  $(\cos \theta_0, \sin \theta_0)$ ; (b)  $d^n E^{(m_F(\theta_0))}$  is not umbilized at  $(\cos \theta_0, \sin \theta_0)$ .
- (b)  $d^n F^{(m_F(\theta_0))}$  is not umbilical at  $(\cos \theta_0, \sin \theta_0)$ .

Then we see that for an arbitrary positive number  $\varepsilon > 0$ , there exists a positive number  $r_0 > 0$  such that for any  $r \in (0, r_0)$ ,

$$\left|\tilde{D}_{d^nF^{(m_F(\theta_0))}}(\theta_0,\phi_{d^nF}(r,\theta_0))\right| < \varepsilon.$$

Since  $d^n g_F$  is umbilical at  $(\cos \theta_0, \sin \theta_0)$ , we obtain (a) of Proposition 5.1 in the case where  $\theta_0 \in S(d^n g_F)$ . In addition, by (a) of Proposition 5.1, we obtain (b) of Proposition 5.1.

PROOF OF PROPOSITION 5.2. If  $\theta_0 \in \mathbf{R} \setminus S(d^n g_F)$ , then noticing Proposition 5.1, we obtain  $\Gamma_{d^n F, o}(\theta_0) = 0$ . Hence we obtain (a) of Proposition 5.2. For  $\theta \in \mathbf{R}$ , the following holds:

$$\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n}F}\right) = \frac{\phi_{d^{n}F,o}\left(\theta + 2N_{d^{n}g_{F}}\pi\right) - \phi_{d^{n}F,o}(\theta)}{2N_{d^{n}g_{F}}\pi}.$$
(20)

In addition, for any r > 0, the following holds:

$$\phi_{d^{n}F,o}(\theta + 2N_{d^{n}g_{F}}\pi) - \phi_{d^{n}F,o}(\theta)$$

$$= \phi_{d^{n}g_{F}}(r,\theta + 2N_{d^{n}g_{F}}\pi) - \phi_{d^{n}g_{F}}(r,\theta) + \sum_{\theta_{0}\in S(d^{n}g_{F})\cap[\theta,\theta+2N_{d^{n}g_{F}}\pi)}\Gamma_{d^{n}F,o}(\theta_{0}).$$

$$(21)$$

From (20) and (21), we obtain (b) of Proposition 5.2.

REMARK. In [4], we proved the prototypes of Propositions 5.1 and 5.2 for n = 2, respectively.

By Theorem 4.3, Lemma 4.4 and Proposition 5.2, we see that if F satisfies  $S(d^n g_F) = \emptyset$ , then  $\operatorname{ind}_{(0,0)}(\tilde{\mathscr{D}}_{d^n F}) \leq 1$ .

We shall prove

THEOREM 5.3. Suppose

$$\sum_{i=0}^{N_{d^{n}g_{F}}-1} \Gamma_{d^{n}F,o}(\theta_{0}+2i\pi) \leq \pi$$
(22)

 $\Box$ 

for any  $\theta_0 \in S(d^n g_F)$ . Then  $\operatorname{ind}_{(0,0)}(\tilde{\mathscr{D}}_{d^n F}) \leq 1$ .

PROOF. By Theorem 4.3, Lemma 4.5, Lemma 4.6 and Proposition 4.8, we obtain

$$\operatorname{ind}_{(0,0)}\left(\tilde{\mathscr{D}}_{d^{n}g_{F}}\right) \leq 1 - N_{s}(d^{n}g_{F})/N_{d^{n}g_{F}},\tag{23}$$

where  $N_s(d^n g_F) := \sharp \{S(d^n g_F) \cap [\theta, \theta + \pi)\}$ . If (22) holds for any  $\theta_0 \in S(d^n g_F)$ , then by (b) of Proposition 5.2 together with (23), we obtain  $\operatorname{ind}_{(0,0)}(\tilde{\mathscr{D}}_{d^n F}) \leq 1$ . Hence we obtain Theorem 5.3.

REMARK. We see that (22) is always true for n = 1.

REMARK. In [4], we proved the prototype of Theorem 5.3 for n = 2 on condition that the right hand side of (22) is equal to  $2\pi$ .

We shall prove

THEOREM 5.4. Suppose that  $\tilde{g}_F(\theta_0) \neq 0$  for any  $\theta_0 \in S(d^n g_F)$  and that  $\tilde{\mathscr{D}}_{d^n F}$  is pointwise separated. Then  $\operatorname{ind}_{(0,0)}(\tilde{\mathscr{D}}_{d^n F}) \leq 1$ .

In order to prove Theorem 5.4, we need a lemma. For  $n \ge 2$ , we set

$$\begin{split} \boldsymbol{\varpi}_{d^{n}F} &:= \frac{1}{n} \sum_{i=0}^{n} \binom{n}{i} \frac{\partial^{n}F}{\partial x^{n-i} \partial y^{i}} \left\{ i \left(\frac{\partial F}{\partial x}\right)^{n-i+1} \left(\frac{\partial F}{\partial y}\right)^{i-1} - (n-i) \left(\frac{\partial F}{\partial x}\right)^{n-i-1} \left(\frac{\partial F}{\partial y}\right)^{i+1} \right\} \end{split}$$

We see that for a point  $p \in U$ ,  $\overline{\omega}_{d^n F}(p) = 0$  holds if and only if the gradient vector field  $(\partial F/\partial x)\partial/\partial x + (\partial F/\partial y)\partial/\partial y$  of F is in a critical direction of  $d^n F$  at p. We set

$$\tilde{\varpi}_{d^n F}(r,\theta) := \varpi_{d^n F}(r\cos\theta, r\sin\theta)$$

and

$$m_{d^n F} := \begin{cases} (n+1)m_F - 2n, & \text{if } F^{(n)} \equiv 0, \\ m_F + n(n-2), & \text{if } F^{(n)} \neq 0. \end{cases}$$

Then we see that  $\tilde{\varpi}_{d^n F}/r^{m_{d^n F}}$  may be continuously extended to  $\{r=0\}$ . By the implicit function theorem, we obtain

LEMMA 5.5. Let  $\theta_0$  be an element of  $S(d^ng_F)$  satisfying  $\tilde{g}_F(\theta_0) \neq 0$ . Then there exist a neighborhood  $V_{\theta_0}$  of  $(0, \theta_0)$  in  $\mathbb{R}^2$  and a real-analytic curve  $C_{\theta_0}$  in  $V_{\theta_0}$  through  $(0, \theta_0)$  satisfying

- (a)  $C_{\theta_0} = \left\{ (r, \theta) \in V_{\theta_0} ; \tilde{\varpi}_{d^n F}(r, \theta) / r^{m_{d^n F}} = 0 \right\};$
- (b)  $C_{\theta_0}$  is not tangent to the  $\theta$ -axis at  $(0, \theta_0)$ .

REMARK. In [4], we proved Lemma 5.5 for n = 2.

PROOF OF THEOREM 5.4. Suppose  $n \ge 2$ . Then noticing Lemma 5.5 and that  $\tilde{\mathscr{D}}_{d^n F}$  is pointwise separated, we see that there exists a nonzero number  $c_{d^n F,o}(\theta_0)$  satisfying

$$c_{d^n F,o}(\theta_0) \Gamma_{d^n F,o}(\theta_0 + 2i\pi) \geq 0$$

for any  $i \in \mathbb{Z}$  and

$$\sum_{i=0}^{N_{d^ng_F}-1} arGamma_{d^nF,o}( heta_0+2i\pi) \in \{-\pi,0,\pi\}.$$

Therefore from Theorem 5.3, we obtain  $\operatorname{ind}_{(0,0)}(\tilde{\mathcal{D}}_{d^n F}) \leq 1$ . Suppose n = 1. Then Lemma 4.5 says that for  $\theta_0 \in R_{g_F}$ ,  $\tilde{g}_F(\theta_0) = 0$  is equivalent to  $\theta_0 \in S(d^1g_F)$ . This implies that the first assumption in Theorem 5.4 is always false for n = 1. Hence we obtain Theorem 5.4.

REMARK. In [4], we proved the prototype of Theorem 5.4 for n = 2.

#### References

- N. Ando, An isolated umbilical point of the graph of a homogeneous polynomial, Geom. Dedicata, 82 (2000), 115–137.
- [2] N. Ando, The behavior of the principal distributions around an isolated umbilical point, J. Math. Soc. Japan, 53 (2001), 237–260.
- [3] N. Ando, The behavior of the principal distributions on the graph of a homogeneous polynomial, Tohoku Math. J., 54 (2002), 163–177.
- [4] N. Ando, The behavior of the principal distributions on a real-analytic surface, J. Math. Soc. Japan, 56 (2004), 201–214.
- [5] L. Bates, A weak counterexample to the Carathéodory's conjecture, Differential Geom. Appl., 15 (2001), 79-80.
- [6] C. Gutierrez and F. Sanchez-Bringas, Planer vector field versions of Carathéodory's and Loewner's conjectures, Publ. Mat., 41 (1997), no. 1, 169–179.
- [7] H. Hopf, Differential geometry in the large, Lecture Notes in Math., vol. 1000, Springer, Berlin-NewYork, 1989.
- [8] T. Klotz, On G. Bol's proof of Carathéodory's conjecture, Comm. Pure Appl. Math., 12 (1959), 277–311.

- [9] H. Scherbel, A new proof of Hamburger's index theorem on umbilical points, Dissertation, ETH, Zürich, No. 10281, 1994.
- [10] B. Smyth and F. Xavier, A sharp geometric estimate for the index of an umbilic on a smooth surface, Bull. London Math. Soc., 24 (1992), 176–180.
- [11] B. Smyth and F. Xavier, Real solvability of the equation  $\partial_z^2 \omega = \rho g$  and the topology of isolated umbilics, J. Geom. Anal., **8** (1998), 655–671.
- [12] B. Smyth and F. Xavier, Eigenvalue estimates and the index of Hessian fields, Bull. London Math. Soc., 33 (2001), 109–112.
- [13] C. J. Titus, A proof of a conjecture of Loewner and of the conjecture of Carathéodory on umbilic points, Acta Math., 131 (1973), 43–77.

## Naoya Ando

Faculty of Science Kumamoto University 2-39-1 Kurokami Kumamoto 860-8555 Japan E-mail: ando@math.sci.kumamoto-u.ac.jp