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One-parametric selfinjective algebras

By RafatBocIAN and AndrzejSKOWRONSKI
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Abstract. In continuation of our papers$], [6] we complete the classification of all one-
parametric selfinjective algebras over algebraically closed fields which admit simply connected
Galois coverings.

0. Introduction.

Throughout the papef will denote a fixed algebraically closed field. By an algebra we
mean a finite dimension#-algebra with an identity, which we shall assume (without loss of
generality) to be basic and connected. For an algébnge denote bynodA the category of finite
dimensional rightA:-modules and by the standard dualitidomk (—,K) on modA. An algebra
Ais calledselfinjectivef A= D(A) in modA, that is, the projectivé-modules are injective.

From Drozd'’s remarkable Tame and Wild theorel@] the class of algebras may be divided
into two disjoint classes. One class consists of the tame algebras for which the indecomposable
modules occur, in each dimensidnin a finite number of discrete and a finite number of one-
parametric families. The second class is formed by the wild algebras whose representation theory
comprises the representation theories of all finite dimensidralgebras. Accordingly we may
realistically hope to classify the indecomposable finite dimensional modules only for the tame
algebras. A special class of tame algebras is formed by the algebras of finite representation type
having only finitely many isomorphism classes of indecomposable finite dimensional modules.
The representation theory of algebras of finite representation type is presently well understood,
and in particular all selfinjective algebras of finite representation type are clasSfidd §,

[19]. The representation theory of arbitrary tame algebras is still only emerging.

We are concerned with the problem of classification of all one-parametric selfinjective al-
gebras. Recall that an algebkaof infinite representation type is callete-parametridf there
exists aK [x]-A-bimoduleM which is finitely generated and free as IKfix-module and, for any
dimensiord, all but a finite number of isomorphism classes of indecomposable (Aght)dules
of dimensional are of the formK[x]/(x—A)™®@ M for someA € K and somen > 1. We also
mention that the class of one-parametric algebras coincides with the class of algebras having
exactly one generic modul®][ By general theory, the class of one-parametric selfinjective al-
gebras splits into two classes: thiandard algebrashaving simply connected Galois coverings,
and the remainingnonstandard algebras|t is expected that the nonstandard one-parametric
(even the representation-infinite domestic) selfinjective algebras occur only in characgeristic
and are geometric deformations of standard one-parametric selfinjective algeb&s[8hve
classified all weakly symmetric standard (selfinjective) algebras, by algebras arising from Brauer
graphs. In particular, we proved that the class of all weakly symmetric standard one-parametric
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algebras coincides with the class of all weakly symmetric algebras of Euclidean type with non-
singular Cartan matrix. Recall that a selfinjective algebiia called aselfinjective algebra of
Euclidean typdf A is isomorphic to an orbit algeba/G, whereB is the repetitive algebra of
a tilted algebraB of Euclidean typeA € {Am, Dn, Eg, E7, Eg} andG is an admissible infinite
cyclic group ofK-automorphisms oB. Moreover, a selfinjective algebpeis calledweakly sym-
metricif the soclesocP of any indecomposable projectivemoduleP is isomorphic to its top
P/radP. Here, we associate to a Brauer graphvith exactly one cycle, a nontrivial rotation
os and A € K- {o} (respectively, a Brauer tre€ with two distinguished vertices;, vy) a
one-parametric selfinjective algebéV) (T, 0s,A) of Euclidean type&m (respectively, a one-
parametric selfinjective algebfa® (T,v1,v7) of Euclidean typeﬁn).

The aim of this paper is to prove the following theorem.

THEOREM1. Let A be a basic connected selfinjective algebra having a simply connected
Galois covering. Then A is one-parametric but not weakly symmetric if and only if A is isomor-
phic to an algebra of one of the forni™ (T, gs,A) or Q@) (T, v1,v7).

For basic background on the representation theory of algebras we refér[t2d, and on
selfinjective algebras td.fl], [25].

1. One-parametric selfinjective algebras of Euclidean typ&m.

It is known (see 12], [22]) that the class of one-parametric selfinjective algebras of Eu-
clidean typez‘m coincides with the class of one-parametric special biserial selfinjective algebras.
Recall that following 23] an algebraA is calledspecial biserialif it is isomorphic to a bound
quiver algebr& Q/I, where the bound quiveéR, 1) satisfies the following conditions:

(SP1) The number of arrows @ with a prescribed source or sink is at most two,

(SP2) For any arrowr of Q, there is at most one arrg@/and at most one arrowsuch that
aB andya are notinl.

A Brauer graph Tis a finite connected undirected graph, where for each vertex there is
a fixed circular order on the edges adjacent to it (8¢e[L5], [17], [21]). In our context we
assume thaf has at most one cycle (which may be or may not be a loop). We @riema plane
and agree that the edges adjacent to a given vertex are clockwise ordered. Given a Brauer graph
T, this defines 8rauer quiver @ as follows. The vertices dPr are the edges &f and there is
an arrowi — j in Qr ifand only ifin T j is the direct successor dbfn the order around some
vertex (to which andj are both adjacent). We require that every verte®@ptbelongs to exactly
two cycles. Note that this implicitly means that, for every end vertek,dhere is a loop iQy.

Let T be a Brauer graph with exactly one cyci, havingk > 2 of edges. We draWw
in the plane and agree that the vertices and edges of the @ctre clockwise ordered. Let
v1,02,...,0k be the vertices o2 ande = {vj,vi+1},i = 1,2,...,k, wherevc. 1 = v1, the edges
of Zx. If vis a vertex of the Brauer graphwhich is not a vertex of the cycl&y then byn(v)
we denote the edge incidenceuton the unique walk ifm from v to the cycleZx. Moreover,
fori=1,2,... k we denote byi(v;) the edgeg. For a vertex of the graphT, we denote by
[ (Zy,v) the distance od to the cycleZk. Hencd (%, v) = 0if and only ifv belongs taZk. By an
automorphism of the Brauer graphwe mean an automorphism of the grapkvhich preserves
the fixed circular order on the edges adjacent to any veAeawtation of the Brauer grapf is
an automorphisno of the Brauer grapfi such that, for some integewith 1 <s< k-1, we



One-parametric selfinjective algebras 493

haveo (v) = vissforalli=12 ...k (wherek+r =r for r > 1), and then we sat = gs. For
k=2, we seto1(e1) = e andoi(e2) = €.

Assume thas is a positive integer such that< s< k— 1 andged(s+ 2,k) = 1. We shall
define a generalized Brauer quiv@f 4., obtained from the usual Brauer quiv@r of the Brauer
graphT by shifting some arrows o+ using the rotatioros of T. By a gs-orbit of a vertexv
of T we mean the orbit of with respect to the action of the cyclic groggs) generated by
on the vertices of. We note that if two vertices andw of T belong to the sames-orbit then
[(%k,v) =1 (%, w). Moreover, allos-orbits of vertices ofl have the same number of elements,
namelyk/d, whered = gcd(s, k). Form > 0, denote by, the set of all vertices o with
[ (%x,v) = m. Observe tha¥i, is a disjoint union ofl|Vin| /k os-orbits.

In order to define the generalized Brauer qui@afs,, we introduce an ordep(T, os) of
the edges of the Brauer graphas the union of 1,_o(d|Vim|/K) cyclic ordersp(T, os,v) defined
for the representativasof all pairwise differentos-orbits of vertices ofl . Letwv be a vertex of
T. We define the cyclic ordgu(T, os,v) invoking the cyclic orders of edges around the vertices
v,05(v),. .., aé‘/d*l(v) in the Brauer grapfi. Letr € {0,1,...,k/d—1} andi be an edge of ad-
jacent to the vertew{ (v), andj be the direct successor iah the cyclic order inT aroundoy (v).

If j #n(oi(v)), thenj is defined to be the direct successor iof the cyclic ordemp(T, gs,v). For

j =n(al(v)), n(al™(v)) = gs(n(ak(v))) is said to be the direct successoi of the cyclic order
p(T,os,v). Therefore, we replaced the cyclic orders around the verti€as, 0 < r < k/d —1,
by one (bigger) cyclic ordep(T, gs,v). Observe also that &= {v,w} is an edge ofl which
is not on the cycleZ, or eis on the cycleZy andd > 1, thene belongs to exactly two cyclic
orders, namely(T, 0s,v) andp(T, gs,w). On the other hand, &= {v,w} is an edge of the cycle
2y andd = 1, thene occurs twice in the cyclic ordgy(T, gs,v) = p(T, Os,W).

ExAMPLE 1.1. LetT be the following Brauer graph with rotatian defined on the edges
as follows: 02(1) = 3, 02(2) = 1, 02(3) = 2, 02(4) = 6, 02(5) = 4, 02(6) =5, 02(7) =11,
02(8) = 12, 02(9) = 7, 02(10) = 8, 02(11) = 9, 02(12) = 10, 02(13) = 19, 02(14) = 20,
02(15) = 21, 02(16) = 13, 02(17) = 14, 02(18) = 15, 02(19) = 16, 02(20) = 17, 02(21) = 18,
02(22) = 24, 02(23) = 22, 02(24) = 23,

Then the ordep(T, 0») is the union of the following eight cycles:

(1) 4,3,24,2,6,2,23,1,5,1,22,3, (2) 4,7,8,6,11,12,5,9,10,
(3) 7,13,11,19,9, 16, (4) 8,14,15,12,20,21,10,17,18,
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(5) 13,19,16, (6) 14,20,17,
(7) 15,21,18, (8) 22,24,23.

We definethe generalized Brauer quiver{Q, as follows. The vertices d@r o, are the
edges ofl and there is an arroiv— j in Qr g, if and only if j is the direct successor bin the
orderp(T, os).

For A € K- {0}, we define the algebra2®(T,05,A) as the bound quiver algebra
KQT,US/T(l)(T,US,/\), whereKQr g is the path algebra of the quiv€lr o, andT® (T,06,A)
is the ideal inKQr ¢, generated by the elements:

(1) ap wherea =iy — iz, B =i2 — iz andiq, iz, i3 are not consecutive elements in the
cyclic orderp(T, o).

(2) C(i,p(T,0s,0)) —C(i,p(T, 0s,w)), for i # e; andC(ey, p(T, ds,v)) — AC(ey, p(T, s,
w)), for i = e;, wherei = {v,w} is an edge ofT, C(i,p(T,0sv)) and C(i, p(T,ds,w))
are the paths from to os(i) in the quiverQr g, corresponding to the consecutive elements
i,...,04(i) of the cyclic order(T, gs,v) andp(T, gs, W), respectively.

ExampLE 1.2. For the Brauer graph from Example 1.1, the generalized Brauer quiver
Qr,0, is of the form
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and QY (T,a2,1), for A € K- {0}, is given by the above quiver and the idé%ﬁ)(T, 02,A)
in KQr,g, generated by the elementst;Bo2, 02823, 3P4, B22024, B2322, B2att23, yiPs,
Bi2¥s, YaBa, Biova, Y2Be, BsYs: Bso, Q10B9, Boio, 2110, Baa7, A16B7, Bras, O18fs,
Bsa11, Q13B11, Br1012, Aofre, A7PB13, Bied13, A11B19, Br3A19, A10P17, 20017, A17B18, B21018,
agPia, P17014, A14P1s, PisQis, A12B20, Pr4aQ20, 20821, Bis021, A15P12, PBrolie, Q2301,
02203, 2402, YeV2, Vay3, YY1, 0102234 — A Y1Y5Q1022, Q2023Y1 Y5 — Yo Y602023, Q3024Y2 Y6 —
Y3Ya030024, V4030242 — Baf7Ps, Ys01022Y5 — BsBoPro, Y602023Y1 — BsPr1Bi2, B7PsPe — a7013,
BsBsPr1 — aga14015, PoP10Bs — A9Q1e, B10BaBr — A10017018, Pr1B12Ps — A11019, Pr2BsPo —
Q12020021, 013011 — P13, A14015012 — P14, A15012020 — P15, A1607 — P16, 01701808 — P17,
Q1808014 — P18, Q1909 — P19, Q20021010 — B20, 021010017 — B21, A22Y3Ya03 — P22, A23Y1 Y501 —
B23, 024Y2 Y602 — Boa.

PropPosITION1.3. Let T be a Brauer graphgs be a rotation of T andA € K- {o}
such that the algebr® (T os,A) is defined. Them®(T,0s,A) is a special biserial one-
parametric selfinjective algebra of Euclidean tyfag, and is not weakly symmetric.

PROOF. It follows from definition that the algebr@ V) (T, o, A) is special biserial. Fur-
ther, the bound quive(rQTpS,T(l)(T, 0s,A)) of QW(T,05,A) contains a primitive walk (in the
sense 0f24)]) of the form

1— >st2<—— 543 st~ 2(s+2)+1
|
n ;
l+
+ + + +
k(s+2) =<—— - ——= (r+1)(s+2) =—— r(s+2) +1 ——=r(s+2),

where — > isa path of length at least one and the vertekthe generalized Brauer quiver
Qr,0, corresponds to the edgeof the cycleZ. In fact, this primitive walk is the unique prim-

itive walk of the bound quive(QTvos,T(l) (T, as,)\)), becausgcds+ 2,k) = 1. Consequently
QW(T,05,A) is a one-parametric selfinjective algebra of Euclidean @me(see L2, [22).
Moreover, for each vertexof the quiverQr o, we havetop(P(i)) = soc(P(os(i))) 2 soc(P(i)),
and hence the algebfa (T, gs,A) is not weakly symmetric. g

2. One-parametric selfinjective algebras of Euclidean typ@n.

Let T be a Brauer tree. Then the simple cycles of the Brauer q@yemay be divided
into two campsg-camps angB-camps, in such a way that any two cycles which intersect non-
trivially belong to different camps. We denote by (respectively3;) the arrow of thexr-camp
(respectively-camp) ofQr starting at a vertek and bya (i) (respectively(i)) the end vertex
of aj (respectivelyf;). We also denote by (respectivelyB;) the cycle fromi to i going once
around thex-cycle (respectivelyB3-cycle) through.
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Let T be a Brauer tree with two (different) distinguished verticeandv, such that; is
the end of exactly one edge Let the edgé be the direct successor of the edgandc be the
direct predecessor of the edgen the cyclic order of edges at the end verterf a different
fromuvy. The verticess, v and edge$, ¢ determine a subtree

030

U1

of the Brauer tredl’, where possiblyu = v, v2 = v3, b=¢€, c=¢ b= c = e but every time
a# b anda # c. We assume that the Brauer quiv@fr has exactly one exceptional cycle (with
multiplicity two) given by the edges df converging at the exceptional vertex Moreover, we
assume that the cycle @y corresponding to the vertexis ana-cycle.

We define the algebr® @ (T,v1,0,) as the bound quiver algebQ? /T (T, v1,02),
WhereKC(Tz) is the path algebra of the quiver

Q= (Qr)oU W (Qn1U{y e — wy:w— bJ\(Bara— a})

andT(2>(T,u1,v2) is the ideal irKQ(T2> generated by the elements:

(1) aiBqi), for all vertices of Qr different fromc,

(2) Biag), for all vertices of Qr different froma,

(3) A; —B;, if the botha-cycle andB-cycle through the vertekare not exceptional,

(4) AJ2 — Bj, if the a-cycle through the vertexis exceptional but th@-cycle throughj is
not exceptional,

(5) A — BJZ, if the a-cycle through the vertexis not exceptional but thB-cycle through
the vertexj is exceptional,

(6) ¥2Bo, Bg-1c) 1

(7) ¥olb... Qg1 Y1, Aa (o)1, A, if b=c =€), if the a-cycle through the verteatis not
exceptional,

(8) ALOy. .. Ag-1(c)Y1s AZ (yoPoyr, A2, if b= c = e), if the a-cycle through the verteatis
exceptional,

(9) acaa—y1Ve.

In order to prove the main proposition of this section we recall the description of excep-
tional tilted algebras of Euclidean ty;fbn presented in€g]. Let B be a representation-infinite
tilted algebra of Euclidean typﬁn and{es,e,...,en} (M=n+1) a complete set of primitive
orthogonal idempotents & such thatlg = e; + & + ... + ey. Recall that theepetitive algebra
B of B is the locally finite dimensional algebra without identifyl]

§: @(Bk@Qk)a

kez
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whereBy = B andQy = D(B) for all k € Z, and the multiplication iB is defined by
(@, fidk - (B, gk = (b, g+ fi—1)i

for a, by € By, fi,gx € Q. Then we have the canonical sét= {&|1 <i < mke Z} of

primitive orthogonal idempotents of the repetitive aIgeErauch thate 1+ &+ ...+ &mis

the identity of the diagonal algeb® = B of B. By an automorphismof B we mean aK-

algebra automorphism & which fixes the se. A group G of automorphisms oB is called

admissibleif G acts freely on the sef and has finitely many orbits. Then the orbit algebra

I§/G is defined (seell3] for details) and is a (finite dimensional) selfinjective algebra. The

action of the Nakayama automorphisrg of B on the sets is given byvg (i) = &1, for

(k,i) € Zx{1,2,...,m}, the infinite cyclic grougvg) is admissible, an@/(v§) is isomorphic

to the trivial extensiofT (B) = Bix D(B). An automorphism of Bis said to beigid (see p2)) if

forany(k,i) € Zx {1,2,...,m} there exist§ € {1,2,...,m} such that)(ec;) = & j. Moreover,

an automorphisrp of Bis said to benontrivial if p(exi) # & for some(k,i) e Zx {1,2,...,m}.
Denote byQg the (Gabriel) quiver oB with the set of verticed1,2,...,m}. For each

vertexi of Qg, denote byPs(i) the indecomposable projecti&moduleeB and bylg(i) the

indecomposable injectiB-moduleD(Be). Then, for a sink of Qg, thereflection $B of B at

i is the quotient of the one-point extensiBfig(i)] by the two-sided ideal generated &y The

quivero;t Qg of § Bis called theeflection of @ ati. Observe that the sirilof Qg is replaced in

0" Qg by a sourcé’. Moreover, we hav® = §'B. A reflection sequence of sinksa sequence
i1,i2,..., i of vertices ofQg such thais is a sink ofo;! | ...0;7 Qg for 1 < s<t (see L4, (2.8)]).
Following [22] the tilted algebraB is said to beexceptionalf there exists a reflection sequence
i1,i2,...,i of sinks such that < mandB = §' ... §'B. Recall from P2, Proposition 2.13] that
the tilted algebra is exceptional if and only if there exists an automorphigrof the repetitive
algebral§ such thatp? = pVvg, for some rigid automorphisip of B.

The following known fact (seed] Section4] and42, Section 2]) explains our interest in the
exceptional tilted algebras of ty;ﬁh.

PrROPOSITION2.1. Let A be a selfinjective algebra of Euclidean tylﬁe. Then A 'is
one-parametric if and only if Az I§/(¢) for an exceptional tilted algebra B of ty;ﬁ1 and an
automorphisng of B such thaty2 = pvs, for a rigid automorphisnp of B. Moreover, &~ B/(¢)
is weakly symmetric if and only ¢f? = vg (p is trivial).

Recall from PO, (4.9)] that an algebr® is a representation-infinite tilted algebra of an
Euclidean typeﬁn if and only if B is a tubular extension or a tubular coextension of tubular type
(2,2,n—2) of a tame concealed algebra of ty§§ or 5q, forsomel < p<nand4d<qg<n.
Moreover, we know fromZ, Propositions 2.6 and 3.5] that the class of repetitive algdﬁm‘s
tilted algebras$B of Euclidean typeﬁn, n > 4, coincides with the class of repetitive algebBis
of tubular extensions (equivalently, tubular coextensi@es) tubular typeg2,2,n— 2) of tame
concealed algebras of typgg andﬁq, p>1,q=> 4. Atubular extensiom of a tame concealed
algebraC of type Z‘p or f)q, p>1 q=>= 4 by a finite sequence of pairwise nonisomorphic
simple regular, but not simpl&-modules and a finite family of branches is calledpecial
tubular extension of CWe describe first all exceptional special tubular extensions of tubular type

(2,2,n—2), n > 4, of tame concealed algebras of ty[ﬁsor I5q. We abbreviate by (ma)
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the quiver of the form

Qis1

s 52 (s,1) Qis2

(§2) ~— = - - (sm—1) ~sm ¢

where form= 1 s~ ™%t is the arrows<~—='—t , and form = 0 s« "%t is the point

s=t.
Consider the following families of algebr&® (I,m), 0<i < 8:
0) @O, m) =KQO(I,m)/1©(I,m), wherel = 1, m> 2 andl-tuplem= (m), Q© (I, m)

is of the form
2 4
/ \ /
“ (m.a) g4 (m-1p)

and the ideal © (1, m) is generated b3 101 m, N6y — N1 mA1m-1-..012011.

(1) oW1, m) = KQW (I, m)/1V(I,m), wherel > 2 is evenm= (my,mp,...,m,1) is an
(I +1)-tuple of positive integer®Q¥ (I, m) is of the form

2-1 20+1

(”'Hl 1
a2-1 °|+1 "\+2 02| 3 "2| 2 ﬂz| "2|+1

l%l

/ \7 \/ \
VAR VAL

and the ideall™(I,m) is generated byiox,m Voxam-1---¥oxe1 — BiB2, 01412101 1m;,
A14221023mp, -y 020-31-21Q1-3|-3m_3; 02-2]1-2101-2|1-1m_,, MNiYi, N2Q1—-1)-1m_;»
a1 1y;,1€1, 01O — &1é2ysm 1 €2yam -1+ - €231
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2 0@(,m) = KQ(Z)( m)/1@(1,m), wherel > 2 is even,m= (my,m,...,m) is an

|I-tuple of positive integers)(® (1, m) is of the form

I+1 I+2 2

<mlfii;1> (m;\iz “2| 3\/“2 21/'2 -1 /"2

and the ideall®(I,m) is generated by2ai-1/-1m_;, ViVoxam Voxam—1---Yoxs1 — BBz,
Q1412101 1mys A14221023mp, > 021312101 -31-3m_3, 02121210121 -1m_,» 021 y;10102;

3) 0®(I,m =K ( m)/1®)(I,m), wherel > 2 is even,m = (my,mp,...,m) is an

[-tuple of positive mteger@ )(1,m) is of the form

2-1 2

(n2) \ / \ / a2) ()

214> X1

g . /\ @)

and the ideal ®(1I,m) is generated by)181B2, 315 — E1&2y5m Eayam—1---E2ys1, U2y, 161,
Al+12100 1My Q14221023 M, - -+, 021-31-2101-3|-3m_5: A21—21 21012 | -1,m_5;
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(4) OW(I,m) = KQW(I,m)/1®(I,m), wherel > 2 is evenm= (my,mp,...,m_1) is an
(I — 1)-tuple of positive integer®Q* (I, m) is of the form

(50
‘7|+1 ‘7|+2 D’zl 3 O'zl 2 a21-1

Y1

and the ideall®(I,m) is generated byoy_1y, 1618, A11121011m, (+221023m, =
a21-31-2101-31-3m_5» 021—21-2101-2|-1m_5:

5) OO (1, m) = KQ® (I,m)/1®)(I,m), wherel > 2 is evenm= (mg,mp,...,m_1) is an
(I — 1)-tuple of positive integer®Q® (I, m) is of the form

a|+1 \/ °'|+2 0'2| 3\/”2 2
m1
ml 1
0’2 D’l 2 7\

and the ideal® (1, m) is generated by 1) 161, Q2-1).182, Q111.2101.1.m;, 014221023 M+
Q2131210 -31-3m_3, 021—21-2101-2|-1m_5:
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(6) @©(1,m) =KQ®(I,m)/1® (I, m), wherel > 2is evenm= (my,mp,...,m_1) is an

(I +1)-tuple of integers withmy > 1, mp > 1, ..., m_; >1,m >0, m_3 >0, Q® (I, m) is of
the form
I +2 W Al | + 1
42
<ﬂ;+3> n\ /(Iﬂ‘aill "z| 3\/"2 -2 21 +1
2143

m
ai “2| “2|+1
2I
"\ 2 1
O’2 a| 2 0’| 1
"1+1
"2|+2

and the ideal ®(1,m) is generated by)1023m, (if | > 4), a11121011.m, 014341033 ms
A1+441045my, - O2-31-2101-3|-3m_3, Q2-21-2101-2]-1m_,» Q2412102422 +2m_ 1>

Qo—11,1B1, O2—11182, 101 — 202,

7 0 (1,m) = KQM(1,m)/17(I,m), wherel > 1is odd,m= (mg,mp,...,m) is anl-
tuple of integers withmy > 1, mp > 1,...,m_3 > 1, m >0, Q7)(I,m) is of the form

21-2
o'|+1 \/ ”|+z <;ﬂzl|:;> (a;],2>
\/ \/ |

and the ideall”(I,m) is generated byoa 17102 2my, ViB1 — ¥oB2, Q14+121011m,,
Q14221023m,, -+ 02-51-3101-4]1-4m_,,» 02-41-3101-31-2m_5, 02-31-1,101-11m_;;
O21-21101, Q2121 1%;

Y3
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(8) @@ (1,m) = KQ®(I,m)/1®(I,m), wherel > 3is odd,m= (my,mp,...,m) is anl-
tuple of integers withmy > 1, mp > 1,...,m_; > 1, m >0, Q® (I, m) is of the form

s \/
(ma|4+1 D'\+z O'zl 4 a21-3
/ \ / \

and the ideall®(I,m) is generated byaz11B1, 021182 MO12m, O1+131022m,
Q11231034 mg, "+ O21—4]1-2101-3|1-3m_g) 02-31-2101-2|-1m_,, 021—21101-11-1,m_;-

The algebra®(© (I,m) are tubular extensions of tubular tyf 2, n— 2) of hereditary al-
gebras of type,, while the algebra®() (I, m), 1 < i < 8, are tubular extensions of tubular type
(2,2,n—2) of tame concealed algebras of ty;ﬁ@ Then we have the following consequences
of [6, Proposition 2.3, 2.7 and Corollary 2.9].

PROPOSITIONZ.2. An algebra B is an exceptional special tub~ular extension of tubular
type (2,2,n—2), n > 4, of a tame concealed algebra C of typg or Dq if and only if B=
00 (1, m) for some i with0 <i < 8, | > 1, and a tuple_nsuch that the algebr®) (I, m) is
defined.

PrROPOSITION2.3. Let B be an exceptional algebra which is a gpecialtubular extension
of tubular type(2,2,n—2), n > 4, of a tame concealed algebra C of tyAg or Dq. Then there
exists an automorphisig of B such thaip? = Vg-

Let @1 (1, m), with 0 < i < 8, be an exceptional special tubular extension of tubular type
(2,2,n—2) of a tame concealed algelCaf typel\p or f)q. Take a family.¥ of one-dimensional
simple regulaiC-modules lying in the stable tube 6§, used in the special tubular extension
o (I,m) of C and a family#Z of branches (in the sense (], (4.4)]) indexed by.¥. We

denote by@ (I m, %) the tubular extension @@ (I, m) using the modules fron¥” and the
associated branches fragd. Observe tha® )(I,m,%’) is a tubular extension d@ of tubular
type (2,2,1 — 2), for somer > n. Clearly, 8" (I,m %) = @0 (I,m) if .# and % are empty.
We also note tha@(i)(l,m,%) is not exceptional if and % are nonempty. But we have the
following fact proved in 6, Proposition 2.11].

PROPOSITION2.4. There is a unique exceptional tubular extens®f (I, m, %), 0 <
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i <8, of C of tubular typg2,2,5s—2), s> n, containing§<i>(l m, %) as a convex subalgebra.

Moreover, there exists an automorphignof (1) (I m, %) such thatp? = v i m®)

We recall the construction ofthe algeb@@: (I,m, #) presented in the proof 06[ Proposi-
tion 2.11]. Let@ )(I,m,%) KQ (I m %)/I (I,m, A), C=KQc/Ic, whereQc is a convex
subquiver on (I m, %) andlc = I()(I ,m %) NKQc. We set

k@" (1, m2),c) = |(@"(1,m )),| - 1(Qc)o

We WI|| construct the exceptlonal algebrad() (I, m, %) by induction on the num-
ber k( (I m %),C). If k( (I m,%),C) = 0, then there exists an exceptional algebra
oW(1,m ), contalnlngg(i)(l m, %) as a convex subalgebra. Moreover, it follows from Propo-
sition 2.3 that there exists an automorphignof the repetitive algebr®( (I m, %) such that
=V

Let O()(I m, %) be an algebra Withk(é(i)(l,m,%),c) > 1. Assume that, for
all algebras o (I,m, #%) such thatQ (I,m,%*) is a subquiver ofém(l,m,%) and
0< k( '(1,m, "), C) < k( '(1,m, %), C), there exist an exceptional algel®&) (I, m, %*),
containing O( (I,m 2%*) as a convex subalgebra, and an automorphfgnof the algebra

()ﬁ@*) such thag? = v i ma")
of the quwerQ (I m, %), but not ofQc, such that eithew; is the source of exactly one arrdw
orw; is the target of exactly one arrafv Observe that the vertew (respectlvely arrowf) is the
vertex (respectlvely, arrow) of some branch from the farﬂyLetQ (I m, %*) be the quiver
obtained fronQ (I m, %) by deletingw; and&. Then, by our inductive assumption, there exist
an exceptional algeb@() (I, m, 2*) = KQ (I, m, *)/11)(1,m, "), containing®" (I, m, #*)
as a convex subalgebra, and an automorplisrof the repetitive algebr&)(”@%*) such
that ¢? = V@(”m%*)' For an arrowa of the bound quiver algebr@(‘)(l,m, #*) andk € Z,
we d/en\ote b)(k,'a) the arrow of thek-part@() (1, m, %*), of the repetitive bound quiver algebra

©0)(1,m,%*) corresponding to the arrow. We have two cases to consider.

(1) Assume thatv; is the source of the arrod. Letw, be the target of the arro, and
n1...Nt be the unigue nonzero path of maximal length with the first amegw- & in the bound
quiver (Q( )(I,m, B),1 i )(I m, %)). Denote byws the end vertex of the arrow.

(a) Assume thaiv, = ws. Letw, be such thaeyw, = ¢1(eow,). We add the new vertices
wy andwg, and new arrowsg : w; — W, andd : wy; — Wg, to the quiverQ(i)(I ,m %*). Then
we define an algebra

Sincek(ém(l ,m, %),C) > 1there exists a vertex;

oW (1,m %) =KQ(I,m2)/1V(1,m 2),
where

(QV(1,m 2)) = (Q(1,m, ")) U {wr, we}
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and
(QV(,m #)), = (QV(I,.m %)), U{&,3}.

The ideall ) (I,m, %) in KQU (I, m, &) is generated by the following elements:

« all generators of the ide&l’ (I, m, %*),
e y0, if there exists the arrow such that(y) = wa,
e &[3, if there exists the arroy@ such thas(f3) = ws.

The required automorphistn of the algebrﬁ(i)(/l,E,%’) is determined by the following equali-
ties: ¢ (Ew;) = Bt 1wy @ (Bws) = &wy aNdP (acr) = d1(ex,) for all remaining indices andk.
Let (k, &) and(k,d’) be the arrows of the quiver of the repetitive alge@@@%) such that
s((k, &) = (k+1L,wo), t((k,&")) = (k,w1), s((k, &) = (k+1,wg) andt((k,d’)) = (k,was). Then
we haveg ((k£)) = (k.&), #((k,8)) = k&), d((k. &) = (k+1,8), §((k. &) = (k+1,€).

(b) Assume thatv, # ws. Let ws andws be such thatgw, = @1(€w,) andegw, =
$1(eow;), andd € (QU(1,m %*))1 such thatp;((0,8)) = (0,n{) for the arrow(0,n{) of the
quiver of the repetitive algebr@(n(l/,m\,:%*) such thats((0,n/)) = (1,wg) andt((0,n/)) =
(0,wz). We add the new vertices; andwg, new arrowé : w; — wp, and replace the ar-
row & : Ws — Wy by new arrowsd; : g — Wy andd, : Ws — W, in the quiverQ() (I, m, ).
Then we define an algebra

o (1,m 2) =KQ"(1,m 2)/1(,m 2),
where
(QV(1,m 2)), = (QV(1,m, ")) g U {wi1,We}
and
(QV(1,m 2)), = ((QV(1,m 2)),\{8}) U{E, &1, &}

The ideall ) (I,m, %) in KQU (I, m, &) is generated by the following elements:

« all generators of the ide&l’ (I, m, %*), _
e y3y, if there exists the arrow such thatyd € 11)(1,m, "),
e &3, if there exists the arroy8 such thaé 8 € T(')(I ,m A).

—

The required automorphisih of the algebra® () (I, m, %) is determined by the following equal-
ties: ¢ (@) = &Lug: @ (Bkus) = Sy and d(&r) = da(ex) for all remaining indices
r andk. Let (k,&’) be the arrow of the quiver of the repetitive algel®4) (I,m, %) such
that s((k,&’)) = (k+ 1,wg) andt((k,&’)) = (k,w1). Then we havep((k,&)) = (k+1,41),
¢((k,&1)) = (k, &), ¢((k,&2)) = (k,&"), ¢((k,&")) = (k+1,8).

(2) Assume thatv; is the target of the arroW§. Letw, be the source of andn;...n;
be the unique nonzero path of maximal length with the last anow & in the bound quiver
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(Q(')(I ,m, %),T(i)(l ,m, A)). Denote byws the source of the arrovy;.

(a) Assume thaiv, = ws. Letw, be such thaeyw, = ¢1(eow,). We add the new vertices
wi andwg, and new arrows : wo — wy andd : wg — Wy, to the quiverQ() (I, m %*). Then
we define an algebra

e (I,m %) =KQV(1,m 2)/10(1,m ),
where

(QV(I,m 2)) o= (QV(1,m, %)) U {wy, we}
and

QV(,m #)), = (Q"(.m %), U{&,5}.

The ideall V) (I,m, 2) in KQU (I, m, &) is generated by the following elements:

o all generators of the ide&l) (I, m %),
e Oy, if there exists the arrow such thas(y) = wy,
e (&, if there exists the arroy8 such that () = wo.

—

The required automorphisthof the algebr@®() (I, m, %) is determined by the following equali-
ties: @ (exw,) = cwg P (Bkwg) = Ext+1.w, @aNde (&) = P1(ex,) for all remaining indices andk.
Let (k,&’) and(k, &) be the arrows of the quiver of the repetitive alge®fd (I, m, %) such that
s((k, &) = (k+1,w1),t((k, &) = (k,wy), s((k, &) = (k+1,wy) andt((k,d")) = (k,wg). Then

we havep((k,§)) = (k,8'), ¢((k,0)) = (k, &), ((k,&)) = (k+1,0), p((k,&")) = (k+1,§).
(b) Assume thaw, # wz. Let ws andws be such thatyw, = ¢1(eow,) and egw, =
¢1(eows), andd € (QU (I, m %)), such thath1((0,5)) = (0,n_,) for the arrow(0, n){_,) of the

quiver of the repetitive algeb|@<i)(l/,m\793*) such thas((0,n/_;)) = (1,wy) andt((0,n/_;)) =
(O,w3). We add the new vertices; andwg, new arrowé : wp, — wy, and replace the arrow
5 : wWq — W5 by new arrowsd; : wg — Wi and &, : wg — W, in the quiverQ() (I, m, %*).
Then we define an algebra
oW (I,m %) =KQ"(I,m 2)/1V(1,m %),

where

(QV(1,m 2)), = (QV(1,m ")), U{w1, e}
and

QU (1,m 2)), = ((QV(I,m &), \{8}) U{&,51, 5}

The ideall V) (I,m, 2) in KQU (I, m, &) is generated by the following elements:
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o all generators of the ide&l (I, m, %*),
o &1, if there exists the arrow such thay € 11)(1,m, "),
e (B¢, if there exists the arroy8 such thaj3& € T(')(I,m,%’).

—

The required automorphisnh of the algebra®()(I,m %) is determined by the following
equalities: @ (& w,) = wgr P (Bkwg) = E+1w, and @ (&) = ¢1(ex,) for all remaining in-
dicesr andk. Let (k,&’) be the arrow of the quiver of the repetitive algel®d) (I, m, %)
such thats((k,&’)) = (k+ 1,wy) andt((k,&')) = (k,ws). Then we havep((k,&)) = (k, &),
¢((k,d)) = (k, &), d((k,&)) = (k+1,§), ¢((k,§")) = (k+1,8).

Further, the following fact proved ir6[ Theorem 3] gives a complete description of the
repetitive algebras of exceptional tilted algebras of typgs

PROPOSITION2.5. Let B be a tilted algebra of Euclidean type. Then B is exceptional
if and only ifB is isomorphic to a repetitive algebi@()(1,m, %) for some i with0 <i < 8, a
positive integer |, a tuple mand a family% of branches.

PROPOSITION2.6. Let B be an exceptional special tubular extension of tubular type
(2,2,n—2), n> 4, of a tame concealed algebra C of tygg or 6q. Then there exists an
automorphismp of the repetitive algebr§ such thatp? = pVg, for some nontrivial rigid auto-
morphismp of B, if and only if B>~ @ (I, m) for some i with6 < i < 8, a positive integer |, and
atuple m

PROOF. Assume thaB = ©()(I,m) for somei with 5 < i < 8. Then there exist exactly
two automorphismg of the repetitive algebr8 such thath2 = pvg, for some nontrivial rigid
automorphisnp of B, and are determined by the following equalities (s&eLbmma 2.8 and
Corollary 2.9)):

(1) IfB= 0O (I,m), thend (ex,) = &Ly ¢ (Bxs) = Bcrty D(Bkyr) = Bk P (Bkys) =
€ x31 (respectively,¢(a(7xl) = &1y ¢(Q<,><3) = &+1ys ¢(Q<,y1) = € x3 ¢(Q<.y3) = By )
O (e2i-1) = &2, P(&x2) = &y1141-2 fori=1,2,...,1/2, ke Z.

(2) 11B= 0O (I,m), thend(ax,) = y:r D (Exs) = Ekysr D (Bkys) = it P (Bys) =
Bi1x,, (respectively,d(ex,) = €ys, P (Bkxs) = Bkyys P (Bky;) = &i1xs P(Bkys) = Eilxg)s
O(&z) =61l P(z) =611, P(Bk1) = €z P(EkI) = Ezyr P (& 2i41) = -2, P (& 2i) =
€+11+1-2i fori= 1,2,.. .,(|/2) -1, keZ.

(3) If B=0OU(l,m), then ¢(Be) = Gkitys $(Bu) = Bty PlEyy) = By
b (&y;) = Exsr (respectivelyp (ecx,) = Bcriysr O (Buxg) = BkrLys @ (Bkys) = Ekar D (Exy;) =
&x): P(&z) = &1l P(&1) = &zy P(E2i-1) = &is1-2i, P(&2) = 112 for i =
1,2,...,(1-1)/2,ke Z.

@ If B=0®(,m), then ¢(ax) = ey #(Bkxs) = &ysr $(&y) = Bciisg
P (Bkys) = i1y, (respectivelyp (e ) = eysr @ (Bxs) = Bkyrr P (Bkys) = Bcrixes P(Ekys) =
B t1xs): P(B&kz) = 1), D)) = &z P(&2i-1) = E&t11+1-2i» P(&2i) = &)—2i fOri =
1,2,...,(1-1)/2,ke Z.

Thend’z(ex,xl) = a(+17X3! ¢2(Q(,X3) = a(+l,X11 ¢2(ex,y1) = er(+1,y31 ¢2(Q(,X3) = Q(+1,yl for k € Z:
and¢2(ek7r) = €1, for all remaining indices andk. The rigid automorphismp is determined
by the following equalitiesp(exx,) = Bx» P(8xs) = Ekx1» P(Eky;) = Bcyss P(Ekys) = y, for
ke Z, andp(e) = &, for all remaining indices andk.
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Now, assume tha == @ (I, m) for somei with 0 < i < 4. Then there exists exactly one
automorphismp of the repetitive algebr such thap? = pVg, for some rigid automorphisim
of B, and it is determined by the following equalities (séelfemma 2.8 and Corollary 2.9]):

(1) 1B=00(1,m), theng (ec1) = &3, P(e2) = &4 P (&3) = @11, P (Eka) = &r12,
¢ (&5) =1, (1m-1) P(8& 1)) =& 3j) P(&@3j) = &s1,1j), forj=21,2,....m-2.

(2) 1 B= oW (I,m), thend(ex) = Bcr1ys P(Gxy) = Bz D(Ekxs) = iy P(Ekyy) =
&+1,1 P (Bky,) = B zyr P(Bys) = Bxyr P(Bz) = Bkily, P(&z) = Btixer P(Bk1) = By
P (&) = &i1xg P(E20+1) = I1-2i, P(&2) = &1 i41-2i fori=1,2,...,(1/2) -1, ke Z.

(3) If B=0R)(I,m), then(ecy,) = Bcitys P (Ex,) = Bz ®(Bcxs) = Els P (Ey,) =
&r11r O (Bys) = Bkxyr (B z) = BkiLxor P(Bk1) = Ekyys P (k1) = Bkyixgr P(Bk2i11) = EI-2is
¢ (e&2i) =&qrir1-2i fori=1,2....(1/2) -1 ke Z.

@) 11 B=0®(I,m), thend (ecx,) = Bcr1ys: D (Bkxs) = &klr D (Ekyy) = Br11, D(ky,) =
&z P(Bkys) = Bkxpr P(Ez) = i1y, P(E1) = Eyrr P(E1) = Bkiixg, P(Bk2i11) = &2,
¢(Q(_2i) = 641,+1-2i fori= 1,2,..., (|/2) -1, keZ.

(5) IfB=OW(I,m), thend(ecx,) = BcrLys: D (Bkxs) = &ls P (Eky,) = Berr1, P (Eys)
&xr P(&1) = Eyr P(&I) = Erixg: P(&2i11) = &2, P(&2) = & 11112 for i =
1,2,....(1/2) —1, ke Z.

An easy checking shows that in this case we hjde- Vg (p is trivial). d

PrROPOSITION2.7. Let B be a representation-infinite exceptional tilted algebra of Eu-
clidean typel:N)n which is a tubular extension of a tame concealed algebra C. Then there exists
an automorphisng of the repetitive algebrﬁ such thatp? = pvg, for some nontrivial rigid
automorphisnp of B, if and only if B~ ©() (1, m, %) for some i with < i < 8, a positive integer
[, a tuple m and a familyZ of branches.

PrROOF. Assume that there exists an automorphignof the repetitive algebr§ such
that ¢2 = pvg, for some nontrivial rigid automorphism of B. It follows from [6, Lemma
2.10], that there exists a subsgtof {e;,ey,...,en} such thaieyBey is an exceptional convex
subalgebra oB and a special tubular extension of tubular ty@e?, n; — 2), for somen; < n, of
the tame concealed algel€a Denote byg¢, the restriction ofp to e;Be,. Sinced? = PVg;
for some nontrivial rigid automorphisim of B, thenfpl2 = PVe e, for some nontrivial rigid
automorphismp, of €,Be,. Thus from Proposition 2.6 follows that,Be, =~ @) (I, m) for
somei with 5 < i < 8, a positive integet, and a tuplem. Then Proposition 2.4 implies that
B= 00)(I,m ) for somei with 5 < i < 8, a positive integet, a tuplem, and a family% of
branches.

Assume thaB =~ 00 (I, m, %) for somei with 5 < i < 8, a positive intege, a tuplem, and
a family £ of branches. It follows from Proposition 2.4 that there exists an automorppisfn
B such thap? = vg- We define an automorphisinof the algebra automorphisl§1as follows:

(1) If B2 OB (I,m2), thenP(ax,) = Sr1ys P(Buxs) = Sriyrr P(Bys) = B
P(Exys) =€ x; forke Z, andg(ex ;) = ¢ (&) for all remaining indices andk.

(2) If B = @(6) (I 7m7 %)1 thenw(Q(,xJ — er(,yla a(er(,Xg) — er(,yga ¢(er(,y1) - Q(+17X31 W(a()@) -
&1y forke Z, andg(e ) = ¢ (&) for all remaining indices andk.

(@) If B2 o (I,m2), thenP(ax,) = Sr1ys P(Buxs) = Sriyyr P(Bys) = B
P(exy;) = 6k, forke Z, andg(ex ) = ¢ (&) for all remaining indices andk.
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(4) IfB= O<8) (l ,m, %)v thenw(%xl) =6y1s @S(Q«xs) =€ yss é(aﬁyl) = C&+1.x3 ¢(a<,y3) =
&1y, forke Z, andg (e ) = ¢ (&) for all remaining indices andk.

Then¢2(a(>(l) = a(—‘rl,Xg,! ¢2(Q<,X3) = Q<+1,,><1' wz(e&.yl) = eK+1,y31 ¢2(Q(,X3) = Q<+l,yl for k S Z;
and?ﬁz(e&r) = &1 for all remaining indices andk. A direct checking shows thgt? = PVg:
for the nontrivial rigid automorphism of B determined by the following equalitiep(ecx,) =

Bxar P(Bkxg) = Bx P(Bkyy) = Bysr P(Eky;) = By, fork e Z, andp(ex ) = & for all remain-
ing indicesr andk. O

PROPOSITION2.8. Let B be a representation-infinite exceptional tilted algebra of Eu-
clidean typeD,, which is a tubular extension of a tame concealed algebra C such that there exists
an automorphisng of the repetitive algebr® with ¢2 = pvg, for some nontrivial rigid auto-
morphismp of B. ThenB/(¢) =2 Q) (T, v1,v2), for some Brauer graph T and its verticess,

2.

PROOF. Let ¢ be an automorphism of the repetitive algeﬁrauch thatp? = pvg, for
some nontrivial rigid automorphismof B. It follows from Proposition 2.7 th@ > @) (I, m, )
for somei with 5 < i < 8, a positive integel, a tuplem, and a family% of branches. We define
the automorphisng of B as follows:

(1) If B=o®(,m2), then d(ax,) = i1y 9 (&xs) = Skilys P(ys) = Gy
P (y,) = &, fork e Z, and¢ (exr) = ¢ (&) for all remaining indices andk.

(2) 11B=0O)(1,m %), theng (6x,) = &y, # (Bcxs) = Eysr D (Bkyr) = Sk 1x0 D (Bkys) =
& +1x; fOrke Z, andg (exr) = ¢ (&) for all remaining indices andk.

(3) If B = @<7)(|7m7‘@)1 then ¢(Q(,Xl) = Q(-‘rl,yli ¢(eK,X3) = Q(+lty3l ¢(9Ky1) = a(,)(la

@ (y,) = &y, fork e Z, and¢ (exr) = ¢ (&) for all remaining indices andk.

@) 11B=00)(1,m %), then (6x,) = €y, § (Bcxs) = Eysr D (Skyr) = k10 P (Bkys) =
& +1x; fOrk e Z, andg (exr) = ¢ (&) for all remaining indices andk.

A direct checking shows that? = vg.

Let T be a Brauer tree and, v, its vertices such that the algeb@? (T, v1,v) is defined.
We define the symmetric algebra (s& Proposition 1.4]y ?(T,v1,0,) as the bound quiver
algebrak Q' /1@ (T vy, v5), whereK QY is the path algebra of the quiver

QP = ((Qr)oU{w}, (Qr)1U{y : c— W 1w —b, 51w — w})

and! @ (T,vy,0,) is the ideal iKQ\?) generated by the elements:

(1) aiBai), Biag). for all vertices of Qr,

(2) A; —B;, if the botha-cycle andB-cycle through the vertekare not exceptional,

3) AJ2 — Bj, if the a-cycle through the vertexis exceptional but th@-cycle throughj is
not exceptional,

4) A - BJZ, if the a-cycle through the vertexis not exceptional but thB-cycle through
the vertexj is exceptional,

(5) YoPo, Bg-1(c)1 V1V, V3Y2,

(6) V20b...0c, Oalb...0q-1) V1 (V20b, Oaks, if b= c=¢), if the a-cycle through the
vertexa is not exceptional,
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(7) yoop... Og-1(q) Y1Y20b. .. Oc, Oallp ... Og-1()Aclallp . .. Og-1() V1 (Yay1 Yo Op, 0a0p0aV1,
if b= c=e), if the a-cycle through the verteais exceptional,
(8) acaa—v1ys,
(9) yaobagp) - -- Ag-1c) V1 — Va3 if the a-cycle through the vertea is not exceptional,
(10) (Y2QuQq(p)---Aq-1() y1)? — ys, if the a-cycle through the verteais exceptional.

It follows from [6, Proposition 2.11] that there exists a Brauer {feand its vertices; andv;
such thaB/(¢) = I ?(T,v1,v2). Then we havs/(¢) =2 Q@) (T, v1,v). 0

PrROPOSITION2.9. LetT be a Brauer tree such that the aIget@é2>(T,v1, v2) is defined.
ThenQ (@ (T, v1,0) is a one-parametric selfinjective algebra of Euclidean tig and is not
weakly symmetric.

PROOF. It follows from Theorem 3.1 and Lemma 2.8 i][that (@) (T, vy, 0p) =

—

0 (I,m 2)/(¢), for somei with 5<i < 8,1 > 1, a tuplem, a family % of branches, and

_

a square rootp of the Nakayama automorphism@(im%) of @0)(I,m %). We define an

automorphismp of the aIgebra@(i)(/l,E,%) in the same way as in proof of Proposition 2.7.

A direct checking shows thai? = pveam%), for some nontrivial rigid automorphism of

00)(I,m, %) of order2, and we have2 @ (T,v1,v2) = O0)(I,m, #) /(¢). HenceQ @ (T,v1,v2)
is a one-parametric selfinjective algebra of Euclidean ﬁge

Sincetop(P(w)) = soc(P(a)) 2 soc(P(w)) andtop(P(a)) = soc(P(w)) 2 soc(P(a)), the
aIgebraQ(z)(T,vl,vz) is not weakly symmetric. We also note that, for all verticesf Q(TZ)
different fromw anda, we havetop(P(i)) = soc(P(i)). O

3. Proof of Theorem 1.

The aim of this section is to complete the proof of Theorem 1. Adte a basic con-
nected selfinjective algebra having a simply connected Galois covering. Assumé ighat
one-parametric but not weakly symmetric algebra. Then invokpg[16] and [22], we con-
clude thatA = I§/(¢), whereB is a representation-infinite tilted algebra of Euclidean t}p.a)r
Dn having all indecomposable injective modules located in the unique preinjective component,
and ¢ is an automorphism oB such thatp? = pvg for a nontrivial rigid automorphisnp of
B. Then by R0], B is a tubular extension of a tame concealed algéhraAssume first thaB
is a tilted algebra of Euclidean typ,. Then it follows from P] that B is special biserial, and
henceA is selfinjective and special biserial. Further, sigce= pVg, it follows from [12] and
[22] that the stable Auslander-Reiten quiver of A consists of one component of the fo@Am
and aP;(K)-family of stable tubes. Moreover, the one-parameter families of indecomposable
modules are given by the images of the one-parameter families of indecomposable modules over
the hereditary algebrnd of type:z‘p by the push-down functdf, : modB — modA associated
to the canonical Galois coverirg: B— B/(¢) = A. In fact, the bound quiver, sa, 1), of A
admits a unique primitive walk (in the sense 24]) being the image of the unique cycle (with
underlying graplﬁp) of the Gabriel quiver oB. This primitive walk in(Q, 1) is formed by the
corresponding paths of the bound quiy&r,1*), for a subquiveQ* of Q of the form
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and the ideal* = KQ* N1 generated by the elements:

(1) AjBj_1—A;BjAjt-1, forAj e K-{o}, j=1,2,... K,

(2) an;javj-1, By jBm. 11, for j=1,2,....k

(3) Qi jdita,j ...anjij,-,lalth,z...ai,17j+t,zai7j+t,2, fori= 1,2, .. N, j = 1,2,...,k,
(4) BiiBi+sj---Bmy jAj+t-1Brj+t—2- - B-1j+t-2Bi j+—2, fori=1,2,....m;, j=1,2,... Kk

whereA is the path fromi to i +1 andB; is the path fromi to i +t— 1, nj is the number of
arrows on the patij, m; is the number of arrows on the pai, nj = njt_2, Mj = Mjt_2, i |
is the arrow on the path; starting at the vertexandf3; j is the arrow on the patB; starting at
the vertexi. The above algebra is an algebra of the fa@t) (To, @, A ), for someA € K - {o},
s=t— 2, and the Brauer graph of the form

Moreover, if the unique cycle ofp hask edges, thek > 2, 1 < s< k— 1 andgcd(s+ 2,k) =
1, becaus€Q, ) admits exactly one primitive walk. Sinc®= KQ/I is special biserial, and
(Q,1) contains exactly one primitive walk (described above), we deduceQhatQr o, and

| =7 (T,0s,A) for a Brauer graph T with exactly one cycle, containing the Brauer gfgpis
a full convex subgraph, and the rotationis an extension of the automorphigrg.
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Now assume thaB is a tilted algebra of Euclidean tyji2,. Applying Propositions 2.5 and
2.7, we conclude tha = ©() (1, m, %) for somei, 5 < i < 8, a positive integet, a tuplem, and
a family 2 of branches. Therefore, it follows from Proposition 2.8 tAat Q2 (T,v1,02) for
some Brauer tre€ and its verticesq, vo.

Finally, if Ais isomorphic to an algebra of one of the for@s) (T, gs,A ) or Q) (T, v1,v7),
then if follows from Propositions 1.3 and 2.9 theis a one-parametric but not weakly symmetric
algebra.
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