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Abstract. We study the existence problem of a & mensional Poincércomplex whose
homology is isomorphic to that af dimensional complex projective space whes 4.

1. Introduction.

Let M be a simply-connecte@n dimensional finite Poincarcomplex. Then it is called
a twistedCP" if there is an isomorphisril, (M,Z) = H,(CP",Z). Any twistedCP" is a CW
complex of the formM ~ P Ue* U U---Ue” (up to homotopy equivalence), and it has the
homotopy type of2n dimensional closed topological manifolds (see section 8). We note that
any twistedCP" is homotopy equivalent to the usu@P" if n= 1,2. However, ifn = 3, there
are infinitely many twistedCP®'s of different homotopy types. For example, let us consider
CW complexesVly, M2, Mg defined byM; = & x S', Mz = §V S Uy 11,003 € M2 = SV
S Uiy ig]+igons € SinceH* (Mg, Z) = E[xp,X4] (the exterior algebra oveZ generated byo, X,
with degx, = k), they are twiste€P>s, and an easy computation shows that they have different
homotopy types. Because the case 3 was now studied well (e.g.1B], [24]), in this paper
we shall consider the case= 4. More precisely, we shall investigate a simply conne@ed
dimensional Poinc&rcomplexM such that

Z ifk=0,2,46,8,
0 otherwise.

0.1) H(M,2Z) = {

In this case, if we choose the suitable generatars H*(M,Z) = Z (k=1,2,3,4), there is a
unique integem > 0 such that

(0.2) Xo-X2 =mMmXg, X4-Xa = Xg, X2 - Xa = MXs, X2 - Xg = Xg.

We note that the conditions - X = Xg andx4 - X4 = xg hold if and only if the Poincdr duality
holds (see3, Proposition 1.2.1)).

DEFINITION 1. Letm>0be aninteger. A simply-connected 8 dimensional finite Poimcar
complexM is called arm-twistedCP* if the conditions (0.1) and (0.2) are satisfied.
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For exampleCP* is a1-twistedCP*, andHP#(S? x §°) is a0-twistedCP* (# denotes the
connected sum). Now we note the following fact.

(0.3) Letm> 1be aninteger. Iks - X2 = mxy, X2 - Xqg = MX andxz - Xg = Xg hold, therxs - X4 = Xg
also holds.
(This can be easily obtained by computing)?.)

Let .#n, denote the set consisting of all homotopy equivalence classesistedCP*s.
We would like to investigate how many non-homotopy equivatestvisted CP*'s exist for a
fixed integem > 0.

In general, if[M],[N] € #m, H*(M,Z) 2 H*(N,Z) as graded rings, bii*(M,Z/2) and
H*(N,Z/2) are not necessarily isomorphic.as-modules, wherey, denotes the mog Steen-
rod algebra. Then for each equivalence clddse .#,, we define itypeusing the concept of
a-module structure on it and its homotopy type of thekeleton (see Definition 8 in detail).
Then our main results are stated as follows.

THEOREM1.1. Letm>0be an integer.

(i) Letmbe an odd integer. Then there existsranwistedCP* of type(X,1). Conversely, if
M is anm-twistedCP?, it has the typgX,1). (Hence, there is no+twistedCP* of type
(X,0).)

(i) Let m = 0(mod8) Then there exists a family ofn-twisted CP*s, %, =
{Mp.0-Mp1, My o}, such that eaciMy, . € #m has the typgT,e) and any two of them
are not homotopy equivalent each other, whefee) € {X,Y} x Z/2. However, there is
no mrtwistedCP* of type(Y, 1).

THEOREM1.2. Letm> 0 be an even integer. Then there is metwistedCP* of type
(Z,¢) for anye € Z/2. Moreover, ifmis not divisible by, there is nam-twistedCP?.

Let cardV) denote the cardinality of a s€tand let(a,b) be the greatest common divisor
of integersa andb.

COROLLARY 1.3. Letm> 0be an integer.

(i) If m=1(mod 2) thenl < card.#m) < m(m,3).

(ii) If m=0(mod 8)andm+ 0, then3 < card.#) < 2°-3-m(m, 3).
(iii) If m=0, then3 < card.#n) < 2732
(iv) If mis an even integer and not divisible By, = &.

REMARK. We remark that#, is a finite set. However, because the estimate of(c#fg)
is very rough, we would like to investigate this number very carefully in the subsequent paper

[27].

The principal motivation of this paper is as follows. Originally we would like to classify
the homotopy types of highly connected Poiricabmplexes of even dimension. Because the
homotopy type of n— k)-connecte®n dimensional Poincé&rcomplexes was already classified
well (e.g. [7], [19], [20)) if k < 2, we would like to study the homotopy types(of— 3)-connected
2n dimensional Poincércomplexes. Because a twis@B* is one of typical examples of such
ones forn = 4, it may be worth-while to study the homotopy type classification problem of
twistedCP?s.
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Next, it is very interesting to study a twist@P* from the point of view of surgery theory. In
fact, since/#ny, = & if 2<(m,8) < 4 (see Corollary 1), this strongly suggests that the existence
problem of twistedCP*'s would be related to the problem of surgery obstructions, although we
cannot solve this problem at the moment.

Finally, we can show that there exists a finitely many non-trivial twi€Bts for each odd
integern by using the technique of the transformation group theory @}j. However, it is not
known whether a non-trivial twiste@P" exists or not ifn > 4 is an even integer. So it seems
valuable to investigate the existence problem of twi€etfs as its first step.

This paper is organized as follows. In section 2, we compute homotopy grousetif
complexed., andP*(m). In section 3, we study a-connective covering df, and in section
4, we determine the homotopy types of #ekeletons of-twistedCP*s. In sections 5 and 6,
we compute the homotopy groups of ekeleton of aim-twistedCP* and study am-twisted
CP* of type (X, €) or of type(Y,€). In section 7, we study am-twistedCP* of type (Z, €) and
give the proofs of our main results. Finally in section 8, we show that any tw@Rdcas the
homotopy type of closed topological manifold using a standard surgery theory.

2. Homotopy groupsT, (Lm) and 11, (P*(m)).

Let 1n € TH(S"), andn; € ®(S?) or v4 € 16(S*) be the oriented generator and the Hopf
maps, respectively. We takp, = E"2n; € 1(S"), NZ = Nno Nns1 € Thea(SY), N3 = Nno
Nns10 Nni2 € Thia(S") for n > 2 andvy, = E" v, € 1h,3(S") for n > 5, whereEX denotes the
k-fold iterated suspension. Similarly, letc 15(S*) be Blackers-Massey element.

LEMMA 2.1 ([18)).

() M(S)=2Z-1nforn>1, ®(S)=2Z-npandm, 1(S") =Z/2-n, forn> 3.
(i) m2(S) =2/2-n2forn>2 () =2/2-n3, () =2/12-w, |(SH=Z -v4®
Z/12-Ewandm,3(S") =Z/24-v,forn> 5.
(i) () =2/2-nz0wone, (S} =2Z/2-wons, ®(S’) =Z/2-wong and(S*) =
Z/2-v40n7BZ/2-Ewony.

DEFINITION 2. For an integem > 0, let L, denote the mapping cone defined lby =
S Umn, €. Letam € mu(Lm, S?) be the characteristic map of the top alin L, and

g -M, L, 0, (1)
be the induced cofiber sequence. We denotéfayhe total space o8’-bundle overS* with its
characteristic elemetWy,) = mp € 5(SQ;) =Z- p.

LEmmA 2.2 ([8], [9], [11]). There is some elemeby, € 15(Lm) such thaty =~ Ly Uy,
€5 (up to homotopyand thatii,(bm) = [am, I2]r, where[ , ], denotes the relative Whitehead
product,ii : (Lm,*) — (Lm, %) is an inclusion and,, : 76(Lm) — T6(Lm,S?) = Z- [am, I2]r ©
am, 76(D*% %) = Z ¢ Z/2 denote the induced homomorphism.

LEMMA 2.3 ([24)).
() m(lm,S?) =2Z am, ®(Lm) =Z-i, ®(Lm) = Z/mM-i.(n2).
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0 if m=1 (mod 2)
(i) m(Lm) =< 2Z/2-i.(n3) if m=0(mod 2)m# 0,
Z-i,®2/2-i.(n2) ifm=0.
Hereis : S* — SV S' = Ly denotes the natural inclusion.
Z. by if m=1 (mod 2)
(i) ®5(Lm)=4Z-bn®Z/4-ym if m=2(mod 4)
Z-OmB2Z/2 Y@ 2Z/2:i.(nd) if m=0(mod 4)
where we takém, = [i,is] andym =isons if m=0, and2ym = i*(r]23) if m= 2 (mod 4)
DEFINITION 3. Let P<*1(m) be the Moore spacB“*1(m) = S Un, €1, and letam €

mu(P*(m), S*) be the characteristic map of the top al
Let us consider the cofiber sequence

S mi3 P "

PA (M) = SUm, & — " & (2)
Becaus€2i3) o n3 = 0, there is a coextensiaiy € 7T5(P4(2)) of n3 such that
0z 0 fl3 = Na. 3)

Moreover, whenm = 0 (mod 2), there is a maf, : P*(2) — P*(m) such that the following
diagram is commutative:

$ g gt
I 2| Al ||
$ Mg T pm

LEMMA 2.4 ([5], [6]).
(i) B(P*(m)) =2/m-i", m(P*(m),S*) =Z- o

(ii)
0 if m=1(mod 2)
(Ph(m)) = {Z/Z.i'or,3 if m= 0 (mod 2)
(iii)
0 if m=1 (mod 2)
Z/A-fl 003 if m=2 (mod 4)

%(P‘l(m)): Z/Z'fr/-noi:l3@z/2'ilon32» if m=0(mod 4)m=# 0,

Z/2-ijons®Z/2-i'on? ifm=0,

where2f} o fj3 =i’ on? if m= 2(mod 4) andi} : S* — S v S* = P*(0) denotes the
natural inclusion ifm= 0.
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LEMMA 2.5 ([24]). Letj’: Lm— W= LmUp,, €® denote the inclusion.
(i) f m=1(mod 2) thentg(Wn) =2Z/(m,3)- (j'oi).(N20 w).
(i) 1f 0% m=2m= 0 (mod 2) then

T6(Wn) = Z/(n,12) - (j'0i).(N20 w) ©Z/2- (130 Ns).

DEFINITION 4. If kI > 1ands> Oare integers ankl= 25| with | = 1 (mod 2), we write
s=vy(k), and let(a, b) denote the greatest common divisor of integeasdb. LetVy, denote the
S*-bundle overS* with characteristic elemetViy) =miz € Z- 130 Z-p = 18(S°) © 18(SQ;) =
B(SQy).

PROPOSITION2.6 ([17]).

(i) There exists some elemeantc 15(P*(m)) such that’. (o) = [am, I3)r and that there is a
homotopy equivalendé, ~ P*(m) Ug €, wherei’, : 15(P*(m)) — m6(P*(m),S*) = Z/m-
[Am, 13]r @ am, T6(D*,S*) = Z/ma Z/2 denotes the induced homomorphism.
(i) If m=1(mod 2) is(P*(m)) =2Z/(m3)-i'cw®Z/m-a.
(iii) If va(m) > 3,

wB(P*(m) =2/(m12)-ocwdZ/m-oc®Z/2- i ofizons.
(iv) If 1< wvp(m) <2,
6(PH(m)) = Z/ml - An® Z/2m- 0 & Z/2- {0 fizons,

where we taken' = (m,12)/2 andAm = 2m/(12,m)o +i’ o w. In particular, the order of
i"ow € ms(PH(m)) is (12,m).
LEMMA 2.7.
(i) If m=1(mod 2) 75(P*(m),S*) = am, 15(D*,S%) = Z/12.
(i) If m= 0 (mod 2)
5 (PA(m),S*) = Z/2- [am, N3)r ® am. 5(D*,S*) 2 Z2/20Z/12

PROOF. It follows from [8] that there is an isomorphism(P*(m), S*) = ([am, na)y) ©
am*m(D4,S3). Hence, it suffices to show thfim, N3]y = 0if and only if m= 1 (mod 2). Then
by [8], there is a commutative diagram

(S e m(F)=2/2-n5 —— m(PYM),S)

HJ{ (m@),ﬂ

7y E* 3
Z/2-n7=18(S") —— m(S)=2/2-n3

where the horizontal sequence is ex&tt, 1g(S*) — B(S’) denotes the Hopf homomorphism
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and we tak&(n3) = [am, N3]

Hence,[am, n3)r = 0if and only if Hg is surjective. However, since (fog o n7 € 15(SY),
H(vaona) =H(va)on7 = 1a0n7 = N7, H is surjective. Sdam, n3)r = 0 if and only if (mi3).
is an isomorphism. But, becau§® is an H-space, it is equivalent to the condition= 1
(mod 2). O

DEFINITION 5. For a connected CW complé, let XX be itsk-skeleton. For a CW-
pair (X,A), let (X,A). denote the relative James reduced product defined by B. @fayts
known [4] that there is a homotopy equivalenfé,A). ~ F, whereF denotes the homotopy
fiber of the pinch mam : X UCA — >X. We denote by, the homotopy fiber of the pinch
mapgq, : P*(m) — S*. Then there is a homotopy equivalerfgg= (P*(m),S). and there is a
fibration sequence

Fn— P(m) ™, &, (4)
LEMMA 2.8. There is a homotopy equivalengg’ ~ (v ) Uniis i) € Wherei : S —

SV S are the natural inclusiongk = 3,6), and| , ] denotes the Whitehead product.
PROOF.  From now on, we identify(P(m), )., = F. It follows from [4] that Ry ~

Sk Uy e5Us €2 (This can be also obtained using Serre spectral sequence induced from (4)). Since

S is an H-space, byq] Corollary 5.8], = [i3,13] = 0 € T5(S). Hence Fty) ~ (v ) U; &

for somef € g(Sv L) =2/2-i30won2®2Z/2-igon2®Z-[iz,ig]. Then it follows from
the definition of the relative James reduced product that the togtalattached by the map
f = [i3, mig] = mlis,ig]. Hence, we havgy ~ (v ) Uniig.ig] €- O

Consider the exact sequence induced from (4)
i m- 4
e TR(Fm) — TR(PA(M)) ™ 15(SY) =5 73 (Fn) — -+ ()

If 1<k <8, we canidentifyA] : 1§(S*) — mg_1(S v ).

PROPOSITION2.9. (i) If m=1(mod 2) 15(P*(m)) =Z/(3,m) - .
(i) If m=0 (mod 4)andm+ 0,

(PA(m) =Z/4-V ©Z/2-Gone®Z/2-T,(wone) ©Z/(M,3) - .
(i) 1f m=2(mod 4)
5 (PH(m) =2Z/2-0one®Z/2- fizonZ®Z/(M 3) - .
ProoOF. (i) We supposen= 1 (mod 2) and consider the exact sequence

%

BP*(m), ) % () — m(PH(m) — m(PY(m).S) % ().
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Because there is a commutative diagram

/

B(PHM), ) —2 s () = 2/2- wony

Oy T (miz)« T%

(D%, S%) 0T/> (S =2Z/2-won,
0; is surjective, and we have the exact sequence

0— T (PA(m) — 1 (P(m), ) - ().
Similarly, if we consider the boundary homomorphism
07 am.15(D*, S) = m(PH(m), S) — 1(S’) = 2/12- w,

we have Imd; = m- 15(S%) and g (P*(m)) = ker 3, = Z/(3,m) - wmy for somewn € 15 (P4(m)).
(i), (iii): Assumem= 0 (mod 2). If we consider the exact sequence

Z-5=mS) - m(SvL)=2Z-i3— m(P*(m)=2/m—0,

we haveA(14) = miz. Next, consider the exact sequence

H /
|

mS) —— SV — s (P M) —m (S,
[ [
Z-ig®Z/12-i30w Z/2-n2

Because the order of” = f o fiz0ns € ms(P*(m)) is 2 andd,,,(n”) = nZ, this induces the
exact sequenca; (St 4, %(S*V ) — Hm — 0, wherers(SY) =Z-v4©Z/12-Ew and

Z/(m12)-iowaZ/m-o if va(m) >3,
"z Am@Z/2m- o if 1< vo(m) <2, = (m,12)/2.

SinceA(Ew) = Aj(14) o w = m(izo w), for somen € Z/12, we have

+ Al B +mig+n-izow if vo(m) >3,
(o) A7ve) = +£2mig + (M, 12)/2-iz0w  if 1< va(m) < 2.
(t)) Kerd = (Ew)=2/(m12), T.(ig) = 0, T.(iz0 @) = 0.

If we consider the boundary homomorphism
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Ay 8(SH) — H(SPVS) =2Z/2-i30wone®Z/2-ig0 N,

we haveA{(Ewo ny) = AY(Ew) o ng = m(izo w) o Ng = 0. Next we computed(vaony). If
v2(m) > 3,

Aé(V4 o f]7) = Aé(V4) ong= (:I:mie + n(m, 12)i3o a)) oneg=0.
If 1< vp(m) <2,

Bg(vaong) = A7(va) 0 Ne = (£2mig + (M, 12) /2-i30 w) o e
{0 if vo(m) =2,

igowone if vo(m) =1

Now we remark thaP*(m) ~ P*(n) v P*(k) if m = nk with (n,k) = 1, and that we already
showed the casm= 1 (mod 2). Because the extension problem is trivial for the odd torsion, the
assertions (ii) and (iii) easily follows from the assertions for the ease2¥ (k > 1). So from

now on, we assume = 2K (k> 1). LetV’ € %(83)@ &~ Z /4 denote the2-primary component

of w. Then it follows from the above computations that we have:

(a) If k> 2, there is an exact sequence

0 —— mSVS) — . PR —P Z/4.Ev — 0.

(b) If k=1, (2EV') = Z/2 and there is an exact sequence

0 —— Z/2-igong LN 5(P*(2)) e, (2EV'y —— 0.

First, consider the casa= 2% with k > 2. It is known that there is an elemewnte {i’, 213, v'}
of order4 such thaty,,, (V') = EV'. Hence, ifk > 2, using(t3) we havers(P4(2¢)) = Z/4- V' &
Z2/2-00ong®Z/2-i,(wone).

A similar method also obtaing;(P*(2)) = Z/2-0one®Z/2- fizon2, and this completes
the proof. O

3. 2-connective covering oL y.

We denote byd : Ly — K(Z,2) the map which represents the generator Zof
[Lm,K(Z,2)] = H?(Lm,Z). If Ay, denotes the homotopy fiber of, there is a fibration sequence

Am RN Lm i K(Z,2). Remark thalf: Am — L is a2-connective covering of,, with fiber St
(up to homotopy). The following result was taught by Jie \g|]

PROPOSITION3.1 (J. Wu). There is a homotopy equivalenB&m) v S = A,

PROOF. This easily follows from the main result given iaqj. O
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DEFINITION 6. Define the mapsm, : P*(m) — Ly andg,,: S — L, by

fm : P*(m) fa, P4(m)vS5zA:m—j~>Lm7
Im - I_Z’P‘l(m)\/SS’:Am_J)Lm,

whereP4(m) % PA(m) v S <2 S denote the inclusion to the first or second factor, respectively.
It is easy to see thaf, € 15(Lm) represents the generator of torsion free @adf it. Hence,
without loss of generalities, we may assume that by, and we have th2-connective covering
with fiber St,

(fm,bm) : PAM) VS — L. (6)

COROLLARY 3.2. If k>3, (fm,bm)s : T(P*(M) V) = 1 (L) is an isomorphism.

LEMMA 3.3.

(i) There is a commutative diagragap to homotopy equivalendes

53 miz 83 i’ P4 ( m) q/m
I m| | [
ML o,

(i) If m=0(mod 2) we can take
Ym= fmo fr/no fs € Ti(Lm). (7)

PrRoOOF. If (i) is true, (ii) easily follows from the definition oft, (see page 313 ir2f)).
So it remains to show (i). Sinck,, : Z/m-i’ = rB(P*(m)) S B(Lm) = Z/m-ion; is bijective,
fmoi’ = €-i.(n2) for some unite € (Z/m)*. So we may assume thhoi’ =i.(n2) (up to
homotopy equivalence). Moreover, it follows from the Puppe exact sequence (induced from (2))

0 —— m(s) ™ sy F . Pm).S] —— 0

that [P*(m),SY = Z/m- ¢, Hence, there is som& ¢ Z/m such thatgmo fm = €' -, Itis
sufficient to show that’ € (Z/m)*. It follows from the computation of the spectral sequence
given in the proof of Proposition 3.1 thdf, : Z = H*(Lym, Z) — H*(P*(m),Z) = Z/m can be
identified with the natural projectiopr : Z — Z/m (up to unitin(Z/m)*). Similarly q,: Z =
H4(S%Z) — H4(P*(m),Z) = Z/mcan be also identified with the natural projectjom So if we
consider the commutative diagram

Z=H4s"2) . HYLnZ)=2Z

q*ml fal

Z/m=H4(PH(m),Z) —E— H4(PY(m),Z) = Z/m

1R
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we haveg’ € (Z/m)*. O
It follows from Proposition 2.6 that we have

COROLLARY 3.4. (i) f m=1(mod 2)
(Lm) =2Z/(M,3) -i.(N20w)BZ/M- frod ®Z/2-bmons.
(i) If va(m) >3,
%(Lm) =2Z/(M,12) i (N20w)®Z/M- fno0®Z/2- ymons®Z/2-bmons.
(i) f1<wvy(m) <2,

wherem! = (m,12) /2 = 2"2(M~1(m,3) and Ay = (2m/(12,m))0 +i’ o w.
(iv) fm=0,Lo=SVvS'and

16(Lo) = Z/12-1,(N20 @) B Z/2-i40 N2 Z/2- [i,is0 N4l ©Z/2-[i.(N2),1].

REMARK. Itis known that the order af.(n2 o w) € 1%(Lm) is (12 m) ([15]). This can be
also obtained using Proposition 1.

Similarly, using Propositions 2.9 and 3.1 we have

COROLLARY 3.5. (i) If m=1(mod 2)
15(Lm) = Z/(M,3) - fmo @ ®Z/2-bmong © Z/m- b, i.(n2)]-
(i) If m=0(mod 4)andm=£ 0,

15(Lm) = Z/4- fmoV/ ©2/2- fno g one®Z/2-i.(N20 wo ne)
®Z/(M,3)- fmo i ®Z/2-bmong ®Z/m- [bm,i.(n2)].

(iii) 1f m= 2 (mod 4)

16(Lm) = Z/2- fmo 0 oNe®Z/2- fmofizond ©Z/(m,3) - fmo
®Z/2-byoné&Z/m-[bm,i.(N2)].

(iv) If m=0,

7T7(|_0) = Z/2~i*(rizoworle)@Z-i4OV4@Z/12~i4OE(A)
®Z/2-[i,igong]©Z/2-[i.(N2),ia0 Na] ©Z/2-[i(n3),14].



Twisted complex projective spaces 471

4. The 6-skeleton of aim-twisted CP?.

We would like to study theés-skeleton of amm-twistedCP*. For this purpose, define the
spaces{m, Ym andZy, as follows.

DEFINITION 7. Define the spac¥my by
X = LUy, €. (8)
Whenm= 0 (mod 2), define the spac¥s andZy by
Y = LmUnby i, (n3) €%, andZm = LmUmby iy €°- (9)

REMARK. If m=0 (mod 2), it is known 24] that there are isomorphisms

H*(Xm,Z) 2 H*(Ym,Z) 2 H*(Zn,Z) (as graded rings)
H*(Xm, Z/p) = H*(Ym,Z/p) (as«Zp-modules)

for any primep. However, sincat(ZXm) # (2 Ym), Xm andYy, are not homotopy equivalent.
It is also known thaH*(Xm,Z/2) andH*(Zy, Z/2) are not isomorphic as%-modules. Hence,
any two of{Xm, Ym,Zm} are not homotopy equivalent.

PROPOSITION4.1 ([24]). LetM be anm-twistedCP?*.

(i) If m=1(mod 2) thenScf: H*(M,Z/2) — H8(M,Z/2) is trivial and there is a homotopy
equivalencem(® ~ X,
(i) If m=0(mod 2)andScf : H*(M,Z/2) — H8(M,Z/2) is trivial, thenM(® is homotopy
equivalent toXy, or Y.
(iii) If m=0(mod2)and S : H4(M,Z/2) — H®M,Z/2) is non-trivial, then there is a
homotopy equivalendd(® ~ 7.

PROOF. This easily follows from Theorem 6.9 o24). O

DEFINITION 8. LetM be anm-twistedCP*.
In this case, we note th&t®(M,Z/2) =~ H8(M,Z/2) =2 Z/2. Then ifyy € H*(M,Z/2) =
Z/2 denotes the generatde £ 3,4), there exists a unique numbee {0,1} = Z/2 such that

S (Ye) = € Ys. (10)

ThenM is called arm-twistedCP* of type(X, £) if there is a homotopy equivalensé(® ~ X,
and it satisfies the condition (10).

Whenm = 0 (mod 2),M is called anm-twisted CP* of type(Y, €) if there is a homotopy
equivalenceM(® ~ Y, and satisfies the condition (10). Similary, is called arm-twistedCP*
of type(Z, ¢) if there is a homotopy equivalens&® ~ 7, which satisfies the condition (10). If
M andN arem-twistedCP*s of different types, clearlM andN have the different homotopy

types.

Here we remark the following two general facts.
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LEMMA 4.2. If m= 1 (mod 2)andM is anm-twistedCP?, it is an m-twistedCP* of type
(X,1). Hence, there is navtwistedCP* of type(X, 0) in this case.

PROOF. It follows from Proposition 4.1 that it suffices to show ti&d : H&(M,Z/2) =
H&(M,Z/2) is an isomorphism. First, it follows from (0.2) and Proposition 4.1 that we have
Y2-Ya = Yo, (¥2)> = Ya, (Ya)? =y and Scf(ys) = O, whereyy € H*(M,Z/2) = Z/2 (k =
1,2,3,4) denotes the generator. Then if we WiB€ef(ys) = € -yg (€ € Z/2), we haves = 1 by
using

£-Ys = Sf(Y6) = SE(Y2-Ya) = S(y2) -Ya = (¥2)* -Ya = (ya)* = Y. O
LEMMA 4.3. If m= 0(mod 2)and M is an mtwistedCP* of type(Z,¢), theng = 0.

Hence there is nan-twistedCP?* of type(Z, 1) in this case.

PROOF. We suppose thaWl is an mtwisted CP* of type (Z,1). Then becaus&d :
HZ(M,Z/2) — H%+2(M,Z/2) is an isomorphism fok = 2 or k = 3 (by Proposition 4.1),
SES : H4(M,Z/2) — H8(M,Z/2) is an isomorphism. However, if we use the Adem rela-
tion SFSAE = SASFSF, SFSCF is trivial and this is a contradiction. O

REMARK. In section 7, we shall prove that there is metwistedCP* of type (Z,0) (see
Theorem 7.4).

DEFINITION 9. Let Bn € 1%6(Xm,Lm), B € T6(Ym, Lm) and By, € 16(Zm,Lm) be the corre-
sponding characteristic maps of the top &b in Xm, Ym or Zm, respectively. If we denote by
Ny, € Ti2(D*1,S¢) = Z /2 the generator fok > 3, it is easy to see:

LEMMA 4.4 ([8]). There are isomorphisms

T6(Xm,Lm) = Z- Bm, T6(Ym,Lm) = Z- B, T6(Zm,Lm) =Z- By,

(
7-[7(Xm7 Lm) = [Bma } 692/2 Bmon57
18 (Ym, Lm) = [Bmv ] ©Z/2- Bmonsv
T (Zm,Lm) = Z- [Bn,i]r ©Z/2- B0 ng.

Finally in this section we recall the following useful result for checking whetfleis a
twistedCP* or not.

THEOREM4.5. Letm> 1be an integer an@d € Z/2 be the number mo#&

(i) Let¢ € v (Xm) be an element angh, : 7 (Xm) — 75(Xm,Lm) be the induced homomor-
phism. Then the mapping coie= Xn Uy e® is an mtwistedCP* of type (X, ¢) if and
only if j1,(¢) = £[Bm,i]r + & BmoNs.

(i) Let¢ € 17(Ym) be an element angb, : 75(Ym) — % (Ym,Lm) be the induced homomor-
phism. Then the mapping coi = Yn Ug €® is an mrtwistedCP* of type(Y, €) if and
only if j2,(@) = £[Bn,i]r +&- Bnong.

(iii) Let¢ € 15(Yy) be an element angk, : 7/ (Zm) — 1(Zm,Lm) be the induced homomor-
phism. Then the mapping coive = Zy Uy €8 is an mwistedCP* of type(Z,¢) if and
only if ja, (¢) = +[Bi il + - Broni.
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PROOF.  Since the proof is analogous, we only give the proof of the case (i).¢Let
T5(Xm) be an element such thit, (¢) = n[Bm,i]r +& - Bmoni (ne Z,&' € Z/2) and we take
M = XmUy €8. Letxy € H*(M,Z) = Z (k= 1,2,3,4) be the corresponding generator. Then it
follows from [25] thatx, - X = ==nxg. Moreover, because tteskeleton oM is X, without loss
of generalities we may assume that the equationg, = mx; andx; - x4 = mx hold. Hence, by
using (0.3)M is anm-twistedCP* if and only if n = +1. So from now on we assume= +1
and it suffices to show that the equal®gf(ys) = € - ys holds if and only if the equality

j1.(9) = £[Bm,i]r +&-Bmons (*)

holds, whereya € HX(M,Z/2) = Z/2 (k= 1,2,3,4) denotes the corresponding generator.
First, we assume th&t) holds. Letq: M — M/S? = N denote the pinch map, and consider
the commutative diagram (fée= 1 or 2)

HYM,Z/2) % H4M/,2/2)
Sc?kl Scfkl ()

HH*H4(M,Z2/2) —— HZ&M/S,2/2).

o

SinceScf: H4(M,Z/2) — H8(M, Z/2) is trivial (by Proposition 4.1), it follows from the diagram
(1)1 that S¢f is trivial on H*(M/S,Z/2). Hence, thet-skeleton ofN = M/S? is homotopy
equivalent teS* v $, and it has the CW-structure (up to homotopy)

N=M/F~SvSuse® (fem(Sve)).

SmceM is anm—tW|stedCP4 by using (0.2)Sdt(y4) = (y4)? = ys. Hence, by using the diagram

)2, SAt : H4(M/S,Z2/2) = H8(M/S?,Z/2) is an isomorphism. Thus we can write= +i4 0
v4+ k-igoEw+€"-igony for some(k,e") € Z/12x Z/2. However, if we usdx), we have
e=¢"and

N = M/Sz = S4 \ §3LJ:ti40V4+|(-i40E(A)+“:‘-ieor]7 e8 (11)

Now letq : N — N/S* be the pinch map, and consider @eell complexN/S*. By using (11),
there is a homotopy equivalend&/S* ~ S‘su‘g.,,7 €. Hence, if we consider the commutative
diagram

Hé(M,Z/2) ‘T Hé(M/S,Z/2) T HO(SUe.n, €8,2/2)

| | |

H8M,Z/2) «—— H8M/S,Z2/2) «——— HESUep, €,2/2)

~

o

we haveSc(ys) = €-ys. Hence, if(x) is satisfied S (ys) = £ - yg holds. A similar method
shows the opposite direction and this completes the proof. O
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5. An m-twisted CP* of type (X, £).

Consider the cofiber sequence

$ M X, P S (12)

Now we try to compute the Whitehead prodilst,i] € m(Lm)-
PROPOSITIONS.1. Letm>1be an integer.

(i) If m=1(mod 2)or m= 0 (mod 8) there is a unitx,, € (Z/m)* and &, € Z/2 such that
[Bm,i] = Xm* fmo 0 + &m-bmons.

(i) 1If 1< wve(m) <2, thereis a unixy € (Z/2m)* andem € Z/2 such thatfbm,i] = Xm- fmo
0+ &m-bmons.

REMARK. If m=1(mod 2), we can showr, = 1. This will be proved in Corollary 5.11.

PROOF.  Since the proof is completely analogous, we shall prove only the wese
0 (mod 8). In this case, it follows from Corollary 3.4 that we can take

[Pm,i] =Y i(N20 W) +Xm- fmo T+ € - ymonNs+ &m-bmons @)

for some(y,xm) € Z/(12,;m) x Z/mand¢’, ey, € Z/2. It suffices to show that,, € (Z/m)* and
y = ¢’ = 0. Consider the cofiber sequence

S % PHm) L vy = PHm) Ug €. (1)

If we denote bya € 15(Vin, P*(m)) the characteristic map of the top cal in Vp, then
1% (Vm, P*(M)) = Z- 3. Moreover, it follows from Lemma 2.5 thgt o fo 0 = 0. Hence, it
follows from the cofiber sequenddt) that there is a map,, : Vin — Win = Lm U, €% such that
fmoj” =i o fm. Now consider the commutative diagram

*

2.5 = 15/(Vin, PA(M)) —2 . (PA(m))

oo l . l

5

. P
Z[Ba']r@z/zﬁoné:"?(wml—m) —7> T%(Lm)a
where € 1%(Wm, Lm) = Z denotes the characteristic map of the top €&lh W, We note that
5 (Wi, Lm) = Z- [B,i]r ®Z/2- Boni (by [1], [8]). So there exists an integere Z ande € Z/2
such that

Tin. (@) =xX[B,i]r +£-Bons. (13)

Sinced* (o) = o anddg (B) = bm,
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fmo 0 =fm, 00"(0) = 07 0 f 1, (0) = 97 (X[B,1]r +-£-Bong) (by (13))
=x-07([B,i]r) +&-bmons = —x[d5(B),i] +€-bmons
= — X[bm,i] + & -bmons
=—X(y-i+(N20 @) +Xm- fmo T+ €~ YmoNs+ &m-bmons) +£-bmons  (by (1))
=—XY-i.(N20 W) = XXn- fmo O +X&"- ymo N5+ (€ +X&m) -bmo N5 € T(Lm).

Hencexy=0€ Z/(m,12), 1 = —xxn € Z/mandxe’ =0 € Z/2. An easy computation shows
thatx,xm € (Z/m)* andy = ¢’ = 0. O

THEOREMS5.2. (i) If m=1(mod 2)
T6(Xm) = Z/(M,3) - ju(ix(N20 w)) Z/m- j.(fmo 0).
(i) If vo(m) >3,

T6(Xm) =Z/(M, 12) - . (ix(N20 @)) € Z/M- j.(fmo 0)
BZ/2: ji(YnoNs) DZ/2- ju(bmo Ns).

(i) 1f 1< vo(m) <2andm =2m/(m,12) = 2"2(M-1(m 3),

T6(Xm) =Z/m - ju(fmoAm) ©Z/m- j,(fmo 0)
©Z/2- ji(YmoNs) DZ/2- j«(bmons).

PrRoOOF. Consider the exact sequence
Z- (Bl ©2/2- B0 N = 76(Xim. Lim) 7 T6(Lim) > T(Xim) — 0.

07(Bmong) = (mhm) o N5 = m(bmons),
37([Bm,i]r) = —[mbm,i] = —m[bm, i].

(i) Assumem= 1 (mod 2). Then because

Then we remark tha{

{%(Bmoné—,) = m(bmo Ns) = bmo N,
&([Bmvl]f) = _m[bmai] = —m(Xm' fm°0+€m‘ merIS) =&m- mer]5,

we have Imd; = Z/2- by o ns and the assertion (i) follows.
(ii) We suppose/z(m) > 3. The same method as above shows

97(Bmong) = M(bmons) =0,
07([Bm,i]r) = —mM[bm,i] = —M(Xm - fmo 0+ &m-bmons) =0,

and Imgd; = 0. So the assertion easily follows.
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(iii) Finally consider the cas& < v»(m) < 2. In this case, because the orderfgb g is 2m
andXm € (Z/2m)*, mxy- fmo 0 # 0 and its order i2. Then if we remark that

07(Bmons) = m(bmons) =0,
7([Bm,i]r) = —m[bm,i] = —M(Xm - fmo 0 + &m-bmonNs) = Mxy- fmo g,
we have Imd; = (m- fno0) = Z/2. Then the assertion easily follows from the above exact
sequence. 0
COROLLARY 5.3. Letd;: 15(Xm,Lm) — (Lm) be the boundary operator.

(i) If m=1(mod 2) Ker &7 = ([Bm,i]r + &m-Bmoni) = Z.
(ii) If vo(m) > 3, Ker &7 = 15 (Xm, Lm) = Z- [Bm,ilr ®Z/2- Bmoni.
(i) 1f 1< vp(m) <2,Ker o7 = (2[Bm,i]r) ©Z/2-BmonNsg =ZDZ/2.

PROOF. The assertion easily follows from the proof of Theorem 5.2. O

COROLLARY 5.4. If 1< vo(m) < 2, there is nom-twistedCP* of type (X, ¢) for any
ecZ/2.

PrRoOOF. The assertion follows from Theorem 4.5, Corollary 5.3 and the equality1m
16 (Xm) — T&(Xm,Lm)] = <2[Bm7i]r>®2/2-ﬁmol’]é22@2/2. O

DEFINITION 10. Let m € [Xm,K(Z,2)] = H?(Xm, Z) = Z denote the map which repre-
sents a generator, and M, be the homotopy fiber of the mah,. ThenXy, is a2-connective
covering ofXy, and there is a fibration sequence

St — X — Xm. (14)

PROPOSITIONS.5. Letm> 1 be an integer. Then ih= 1 (mod 2)or m= 0 (mod 8)
there is a homotopy equivalengg ~ P*(m) v P°(m) v &'.

PrROOF. If we consider the Serre spectral sequence

E>' = H(Xm, Z) @ H' (S}, Z) = HS™ (X, 2)

Z/m if k=46,
associated to (14), we hat# (X, Z) = { Z if k=0,7,
0 otherwise.

Hence, there is a homotopy equivalege~ P*(m) v P5(m) Ug €’ for somed e 1i(P*(m) Vv
PP(m)). It suffices to show thal = 0. First, we remark that

0 if m=1(mod 2)

76(P(m)) = {2/2. i”ons  if m=0(mod 2) 13)

wherei” : S — P%(m) denotes the inclusion of the bottom cell.
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Hence, by using Proposition 2.6, we have

T6(P*(m) v P°(m)) = i5(P*(m)) & 78(P°(m))

Z/(m3)®Z/m if m= 1 (mod 2)
Z/(m12)eZ/ma(Z2/2)? if vp(m) > 3.

1

So it follows from Theorem 5.2 that there is an isomorphiggiXm) = 16(P*(m) v P8(m)).
However, becausss(Xm) = 1(Xm) = 15(P*(m) v P°(m))/(6), we haved = 0. O

0 if m=1(mod 2)

We recallre; (P°(m)) = {Z/ZEBZ/Z if m=0(mod 8)

COROLLARY 5.6.

N Z20Z/(m3)dZ/m if m=1(mod 2)
7% (Xem) = 202/40(Z2/2%0Z/meZ/(m,3) if m=0(mod 8)

PROOF. The assertions easily follow fron8]and Proposition 5.5. O

LEMMA 5.7. If m= 0 (mod 2) there exists a coextensidg € 1 (Xy) of ns such that

0 if m= 0 (mod 4)

fis = N € T(S°) with 2fjs =
Pmofls = Ne € T6(S) s {j*(bmoné) if m= 2 (mod 4)

PrROOF. Consider the cofiber sequence (12). Sifroé) o ns = 0, there exists a coexten-
sionfjs € 15 (Xmn) such thatpm o fjs = ng. Moreover, it follows from 1.8, Corollary 3.7] that we
have

(b, 16, 216} 5 bio { 216} =0 if m= 0 (mod 4)
mbm, N5, 216} D bpo {mis, nNs, 216} = ,

s £lo " 5115, 2l6 SbponZ if m=2(mod 4)
On the other hand, usind$, Proposition 1.8], we have

2f)s = fls0 (217) € —j o {mhm, N5, 216},

where the indeterminacy dimhy, ns, 21} is mhy o 76(S) + 27%(Lm) = 27&(Lm). Hence,

o — 0 mod2j,(1%(Lm)) if m=0(mod 4)
5= j«(bmon2) mod2j.(1&(Lym)) if m=2(mod 4)
So if we chooséjs properly, the assertions are satisfied. O

THEOREMS5.8. Letj1, : TH(Xm) — 15 (Xm,Lm) denote the induced homomorphism.
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(i) If m=1(mod 2) there exists some elemefy; € 75,(Xy) such that
J1.(¢m) = [Bm, ilr + &m- Bmo N5, (16)
and there is an isomorphism
157 (Xm) = Z/(M,3) - ju(fmo tm) ©Z/m- j([bm,1.(N2)]) ©Z- $m.
(i) If m=0(mod 8)andm+ 0, there exists some elema € 75(Xm) such that
j1:(dm) = [Bm,i]r (17)

and there is an isomorphism

16(Xm) = Z- dm®Z/4+ j.(fmo V) B Z/2- j(fmo 0 0 N)
©Z/2-(joi)«(N20wone)®Z/(M,3) - j.(fmo )
©2/2- j.(bnond) ©Z/m- j.(Ibm 1. (12)]) ©2/2- Fis.

(i) 1If m=0, thenXy = & Vv S*v S and there is an isomorphism

T5(Xo) =Z- j4oVa®Z-[j2, 6] DZ/2- j20N20wWoNeDZ/2- jgoNe
®Z/12- j40EWHZ/2- [j2,jao NF] B Z/2- [j20 N2, jao Na]
BZ/2-[j20n3, jal,

whereji : ¥ — VStV S (k= 2,4,6) denote the corresponding inclusions.

PROOF.  We take Imj,. =1Im [j. : 75(Xm) — 75 (Xm,Lm)]-
() We assumen= 1 (mod 2), and we takém = [Bm,i] + &m- Bmo Ng. Then it follows from
Corollary 5.3 that there is an exact sequence

0— 1M ju — 78 (Xm) 225 Z- & — 0.

If we choose an elememty, € 15 (Xm) such thatji, (¢m) = dn, thentm(Xm) =Z- dm® Im j,,
and it remains to show that

Im j.=2Z/(m,3) - j(fmo wm) ®Z/m- j.([bm, i+ (n2)]). (f)
First, by using Corollary 5.6, we have

Im j.=Z/mpZ/(m,3). (t2)

Then consider the exact sequentg Xm, Lm) L 76 (Lm) 2 im j« — 0.
Let Ns” € (D, ) = Z/2 be the generator and consider the elemBgto N5- €
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B(Xm,Lm). Then because

98(Bmo5°) = (Mhy) 0 g = m(bmo ng) = bmon2 # 0 € 1(Lm),

j«(bmon?2) = 0. Then if we consider the group structurem{Ly) (see Corollary 3.5), there is
a surjective homomorphism,

Z/(M.3) - fmo wn®Z/m- [bm, i+ (n2)] 2= Im j..

However, if we recall 1), j. is an isomorphism. Hencéf,) is proved.
(i) We supposen = 0 (mod 8) andm = 0. Then using Corollary 5.3, we have the exact
sequence

0——1m ju — 15(Xn) 25 Z- [Breily ©2/2- Brmo Nl — 0.

If we choosegn € 1 (Xm) such thatji, (¢m) = [Bm,i]r, we have the isomorphisms(Xm) =
Z- ¢ @ Tor(1H(Xm)) and the exact sequence

0— Im j, — Tor(7e(Xm)) ™% 15(S°) = Z/2- ng — 0.

Now consider the elemeffs € 75 (Xm). Then because the orderipf is 2 and pm, (fj5) = ne (by
Lemma 5.7), we have

H(Xm) =Z-¢m@©Z/2-fls© 1M j.. (18)

If we recall 76 (Xm) = ZZ/40 (Z2/2)*®Z/ma Z/(m,3) (by Corollary 5.6) and (18), there is
an isomorphism Inj, = Z/4® (Z/2)3® Z/m@ Z/(m,3). Now consider the surjective homo-
morphismj, : 1% (Lm) — Im j,.

Becauser(Lm) =~ Z/4® (Z/2)3®Z/md Z/(m,3) (by Corollary 3.5),j, : 7&(Lm) — Im j,
is an isomorphism. Hence, we have

IM . = Z/4- j.(fno V') ©Z/(M,3) - . (fmo &) & Z/M- j([bm,i..(n2)))
®Z/2-ju(ix(N2o wone)) ©Z/2- ju(bmond) ®Z/2- ji(fmo T o),
and the assertion (ii) follows from (18).

(iii) Finally, sinceXo = v S*v S, the assertion (iv) also follows from the Hilton-Milnor
Theorem 2]. O

Now we can prove the following key result.
THEOREMb5.9. Letm> 0be an integer.

(i) If m=1(mod 2) there existsMﬁfq)l which is anm-twistedCP* of type(X,1). Conversely,
if there is anm-twistedCP?, it has the typéX, 1).
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(i) If m=0(mod 8) for eache € {0,1} = Z/2 there existwlﬁrﬁjs which is anm-twistedCP*
of type(X, €).

PROOF. Let jj, : TH(Xm) — T&(Xm,Lm) be the induced homomorphism.
(i) Assumem= 1(mod 2). Then it follows from Lemma 4.2 that it suffices to show that
there exists am-twistedCP*. For this purpose, consider the mapping cone

M1 = XmUgp, €°. (19)

Then by Theorem 4.5 and Theorem M ; is anm-twistedCP*.

(i) Next we assume thah= 0 (mod 8). First, consider the cases 0. Then it follows
from Theorem 5.8 thajty, (¢m+ € fis) = [Bm, i]r + € Bmo N for € € Z/2. We define the mapping
coneMX ;. by

Mpe = XmUgpre-7is €7 (20)

Then it follows from Theorem 4.5 theMrﬁg is anm-twistedCP* of type (X, €). Next consider
the casen= 0. In this case, foe € Z/2, define the spacli;z"léf‘g by

X _ . o . 8 _ . o . 8
MO,S =Xo Uisova+(iz,jel+& isone € = gvsve Ujsova+liz el +e jeons € - (21)

Then an easy diagram chasing shows Mé; is a O-twistedCP* of type (X, £) and this com-
pletes the proof. O

EXAMPLE. SINCEHP?#(S x ) ~ (FV SV L) Ujj, jol+ jaovs € ([21]), it is a O-twisted
CP* of type (X, 0).

COROLLARY 5.10. Let¢ € 17(Xp) be an element such that

¢ =nmjiova+np[jz, jo] + € jsoNe+ e j20N20Wo NG+ &2 [j2, jao il
+ &3+ [j20 N2, jao N4l + €4+ [J2.1n5, ja] +a- jaoEw,

whereny,np € Z; &9,€1,82,€3,84 € Z/2; a€ Z/12. ThenM = Xo Uy €8 is aO-twistedCP* of type
(X,¢) ifand only ifny,np € {£1} ande = &.

PROOF. This can be proved using a tedious diagram chasing. O

COROLLARY 5.11. If m= 1 (mod 2) then there exists a uni, € (Z/m)* such that,
[Bm, ] = Xm* fmo 0 +bmons € T(Lm).

ProOF. It follows from Proposition 5.1 thaom,i] = Xm - fmo 0+ &m- bmo ns for xm €
(Z/m)*, eme Z/2={0,1}. So it suffices to show that, = 1.

LetM = My ; = XmUj,, € be the mapping cone. Then it follows from the proof of Theorem
5.8 that it is anm-twistedCP* of type (X,1). Hence,S¢f : H8(M,Z/2) = H8(M,Z/2) is an
isomorphism. Moreover, it follows from Proposition 4.1 tisf : H4(M,Z/2) — H%(M, Z/2)
is trivial.
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Hence, sincg1,(¢m) = [Bm.i]r + &m- Bmo N, using the analogous proof of Theorem 4.5
(c.f. (11)) there is a homotopy equivalence

M/52 ™~ 54\/56Uii4on4+k.i4oEw+am.ieon7 .

Thus, ifzp, € H¥X(M/S?,Z/2) = Z/2 (k = 3,4) denotes the generator, an easy diagram chasing
shows thaBdf(zs) = &m- 2. SO it remains to show th&cf : H®(M/S,Z2/2) — H8(M/S,Z/2)

is an isomorphism. Here we remark tt&d : H5(M,Z/2) = H&M,Z/2) is an isomorphism
(by Lemma 4.2). Hence, this can be easily obtained by the following commutative diagram

ok

H6(M/S%:Z/2) —1— HE(M,Z/2)

o~

sﬂ qulg

HE(M/%2/2) —— H8(M,Z/2). O
6. An m-twisted CP* of type (Y, €).

Throughout this section, we assume timat O is an even integer. Let us consider the cofiber
sequence

< Mbn-+i.(n3) Ly P (22)

THEOREM®6.1. (i) If vo(m) >3

1%(Ym) = Z/(M,6) - j.(i.(N20 w)) ®Z/m- | (fmo 0)
©Z/2- | (Ymons)©Z/2- j'.(bmons).

(i) f1<vp(m) <2andnf = (m 12)/2 = 2"2(M-1(m,3),

%6(Ym) = Z/m - i (fnoAm) @ Z/m- jL(fmo 0)
®Z/2- . (ymons)®Z/2- j.(bmons).

(i) In particular, if m=0,

T6(Yo) = Z/6- j,(ioN20 @) ©Z/2- j.(is0nf)
©2Z/2-j (liz,iaona]) ®Z- ji([i20 N2,1a]).

PrRoOOF. Consider the exact sequence

75 (Yoo L) —"— T5(Lm) —— 75(Ym) —— O. (91
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Since[n3, 12] = 0, using Proposition 5.1 we have

07([Bfws1)r) = — [Mbn+1.(n3),i] = —mlbm,i] =i [n3, 1]
=—M(Xm- fmo 0+ &m-bmons)
0 if vo(m) >3 orm=0,
{m(fmoa) #0 if1<wvy(m) <2

Moreover, since the order of(n20 w) is (12,m),

07(Bmo ng) =(Mbn+i.(n3)) o Ns = M(bmo Ns) +1.(n3) =i.(n3)
20, (npo V) = {l*(ngl) #0 if vo(m)>20rm=0,

0 if vo(m) = 1.
Hence,
Z/2-i.(n3) if vo(m) >3orm=0,
Im 07 = ¢ (M(fmo0)) ®Z/2-1.(n3) = (Z/2)?  if vo(m) =2,
(Mm(fnoo))=2Z/2 if vo(m) =1,

and the assertions easily follow from the exact sequénge

COROLLARY 6.2. If d7: 15%(Ym,Lm) — m6(Lm) denotes the boundary operator,

Z- B i) if vo(m) >30rm=0,
Ker d7 = < (2[Bp,ilr) = Z if vo(m) =2,
2Bl BZ/2-Bront 2 ZHZ/2  if vp(m) = 1.

PROOF. This also follows from the proof of Theorem 6.1.
COROLLARY 6.3.

(i) 1f 1< vp(m) < 2, there is nam-twistedCP* of type(Y, £) for anye € Z/2.

(23)

(i) If m=0(mod 8)andm > 0, there exists some elemefy, € 1(Ym) satisfying the con-
dition j2,(¢},) = [Bh,i]r and there is the isomorphismy (Yy) = Z - ¢}, & Im ., where
we takelm j. = Im [, : T5(Lm) — 5 (Xm)] and jo, @ T8(Ym) — 75(Ym,Lm) denotes the

induced homomorphism.

PrROOF. The assertion (i) follows from Theorem 4.5 and the analogous proof of Corollary
5.4, and (ii) also easily follows from the homotopy exact sequence of the(Yaitm) and

Corollary 6.2.

O

DEFINITION 11.  We note thatrg(PP(m)) = Z/2-i”(ns) and thatre(P5(m)) = Z/2-
fie ®Z/2-i”(n?) if m= 0(mod 4), wherel” : S — P5(m) denotes the inclusion. Le} €
Y, K(Z,2)] =2 H2(Ym, Z) = Z denote the map which represents the generator arghlee the
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homotopy fiber of the maff. ThenY,, is a2-connective covering ofy, and there is a fibration
sequence

Whenm = 0 (mod 8) andm > 8, we define the spacdg, T, Qm, Qp, by

Tin = PA(M) Uy 3, €, Tin = P Ui (03 + toaons € (25)
Qm=P*(m) VPP (m)Ug, €', Qf=P*(m) Vv P’(m)Ug, €,

where we identifyrg(P*(m) v P5(m)) = 15(P*(m)) @ 1(P°(m)) and we take
61 =i.(n3)+1!(ns), B2 =iL(n3) + fyo flzo Ns+i/(ns) € 16(P*(m) v P°(m)).

LEMMA 6.4. If m=0(mod 8)andm > 8, the following isomorphisms hold:

() ®(Tm) = 10 (Ty) = Z©Z/40Z/(M,3)®(Z/2)%.
(i) 7(Qm) = 10(Q) = Z5Z/46Z/(M3) & Z/ma (Z/2)°.
(i) 1B(TmVPP(M)) 2 B(THVPP(M) 2 ZeZ/40Z/(m3)DZ/ma (Z/2)%

PrROOF. (i), (ii): We only show thatg(Qm) =2 Z® Z/43Z/(m,3) ©Z/md (Z/2)3, be-
cause a similar method shows the another cases of (i) and (iiP%m) = P*(m) v P°(m) and
a € 15(Qm, P*¢(m)) = Z be the characteristic map of the top @lin Q. Then7s(Qm, P*(m) Vv
P®(m)) = Z- a and consider the boundary operafir. 7§(Qm, P*¢(m)) — rg_1(P*®(m)) asso-
ciated to the exact sequence of the &, P*6(m)) for k= 7,8.

Sinced;(a) = 6, is the element of orde?, Ker d; = (2a) =2 Z. Now we recall the commu-
tative diagram

Js

®(Qm,P**(m) ——  m(P**(m)

a Tg 61, T

(D)  —L— m(S)=2/2-ns,

the equalitydy, (ns) = (i%.(n3) +1/(ns)) o Ne = i (n2) # 0 € m(P5(m)), and the isomorphism

12

1 (PH(m) & 15(PP(m) & [15(P*(m), 765(P°(m))]
5 (PH(m)) @ 1 (PS(m) & Z/m.

i (P*9(m))

IR

Then by using Proposition 2.9, there is an isomorphigP*®)/Im dg = Z/4©Z/(m,3) &
Z/ma® (Z/2)3. Hence there is an exact sequerice: Z/4® Z/(m3) & Z/ma (Z/2)° —
7%(Qm) — Z — 0, and we have®(Qm) 2 Z® Z/40Z/(m3)aZ/ma (Z/2)3.

(iii) Since m®(Tm) = 1(P8(M)) = Z/m, the assertion (iii) easily follows from (i) and the
Hilton-Milnor Theorem. O
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LEMMA 6.5. LetQ be the2-cell complex defined b9 = & Un eb.

() &(Q) =m(Q)=Z,m(Q) =Z/2,1m(Q) =0andm(Q) =ZH Z/6.
(i) m(Q) =Zaz/2.

PROOF. (i) By using the homotopy exact sequence of the p@irS?) and the James’s
isomorphism 8, (2.7)], we can show (i) easily. So it remains to show (ii). We remark that
we cannot use the James'’s isomorphisnvigiQ) because the dimension exceeds the range that
James'’s isomorphism holds. So let us consideRthennective coverin® of Q. Then it follows
from the main result given ir2fg] that there is a homotopy equivalence

O~ §Un§ vy, (26)

Hence, 7(Q) = m(Q) = 15(S? Un2 fvs)=z2amS Unz €%). So it remains to show that
(S Un2 %) = Z/2. However, if we consider the homotopy exact sequence of the($3a.lrn32
€5, %), we can show this easily. O
REMARK. If we use the result of Grayl], we can show that th8-skeleton of the homo-
topy fiber of the pinch mag? Un3 e® - Sis v (up to homotopy). By using this fact, we
can also showg(S? Ung f=zaz/2
THEOREM6.6. Letm > 0 be an integer withm= 0 (mod 8) and let j, : 1 (Ym) —

1%(Ym, Lm) be the induced homomorphism. Then there exists some eléfpents (Ym) such
that

and there is an isomorphism

16(Ym) = Z- 9 ®Z/4- j.(fmo V) ©Z/2- j.(fmo T o ne)
®2/2- (i (n20 wone)) ®Z/(M,3) - jL(fmo W)
®Z/2-j.(bmon2) & Z/m- j.([bm,i.(n2)]) if m#0,

m(Yo) =2 (iaova) ®Z- 9, ®Z/2-j.([i,izon2]) ®2Z/12- | (is0 Ew)
®Z/2-j.([i(n2),is0na)) ®Z/2- jL([i.(n3),ia])
®Z/2-j,(n20wone) if m=0.

ProoF. If we remark Corollary 3.5 and Corollary 6.3, it suffices to show tflat
®%(Lm) — 15(Ym) is injective. First, we assumm # 0, and consider th@-connective cover-
ing of Yy,. By using the computation of the Serre spectral sequence associated to the fibration
(24), we can show that there is a homotopy equivalence

Y =~ PH(m) v P°(m) Ug &’ (28)
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for some € 1(P*(m) v PP(m)) = 15(P*(m)) @ 1%5(PP(m)).

In this case, we note tha(Y) = 7(Ym) = 15(P*(m) v PP(m))/(6).

On the other hand, it follows from Proposition 2.6, (15) and Theorem 6.1 that there are
isomorphisms

{r@(P“(m) V(M) = Z/(m3) & Z/ma (Z/2)2 6 Z/4,
T6(Ym) = Z/(m,3) &Z/ms (Z/2)°.

Then if we compare above isomorphisms and consider’themponentaTe(P“(m))(z) and
16(PP(m)) 2), we can write

0=i.(n3)+e-flofizons+e-i’(ns) forsomesy, & € Z/2.

Now we prove that, = 1. For this purpose, we assume that= 0. ThenY;, is homotopy
equivalent tdTy, \V P6(m) (if &1 = 0) or to T,/ P5(m) (if &1 = 1). Then using Lemma 6.4, we have
15 (Ym) = 15(Ym) =20 2/40Z/(Mm,3) ®Z/ma (Z/2)*. So it follows from Corollary 6.3 that

Im j, =1m[j,: 1% (Lm) — 1&(Ym)] = Z/46Z/(M,3) ©Z/m® (Z/2)*.

However, sinca®(Lm) 2 Z&Z/402Z/(m,3) @ Z/ma (Z/2)3, the order of Imj’. is bigger than
that of 7% (Lm), which is a contradiction. Hence, we hase= 1. Therefore Yy, is homotopy
equivalent toQn, (for &1 = 0) or to Q},, (for &2 = 1). By using Lemma 6.47%(Ym) = 7T7(\7m) o
Z29Z/40Z/(m3)oZ/ma (Z/2)3, and Imj. =2 Z/45Z/(m3)®Z/ma (Z/2)3. Hence,
T (Lm) = 1m j.. Thus,j’ : T8(Lm) — 1(Ym) is injective, and the case +# 0 is proved.

Next, consider the casa= 0. In this case, we note th¥g = S*V Q, whereQ = $ Uns €’.
Then by using Hilton-Milnor Theorem,

m(Yo) = (QV'S') = 15(Q) & M (S") & [ru(Q), Tu(S")]
@ [18(Q), 15(Sh] @ [1R(Q), T6(S")] = 2?0 Z/120 (Z/2)*.

Because®(Yo) = Z- ¢4 @ Im j’. (by Corollary 6.3), Imj,. = Z@ Z/12a (Z/2)%, which is also
isomorphic torg(Lg) (by Corollary 3.5). Hence’, : 15(Ly) — 15(Yo) is injective and the case
m= 0 is also proved. O

THEOREM®G6.7. If m= 0 (mod 8) there exists a spad'd o Which is anm-twistedCP* of
type(Y,0). However, there is no-twistedCP* of type(Y, 1).

PrROOF. Let M%’O denote the mapping cone defined by

{Ymu(p/ e? if m#£ 0,
Mo = (29)

Yo Ui, (iyovg)+, € If M=0.

Then it follows from Theorem 4.5 that mo IS an m-twistedCP* of type (Y,0). However, since
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j2.(@) # £[B,i]r + Bmo N for any ¢ € 1(Ym) (by Theorem 6.6), by Theorem 4.5 there is no
m-twistedCP* of type (Y, 1). a

7. An mtwisted CP* of type (Z,0).

Throughout this section, we assume thet 0 is an integer such thah = 0 (mod 2). We
note that there is novtwistedCP* of type (Z,1) (by Lemma 4.3), and in this section we shall
prove that there is novtwistedCP* of type (Z,0), too.

LEMMA 7.1. If m> 0be an integer such thaih = 0 (mod 2) then
[V, i] = bmons #0 mod(2,m/2)i.(nzoV’).

PrROOF.  First, we remark thafynm,i] is at most the element of ord@r (In fact, if m=
0 (mod 4), the order ofs, is 2 and the this is clear. Iin= 2 (mod 4), since[ng,lg] =0and
2y=1i.(n3), 2lym,i] = [i(n3),i] =io[n3,12) = 0.

Now consider the induced homomorphism : 7&(Lm) — 7&(Lm,S?) for k = 5,6. Then
becauséy, (ym) = amo ns by [24, (2.14)],

iLs«([Ym,1]) = [iLe(ym), 12]r  (bY 9, (2.2)])
= [amo N4, 12)r = [@m, 12]r 0Ny (by [14, Lemma 1.6]
=iL,(bm)on, (byLemma 2.2)
=iL.(bmons) (by[14, Lemma 1.2].

Hence,[ym,i] = bmo ns mod i.(1(S%)). Since[ym,i] andbmo s are elements of at most order
2, the assertion follows from Corollary 3.4. O

Consider the cofiber sequence

i /

S mbin-+ym L J Pm $ (30)

m Zm

Consider the boundary operat@s: 1&(Zmn,Lm) — m%(Lm).
LEMMA 7.2. If m=0(mod 2) &7(Boni) = ymons # 0 € 16(Lm), and

[Vmai] If VZ(m) 2 3a
m- (fmo )+ [ym,i] f1<vo(m) <2

07([Baw:r) :{

PROOF. First, we haved; (/0 nt) = (Mhm+ ym) © N5 = ymo ns. Similarly, we also obtain:

07([Bryilr) = — [Mbm+ Y, 1] = —m(bm, ] — [ym, ]
=—MXm* fmo 0+ &m-bmons) — [ym,i] (by Proposition 5.1)
- —MXn- (fmo0) — [ym,i]  if 1< vp(m) <2
- = [Ym, i] = [Ym, ] if vo(m) > 3.
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Hence, ifvo(m) > 3 the assertion is satisfied. So we assumev,(m) < 2. In this case, since
Xm € (Z/2m)*, —mxy, = me Z/2mand we have

07([B,1lr) = —M¥n+ (fmo 0) — [, i] = M- (fmo &) + [ym i]- O
COROLLARY 7.3. If d7: 15(Zm,Lm) — T6(Lm) denotes the boundary operator,
Ker d; = (2B}, i]r) = Z.
THEOREM7.4. Letm> 0 be an even integer. Then there is metwistedCP* of type
(Z,e) foranye € Z/2.
PrROOF. This easily follows from Theorem 4.5 and Corollary 7.3. O

Now we complete the proof of the main results.

PROOFS OFTHEOREMS1.1AND 1.2 Theorem 1.1 follows from Theorem 5.8 and Theo-
rem 6.7 and Theorem 1.2 also follows from Theorem 5.8, Theorem 6.7 and Theorem 7.4.

PROOF OFCOROLLARY 1.3. Since (iv) is trivial, it suffices to show (i), (ii), (iii).

(i) Assume thatm= 1 (mod 2). We note that there is a homotopy equivaleXgely e~
XmU_g €8 for any ¢ € 15(Xm). Then it follows from Theorem 4.5 and Corollary 5.11 that we
obtain

1< card.#m) < card{¢ € 15(Xm) : j1.(®) = [Bm,i]r +Bmoni})
= cardIm [j. : 7%(Lm) — 1%(Xm)]) = m(m,3).

(i), (ii)): We supposem= 0 (mod 8). Since card#y) > 3 is clear, it remains to consider the
upper bound of card#y). First, we consider the case+ 0. Define the seZX and.Z,, by

{5231( ={¢ € m(Xm) : j1.(9) = [Bm,ilr + & Bmong, € € Z/2},
Tm=A{® € 18(Ym) : j2.($) = [Bm,i]r + € Bons, € € Z/2}.

In this case, a similar method (as in (i)) also shows

card.#py) < card.Z}) + card.Z.) = cardIm j,) +cardIm j’)
=2%.3m(m,3).
Next, consider the casa= 0. Then, forg € 15(Xo), M = Xo Uy €® is aO-twistedCP* if and
only if ¢ = £jaova=(j2, je) mod To(1E(Xp)). Similarly, for ¢ € (o), M =Yo uu,e8 is a
O-twistedCP* if and only if ¢ = £’ (i4 0 v4) + ¢4 mod To7&(Yo)). Hence,

3 < card.y) < 2(card Tor(1(Xo))) + card Tor(15(Yo)))) = 27 - 32. O



488 J. MuKAI and K. YAMAGUCHI

8. Spivak normal fibrations.

We recall the standard surgery theor$]([16]). Let SG, be the topological monoid con-
sisting of all self-homotopy equivalence 8f with degree one. Similarly, let STmenote the
topological monoid of orientation preserving homeomorphismR" — R" such thatf (0) = 0.

A suspension induces natural inclusions of mond8is, — SG,1 and STog — STop, ;. We
denote by§SGand STop the topological monoids defined3B= Ii|r']n SG, and STop= Iilr“p STop,.

A natural inclusion STop- SGinduces a map of classifying spacBs; BSTop— BSG

PrROPOSITION8.1. If M is a twistedCP", it has the homotopy type &h dimensional
closed topological manifolds.

PrRoOOF. If we choose a sufficiently larger numbk there is a unique (up to homotopy
equivalence) Spivak normal fibration over the base spaaeith fiber SN ([3]). By a result
of Stasheff, this is classified by a mdp : M — BSG Let us consider whethefy, lifts to
BSTop or not. In this case, the obstructions lie in the gradpeV, r,_1(SG/STop)). Since
T (SG/STop = 0if k= 1 (mod 2) ([L6]), HX(M, 15_1(SG/STop)) = 0 for anyk > 1. So fy can
be factorized througBSTop. It follows from a theorem of Browderl(@]) that there is a closed
topological2n dimensional manifold. such thatM ~ L (homotopy equivalence). O

REMARK. LetM be anm-twistedCP* andf : M — BSGthe classifying map of its Spivak
spherical fibration. Becaus&(SG/SO) = 0 for anyk € {1,3,5,7} ([16]), f can be factorized
throughBSQ So if we can compute the surgery obstruction, we can determine whdthes
the homotopy type o8 dimensional closed smooth manifolds or not. It seems very interesting
to study this problem.
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