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Abstract. LetL =3 ;X (2)d; be a holomorphic vector field degeneratingzat 0 such
that Jacobi matriX(9X;/dz;)(0)) has zero eigenvalues. Consider= F(zu) and letu(z) be a
formal power series solution. We study the Borel summability(af, Which implies the existence
of a genuine solutioni(z) such thatu(z) ~ (i(z) asz— 0 in some sectorial region. Further we
treat singular equations appearing in finding normal forms of singular vector fields and study to
simplify L by transformations with Borel summable functions.

0. Introduction.

LetL = Zid:lxi(z)dzi be a holomorphic vector field in a neighborhood of the origiﬁ:Fh
and which is singular at the origin, that ¥,(0) =0 for all 1 <i <d. LetF(zu) be a holo-
morphic function in a neighborhood ¢#,u) = (0,0) € C4*1. Let us considetu = F(zu),
which is a singular first order semilinear partial differential equation. Xet {zX;(z) =
-+ = X4(2) = 0} and ((9X%;/dz;)(2)) be the Jacobi matrix ofX1(z),X2(2),- -, X4(2)). Sup-
pose that” is a submanifold with codint = d;. Setdy = rank ((9X;/dz;)(0)) and Iet{/\i}idgl
be nonzero eigenvalues (fdXi/dz;)(0)). SinceL is singular, Cauchy Kowalevsky’s Theorem
is not available. The existence of holomorphic solutions of equations of this type was studied
under the conditiomy = d; and Poinca’s condition on{/\i}idgl (see B, [9] and [12]). How-
ever there are formal series solutions in many other cases. In general we can not expect the
convergence of these formal solutions. Gevrey type estimates of coefficients of formal so-
lutions were obtained in18]. One of our aims is to give an analytical meaning of formal
solutions. In the present paper we studwvith d; = dp+ 1. Let (i(z) € C[[Z]] be a formal
solution. For our aims firstly we simplif{. by holomorphic local coordinates transforma-
tions. We show in this paper under some additional conditions that we can find a holomorphic
local coordinates syste(x(z),y(z),t(z)) € C% x C4% x C, x(0) = y(0) = t(0) = 0, such that
> ={x1(2) = = %4,(2) =t(z) = 0} and a solutionu(x,y,t) which is holomorphic in

{(y)iIx| <r, |yl <r}x{0<|t| <ro,|argt — 6] < 11/2y+ 5} (0.1)
for somef andd > O, wherey > 0 is a constant determined ly Further it holds thati(x, y,t)

has an asymptotic expansionix,y,t) ~ S _qun(X,y)t" ast — 0 in this sectorial region with
remainder estimate of Gevrey type
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N-1

U(X7 y’t) - Zt) Un(X7 y)tn

< ABNT <':+l)|t|'\' (0.2)

andu(x(z),y(z),t(z)) = (i(z) as a formal series (Theorem 1.5).

As a special but important case, singular semilinear equations appear in finding normal
forms of singular vector fields (se&][ [8]), which are more profoundly studied than general
ones. Itis well known that if all the eigenvalues(¢9X;/dz;)(0)) are non zero and distinct, then
the formal solutions (formal transformations to normal forms) are convergent under Bésncar
condition, more generally, Siegel’s on&g] or Brunao’s one ¥]. Furthermore we assunty =
d—1andd; =d, so zero is a simple eigenvalue @X;/9z;)(0)). The other aim of this paper
is to simplify L, by using not only holomorphic functions in a full neighborhood of the origin but
also holomorphic functions with asymptotic expansion in a sectorial region, so we find a normal
form of L (Theorems 1.7 and 1.8).

There are several definitions and notions concerning formal series and functions with
asymptotic series. The theory of the multi-summability of formal series has recently developed
(see P], [3]) and is important in the theory of functions with asymptotic series. Borel summa-
bility is a special case of multi-summability, that is, it is one-summability. It is showd]ir $]
and ] that formal power series solutions of ordinary differential equations are multi-summable,
which also means the existence of genuine solutions in some strict sense. As for partial differen-
tial equations, the relation between formal solutions and genuine solutions were studigd in [
and [14], but the multi-summability of formal solutions was not investigated. So the sector where
the asymptotic expansion is valid is not wide and there are many genuine solutions with the same
asymptotic expansion. There are few results about multi-summability of formal solutions of
partial differential equations. Borel summaubility of formal solutions of Cauchy problem of heat
equation was studied il ], and it is shown in15] that formal solutions are multi-summable for
some class of partial differential equations. We adopt in this paper the notion of Borel summa-
bility and study formal solutions of singular first order semilinear equations. We note that (0.1)
and (0.2) mean that(x,y,t) is Borel summable with respect to

The contents of this paper is the following:

. Notations, definitions and main results.

. Singular first order partial differential equations on sectorial regions.

. Coordinates transformations by holomorphic functions.

. Normal forms of some singular vector fields by transformations with holomorphic func-
tions on a sectorial region.

. Borel and Laplace transforms, convolution and majorant functions.

. Proofs of Theorems 2.3 and 2.4.

7. Existence of solutions of singular differential equations.

A WDN PR

o O

We study in Section 2 the existence of solutions of some first order semilinear partial differential
equation on a sectorial region and give Theorems 2.3 and 2.4 which are tools to show main
results. Their proofs need the theory of Borel transform and Laplace transform of holomorphic
functions on sectorial regions and majorant functions. Hence they are given in section 6. In
Sections 3 and 4 we start discussions by assuming Theorems 2.3 and 2.4. In Section 3 we
transformL to the operator studied in Section 2 by holomorphic coordinates transformations and
show one of the main results (Theorem 1.5). In Section 4 we further transfbgnmolomorphic
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functions on a sectorial region (Borel summable functions) and show the other main results
(Theorems 1.7 and 1.8). We prepare in Section 5 for proving the theorems in Section 2, that
is, we give briefly the properties of Borel transform, Laplace transform and majorant functions.
We devote Section 6 to the proofs of Theorems 2.3 and 2.4. We use in Sections 2, 3 and 4 the
results about existence of solutions of some singular semilinear ordinary or partial differential
equations, so we summarize them in Section 7.

1. Notations, definitions and main results.

In this section we give notations and definitiohs= {0,1,2,--- } is the set of all nonnega-
tive integers. For open seésandU, V € U means thaV is compact an® c U. Firstly let us
introduce spaces of formal series and those of holomorphic functions on sectorial regions related
to formal series. We denote #§(Q) the set of all holomorphic functions on a regiéh Let
teC. Forf € Randr,d > 0setS0,0,r) ={0< |t| <r;|argt — 8] < 0}, §(0,0) = §0,J,»)
andS;)(0,0) = {t € §6,0);0 < [t| < p(argt) }, wherep(-) > 0 is some positive continuous
function on(8 — 8, 6 + &), which is called a sectorial neighborhoodtef 0in S(6, ).

Let x = (X1,X2,--,%) € C" and x| = max{|x|;1 <i < n}. For a multi-indexa =
(a1, ,0n) €N, [a] = TP, @i andx® = x{1x52 - --xn. A seriesf(X) = 3 genn faX?, fa €C, is
called a formal power series xa The set of all such formal power series is denote@Hy|]. The
totality of all convergent power series inthat is, all holomorphic functions in a neighborhood
of x= 0, is denoted byC{x}. LetU C C" be an open polydisk centered at the origin and the set
of all such polydisks is denoted lfp. The set of all formal series power series in one variéble

with coefficients ing'(U), f(x,t) = T o fm()t™ (fm(X) € €(U)), is denoted by (U)([t]].

DEFINITION 1.1. Let f(x,t) = oo fm(X)t™ € €(U)][t]]. We say thaf (x,t) has Gevrey
ordersin t, if for anyV & U there are positive constamisandB such that

sup| fm(X)| < AB™ (sm+1). (1.1)
xeV

The set of all such formal series is denoteddiJ )[[t]]s.

Let us introduce spaces of holomorphic functions on sectorial regions with asymptotic ex-
pansion. For the details of this topic we refer 2pgnd [3].

DEFINITION 1.2. Let y > 0 andU be an open polydisk centered»at 0. Let f(xt)
be a holomorphic function od x (8, d,r) with asymptotic expansiofi(x,t) ~ ¥ g fm(X)t™
(fm(x) € €(U)) in the following sense. For any € U there exist constan#s andB such that
foranyN e N

xeV

N-1
su%f(x,t) - Zo fn(x)t™

< ABI (';+1>|t|'“ 1.2)

holds inS(8, 3,r). The set of all such holomorphic functions is denoted:by? (U x (8, 8,r)).

Set



418 S.OUCHI

C{x}[[t]]s = Uguoﬁ(U)[[tHs, (1.3)
OU){t}y.6 = UssmayUr=0 V(U x 5(6,3,1)), (1.4)
C{xHt}ye:= Uguoﬁ(U){t}y,e. (1.5)

For eachf(x,t) € C{x}{t}, o the coefficients{ fm(x)}men Of the asymptotic expansion are
uniquely determined and we can define a homomorpRis@{x}{t}, s = C{x}[[t]]1/, by

OO0D= 3 0" < CxH [y 1.6

Since 6 > 1/(2y), J is not surjective but injective. Therefore, we can identffgx.t) =
@FH)(x1) € J(C{xHt}ye) € COG[t]1yy with F(x,1) = (31F)(x,1) € C{x}{t} 6.

DEFINITION 1.3. Let f(x,t) e C{x}[[t]]1/y- If there existsf (x,t) € C{x}{t}y g such that
f= Jf, then we say thaf (x,t) is y-Borel summable in the directiol and f (x,t) is y-Borel
sum of f(x,t). We also say that(x,t) € C{x}{t} ¢ is y-Borel summable in the directiof.

Next we give conditions on vector fields. Let= (z,---,24) € CY, 0, = 9/(3z), 9, =
(07, ,04) andL = L(z d;) be a holomorphic vector field in a neighborhdatof the origin,

d
Lz0) = 3 X(@0. (1.7)

L is singular az = 0, that is,X;(0) = 0forall 1<i<d. Set
2={zeW;Xi(zy=0 fori=12---,d} (1.8)

and denote the Jacobi matrix 0%1(2),X2(2), -, Xa(2)) by ((9%/9z;)(2)). We introduce con-
ditions C.1 and C.2 oh.

C.1 X is a complex submanifold with codimensidn
C.2 The Jordan canonical form ¢fdX;/dz;)(0)) is

M 0 o 0 --- --- 0

g Az 0 ... . 0O -~ --- 0

0 ptp Az - - o -~ ... 0
. 0

0 0 Hdg—1 Ado 0 0

0 0 0O O 0
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HereAi #0for 1 <i <dpandy =0 or 1 and the convex hull of the set df points
{A1,---,Aq, } in the complex plane does not contain the origin.

The rank of((9%;/9zj)(0)) is do anddp < dy. Setd, =d —d;. Suppose that satisfies condi-
tions C.1 and C.2. Furthermore assutige< d;. We introduce other conditions. In order to do so
we give some definitions and notations ab@{t}. For¢;(z) € C{z} (i=1,---, p) we denote by
F(¢1,92,--- , ¢p) the ideal generated by them@{z}. We denote by# (%) the ideal consisting
of elements irC{z} vanishingonz. Let> = {ze W, {(z) =0, 1<i <d;}, where(;(0) =0and
{¢i(2)}1<i<q, are functionally independent. Theﬁﬁ( )=5({1,02,-- . {q,) andXi(z) € 7 (Z).

It follows from C.2 that there are(X;(2)}; d °, Which are functionally independent at
z=0. We may assumgX;( )}J ,are functlonally independent. We cantaféz) ¢ .7 (3) (1<

i <di—dp) such thats(Z) = & (X, -, Xdp, Y1, -+, Pa,—q,)- Hencef(z) € .#(%) is of the
form f(z) = z?ilgj( 2)X;( )+Z % (2)Wi(2). For f(2) € .7 (X) the notationf (z) = O(|y|P)
mod.# (Xg,-- -, Xq,) means

do d1—do
(@=3 6@X@+ 5 he@u M
1= ﬂxe\':\lpl o}
Define
p(i) :=sup{pe N;Xi(2) = O(|¢|P) mod.# (Xy,---,Xq,)} 1.9

and setp(i) = o for Xi(z) € .7 (X, -+, Xq,). The exponent is defined by

o= min p(i). (1.10)

1<i<d
The exponent was introduced, called multiplicity and denoted&®yn [18], where it is shown

that it depends on neither the choice{of; (z)}?oz1 nor coordinates systems.df = do+ 1, by
denotingyn (z) by Y(z), we haves (X) = .7 (Xq,- -, X4y, ) and forl <i < d

z g|] +hl( )W( )U' (1-11)

LEMMA 1.4. AssumeC.l, C.2andd; = dp+ 1. Then there are holomorphic func-
tions ¢(z) € #(Z) and p(z) in a neighborhood ofz = 0 such thatdim{(grad ¢)(0),
(gradX;)(0),---,(gradXy)(0)} =do+ 1 and

Lo(2) = p(2)(2)°. (1.12)

The proof of Lemma 1.4 is given in Section 3. lgefz) € .#(3) andp (z) be holomorphic
in a neighborhood of = 0 satisfying
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dim{(grad¢)(0), (gradX1)(0),-- ,(gradXy)(0)} = do+1,
Lo (2) =0(2¢(2)°.
Furthermore suppose> 2. Then we shall show in Section 3 that there is a holomorphic function

k(z) with k(0) # 0 such thatp (z)|s = (k(z)p(2))|s holds (Lemma 3.7). Now we introduce
condition C.3 in whictp(z) is that in Lemma 1.4.

C3dal dy=do+1, 0>2
ObO p(0) #0.

It follows from the above remark that(0) # 0 does not depend on the choicegf).
Now let us proceed to study the equation

Lu(z) = F(z,u(2)), (1.13)

whereF (z,u) is holomorphic in a neighborhood ¢, u) = (0,0) andF (0,0) = 0. In many cases
there exist formal power series solutions of (1.13), so there is a problem. Do formal solutions
have analytical interpretations? The following theorem is an answer to this problem.

THEOREM1.5. AssumeC.1, C.2, C.3and for allm= (my,---,mg,) € N

d oF
i;m)\i ~ 5, (0.0 #0. (1.14)

Then there exists a unique formal solutidfz) € C[[Z]] of (1.13) Moreover there exist a holo-
morphic local coordinates systefx(z), y(2),t(z)) € C% x C4~%~1 % C (x(0) = y(0) =t(0) = 0)

in a neighborhoodQ of the origin such thatX N Q = {x1(z) = --- = Xq,(2) = t(2) = 0}
and u(x,y,t) € C{x,y}{t}s_1, for some8, which is a genuine solution dfl.13) such that
G(z) = u(x(2),y(2),t(2)) holds inC[[Z].

We show in Section 3 that under the assumptions of Theorerh tah be represented in
the form

do dz
L= zl()\iXi + Hi—1Xi—1 +A(X Y1) 0% + Z Bj(x,y,t)dy, +tHIC(x,y, t)ak, (1.15)
i= =1

whereg = y+ 1, A; # 0, 1 = 1 or 0, and the coefficients are holomorphic in a neighborhood of
the origin and satisfy a&,y,t) — (0,0,0)

A(0,y,t) = O([t]"™), Ai(xy,t) = O((IX + Iyl +1t])?),
Bj(0,y,t) = O(|t|**1), Bj(x,y,t) = O((|x| + |y +t])?), (1.16)
C(0,0,0) # 0.
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We remark thap(0) # 0 in C.3-(b) mean€(0,0,0) #£ 0. It follows from C.2 and (1.14) that
there is a positive constakp such that for alm= (my,--- ,my,) € Nd

mel o 0 ‘ > Ko(Im[+1). (1.17)

The other aim of this paper is to find normal form of some singular vector fields by trans-
formations with asymptotic developable functions. Lét,d) = 59, X(2)d; be a holomorphic
vector field which is singular at the origin. It is assumed to satisfy the following conditions C.1’
and C.2’, which are more strict than C.1 and C.2.

C.1' Z={0}.
C.2' The Jordan canonical form ¢fdX;/dz;)(0)) is diagonal

A O 0

0 A, O 0 8\
0 0 A 0 0
: 0 0
0 0 0 A1 O
0 0 0 O

HereA; # Ofor 1 <i <d-—1and distinct, and the convex hull of the setdf- 1) points
{A1,---,A¢_1} in the complex plane does not contain the origin.

By C.1' and C.2' it holds thatimX = 0, d = di = do + 1 and ((dX;/9z;)(0)) has one zero
eigenvalue. Fok satisfying C.1’ and C.2' we have

LEMMA 1.6. Suppose thaE.l’andC.2’ hold. Letp(z) be thatin Lemma.4. Theng > 2
andp(0) # 0 hold.

The proof of Lemma 1.6 is given in Section 4.

THEOREM1.7. AssumeC.l’, C.2'and
d-1
Zlm)\if/\k;éo (1.18)
i=

forall m= (my,--- ,my_;) € N9-1 with Im >2and all1 <k<d-1. Then there exist a
holomorphic local coordinates systen(z),t(z)) € C% x C (x(0) =t(0) = 0) in a neighborhood
Q of the origin, and functiong;(x,t) e C{x}{t}s_10 (1 <i <d—1) andn(xt) e C{x}{t}s_10
for somef@ such that

Zl(oa O) == del(ov 0) = Oa U(Xa O) = 07

¢ Lo (1.19)
(500) =@ G020
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and by transformatiod; = ¢j(x,t) (1 <i<d-1), n = n(xt), L is represented in the form

7]
ZA 5'07.*” Mg (1.20)

where{A;(n) id;ll andc(n) are polynomials im with degree< g — 1, A;(0) = A; andc(0) = 1.

If we admit multiplications of nonvanishing functions to vector fields in the process to find
normal forms of vector fields, we have

THEOREM1.8. Suppose that the same assumptions as those in Thdordmld. Then
there exist a holomorphic functidi{z) with h(0) # 0 and a holomorphic local coordinates sys-
tem (x(2),t(2)) € C% x C (x(0) = t(0) = 0) in a neighborhood? of the origin such that the
following holds.

SetlL, = h(z)L. Then there exisfi(x,t) € C{x}{t}s_16 (1 <i < d— 1) for someb such
that

94

Zl(0,0) == del(ovo) O (d X;

(0, 0)) (&), (1.21)

and by transformatiod; = ¢j(x,t) (1<i<d-—1),n =t, Ly is represented in the form

0
ZA Zld—zjn"%, (1.22)

where{A;j(n ) ! are polynomials im with degree< o — 1 andAi(0) = A;.

We give a simple example

L:=L(xt,0x 6) = (AX+X°+xt+12 ): thV*lgt (1.23)

wherey is a positive integer andl > 0. We haveo = y+ 1. Let us try to simplifyL. Let 6 be a

real constant such that< 0] < 1t/y.
First consider

(1) = Ad () + o (1) +t(t) +t2 (1.24)

We have a solutionp (t) € C{t}, ¢ with ¢(t) ~ S »cnt" (c = —1/A) (Proposition 7.3 or see
[6]). By w=x—¢(t),t =t, Lis transformed to

L(W,t, 0w, &) = (A +t+2¢(t))w+w?)dy+tY 4. (1.25)

SetA(t) =A +t+25" ,cit" andA(t) = A +t+2¢(t) — A(t). ThenA(t) is a polynomial int
with degree< y, A(t) € C{t}, o with A(t) ~ 25, ., cit" and
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L(W,t, B, &) = (A (1) +A))W+WP) Ay + V14
Next consider
L(w.t, 0w, &) @(W,t) = A () p(w ). (1.26)

The existence of a solution of (1.26) can be shown as follows. Shige= O(t¥*1), there is
Y. (t) € C{t}, o with ¢, (0) = O satisfying

YL(t) + A L) +At) =0
(Proposition 7.3 or se®]). Setp(w,t) =w+ . (t)w+ ¢ (wt). Then (1.26) becomes
L(W,t, G, Q) (Wit) = A (6) g (wit) — (14 g (£)) w2, (1.27)

We can find a formal solutiof(w,t) = 32 o Yn(W)t" € 0(U)[[t]]1/, of (1.27) for a neigh-
borhoodU of w = 0 such thaty,(w) = O(|w|?) for all n. It follows from Theorem 2.4 in
Section 2 thatp(w,t) is y-Borel summable. Hence theBorel sumy(wt) € C{w}{t} 4 of
¢ (wt) is a solution of (1.27). Thug(w,t) = w+ . (t)w+ @(w,t) is a solution of (1.26). By
(x,t) = @(x—¢(t),t), n(x,t) =t, Lis transformed td. = A (n){(8/dL) +n"*1(d/an).

2. Singular first order partial differential equations on sectorial regions.

In this section we study some singular partial differential equation on a sectorial region and
give the existence of solutions with asymptotic expansion, Theorems 2.3 and 2.4, which are main
results in this section. Their proofs need Borel and Laplace transforms and many estimates, and
are slightly long. Hence they are given in Section 6. We prove Theorem 1.5 in Section 3 by
transformingL to the operator studied in this section.

Let (x,y,t) e C% xC% x C, U = {(x,y) € CP*%;|x < R|y| < R}, y be a positive
integer andS := S(6p, 11/2y + £,r) = {0 < |t| < r;|argt — 6| < TT/2y+ &} (g > 0). Let
P:=P(x,y,t,dx,dy,0) be afirst order linear partial differential operator with holomorphic coef-
ficients inU x S,

do dy
P(x.Y.t, 0k, 0y, ) = Z(Aixi +Hi-1%i-1 A (X Y1) 0+ Y Bj(xy.t)dy, +tIC(x yt)a,
= J:]_

- (2.1)

whereA; # 0, yj = 1 or 0. As for the coefficients we assumgXx,y,t), Bj(x,y,t), C(x,y,t) €
0(U){t},.s, and they satisfy the following conditions ésy,t) — (0,0,0) in S

A(0,y,t) = O(t]"™ ), Aix.y,t) = O((Ix| + |y| + [t])?),
Bj(0,y,t) = O(|t|¥*1), Bj(x.y,t) = O((|x| + |y +[t])?), (2.2)
C(0,0,0) #0
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(see (1.15) and (1.16)). Hew(0,y,t) = O(|t|*1) meansd/Ai(0,y,0) =0 for 0 < j <

y and Ai(x,y,t) = O((|x| + [y + [t])?) meansA;(0,0,0) = dx;Ai(0,0,0) = dyAi(0,0,0) =
A (0,0,0) =0 (1< j <dy 1<k<dy), and similar notations will be often used. It also
holds that the convex hull ofA;.---,Aq,} in the complex plane does not contain the origin,
hence, there is a constadit> 0 such that

do
Zm)\i‘ >Clm| forallm=(my,---,my,) € N, (2.3)
i=

Let Up = {u € C;|u| < Ro} and F(x,y,t,u) € (U x Sx Ug) N O(U x Ug){t},q, With
F(0,0,0,0) = 0. So

F OOy t,U) = fan<x,y7t>u”, Fo(0,0,0) = 0, (2.4)

whereF,(x,y,t) € 0(U){t},.q,- Now let us study a semi linear equation
Pu=F(x,y,t,u) (2.5)

under the above assumptions and show the existence of a solftiont) € &(V){t},q,
of (2.5) with u(0,0,0) = 0 for some open polydisk/ about the origin. Sincei(x,y,t) €
O\V){t}ye C C[[x,\,t]], we give remarks on the existence of a formal solutiifr,y,t) =
Y (p.ar)eNd xNéz xN Upar XPYH" with Ugoo = 0. As for the existence we refer tag).

PROPOSITION2.1([18]). Suppose that

do
3 A ~Fi(0.00)#0 (2.6)

holds for allm= (my,---,my,) € N%. Then there is a unique formal solutidgi{x,y,t) =
Y (mn)eNdoxN Umn(Y)X™" of (2.5) such that{umsn(y)}(m_n)eNdeN are holomorphic in a neigh-
borhood ofy = 0, ugo(0) = 0 and

[Umn(y)| < AB”‘*”(;)! (2.7)

holds for some constanfsandB.

The estimate (2.7) is obtained ihd] under the condition that coefficients are holomorphic
in a full neighborhood of the origin. Though the coefficients of (2.5) ar&'{){t}, s, we
can get (2.7) by a slightly modified method. Let us remember only the existence of a unique
formal solution(i(x,y,t). SinceP has a simpler form than that studied i8], we can find a
formal solution of the fornti(x,y,t) = S r_gun(X,y)t" such that{un(X,y) }nen are holomorphic
in a neighborhood ofx,y) = (0,0). We give how to determiney(x,y) for the later discussions.
SetALO(X? y) = Ai(X? Y, 0)* Bjﬁo(X, y) = B] (X7 Y, O) and
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do d2
Po(X,Y, Ox, Oy) = Z()\ixi + Hi-1Xi-1+Ao(X,Y))0x + 3 Bjo(x,Y)dy;,
. &

which does not depend d@randd;. Thenup := up(X,y) satisfies
(Ro(X.Y, 0, 8y) — F1(x,¥, 0)) uo = Fo(x,y,0) + ;Fk<x,y, 0)ug. (2.8)

From (2.2) we have
Ao(0,y) =Bjo(0,y) =0, Aio(xY),Bjo(xy) =O((IX +¥)?). (2.9)

The coefficients offy(x,y, dx,dy) vanish on{x = 0}. By (2.6), (2.9) andr(0,0,0) =0 it
follows from Proposition 7.1 that there exists a unique holomorphic soluiigr,y) with
up(0,0) = 0 (see alsog]). By considering(x,y,t) = u(x,y,t) — Up(X,y) as an unknown, we have
P(x,y,t,0x, 0y, )v = G(x,y,t,v), whereG(x,y,t,v) = F(X,y,t,v+ Uo) — P(X,Y,t, dx, dy, & )up and
G(x,Y,0,0) = F(x,y,0,up) — Po(X,Y, dx, dy)up = 0. By denotingu(x,y,t) (G(x,y,t,u)) by u(x,y,t)
(resp F(x,y,t,u)) again, from the beginning we may assume in (2.4)

F<X7y7 0, 0)(: F0<X>y7 0)) =0. (210)

Before showing the existence of a solutia(x,y,t) € ¢'(V){t},q, of (2.1), we give

LEMMA 2.2. Suppose thazidglm/\i —F1(0,0,0) # 0 holds for allm = (my,---,mg,) €
N%_ Then there exid and 3, K > 0 such that foré with |argé — 0| < o

do
> M+ ¥C(0,0,0)§" —F1(0,0,0)| > Ko(Jm[+[§]V+1) (2.11)
k=1

holds for allm € N%,

PROOF. Setcy =C(0,0,0). Since the convex hull o{f/\i}idz‘ll does not contain the origin,
there exist®’ such that])\ke“e' > Ofor all k. We may assumé@’ = 0. So there aré.. such that
—11/2<0_ < 6y <m/2andO_ < arghg < O, forall k. LetO< g < 11— (64 — 6_)/2. Suppose
that ¢ satisfiesd, — m+ & < y¢ +argco < 6_ + 1m— &. Then(dg+ 1) pointsAy,---,Aq, and
cod¥? are contained in a half plane divided by a line through the origin, so there is a constant
Ce, > Osuch that

do )
S Mk + yeor'e"?| > Cey ([ +1Y)
k=1

holds forr > 0 and allm = (my,--- ,my,) € N%. Hence there exisE,Ry > 0 such that for
Im|+r1¥>Ro
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do )
S M+ ycor'e"? —Fi(0,0,0)| > C(|m| +rY+1).
k=1

Supposém| < Ry and considefr, ¢) satisfying

do .
z m<)\k+ Vcorye'y¢ - F1(0> 07 O) = 07 (212)
k=1

wherer > 0and 8, — 1+ & < y¢ +argcy < 6_ + m— &. However we have # 0 from the
assumption. Hence there are at most fidita, ¢i) } 1<i<¢ satisfying (2.12) for somen € Nd
with |m| < Rp. Now let 6 with 6, — 1T+ & < Y0 + argcy < 6_ + 1m— & such thatd # ¢; for
all 1 <i < /. Then there existd > 0 such that (2.11) holds faf with |argé — 6| < 6 and alll
m= (my,---,my,) € N%. O

We have the following existence of a solution of (2.5) on a sectorial region.

THEOREM2.3. Suppose that there are constadisKo > 0 such that foré with |argé —
60| < & and allm= (my, --- ,mg,) € N%

d
jmm+yc<o,o,0>sV—F1<o,o,o> > Ko(m| + €]+ 1). (2.13)

Then there exists uniquely(x,y,t) € &(V){t}y.q, With u(0,0,0) = 0 for a polydiskV about
(x,¥) = (0,0) such thatu= F (x,y,t, u).

If zidglm/\i —F1(0,0,0) # 0 for all m= (my,---,my,) € N%, then by Lemma 2.2 there
exists 8 satisfying the assumption of Theorem 2.3. The existence of a soluf,t) €
O(V){t}y,s means the existence of a formal solutifx,y,t) € &(V)[[t]]1/, with G(x,y,t) =
u(x,y,t) as a formal series. We give a modification of Theorem 2.3, which can be used to show
Theorem 1.7. We further assume the equation (2.5) contains néjther variablesy, sod, =0
anddp =d -1, andP is of the form

d-1
P(x,t, 0k, &) = _Z(/\ixi +A(X,1))0 +tYFIC(x 1) a, (2.14)
whereA; # 0, C(0,0) # 0 and
A(0,t) =0, A(x,t) =O((]x +t])?) for:1<i<d-1. (2.15)

The coefficients ob, of P vanish on{x = 0}. LetF(x,t,u) € (U x Ug){t}, g, Satisfying
F(xt,0) = O(]x|N) for someN € N — {0}. (2.16)

Let us consider under the above assumptions
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Pu=F(xt,u). (2.17)

THEOREM2.4. Suppose that there are constadgsKo > 0 such that for with |argé —
6| < & and allm= (my,---,my,) € N% with |m| > N

do
5 mAYC(0.0) - % (0.0.0)| > Kof|mi + (€)' +1). (2.18)

Then there exists uniquely a solutioiix,t) € ¢(V){t},q, of Pu= F(x,t,u) with u(x,t) =
O(|x|N) for a polydiskV aboutx = 0.

We can find a formal solutiofi(x,t) = S&_qun(X)t" of (2.17) withun(x) = O(|x/N). As
remarked after Proposition 2.1, by considerifig t) = u(x,t) — up(X) as an unknown, we may
further assume in (2.16)

F(x,0,0) =0. (2.19)

As stated in Introduction, the proofs of Theorems of 2.3 and 2.4 are given in Section 6. We show
in Section 3 Theorem 1.5 by using Theorem 2.3, and in Section 4 Theorems 1.7 and 1.8 by using
Theorem 2.4.

3. Coordinates transformations by holomorphic functions.

LetL = z;’:lxi(z)aa be a singular vector field satisfying C.1, C.2 athd=dy+ 1. In
this section firstly we show that there exists a holomorphic local coordinates sgstgi) =
(X1(2), - s X4y (2),¥1(2), - - ,¥d,(2),1(2)), whered, = d — dy, such that is represented in the form
(3.9) in Proposition 3.5 (see also (1.15) and (2.1)). Holomorphic coordinates transformations
used here are the same as thoselB} €xcept for the last one, which appears in Proposition 3.5
and maked. much simpler than the form transformed t8]. Secondly we give the proof of
Lemma 1.4 and a remark about condition C.3-(b) (Lemma 3.7). Finally we show that Theorem
1.5 follows from Theorem 2.3.

Let us show how to change coordinates step by step. By a nonsingular linear transformation
we have

LEMMA 3.1. We can find a holomorphic coordinates systesm (z,--- ,Z4) such that_
is of the form

do d
L= Z()\izi + U1z -1+ai(2)0; + a(2)0;;, (3.1)
i= i=dp+1
di=dp+1
. /_H -
with &(0,---,0,24 41, ,29) = 0andai(z) = O(|2?) fori = 1,--- ,d.
The proofis not difficult. We assunieis of the formin Lemma 3.1. Set= (2,2, -+ ,zy,)

andZ’ = (zg,+1,--- ,24), S0Z= (Z,z4,,Z"). The next transformation is constructed by using a
holomorphic solution of some singular nonlinear partial differential equation.
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LEMMA 3.2. There exist holomorphic functiongZ,Z’) andr(z) in a neighborhood of
the origin such thatp(0,Z’) =0, r(0) = 0andL(z d,)(zs, — ¢(Z,Z")) = r(2)(za, — ¥(Z,2")).
PROOF. Let us consider

do

Zl()\izi +Ui—1z-1+ai(Z,9,2"))0,0(Z,7")
i=

d
- a(Z,0,2)0,07,2") = a4, (Z,9,2"). 3.2)

j=d1+1

We notea;(Z,9,Z')|z—p-0 = 0 anda(Z,p,Z’) = O((|Z| + |Z'| + |@|)?). So it follows from
Proposition 7.2 that there exists a unique holomorphic solyiahz’) of (3.2) with(0,2’) =
Then

L(z.02)(z4, — 9(Z,2"))
do d

:adl(z)*lzl(/\izi+I~1i—1zi—1+ai(z))aza oZ.2") — ; 1aj(2)dz,- 0(Z.7)
i= j=di+

do
=aq,(2) —a, (Z,9,7') + Zl( a(Z,9.7') ~ai(2)0;9(Z,7")
d

- (aj(Z,9,2") —aj(2)05,0(Z,7"),

j=d1+1

which vanishes ofzy, = ¢(Z,Z’)}. Hence there existgz) such thal (z,d,)(zy, — 9(Z,Z")) =
r(2)(zs, — 9(Z,2")) andr(0) = O by ai(z) = O(|Z?). O

LeEMMA 3.3. There exists a holomorphic local coordinates systénz’, 1) e C% x C% x
C in a small polydiskD about the origin such thaf "D = {Z = 7 = 0} and

do dz
L= Z(Alz + /,li,12571+ai/(2,,2l/, T))azi + z b/J (Zlazua T)azdlﬂ +C/(Zlazua T)aﬁ (33)
i= =1

where
4(0,2/,0)=0, &(Z,Z',1) = O((|Z| + |Z'| +|1])?),
b}(0,2/,0) =0, bj(Z,Z',1) = O((|Z| + |Z'| + |1])?), (3.4)
d(Z,2',0)=0, ¢(Z,Z',1) = O((|Z| +|Z'| +|1])?).

PROOF. Setz =z fori#dy, andr =zy, — @(Z,7"), wherep(Z,Z’) is that in Lemma 3.2.
ThenL is transformed to
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do
L :_Zl (Aiz+pic1z-1+a(Z, 1+ 9(Z,2'),2') 0,
1=

da
+ Y aq+(Z, 1+ 9(Z,2'),2")0 .+ (LT)0r.
=1

We haveq((Z,2",1) = &(Z, 1+ ¢(Z,2),2"), b|(Z,Z',T) = aq,+(Z, T+ 9(Z,Z'),Z") and from
Lemma 3.2/ (Z,Z',1) =Lt =r(Z,1+ ¢(Z,Z'),Z')1, which satisfy (3.4). O

Here we give a remark on the coefficieb{$z,z’, 1) (1 < j <dp) andc'(Z,Z,7) in (3.3). It fol-
lows from the definition ot (see (1.11)) that there are holomorphic functigos (7,2, 7);1 <
i <dp,0< j<dp}such that

do
bi(Z,7',1) = _zicj,i (Z,2',1)(Niz + piaz—1+ 8 (2,7, 1)) + O(|1|%)

do
d(Z,z.1)= _ZCO,i (2,7, 1)(Niz + pi-1z-1 +&(Z,2', 1)) + O(|1]°). (3.5)

We assumé is an operator of the form (3.3) satisfying (3.4) and (3.5).

LEmMMA 3.4. There exists a holomorphic local coordinates sys(em 1) € Ch xC% x
C in a small polydiskD about the origin such thaf "D = {x= 1 = 0} and

do d2
L= zi()\iXi + [Ji,]_Xj,l+A1‘,(X, Y, T))dXi + z B/j (Xv Y, T)ay,- + TC’(Xa Y, T)arv (36)
i= =1

where the coefficients satisfy

A(0,y,T) = O(|7|%), A (%Y, T) = O((IX| + Iy +IT])?),
Bj(0,y,7) = O(|7|%), Bj(x,Y,T) = O((|X| + Iyl +|1])?), B.7)
C'(0,y,7) = O(|777h), C'(x,y,T) = O(IX| + |y| + T])-

PROOF. Letus return to (3.3). Se¢ = Aiz + pi—1z-1+&(Z,Z,1) for L <i < dp, yj =
Zg,+j for 1< j<dyandt =1. Thenz = z(x,y,1) with z(0,y,0) = 0 for 1 <i < dp and
L =30, (Lx)dy + 31 Bj(x.Y, T)dy,; + TC'(x,y,T)dr, whereB| (x,y, T) = b (Z(x,y, 7).y, T) and
C'(x,y,T)=c(Z(x,y,T),Y,T)/T. Then it follows from (3.4) and (3.5) that

Bj(0,y,7) = O(|7|%), Bj(x,Y,T) = O((|X| + Iyl +|7])?),
C'(0,y,7) = O(|777h), C'(x,y,T) = O(IX| + |y| +T])- (3.8)

SetA(x,Y, T) = (La). ThenLx = Ax + fi_1%_1 -+ A(xy, 7) and we have
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do dp

A(xy,T) = (Zlmaa £ By 1)y, +1C (Y. r)m)a{(i,z/,r»
i= =1

A%y, T) = O((|x| +|y| +1])?) and A/(0,y,T) = O(|7|°) by (3.8). Hence we have (3.6) and
3.7). O

In [18] formal solutions are studied, after transformihgo the form in Lemma 3.4. In our
discussions we further employ a new change of coordinates which trandformish simpler.
We assumé is of the form (3.6) with (3.7).

ProPOsSITION3.5. There exists a holomorphic local coordinates systgm,t) € C% x
C% x Cin a small polydiskD about the origin such thaf "D = {x =t = 0} and

do dy
L= Z(AIX| +I-1i—1Xi—1+Ai(X>y7t))dxi + Z BJ (Xay7t)dyj' +taC(X7Yat)dta (39)
£ =1

where the coefficients satisfy
A(0,y,t) = O(]t|7), A%, Y,t) = O((IX| + Iyl +[t])?),
B;j(0,y,t) = O(|t|7), Bj(x,¥;t) = O((IX| + |y| +t])?). (3.10)

Proposition 3.5 implies that there exists a holomorphic local coordinates sgstem such
that the coefficient of}, vanishes with ordeo with respect td.

PROOF.  Let us return to (3.6). Sed{o(x.y,T) = A{(X,Y,T) —A(0,Y,T), Bjo(X,¥.T) =
B/j (X7 Y, T) - B/j (07 Y, T) andc(/)(X, Y, T) = C/(X7 Y, T) _C/(07 Y, T)' Then by (37)

Ai/,O(va’ T)’ B/j,O(Xa Y, T) = O(|X|(|X‘ + |y‘ + |T|))
Co(x.Y, T) = O(|X]). (3.11)
DefinelLg by

do dp
Lo= 'Z‘Aixi + Hi—1Xi—1 +Ai/,0(x7 Y, T))axi + Zl BG’O(X7 Y, T)dyj' + TC/O(Xa Y, T)dl'~
J:

By (3.11) all the coefficients dfo vanish on{x = 0} andA; 4(x,y, 7), B’Lo(x, y,T) andtCy(X,y, T)
vanish with order 2 at the origin. Consider

Lo(T(1+T(x,y,17))) =0. (3.12)
ThenT :=T(x,y, T) satisfies

LoT +CE)(vav )T +C6(X) y.7) =0,
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whereCy(x,y, T) = O(|x|) by (3.11). It follows from Proposition 7.1 that there is a holomorphic
solutionT (x,y, T) with T(0,y, T) = 0 in neighborhood of the origin. Set=Xx, y=y andt =
T(1+T(x,y,1)). Then we have = 1(x,y,t) with 7(x,y,0) = 0and1(0,y,t) =t, and

o
o

dy
L= (Aixi + I.li,]_Xj,l-FAj(X,y,t))dxi + Z BI (vavt)dyj +C* (vaat)atv
. =1

whereA, (x,y,t) = Ai/(xava)|r:r(x,y,t) and Bj (x,y,t) = B/j (Xayvr)|r:r(x,y,t)- By (3-7)Ai(07yat) =
A0,y T(0,y,t)) = O(t|?) andB;(0,y,t) = O(|t|?). We haveC* (x,y,t) = L(T(1+T(x,y,7))) =
L(t(1 + Ty 1) = Lo(t(1 + Ty 1) = (SPA0.% )0 + 552,Bj(0.%.1)3), +
1C'(0,y, 7)) T(1+T(X,Y, 7)) = O(|7|?) by (3.7). Henc&€* (x,y,t) =t°C(x,y,t) andL is of the
form (3.9) with (3.10). O

Now we assume thdt is of the form (3.9) with (3.10). Let us give the proof of Lemma 1.4.
Before the proof of Lemma 1.4 we have

LEMMA 3.6. SetX; = Aix + Hi—1X—1 +A(X,y,t) for 1 <i < do, Xgp+j = Bj(x,y,t) for
1< j<dy, Xy =t9C(x,y,t). Then

Lt =t9C(x,y,t), (3.13)
LXi(x,,t) = O(|t}* 1) mod.7 (X, -, Xq,)- (3.14)

PrROOF. SetX' = (X, -+, Xy,) and.# (X') = #(Xq,- -+, Xq,)- (3.13) is obvious. It follows
from A (x,y,t) = (A (%, y,t) — A (0,y,t)) +Ai(0,y,t) and (3.10) that; = O(|t|°) mod.# (X') and

A (% Y,), By Al (%, Y1) = O(|t|7), B A (x,y,t) = Ot )  mod.7 (X').
In the same way we also have
Bj(x,y:t), 3 Bj(x,¥;t) = O(]t[), 3B (x,y,t) = O(t°*) mod.#(X").

We have

d
LX%= 3 Bj(xy,1); X +17C(x y,)dX  mod.7(X').
=

Soforl<k<dy

dz
LX= 3 Bj (XY, 1)d; AX Y1) +17C(X Y, 1) G AKX, Y1)
=1

=0(|t[2°)+0O([t}* 1) = O(|t|* 1) mod.#(X').

We also havéX, = O(|t|?°~1) mod.# (X’) for dp < k < d. O
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PROOF OFLEMMA 1.4. By setting ¢(x,y,t) =t and p(x,y,t) = C(x,y,t), Lemma 1.4
follows from (3.13). O

We give a remark about condition C.3-(b). In the next Ien{m-a}id:l are those in Lemma
3.6,X = (Xg, -+, Xq,) andp(x,y,t) := C(x,y,t) is defined above.

LEMMA 3.7. Further assume > 2. Letg(x,y,t) € .#(X) andp (x,y,t) be holomorphic
functions in a neighborhood of the origin such that

{ dim{(grad¢)(0), (gradX1)(0),--- , (gradXq)(0)} = do + 1, (3.15)

Lo(x,y,t) =0 (XY, t)p(x,y,t)°.
Then there is a holomorphic functiok(x,y,t) in a neighborhood of the origin such that
k(0,0,0) # 0andp (0,y,0) =k(0,y,0)p(0,y,0).

PROOF.  There are holomorphic function@cj(x,y,t)}?lz1 with ¢4, (0,0,0) # 0 such

that ¢ (xy.t) = 3%, (X Y.OXj (X Y1) + Coy (X YD)t We have $7(x,y,t) = g, (X Y,1)°t°
mod.# (X’). The coefficients ofL belong to.#(X',t9). By (3.14) ando > 2 we have
LX;(x,y,t) = O(|t|°*1) mod.#(X), so

do do

Lo(xy.t) = ij Y HLej(xyt) + 3 ¢ (%Y HLX (%, y,1)
i= =1
Ftleg, (XY, 1) +Cqp (X Y, t)Lt

=cq, (XY, 1)p (%, y,)t7 + O([t|7"1)  mod.# (X').

We have from (3.15)

Lo(x,Y,t) =0 (XY, ) (% y,1)7 = 0 (%, 1) (Cq, (X, Y, 1)1) ¢
= Cg, (%, Y,1)p(X,y, 1)t + Ot ™)  mod.# (X'). (3.16)

Assumexl(xvyvt) == Xdo(xvy7t> =0. Thenxi = Xl(xlayat) (1 < i < dO) with Xi (Ovyvt) =
O([t[9). Setk(x,y,t) = cq, (X,¥,t)19. Then by (3.16)

0 (X(0,y,1),y,t) = g (X(0,¥.1), ¥, t) T p(X(0,y, 1), y.t) + O(]]),

hencep (0,y,0) = k(0,y,0)p(0,y,0) andk(0,0,0) # 0. O

PrROOF OFTHEOREM1.5. LetL be an operator satisfying the conditions C.1, C.2 and C.3
and (1.14). Seb = y+1 > 2. Then it follows from Proposition 3.5 angl(0) = C(0,0,0) # 0
thatL is represented in the form (2.1) with (2.2) by a suitable holomorphic local coordinates
system(x,y,t). By (1.14) and Lemma 2.2 the equatibn= F(x,y,t,u) satisfies the assumptions
in Theorem 2.3. Therefore Theorem 1.5 follows from it. O
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4. Normal forms of some singular vector fields by transformations with holomorphic
functions on a sectorial region.

In this section we considér satisfying conditions C.1’' and C.2'. The assumptions imply
d> =0, d; =d = dp+ 1. Firstly we give the proof of Lemma 1.6.

PROOF OFLEMMA 1.6. It follows from Proposition 3.5 that there exists a holomorphic
local coordinates systefw,t) € C4~1 x C such that

d-1

L= Z (Aixi +A (X)) 8 +t°C(x,)ak, (4.1)

where A (xt) = O((|x| + [t))2),A(0.t) = O(|t|°). SetX = Aix; +A(xt) (1<i<d-
1) and Xy4 = t°C(x,t). Thenx = O(|t|°) mod.# (X1, --,X4-1), S0 C(x,t) = C(0,t) +
zid;llxici (x,t) = C(0,t) + O(|t|°) mod.#(Xq,---,X4-1). Hencet?C(x,t) = t?(C(0,0) +
O(|t])) mod.#(Xy,---,X4_1), andC(0,0) # 0 by the definition ofc (see (1.9) and (1.10)).
From C.2' we haves > 2. By settingg (t) =t andp(x,t) = C(x,t), the assertions hold. O

Now we further transforni. satisfying C.1’ and C.2’ in order to obtain a normal form of

PROPOSITION4.1. There exists a holomorphic local coordinates syster) ¢ C91 xC
in a small polydiskD about the origin such thaf ND = {x=t = 0} and

d-1

L= Zl( +Za1 )x; +a( xt>>"yq+t"0(xat>0n (4.2)

where

al(t) =0(|t|%), a(t)=At)a,;+0(|t|),
a2(x,t) = O(|x|?), ¢(0,0)=1, (4.3)

andA;(t) is a polynomial with degreg o — 1 andA;(0) = A;.

PrRoOOF. L is of the form (4.1) with
Ai(x,t) = O((]x| +[t)?), A(0,t) = O(]t|%), C(0,0) #0. 4.4)

By replacingC(0,0)Y/(?~Ut by t, we may assumé€(0, 0) = 1. We haveA(x,t) = Aj(0,t) +
ST AL ()X +AP(xt) with AL (0) = 0, A¥(x,t) = O(|x|?). Set(d— 1) x (d— 1) matrix A'(t ):
(A J(t))l<, j<d-1, A () = Aid | +A,1 (t). SinceA;’s are non zero and distinct am;‘

0, there is a nonsingular matr&t) = (S j(t)) with holomorphic elements at= 0 such that
S(t)A' (t)S1(t) = diagonal (/\1(t),~-- /\d 1(t)) with A;j(0) = A;. Consider the transformation
o=y Spit)x, T=t. ThenL = 39-1(LX;)d%, + (LT)d;, where
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d-1

d-1
LXp = i; Spi (t)Ai(o’tHi.,Zl (t)xj + 2139 FOC(X, 1) A%,
d-1
=,Zsp,i(t)/3q(0,t)+( o(1)%p +t7C(X,1)%p) + Zsp

Set a(t) = 'S (A(OL), y9tal (1)K = Ap(t)Rp +t°C(0,)a%, and ad(Xt) =
t7(C(x,t) =C(0,1))a%Kp+ $i1 Spi (A (X, t) [y_s-1z- Thena(t) = O(|t|%) by (4.4), & ;(t) =
Ap(t)3p +O(|t|7) andad(%,t) = O(|%|?). By settlngc(x t) = C(S71(t)%,t) and denoting by x
again,L is of the form (4.2) with (4.3). O

ThusL satisfying C.1" and C.2’ is transformed to (4.2) with (4.3) by holomorphic trans-
formations in a full neighborhood of the origin, hence, we restart by assumisngepresented
in the form (4.2) with (4.3). From now on we transfotoby coordinates transformations with
holomorphic functions on a sectorial region, that is, functiorG{ir}{t},_1 ¢, and obtain a nor-
mal form ofL, which implies Theorems 1.7 and 1.8. In constructing transformations we need the
existence of solutions with asymptotic expansion of singular differential equations on sectorial
region (Theorem 2.4 and Proposition 7.3). It follows from C.1’, C.2" and (1.18) that there is a
constanC > 0 such that

Zm)\ ‘ C(Im+1) for |m/ >1, (4.5)

Zim/\l /\k

From (4.5), (4.6) and(0,0) = 1 we have in the same way as Lemma 2.2

C(m+1) for |m >2. (4.6)

LEMMA 4.2. There aref andd,Kgp > 0 such that for§ with |argé — 6| < 0

do
Zlmf\ﬁvfy > Ko(|m| &)Y +1) for |m|>1, 4.7)
i=
do
ZmAi—Ak+ y&Y| > Ko(|m|+|€[Y+1) for [m >2. (4.8)
i=

We assume in the following of this section tithsatisfies (4.7) and (4.8). Let us proceed to
find transformations. For this purpose we introduce conditi@s and(©;) on 9,

(@) (0—1)8#£arghi mod 2rforall 1<i<d-1,
(01) (o—1)8#arg(Aj—Ak) mod 2rforall1<j k<d-1withj#Kk

We remark that there are ma#ysatisfying (4.7), (4.8)(®y) and(©;). Now consider a system
of ordinary differential equations derived from (4.2)

dllll()

t%c(Y(t),t)——= t)+ Z ati( it 2(Wt),t) (1<i<d-1), (4.9)
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whereW(t) = (g (t), -, Pg_1(t)).

LEMMA 4.3. Suppose thai satisfies(@g). Then there exists a solutioW(t) =
(Y(t), -, Pa—1(t)) of (4.9) such thaty;(t) € C{t}s_16 and g(t) = O(|t|?) for all 1 <i <
d-1

PROOF.  We write (4.9) in another form. Set; /. = c(x,t)~IL. Then byc(x,t)™! =
1+ O(|x| +|t|) we have

(0 < 2 o
L]_/c = i; (ri (t) + leri’j(t)xj + 1 (X,t))dxi +t at, (410)
where
rP(t) =0(t|%), rtt)=m®&;+0(t|%), rf(xt)=0(x?), (4.11)

andy;(t) is a polynomial irt with (4(0) = A;. Sety = 0 — 1 and consider

ty+1dw( +Z rHOW )+, (1<i<d-1). (4.12)

The system (4.9) is equivalent to (4.12). B®p) and Proposition 7.3 there exists a solution
W(t) € (C{t}s_1.0)9 " with ¢i(t) = O(|t|%). O

LEMMA 4.4, Suppose tha satisfies(@g). Let W(t) = (¢u(t), -, Pa—1(1)), Wi(t) €
C{t}s_10, be a solution of4.9) whose existence is assured by Len#h®a By transformation
w =X — () (1<i<d-1)andt=t,L is transformed to

d-1

d-1
L=2 (Ai(UWi 3 A +A2(V\4t)> Oy +7C(w 1)L, (4.13)

whereAl; (t), AZ(w,t),C(w,t) € C{w}{t},_1 ¢ satisfying
A1) = O(]t]%), AZ(wt) = O(wi?), C(0,0) = L. (4.14)

ProoF. We have

Lw; =2 +Za« )W+ (1) +af (W (1), 1) — tc(w+ W(t), )y (1)

a1
= Z & i (tw;j +g;(wt),
=1

whereg; (wt) = a?(w—+ W(t),t) — a2(¥(t),t) +t7 (c(¥(t),t) — c(w+ W(t),t)) g (t). It follows
from g;(0.t) = 0, &2(w,t) = O(|w{?) andyj(t) = O(|t|) that
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d-1
gi(Wt) = 5 Qwgi(0,t)w; +gf(wit),
=1

where dy, g;(0,t) = O(|t|?) and g?(w,t) = O(|w|?). So there exm&,l (t) =0(t|?) (1 <,
j <d—1) such thaig;(t) + dw; i (0,t) = Ai(t)3 j + Al (t). By settlngA,z( t) = g2(w,t) and
C(w,t) =c(w+¥(t),t) we have (4.13). O

Now let us assume thétis of the form (4.13) with (4.14). Define a polynomi2d(t) with
degree< 0 —1by

o-1 n
o) = 5 () cOvr (4.15)
and seC (t) = C(0,t) — Co(t) = O(]t|9). Consider

L(te(wt)) = (te(w,1)) Coltp(wt)). (4.16)

We apply Theorem 2.4 to construct a solution of (4.16) in next lemma.

LEMMA 4.5. There exists a solutiop(w,t) € C{w}{t}s_1 ¢ Of (4.16)with ¢(0,0) = 1.

PROOF. First consider

C(0,t)(ten(1))" = @(t) Co(tg), @(0) =1.
Setg(t) =1+ ¢(t). Theng(0) = 0and
C(Ot)(te(t))" = (1+ (1)) Co(t+t(t)) —C(O,t).

SetG(t,u) = C(0,t) 1 ((14u)?Co(t +tu) — Co(t)) andg(t) = —C(0,t)1Cy(t) = O(]t|?). Then
(tg(t)) = G(t,¢9) +g(t). By G(t,0) = 0 andG(0,0) = g we haveG(t,u) = ou-+ Gy(t,u),

whereGy(t,u) = O(Ju|(|t] + |u])). Henceg(t) satisfies(td(t)) — o (t) = g(t) + Ga(t, (t)).
Set(t) =t Ly(t). Then

P(t) =t %(t) +t G (t,t7 (1)) (4.17)

Sinceg(t) = O(|t|?) and Gy(t,t?1u) = O(|t|?), there exists a solutiog(t) € C{t}s_1¢ Of
(4.17) with(0) = O (see Proposition 7.3). Hengs(t) =1+ ¢ (t) = 1+t 1¢@(t) e C{t} 516
exists. Let us proceed to solve (4.16). Bgiw,t) = p(w,t) — @(t). Then
L{t@u(wt)) = L(t(wt)) — L(tg(t))

=t7(@(t) + @u(w, 1)) Co(ten(t) +t@(wt)) —t°Clw,t)(tgn(t))’

=t7(@(t) + @ (1)) Co(ta(t) +t@(wt)) — (tgp(t)) *C(wt)C(0,t) 'Colta(t)).
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Set

H(wit,u) =17 (go(t) +u) “Coltgu(t) +tu)
— @(t)7CWE)C(0,1) *Coltgw(t) ~ C(w t)u).

Then we have
Lo =H(wt, @u(t)), (4.18)

whereH (w,t,0) = O(Jw|) anddyH (0,0,0) = 0 hold. We assumé satisfies (4.7), so the equation
(4.18) satisfies assumptions in Theorem 2.4 With- 1. Hence there is a solutiog (w,t) €
C{wH{t}s_1.0 With @ (w,t) = O(|w|) of (4.18). Thusp(w,t) = @(t) + @ (W) is a solution of
(4.16). O

LEMMA 4.6. Letg(wt) € C{w}{t},_1¢ be that in Lemma.5. By transformatiort =
to(wt), wi =w; (1<i<d-1),Listransformed to

d-1

L= i; </\i (T)wi +TZiAil,j (T)wj +AZ(w, r)) Oy, +19C(1) 0y, (4.19)

whereA;(1) (1 <i<d-1)andC(1) are polynomials irt with degree< o — 1 with A(0) = A;
andC(0) = 1, andAl (1) € C{1}5 1,0, AZ(W,T) € C{W}{T}5 1, With

Aj(1) = 0O(T|%), AZ(w,T) = O(|w|?). (4.20)

PrROOF. Lett=¢(w,1) € C{w}{T}s_10, be the inverse function af = tg(w,t). Then
¢(w, 1) = 7(1+O(Jw| +|1])). Recall that we assumleis the form (4.13) with (4.14). Since
Lt = 19Cy(1), L is transformed to

d-1

L;()\ (p(W, T))w; + ZA WT)WJ+A,(W¢(WT))>(3WI+TUC0(T)5T

Note the coefficient ofdy. SetAi(1) = y7°¢(d/dT)"Ai(¢(0,T))[r=oT"/h! and A (1) =
(Ai($(0,1)) = Ai(0)3; + AL (¢ (0 T)) Then A{;(1) = O(|7|?) holds.  SetA/(w,T) =
(A (d(w.T)) = Ai(9(0,7)))wi + 353 (AL (@ (W, T)) — AL (9(0,1)))wj + AR(W, p(w,T)). We

denote againi; (1) (A/(w,T),Co(T)) by A& (1) (resp. A?(w,1), C(1)). Then they satisfy
(4.20). ' O

We assumd. is of the form (4.19) with (4.20). Moreover let us consider a singular partial
differential equation for each fixdde {1,2,---,d — 1}

La(W, T) = Aw(T) (W, T). (4.21)
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We apply again Theorem 2.4 to find a solution of (4.7) in next lemma.

LEMMA 4.7. Suppose thab satisfies(©1). Then there exists a solutiop(w,T) €
C{w}{1}o-1.6 Of (4.21)with @a(w, T) = Wi+ O(|w|(|w] +[T])).

PROOF. Set@(w, T) = Wi+ Yk(W, T). Thenyx(w, T) satisfies

d-1 d—1 dw ] dw
i; <Ai(T)Wi+JZlA,%j(T)wj+A1.2(V\,7 T)) ’ II<+T cn) 2 k

d-1

= AT g— Y AL (T)W; — AW T). (4.22)
=1

Let us consider an auxiliary equation to solve (4.22)

d-1

d-1 Jud Wt
2 (/\i(T)Wi + J;Aij (T)Wj> T(\fvl:( +1C(1) dtl; T — Z Tw.  (4.23)

We show there exists a solutigi-(w, T) = Z?;ll Wi (T)w; of (4.23). We have

d-1 wkj d-1

d-1
Z(Ai(T)Wi + 3y AT WJ)‘I’k. + Z C(0) g Wi =) (MD)Wt (T) — A (1)) W,
i= =1 =1
hence, a system of linear differential equations of unkno{m% (T)}‘j’;l

dyt.
7o I 0 - ayrud ;A DY AL (D, (429)

If j # k, thenA;(0) — Ag(0) = Aj — A £ 0. If j =k, then

wk kT

17C(1) =—ZAk )W (T) — A(T).- (4.25)

The right hand side of (4.25) vanishesrat 0 with orderg, hence by dividing by ? it becomes
of normal type with respect t@/dt). It follows from (@) and Proposition 7.3 that there exist
{W;(1)}921 € C{1}o_10 With i ;(0) = O satisfying (4.24), say¢(w,7) = 391 @t (T)w; =
O(|w|t|) is a solution of (4.23). Sep?(x, T) = Yk(X, T) — YE(x,T). By (4.22) and (4.23)

d-1 d-1 E
2 </\i<r>Wi+ 3 AL W+ A (w r)) U | roc(r) o
i= =1
2 A2 R I
= /\k(T)LIJk _Ak(W7 T) - Z\AI (W7 T) dWi ) (426)



Borel summability of formal solutions of singular partial differential equations 439

whereAZ(w, 1) — YL A2 (w, T) (gt /ow;) = O(|w|?). We assum@ satisfies (4.8), so the equa-
tion (4.26) satisfies assumptions in Theorem 2.4 With- 2. Hence there existg2(w,T) €
C{W}{t}s_10 With g2(W,T) = O(|W|2). Thus@(X, T) = Wi+ YL (X, T) + Y2(x, T) is a solution
of (4.21). O

PROOF OFTHEOREM1.7. We can choosé so that (4.7), (4.8)(©p) and (©4) hold.
Consider transformatiody = @(w, 7) (L<k<d-1), n =1, where{@(w, T)}S;l are those in
Lemma 4.7. Them is transformed to

d-1
_ d g g d
L= 21( W) gz TN°CH 21/\ Z'Tz.” Cma,
By settingAi(n) = Ai(n) andc(n) = C(n), which are polynomials im with degree< o —1

we have (1.19). It follows from the process of transformations in the above Lemmas that (1.20)
holds. O

PROOF OFTHEOREM1.8. Letus return to the proof of Lemma4.3. $¢x,t) =1/c(x,t).
ThenLy, = h(x,t)L is of the form (4.10), so the coefficient 6f becomes®. By repeating the
above process, but without Lemmas 4.5 and 4.6, we have (1.21) and (1.22). O

5. Borel and Laplace transforms, convolution and majorant functions.

One of the aims of this section is to study Laplace transform, Borel transform and convolu-
tion for holomorphic functions on some sectorial regions. We refer for the details of these topics
and the proofs of some Lemmas &) &nd [3]. The other is to introduce majorant functions. The
solutionu(x,y,t) in Theorems 2.3 or 2.4 is constructed by Laplace integral

uxyt) = [ o exp( - (f)y)mx,y,s)dfv (5.1)

in Section 6, where we use the results in this section.
Let U be a neighborhood of the origin 8" and we denote by = (xq,---,X,) its co-
ordinates. Giver® andd > 0, setS*(68,0) := {& #0;|argé — 0| < 6} andS; {0}(9,5) ={&¢e
S(0,0);0< |&] < p(argé)}, wherep(-) is some positive continuous function 6fi— 5,0+ 9).
Lety > Obe a constant. Lep(x,&) € (U x S*(8,9)) satisfying for(x,&) € U x S°(6,0)
[o(x, )| < Aexpl(c|¢|”) for [¢]>1,

(%, &) <AE|*™Y (¢>0) for 0<|E| <1 (5.2)

Then we can defing-Laplace transforni.Z}, ¢ @) (x,t) by

Ho000= [ oo (4] o eraer. 63



440 S.OUCHI

(Zy,69)(x.1) is holomorphic inU x S;q)(6, 11/2y + &), whereS;q, (6, 11/2y + 0) is a sectorial
region int-space defined in Section 1. Legt(x,t) be holomorphic inJ x S, (6, 1/2y + J)
and|@(x,t)| < C|t| for somee > 0. Let & # O with |argé — 8| < . Let € be a contour in
Si0}(6, 11/2y+ &) from Oexp(i(6' +argé)) to Oexp(i(—6' +argé)) with 1/2y < 8’ < 11/2y +
min{6 + 6 —argé, argé — 6 + 0, 1/2y}. Then we defing-Borel transform(A, ) (x, &) by

(ByoW)(x,§) = zin[geXp(G)y)w(X,t)dty. (5.4)

Let @(x, &) € O(U x {0}(9 0)) (i = 1,2) satisfying|@(x,&)| <C|é|FY (¢ > 0). Theny-
convolution of@ (x,&) andg(x, &) is defined by

3
(@1 @8 = [ @@= @cn)dn’ E€Sg (0.5  (55)

The following relations hold.

LEMMA 5.1. Suppose tha@a(x,¢) € 0(U x S(0,9)) (i =0,1,2) satisfy the estimates
(5.2). Then

By.o-Ly,600 = P, (5.6)
(gy,eq).l.)(fyﬂ@) =$y,e((01>;fl’2)- (5.7)

We have a characterization ofx,t) € 0(U){t} ¢ by its y-Borel transform(%, ¢ f)(x,&).

PROPOSITION5S.2. Suppose thaf (x,t) € 0(U){t}, ¢ and its asymptotic expansion is
S ek fm()t™ with k > 1. Then for any ecu there is a positive constardy > 0 such that
(Ay,6)(x,&) is holomorphic i{0 < || < &0} and

m-y
(Byof)(x&) = Z r m/y —— =& (5.8)
holds. Moreover it is holomorphically extensibleSq 8, &) for somed > 0 such that

|(By.0f)(x.€)| < ClE[Yexp(cl¢ ") (5.9)

inV x ({0<|&| < &}US(8,d)) and

F(xt) = /Owée exp(— (f)y ) (Byot)(x E)dEY. (5.10)

Next let us study majorant functions. For formal power serigsvafriablesA(x) = 5 , Agx?
andB(x) = 34 Bax?, A(X) < B(x) meangAq| < By for all a € N". A(x) > 0 meansA, >0
foralla € N". Let 8(X) be a power series of one variai{edefined by
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G(X):cfxik c>0 (5.11)
& (k+1)2 ’ '

which is used in 10] and [L7]. By 8(X)8(X) = S o(T1amak L/((1 +1)2(m+1)?))X* «
PCyp o XK/ (k+1)? for someC > 0, we choose > 050 thatd(X)8(X) < 8(X) and fix it. Set
®(r;X) = 8(X/r) for r > 0 and we denotéd/dX)3®(r; X) = r=58 (X/r) by @ (r; X).

LEMMA 5.3. LetO<r < R< 1. The following estimates hold.

(s+1) @9 (r;X) < 40V (r; X),
&) (X)) (1, X) < ) (1:X), (5.12)
®9(RX) < (r/R® (r; X).
PROOF.  Since 8CtD(X) = v o((k+s+1)(k+9)---(k+1)/(k+s+2)?)X* and
(k+5+1)3/(k+5+2)2 > (s41)/4, we have(s+ 1) (X) < 465D (X) and the first esti-
mate. By differentiating®(r; X)®(r; X) < ®(r;X) (s +s’)-times, we have the second. By

89(X/R) < 8 (X/r) for 0 < r < R, we have®® (R X) = R58(9 (X /R) < R™58%) (X /r) <
(r/R)Sr=38S) (X /r) = (r/R)S®E (r; X). O

PrROPOSITIONS.4. (1) Leti andn be positive integers. Then

(D(nl)(r; X)(D(n2>(r')() e (D(ni)(r; X) < d)(n)(r; X)

5.13
- SeN niing!---ny! n! ( )
ng+ng+---+nNi=n
(2) LetN be a positive integer anth e NN. Then
o(pl+s) r: X old+s") r; X p(m+s+s") r: X
( )I | (r:X) < - ( ). (5.14)
p.deNN p:q: :
p+g=m

[
ProoF. By differentiating ®@(r; X)--- ®@(r; X) < @(r; X) n-times, we have (5.13). We
show (5.14). FoN = 1 we have from (5.13)

¢(p1)(r;x)¢<q1)(r;x) q;(p1+q1>(r;x)
<

p1+d1=m

and by differentiatinds’ + §’)-times we have

OPrE) (X)W (1 X) oM (1 X)
< .
p1!qs! my!

P1,d1€EN
p1+a1=m
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Assume
oI+ (1 X) a1+ (X)) @M+ (1 X)
: /1y , << : :
p/‘q/ENN—:I. p 'q | n‘(l
p+g =n
Then, by differentiatingny-times, we have (5.14). O

LEMMA 5.5. Letx= (x1,---,%) € C". Let¢i(&,x),i = 1,2, be holomorphic functions in
x in a neighborhood ok = 0 and continuous if onargé = 6. PutX = ¥ ; . Suppose that
there are¥(X) > 0, s > 0andy > 0 such that

clEY i gia-y

$i(&,x) < /Y . (5.15)
Then foré withargé = 6
AlAZec\E\V|g|sl+SH

ProOF. We have

€1 )
BaEX) 20280 = [ 42((& ="MV galn x)an”

= Olé¢1((|E|V—rV)l/Veie,x)¢2(rei97x)eiyedry

T L L
< e b (8o J s
AlAZeC\E\V|§|sl+sH
Farsfy) ¥ .

LEMMA 5.6. Let(x,y) €C% xC%andf(x,y) =¥, g% fm(y)x™ be a holomorphic func-
tion in a neighborhood ofx,y) = (0,0). SetX = 3%, x andY = 5%, yi. Then the following
estimates hold.

(1) If f(x,y) < COE(RX+Y), thenfy(y) < COE M (RY)/m!.
(2) If f(x,y) < CXOED(R X +Y), thenfy(y) < Clm[dEH) (RY) /mi.

PROOF. The first assertion follows fro@f (0,y) < C®S+IM)(R;Y). The second follows
from 8" (0,y) < C|m|®@SHM)(RYY). O

6. Proofs of Theorems 2.3 and 2.4.

The proofs of Theorems 2.3 and 2.4 are almost the same. So we give the proof of Theorem
2.3 in detail. We sum up shortly the assumptions of Theorem 2.3.USet{(x,y) € Cc% x
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C%;|x <R,ly| < R} andUp = {u € C;|u| < Ro}. P =P(x,y,t,8,,dy,4) is a vector field with
coefficients ing'(U){t}.q,,

do di
P= Z()\ixi +[.1i,]_Xi,1+Ai(X,y,t))axi + Z B] (X7y7t)dyj' +ty+lC(X,y,t)0t’ (61)
i= =1

wherey is a positive integer and the coefficients satisfy (see (2.2))

A(0,y,t) = O(t]"™),  Axy,t) = O((Ix| + Iyl +[t])?)
Bj(0,y,t) = O(It|¥*1), Bj(x.y,t) = O((IX + |yl + [t))?) (6.2)
C(0,0,0) # 0.

It follows from (6.2) that the coefficient;(x,y,t),Bj(x,y,t) andC(x,y,t) can be represented in
the following form

Ayt =a(xy) +aoyt) +a(xyt),
B] (X7y7t) b] (Xay)+b]0(y7t)+bj,l(x7y7t)7 (63)
C<X7y’t) = CO(Xay) =+ C]_(X,y,t),

where
ai(0,y) =0, ai(x,y) = O((Ix +1y)?),
bj(0,y) =0, bj(x,y) = O((Ix| +y)?),
aio(y,t) =O(t"*1), a&1(0,y,t) =a1(x,y,0) =0, (6.4)
bj.o(y,t) = O([t}**1), bj1(0,y,t) =bi1(x,y,0) =0,
co(0,0) # 0, ci(x,y,0)=0.

As fOI’Aj (Xa yvt): by Settinmi (X, Y) =A (Xv Y, O)' ai,O(y,t) =A (07 Y7t) andaLl(Xa yat) =A (X7 Y7t) -
ai(x,y) —aio(y,t), we haveA(x,y,t) = a(X,y) +ai o(y,t) +ai 2(X,y,t) with (6.4). Thus we as-
sumeP is of the form

do
P<X7 y7ta 0X7 dya a[) = -Zl()\iXi + Hi—1Xi—1 + & (X7 Y) + &O(Mt) + ai,l(xa y7t)>a>(i

dp
+ > (bj(xy)+bjo(y,t) +bj1(x 1)) dy, +  (co(xy) + Ca(x Y1)

=1
(6.5)

and the coefficients satisfy (6.4). As for the nonlinear tefifx, y,t,u) € (U x Ug){t},g, with
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F(x,y,0,0) = 0 (see (2.10)), hence

+o0 ,
F(X,y,t,U) = F(Xayvt)ulv FO(vavo) = 07
2,7 (6.6)
F(xyt) e 0U){t}ye-
An important assumption is (2.13), that is, ®with |argé — 6o < &
do
> M+ Y008 - F1<o,o70>| > Ko(|m|+ &1 +1) 6.7)
i=

holds for allm= (my, --- ,mg,) € N%.
Our aim is to construct a solution(x,y,t) of Pu= F(x,y,t,u) by Laplace integral (see
(5.1)). We denote byj(x,y,&) y-Borel transform ofg(x,y,t) with respect tat, sog(x,y,t) =

oog 90

o exp(—(&/t)V)g(x.y,&)dEY. Now let us proceed to find the equation théat,y, &) satisfies.
The coefficients oP belong toc' (U ){t}, g,, SO we can represent them it aplace transform.

By shrinkingU if necessary, it follows from Proposition 5.2 that there is a consé@u}to such
thaty-Borel transforms of the coefficients are holomorphi¢xry, &) € U x =g,

=5 ={0< €| < &} US (60, &), (6.8)
and by (6.4) there are constafigandcy such that
1800y, &)1, [bj.0(y, )| < Col€|exp(col£ ),

8.1(%, Y, €)], [Dj1(%,Y,&)| < ColX||E|*Yexp(col€ "), (6.9)
€1(x,Y, )| < Col&[*Yexp(col€[Y)

(see (5.9)), hence there is a constant- 0 such that
& .0(y,€), bjo(y, &) < Col€|exp(colé|")P(RY),

&1%Y.€), bj1(xy, &) < Col& | exp(col&|)XP(R X +Y), (6.10)
C1(%,Y, &) < Col& "V exp(col€ V) (R X +Y),

where the majorant functio®(R; X) is that defined in Section 5 arXi= zidilxi, Y=5%y
andR > Ois some constant. Let us apphBorel transform to the equatid®u= F (x,y,t,u). Set

Fi,O(Xa y) = F'I(X7y7 O)a Fi,l(xa yvt) = Fi(X, yvt) - Fi(xvyv 0) (611)

(see (6.6)) and define
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d
P (%.¥,§,0x, 0y) :_Zol()\ixi + Hi—1Xi-1+ai(X,Y)) 0y
dy
+Y bj(x.y)dy; +yco(x,¥)& —Fro(x,y), (6.12)
=1
do
2(x,y,&,0x,dy) :-21 (Go(y.&) +&1(xy,&)) 5 (0
dz

+ Z(Bj.o(y,é>+6,;l<x,y,é>) 5 (0 ) + ey ) (€Y ). (6.13)
J=

Z(x,Y,€,0x,0y) is a singular linear partial differential operator with a paramefeand
2(x.Y,&,0x,0y) is alinear partial differential convolution operator. L#t(x,y, &,v) be a nonlin-
ear convolution operator defined by

[ i

F (XY, &,v) = i;ﬁ.o(x,y)(’_vtv?—w;v) +i;ﬁ.,1(x,y,z) t/—vtvﬂ;-—- 0. (6.14)

Puttingu = (.Z},6,0)(X,y,t), we have

(P_Fl,O(va))u:gy,eo(gz(xayv670X7ay)0+Q(vavadmay)O)a
F(X7y,u)—F170(X,y)u:$y760(FA0(X,y,E)—‘v‘y(x,y,E?O)),

Sou satisfies
@(vavfﬁx,ay)fﬂrQ(X7y757ax,ay)0:ﬁO(X,yvf)Jrj(va’fvo) (615)

Hence we have

'@(X7 y7 E ) dX7 ay)” + Q(X’ y7 Ea dX» dy)U = FO(X7 y» E) + y<E7X> y7 U)) (616)

which is the equation to be solved. We shall show the existence of a solxigné) of (6.16)

and get its estimate. The coefficients of (6.16) are holomorphig,yné) € U x = and the
estimates (6.9) and (6.10) hold. Set

h(x,y,&) = yco(%,Y)&¥ = Fro(xy). (6.17)

Then it follows from (6.7) that for a small neighborhobdthere is a constar€ > 0 such that
for (0,y,&) € U x =5 andme N%

do -1 .
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holds. Under the above assumptions, we have

THEOREM6.1. There exists a solution(x,y,&) of (6.16) which is holomorphic in
(xy,&) €V x =5, whereV = {(x,y);|x| <r,|y| <r} for somer > 0, and has the following
properties.

(1) &E-1Vu(x,y, &) is holomorphic iV x =5.
(2) There exist positive constar@sandc such that

lo(x,y,&)| <CIE|*Yexp(c|é]Y) for (xy,&) €V x =4, (6.19)

After completing the proof of Theorem 6.1, we show Theorem 2.3. The proof of Theorem
6.1 consists of several steps, so we give lemmas and propositions. We use in the following
discussions Lemmas 5.3, 5.5 and 5.6 and Proposition 5.4:8et,&) = h(x,y,&) —h(0,y, &)
and

do
t@O(Xv Y, Ea dX) = Zi(/\lxl + I-liflxifl)axi + h(ov Y, E)

do dy
5”1(X, ya 0X7 ay) = h]_(X, ya E) + Zla (Xa y)axi + Z bJ (Xv Y)dyj . (620)
i= =1

Then Z(x,y,&,0x,0y) = Po(X.Y,&,0k) + Z1(X,Y,0x,0y). Here we give a remark on the

constants{ ; i“g;l. Setw; = ¢'x,c >0, for 1 <i <dg. Then Zy(x.y,&,0) = (Aw +

Cli—1Wi—1)dw +h(0,y, &), so; changes tey;. Hence, by choosing small> 0, i becomes as
small as possible.

LEMMA 6.2. Let f(x,y,¢) (¢ € =5) be a holomorphic function satisfyinf(x,y, &) <«
M(IENDE (r; X +Y) or f(x,y,&) < M(|E|)XDEHD (r; X +Y). Then there is a unique holomor-
phic solutionu(x,y, &) of

yO(Xa%EaaX)v(xvyaE) = f(Xay7E) (621)

with the following estimate. There are constamtandCp such that fol0 <r <rgif f(x,y,§) <«
M(|E]) @S (r; X +Y),

CoM([&]) 1 (9.
WY 8) < gy @ X AY) (6.22)

and if f (x,y, &) < M(|E)XPE (1 X +Y),
o(%,y, &) < CoM (€)@ (r; X +Y). (6.23)
PROOF. SetZpo(X,Y,&,0x) = zidﬁl)\ixi Ox;, +h(0,y, &) and first consider

Z00(%.¥; &, )o(xy,§) = f(xy,§). (6.24)
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Leto(X,Y, &) = 3 mendo tm(Y; E)XMand f(x,y, &) = 5 ndo Tm(Y; €)X™. Then

(im/\i +h(0,y,<$)>vm(y,5) = fm(%,¢)-

Hence We can uniquely determing(y,€). Let us estimate them. Assunfgxy,&) <
M(|E))@E (r;X +Y). Then there is a constaft such thatum(y,&) < CM(|E|)(1+|&])~Y
®HM) (1Y) /ml by (6.18) and Lemma 5.6. Henagéx,y,&) < CM(|E)(1+ |&]) Yo

(r;X +Y). Next assumef(x,y,&) < M(|E)XDED(r:X +Y).  Then fu(y,&) <

M(|&])|m[@EHM)(r;Y) /ml by Lemma 5.6, hence;m(y,é) < CM(|EN)@SHM) (1Y) /ml for

someC > 0 and we have(x,y,&) < CM(|]) @) (r; X +Y).

Now let us solve (6.21). Consider

Po0(%Y,&,0)0°(x.y,&) = f(x,y,)

L@OO(X y7£ dX X y7 (ZM 1Xi— ld)(|> n- l(X7y7E) = 07 (625)

where we may assume th@l(zidgzui,l) < 1/2 by the above remark. We can determine
successivelyv”(x7y,é). Let us show the convergence Suppdde,y, &) < M(|€]) @
(r;X+Y). ThenwO(x, yf) < CM(JENL+|E) VPO (r; X +Y). Assumer™ (xy,&) <
C2-™IM(E])(1+|€]) YO (r;X +Y). Then

do 2-n
(i;uimlaxi)v"l<x7y,s> e XX )

andwehave“(xy,f><<cz "M(E))(1+]E) VPO (X +Y) andu(x,y, &) = 30" (x,Y,€)
< 2CM(JE)(1+|E))YPE (r;X +Y). In the other casé(x,y,&) < M(|E[)XDEH(r; X+Y)
we can show the eX|stence of a solutigr,y, &) with (6.23) in the same way.

LEMMA 6.3. Letou(x,y,§) (¢ € =5) be a holomorphic function with(x,y,§) <
M1(]€)@ (r; X +Y). Then for anye > O there isr; > 0 such that fol0 < r <4

PrL(X,Y, 0, Oy)v(x, Y, &) < eM1(|E]) (1 +]E)Y@E (X +Y) + XDE (1 X +Y)).
(6.26)

PROOF. It follows from (6.4) andh;(0,y, &) = O that for anye > 0 there isR > 0 such
thatai(x,y),bj(x,y) < (¢/(do+d2))XP(R X +Y), andhy(x,y, ) < &(1+[§])YP(RX+Y).
SoforO<r<ri<R

do dz
2, 30)%0x %)+ 3 bty E) < eMy(|E)X P (X +Y)

hi(%Y, €)u(x,Y, &) < e(1+|E))Ms1(|E]) @ (r; X +Y),
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hence, we have (6.26). O
Thus we have the solvability o (x,y, &, dx, dy)v(X,y, &) = f(X,y, ).

PROPOSITION6 4. Letf(xy,&) (¢ € =5) be a holomorphic function witti(x,y, &) <
M([E@E (r; X +Y) or f(x,y,&) < M(|E[)XDEH (r; X +Y). Then there is a constang > 0
such that for0 < r < rg there exists a unique holomorphic solutig(x,y, &) of

‘@(X7y7€aaX7ay)v(X’y>E) = f(vavf)' (627)

Furthermore there exists a constabsuch that iff (x,y, &) < M(|E[)®© (r; X +Y),

CM(ED) 4
v(x,y, &) < (1+|E|) (r X+Y) (6.28)

and if f(x,y,&) < M(|E)X@E D (r X +Y),
o(xY, &) < CM(|E) @O (r; X +Y). (6.29)

PROOF. Let us show the existence of a solution by iteration. We defifey,&) (n=
0,1,---) as follows:

Po(x.Y,&,000°(x,y, &) = f(x.,&),
<@0()(7)/7 Evax)vn(x7ya E) + gl(xvya aXvay)vnil(X7y7€7Xay) =0

We can determine successivel}(x,y,&) by Lemma 6.2. Let us show the convergence
of S ot"(X,y,&). Assume f(x y,f) < M(|E))@S(r;X +Y).  Then by Lemma 6.2

O(x, y,f> < CoM(E) (L [£)) G(r;X +Y). Assumes"L(x,y,&) < Co2 ™ IM(|E)(1 +
|E|) ) (r; X +Y). Then we have by Lemma 6.3

P1(X,Y, O, Oy)v(x,Y, &) < Co2 "eM(|€))
X (@ (X +Y) + (1+]E)) YXDED (1 X +Y)).

By Lemma 6.20"(x,y,&) < 2C2e2 " IM(|&|)(1+ |&]) Y@©®)(r; X +Y). Now chooses so
small such thad < Coe < 1/4. Then2C2 2=l <2 andv (%Y, &) < Co2 "M(|&])(1+
1E]) YOO (r; X 4Y). Sov(x,y,&) = z;’fzov“(x y, &) converges and (6 28) holds. fifx,y, &) <«
(|E\)X<D (SH1)(r; X +Y), we also have"(x,y, &) < Co2 "M(|&]) @ (r; X +Y) in the same way
as above. Iff (x,y,&) =0, there existd; (|€]) such thab(x,y, §) < Co2 "My (|&]) D) (r; X +Y)
holds for anyn, from which the uniqueness follows. O

Now let us proceed to construct a solution of (6.16). Define vn(X,y,&) (n € N) inductively,
vp = 0 and by
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'@(X?ya 670X7 ay)vl = FAO(X7ya E)a
P(X.Y, €, 0k, dy)Un +2(x,Y, &, 0x, dy)Un—l

00 ,_H
= F.,o(x7y)< Uny * Un *"'*Uni>
iZz Zni)eNi y 7y oy

(N2,
n1+no+-+nj=n

i oy /_/_
+ S Faxy, &)« ( Unl*Unz*“'*Uni)- (6.30)
i; Y <n1,n27~~,zm>eN‘ vy

Ng+np+--+nj=n-1

Sincevp = 0, we have in (6.30)

l ,_/_
|:|,0(X7y)( Ung * Uny * *Un.> Fo(xy) ( )7
% <n1,~-~,zni>eN‘ v g (. zm)eNl

Ni+--—+nj=n ni+---+nNj=
Fl,l(xvyag)*< Unl*Unz*"'*Uni> - I,l(xayvf)*< )
i; y (nl,---,%eNi y 4 4 i= y (nl,---,%eNi
ny+---+nj=n-1 ny+--+nj=n-1
(6.31)
Let us show the existence af(x,y, &) (n > 1) with estimate
n—1) z n—ygtolé|¥
(XY, &) < ABY T8 Ye oM (r;X+Y), (6.32)

I (n/y)nl

which is holomorphic in=;§ and E~HYun(x,y, &) is holomorphic at = 0. We note tha€ is
a holomorphic parameter in (6.16). In the following estimdlesr < R< 1 andr andR are
small, if necessary. It follows frorfip(x,y,0) = 0 and Proposition 5.2 tha~+YFy(x,y, &) is
holomorphic a = 0 and

Co| & | YeDlél”

Fiy) Y (RX+Y). (6.33)

Fo(x,Y, &) <

By Proposition 6.4 there exisis(x, Y, &) with (6.32) such that; (x,y,&) = 54 v1i(x,y)Ein
a neighborhood of = 0. Assume that there exish(x,y,€) (1 < p < n—1) with the above
properties. Set

n
) /_/%

In 1%y, € -:_%H,O(va)< Z . Unltvnz";"'*;vni)

1= (ng,ng,--,m)eN'

Ny +Np—+---+Nj=n
i
l e N
ln-1(X,Y, € ZHlXM ( z _ Unl";vnzﬂ;"'*;vni)-
(ng,np,-+,nj)eN'

Ny +np+--+nj=n-1
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Then ‘@(vaaé-aaX;ay)Un__F Q(Xa%Eaaﬁd}/)vnfl = Ir?_l(xvyaf) + IrLl(XaYaE) by (630) and
(6.31). Let us estimat@l],_;(x,Y,&)}i—o1 and2(x,y, &, dx, 0y)vn—1 forn> 2.

LEMMA 6.5. For some constar®; > 0 the following estimates hald

ClAB”*2|§|n*VeCOIE\V

Finjyn oMW (r;X4Y). (6.34)

Ir?—l(xa Y, E)? |%_1(X,y, E) <

PROOF. We estimatdr?fl(x,y, ). By (5.13) in Proposition 5.4 and Lemma 5.5 we have
! AiBN-i |§|n7ve00|E\V

Fn/y)n oMW (r;X4Y).

———
Unl*vnz’f,""f,vni <

(ng,nz,- i )EN!
Ny +No—+---+Nj=n

Hence fromFi o(x,y) < B 1@(R X +Y) fori > 2 we have

i
n
P N
Fio(x,y) Z Uny * Upy % -+ - Uy
i= i y y y
! (ng,np,---,nj)eN
Ny +Np+---+Nj=n

O innini 1) [ Yeoldl () (-
< (iZZAB B )I_(n/y)n!qn (r;X+Y).

ChooseB with B > 2AB;. Theny ,AB"B"? < A?B;B" 25" 2(AB,/B)' < 2A?B;B™ 2. So
by choosingC; > 2AB,, (6.34) holds. The estimate foF ;(x,y, &) is obtained in the same way.
By (5.13) in Proposition 5.4

AlBn—1-i ‘E|n—1—yeco|£\y
Uny % Uny %« -k Uy <K

(g .- )N’ vy r((n=1)/y)(n—1)!
Ny +Np+-+ni=n-1

oM D(r;X+Y)

holds and byF 1(x,y,0) = 0 we havef; 1(x,y,&) < ((By|&|*veldl") /I (1/y)) @(R X +Y) for
i > 1. Hence by (5.12)

n—1
~ —_—
ilehl(X’y,E)t(( Z vnltvnzt'“tvm>

ng,Np,--,m)eN
ni+np--+nj=n—1

n-1 o n—yglolé |
<<C/ AI anllel ) |E| w(n) I’,X—i—Y
(iZl 1) (n/y)n! ( )

holds. ForB with B > 2ABy, 3" AB"171B] < AB;B" 23" 2(AB;/B)' < 2AB,B"2 holds, so
(634) holds withC; > 2C/Bl. O
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Set
do
2 . A
|n_1(X»y7€) . < a'l (y7£) >I<‘9X|Ul"l 1+ Zbl 0 y7 *dy.Un l>
i=
do dp
In 1(X yvf) . <|Zla (X y,E)*dXH)n 1+ zibl 1 X yaf)*dyWn l>
206y, €) == G100, €) 5 (v Vo). (6.35)
Then—2(x,y,€,0x, dy)on-1 = T, 1(xY,€) and we have
LEMMA 6.6. For some constar@; > 0 the following estimates hald
CoAB2 [€ |neolél”
2 2 () (p-
71(X7y»£) < nl I—(n/y) & (r|X+Y)7 (636)
12 (%Y, &) <<CZABH |E|n7yecowx¢<">(r-x+v) (6.37)
N VN NOT7 ar |
14 ,(x E)<<C2ABn_2|E|nec°‘€‘ycp”>(r-x+v) (6.38)
n-1 ay7 nl ,_(n/y) y . .

We use bounds (6.10) to obtain the above estimates.

PROOF OF(6.36) We show the estimate &fo(y, &) s;dxi vn—1 and can estimate other terms
in the same way. B o(y, &) < Co|€|e*l¢I" ®(R;Y) we have

éi,O(Ya E) >I;axi Un-1

AR (gl iy
< <n1>!( Flly+D/y) v F((n- 1)/y>)¢’<R'Y>¢ (X +Y)

e A CoAB™ 2 [&|"elV )
T r((n/y)+1)¢ (X +Y) < == F7y) o (r;X+Y).

PROOF OF(6.37) We estimatej; 1(x,V,¢) »;dxi vn—1 and other terms are estimated in the
same way. By 1(x,Y, &) < Co|&|*VelE"X D (R X +Y) we have

éi,l(xa y7 E) taXi Un-1

C/AB"2 |E\1—Veco\f\y* |E|n-L-VeFolél . .
DGR ( r(1jy) v r(n-1/y) )X¢(R’X+Y)¢ (nX+Y)
CoAB" 2 | £ |n-Yelolél”
(n—1t  r(n/y)

<

XM (r; X +Y).
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PROOF OF(6.38) By €1(X,Y, &) < Co|&|¥Ve%lé"d(R X +Y) we have

C1(xy.8) % ( y&Von-1)

C/ABn_2(|€|1—yecoEV . |E|n—1eco\5|v
(n=1'\ I ()y) vIr(n-1)/y)
CAB2I ((n-1)/y)+1) [§|"elEl”
(n—1! T ((n-1)/y) r((n/y)+1)
C"AB™ 2 |¢|"efolsl” CoAB™ 2 |¢|"efol¢” O (rX+Y).

(n—=1) (-
So-nt ot 0 ST Ty .

) PRX+Y)OM V(1 X +Y)

oMY (r;X+Y)

EXISTENCE OF A SOLUTIONwn(X,Y, &) OF (6.30)
We haveZ(x,y, &, 0y, dy)vn = zf‘zolr']_l(x, y,&). In order to solve it, consider

P(&,%,Y,0x, 00} (E,%,y) =111 (E,xy). (6.39)

Fori =0,1,2,4 it follows from Proposition 6.4 and Lemmas 6.5 and 6.6 that there exists
on(€,x.y) with

C/AB"2 || Vecoldl”

(n) (-
- Y @MW (r;X +Y). (6.40)

oh(E,x,y) <

Fori = 3 by Proposition 6.4 and Lemma 6.6 that there exits,y, &) with

C'AB™2 |&|n-VeRolél”
(n=1t  rn/y)
C'AB"2 |E‘n—yeco\E\V

n) (-
< Fy) @M (r; X +Y). (6.41)

(%Y, &) < o (r; X +Y)

Thuson(x,Y, &) = 3 quh(X,Y, &) is a solution of (6.30) and holomorphic & with (6.32) and
&~ Vun(&,x,y) is holomorphic a€ = 0.

EXISTENCE OF A SOLUTIONw(X,Y, &) OF (6.16)
SetV = {(x,y); idil|xi\ + zf'i1|yi| <r/2}. Then there exists a constaBi such that
| (r; X +Y)| < CMnl for (x,y) €V, hence, for some constant> co

) ) BC n-1|g|n— VeCo\EV
5 ey < 5 SEALEEE <clereniee)

which means the convergence @k, y,&) = S5 qun(X,Y,€) in V x =§ and &€~ 1Yp(&,x,y) is
holomorphic a€ = 0. We also have by Lemma 6.5
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zzun LK E Liur%l(x,y,s)

) / n2 n— “EV

We show(x,, &) satisfies (6.16). Set'(x,y,&) = SN_; vn(x,y,&). Then we have from (6.30)

N
@(vavaax’ay)UN+°@(X7y7570x,dy)UNil:'fo(xvya‘f)“‘ Zz(ln l(X y7E) n 1(X7y75))-
- (6.43)

On the other hand from (6.14)

I 8
et
:s
Il 8
e
>
I 8
i
~~__

F(%,Y,&,0) Zﬁoxy( bk Y vn¥keock Y on
n

0

+Y Raxy & .
i; |,1( Y, ZUn*zUnﬂ; Un

V=1

It follows from (6.31) and (6.42) that

i:ZF.,o(Xy < z Uy % Z %k i ”m)

nz 1 ni=1

2 —_——
“gheen(2( 3 )
(ng,n2,++,n)eN

Ng+np+---+Nj=n

00 |

n P S
= FIO(ny)( Un *Unz*"'*vni))
n;(i; (nl,nz,"z,ni)ENi . y y y

n1+No+---+Nj=n
+o0

= Zz(ln 1(%¥,€))

and

[ee]

(o] n [oe] [o0] Jr
Fl.l(x7y7£)* Un * Up ..ok lxyﬂ )
i; ' Vnzl ynZl y ynZl Z2 "
Hence by lettingN — +co in (6.43),

‘@(Xa%Eaaﬁay)v_'_”@(xvyaEa0X7ay)U = FAO(Xayvg) +j(x,y,f,l)).
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Thus the proof of Theorem 6.1 is completed.

PROOF OFTHEOREM2.3. Letu(x,y,&) be a solution of (6.16) assured by Theorem 6.1.

Define
-00d 60 y
eyt = [ exp( < (§) Jotrrde

Then it follows from Proposition 5.2 thatx,y,t) € &(V){t}, g, Sincev(x,y, ) satisfies (6.16),
u(x,y,t) is a solution ofPu= F(x,y,t,u). O

We give a comment about uniqueness of solutions of (6.16), which is not stated in Theorem
6.1. The solution ofPu= F(x,y,t,u) is unique in&(V){t},q,, so the uniqueness of (6.16)
satisfying (1) and (2) in Theorem 6.1 follows from it.

Let us proceed to show Theorem 2.4. The proofis similar to that of Theorem 2.3. We sum up
shortly the assumptions of Theorem 2.4. et {x € C%; |x| < R} andUp = {u € C;|u| < Ro}.
P =P(x,t,0d,d) is a vector field with coefficients i#(U){t}, g, and has the form

do
P= -Z(Am +A(X))d +tTIC(x 1) a, (6.44)

where the coefficients satisfy (see (2.15))

A(0,t) =0, Ai(x,t) = O((|x| + [t[)?), C(0,0) # 0. (6.45)
We have from (6.45)
A(X,t) =ai(X) +a1(xt), C(X,t) = Co(X) +Ca(Xt) (6.46)
with
) — 2 . —a _
a.(X) - O(|X| )7 a!,l(ovt) - al,l(X7 0) - O’ (647)
Co(0) #0, c1(x,0)=0.
Hence we assunteis of the form
do
P(X,t, 0k, 6) = .Zl(/\ixi +ai(X) 4+ 1(X,t))dy + 1Y (Co(X) +C1(x,1))ér. (6.48)

As for the nonlinear terrfr (x,t, u)

F(x,t,u) = E;F.(x,t)ui, Fi(x,t) € O(U){t}y.a (6.49)



Borel summability of formal solutions of singular partial differential equations 455

and it follows from the assumptiofx, 0,0) = 0 andF (x,t,0) = O(|x|\) for someN € N — {0}
(see (2.19) and (2.16)) theg(x,0) = 0 andd Fo(0,t) = Ofor |a| < N—1. Set

do
P(x,&,0) = Zl()\ixi +a;j(X))0x + yco(X)EY — F1(x,0), (6.50)
2(x,&,0x) = Zla.lxé 5 (B ) +ax &) (yEV ) (6.51)
and
h(x,&) = yco(x)&¥ — F1(x,0). (6.52)

It follows from (2.18) that

iim)\i ino.e)| < (1E§T§$)|m| (6.53)
holds for€ € =5 andm & N% with |m| > N. Set
Fio(X) =Fi(x,0), Fi(xt)=F(xt)—F(x0) (6.54)
and let.# (x, &,v) be a nonlinear convolution operator defined by
i
ZZF,O (U*v* ) ZiFlle *mm (6.55)
Consider
P(%, &, 0v+ 2(X,&, 0o = Fo(x, &) +F (X, &, v). (6.56)
It follows from the assumptions dfy(x,t) that for(x,&) e U x =
[Fo(x,&)| < CIxN|& [V exp(col€|Y). (6.57)

We have under the above assumptions the following proposition, which corresponds to Proposi-
tion 6.4.

PROPOSITIONG.7. Let f(x, &) be a holomorphic function od x :5 with a7 f(0,&) =
for [a] < N—1. Suppose thaff(x,&) satisfiesf(x,&) < M(|E])@E(r;X) or f(x,&) <«
M(|&)X @D (r; X). Consider

'@(Xafadx)v(x7€> = f(XaE) (658)
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Then there isp > 0 such that for0 < r < rg there exists a unique holomorphic solutigix, &)
of (6.58) satisfyingddv(0,&) = 0 for |a| < N —1 and the following estimates, ff(x,§) <
M([E]) @ (r;X),

o(x,§) < mtb“)(r;X) (6.59)

and if f(x,&) < M(|E)X D (r;X),
v(x, &) < CM(|E[)@O(r;X). (6.60)

By repeating the arguments similar to the proofs of Lemmas 6.2 and 6.3 and Proposition
6.4, we can show Proposition 6.7. Let us solve (6.56) by the iteration such as (6.30). Define
un = vn(X, &) (n€ N) inductively,vg = 0 and by

@(Xvéaax)vl = FAO(XaE)a
@(nyadX)UnJrQ(XaEaax)vnfl

d —_——
= Fl,o(X)< Z vnl*unz*---*vni)
i; (ny,np,+- €N v

N1 +Np+---+nNj=n
i

i = /_/_
+ Y Fa(x, &) ( Unl*Unz*"'*Uni)- (6.61)
i; Y (nl-,nzv"%)ENi vy

Ny +Np+---+N; =n-1

The right hand side of (6.61) an@(x, &, dy)vn_1 areO(|x|N). Hence the existence of(x, &)
with vn(x, &) = O(|x|N) follows from Proposition 6.7. By estimatingn(x, &) }nen, We can show
in the same as way as the preceding caseulxaf ) = _gun(X, &) converges and it is a solu-
tion of (6.56). Seu(x,t) =.%) g,v. Thenu(x,t) € &(V){t}, g, is a solution ofPu= F(x,y,u)
satisfyingu(x,t) = O(|x|N) and we have Theorem 2.4.

7. Existence of solutions of singular differential equations.

In this section we give results about the existence of solutions of some singular differential
equations. We have applied them to finding coordinates transformations that simplify singular
vector fields in the preceding sections. As for the topics in this section we refé}, {8]] and
[18]. The book B] is concerned with singular partial differential equations in complex variables,
in particular, in which partial differential equations of Fuchsian type and those of Briot-Bouquet
type in higher dimension are investigated and several results about existence of solutions are
given.

Letz=(z1,---,2p, -+ ,Zptq), Z = (21, -+, Zp) @ndZ’ = (Zp+1, - , Zp+q). Set

=]

"
K(z,0;) =) (Aizi+ Ui—1Z-1+Ci(2))05 + pzq Ci(2)05,

i= i=p+1
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where)A; #0, yj=0o0r1 and{ci(z)}ipjlq are holomorphic in a neighborhood of= 0 such that
ci(0,Z') =0forall1<i < p+qgandci(z) = O(|z?) for L <i < p. Let f(z u) be a holomorphic
function in a neighborhood df, u) = (0,0) with f(0,0) = 0. Consider

K(z d-)u(z) = f(zu). (7.1)

ProPOSITION7.1. LetN € N such thaTﬁZ‘,”'f(O,i’,O) =0for |a’| < N—1. Suppose that
there exist&€ > 0 such that for allm= (my,--- ,mp) € NP with |m/ > N

c )\-—df(OO) >C(jm+1) (7.2)
_Z\m| T = . .

Then there exists a unique holomorphic solutigr) of (7.1)with u(z) = O(|Z|N) in a neighbor-
hood ofz= 0.

For the proof we refer tag]. Next consider

p p+q
Zl(/\izi+ﬂi—12ifl+ai(za 0))0z0D)+ Y aj(z9)0;9(2) =a(z 9), (7.3)
i= j=p+1

where; # 0, 1 =0 or 1. {g(z,u) }'; are holomorphic in a neighborhood @ u) = (0,0) such
thata; (0,2’,0) = 0 andaj(z,u) = O((|z] + |u|)?) forall 0 <i < p+q.

PROPOSITION7.2. Suppose that the convex hull{o’fi}ip:1 in the complex plane does not
contain the origin. Then there exists a unique holomorphic solui@ of (7.3) with ¢(0,2") =
0in a neighborhood of = 0.

Systems of singular partial differential equations including (7.3) as a special case were
studied in [L8] and the existence of solutions was shown. The equation (7.3) is not a system
but a single one, so the proof is simpler than systems. Here we give how to cogginuatiefly
and remarks. Se&(Z,Z',U) = ¥ jm k=18 mk(Z)Z"U¥, whereg; my(0) = 0 for |m| + k=1, and

0(Z,7") = z|m‘21qqn(z”)z’m. Letg =(0,--- ,Il,m ,0) € NP. Then

(im’\i> @n(Z") + iui_l(ma +1)@nie-e_,(Z')

p

+iZ<m0+%:ma1’,m°,0(z'/)(ml+1)(am1+ei(zll)
Img|=1
" ai’o’l(z’/)(ﬂnl(zu)(mz‘f'1)(Pm2+a(2")>_30,0,1(2”)%(2”)
ml+m=m

k+1

p
8 o2V M+ D)@ (Z) - G () B g <i’>>

i;\nb\+kzz <mO+...+mk+1m
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k+1
aj o k(Z) @ (Z) - Gk (Z) 0y wﬂ(i’>>
k

e e
Y Y Ak @)eu@) - gw(@)

k>2 m0...mk=m

+ % a0my,1(Z") -0 (Z') +a0mo(Z"), (7.4)
my#£0

p+q

J'p+1m°|+k>1<mo+...+mk+1m

wherem= (my,--- ,mp), m = (m,---,my) € NP If |m| = 1, then

p
An@e, (Z') + Hnth, 4 (Z') + ;(ai,aq,o(i’)fpa (Z') +a01(Z") 0, (Z) s (Z))
=a001(Z") @, (Z") +a0,6,0(Z). (7.5)

It follows from the assumption ofiAi}P ; that|sP ; Aim| > Cjm| (C > 0) holds for allm €
NP. Sincea; mk(0) = 0 for |m| + k = 1, we can determingm(z’) with @n(0) =0 for |m| =1
by (7.5) and inductively{ ¢@n(Z’) };m>2 by (7.4). We can show the convergenceg,z’) =
Yim>1 m(Z)Z™, by estimating{ ¢@n(Z’) }|m>1. The estimation is done by the majorant functions
in section 5. In 18] the convergence is shown by other majorant functions.

Finally consider a system of ordinary differential equations with unknoWis) =

(@1(V),--- gn(t))

ty+1% =vigi(t) + Hi(W({),t) +hi(t) for 1<i<ng,
dys(t) (70
dt

=H;i(W(t),t)+hi(t) for np<i<n,

wherey is a positive integen; # 0, Hi(w,t) € C{w}{t}, ¢ andhj(t) € C{t}, 0. The origint =0

is irregular singular. The equations such as (7.6) appear in the proofs of Lemmas 4.3, 4.5 and 4.7,
wheren=np=d—1in (4.12),n=1np=0in (4.17)andh=d—-1,np=d—2in (4.24). The

main result in §] is much concerned with the existence of solutions of (7.6} {b},¢. It was

shown in B] that formal power series solutions of system of nonlinear ordinary differential equa-
tions were multisummable, which means the existence of solutions with asymptotic expansion in
a wider sectorial region, and (7.6) is a special case studied there. We haveésfrom [

PROPOSITION7.3. Let p be a positive integer. Foll < i < ng, assumeyf # argv;
mod 2, Hij(w,t) = O(|w|(|w]| +|t|)) and h;(t) = O(|t|P). For np <i < n, assumeH;(0,t) =0
andh;(t) = O(|t|P~1). Then there exists uniqueW(t) = (i (t), -, Yn(t)) € (C{t}, )" satis-
fying (7.6) with (i (t) = O([t|P).

Let hi(t) = hj ptP +O([t|P+1) for 1 <i < ng andhi(t) = hj p_1tP~1 + O(|t|P) for ng < i <
n. Set¥, = (—hyp/Va, -, —Nng.p/ Vg, Mg +1,p-1/Ps - -+ ,hn p—1/pP). Itis not difficult under the
assumptions of Proposition 7.3 to show that there exists uniquely formal $&tigs (tPC[[t]])"
satisfying (7.6) with®(t) = YptP+---. SetW(t) =tP(d(t) + %), @(t) = (@u(t), -, @(t)).
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Thenforl<i<ng

e R IO

— tP(Vi@(t) — hi.p) + Hi (tP (1) + tPW 1) + (1)

and forng <i<n

dy(t) _ pda@
dt dt

+tP Y (p@a(t) +hip-1) = Hi(tPD(t) +tPW¥p,t) + hi(t).

Hence

tV+1% =vig(t)+Gi(®,t) for 1<i<ng,

da®®
dt

(7.7)

t = —pa(t)+Gi(®(t),t) for ng<i<n,

where forl <i < ng

Gi(w,t) = —ptYw; + Hi (tP(W+ W), 1) /tP + (hi(t) — hy ptP) /tP + pt'hi p /v,

and forng <i<n

Gi(W,t) = Hi (tPw+tPW, 1) /1P~ 4 (hi(t) — hi p_qtP 1) tP L.

From the assumptions we ha@gw,0) = 0 for all i. Thus it follows from Theorem 1 irf] that
there exists a solutiom(t) € (tC{t}, )" of (7.7), hencél(t) = tP(¥, + @(t)) is a solution of

(7.6) withw(t) ~ P(1).
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