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Abstract. Let S be a non-empty finite set of prime numbers and, for each p
in S, let Zp denote the ring of p-adic integers. Let F be an abelian extension over
the rational field such that the Galois group of F over some subfield of F with finite
degree is topologically isomorphic to the additive group of the direct product of Zp

for all p in S. We shall prove that each of certain arithmetic progressions contains
only finitely many prime numbers l for which the l-class group of F is nontrivial.
This result implies our conjecture in [3] that the set of prime numbers l for which
the l-class group of F is trivial has natural density 1 in the set of all prime numbers.

Introduction.

Let C denote the field of complex numbers, Q the field of rational numbers, and
P the set of all prime numbers. By a number field, we mean an algebraic extension of
Q in C, not necessarily finite over Q. When k is any number field, we let Ck denote
the ideal class group of k and, for each l ∈ P , we let Ck(l) denote the l-class group of
k, namely, the l-primary component of Ck. A number field is called abelian if it is an
abelian extension over Q. We put, in C,

ζm = e2πi/m

for each positive integer m.
Now, let S be a non-empty finite set of prime numbers:

S ⊂ P , 1 ≤ |S| < ∞.

For each p ∈ P , let Zp denote the ring of p-adic integers, and let

p̃ = p or p̃ = 4

according as p > 2 or p = 2. Let QS denote the abelian number field such that the
Galois group Gal(QS/Q) is isomorphic, as a profinite group, to the additive group of the
direct product

∏
p∈S Zp. Let F be an abelian number field which is a finite extension of

QS . In this paper, we shall prove:
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Theorem 1. Let m0 be any positive integer divisible by p̃ for every prime number
p in S. Then there exist only finitely many prime numbers l such that CF (l) is non-
trivial and that Q(ζm0) contains the decomposition field of l for the abelian extension
QS(ζm0)/Q.

Most of the paper consists of the proof of the above theorem including not a few
preliminaries. To explain briefly the heart of the proof, let F+ be the maximal real
subfield of F , and C−F the kernel of the norm map of CF into CF+ ; for each l ∈ P ,
let C−F (l) denote the l-primary component of C−F . Obviously, C−F is trivial if F itself is
real. We have actually shown in [3] that, under the hypothesis of Theorem 1, there exist
only finitely many prime numbers l such that C−F (l) is nontrivial and such that Q(ζm0)
contains the decomposition field of l for QS(ζm0)/Q (for the basic case where |S| = 1,
see Washington [6, IV]). With this fact in mind, we shall naturally concentrate on the
study of primary subgroups of CF+ , which is based on the algebraic interpretation by
Leopoldt [5], involving circular units in F+, of the analytic class number formula for
subfields of F+ with finite degrees. In the major part §§1–4 of the paper, conforming to
the description of [5], we shall generalize or pursue many of our arguments in [3]. We
shall prove Theorem 1 in §5 by means of results in [3], [5] and the preceding sections.
Finally, in §6, some problems together with some additional facts will be mentioned in
relation to Theorem 1.

Let us now give a consequence of the theorem. Take a real variable x, and let

π(x) = |{l | l ∈ P , l ≤ x}|

as usual. Let PF (x) denote the set of prime numbers l ≤ x for which CF (l) is trivial. Let
m0 be the same as in Theorem 1, and let P0(x) denote the set of prime numbers l ≤ x

such that Q(ζm0) contains the decomposition field of l for QS(ζm0)/Q. We then easily
see that the decomposition field of a prime number l 6∈ S for QS(ζm0)/Q is contained
in Q(ζm0) if and only if lϕ(p̃) 6≡ 1 (mod µpp̃) for any p ∈ S. Here ϕ denotes the Euler
function and, for each p ∈ S, µp denotes the p-part of m0, that is, the highest power of p

dividing m0. Hence Theorem 1, together with the prime number theorem for arithmetic
progressions, shows that

lim inf
x→∞

|PF (x)|
π(x)

≥ lim
x→∞

|P0(x)|
π(x)

=
∏

p∈S

(
1− 1

µp

)
.

However, for all p ∈ S, µp can be arbitrarily large independent of F . We thus obtain the
following result conjectured in [3, §3]:

Theorem 2.

lim
x→∞

|PF (x)|
π(x)

= 1.

Remark. Among a number of important results on subgroups of CF provided by
Iwasawa theory (see Friedman [1], Washington [7], etc.), it is known not only that CF (l)
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is finite for every l in P \ S but that, if F is imaginary, then there exist infinitely many
l in P for which C−F (l) is nontrivial (cf. [6, V]).

Throughout the paper, R will denote the field of real numbers, and Z the ring of
(rational) integers. For any finite extension k′/k of number fields, we let Nk′/k denote
the norm map of k′ into k. For each complex number z 6= 0, we let 〈z〉 denote the cyclic
group generated by z in the multiplicative group C× = C \ {0}: 〈z〉 = {za | a ∈ Z}. All
Dirichlet characters are assumed to be primitive.

Acknowledgement. The author expresses his heartfelt gratitude to the referee
who carefully read the paper, kindly corrected some mistakes, and offered several invalu-
able suggestions (cf., for example, the proofs of Proposition 1).

1.

We shall first give several definitions, mainly following [5].
Let ψ be any (primitive) Dirichlet character, and let fψ denote the conductor of

ψ. Then ψ defines a homomorphism ψ∗ of Gal(Q(ζfψ
)/Q) into C× such that, for each

u ∈ Z relatively prime to fψ, ψ(u) is the image under ψ∗ of the automorphism in
Gal(Q(ζfψ

)/Q) mapping ζfψ
to ζu

fψ
. Let gψ denote the order of ψ, and let Kψ denote

the fixed field of Ker(ψ∗) in Q(ζfψ
);

Gal(Q(ζfψ
)/Kψ) = Ker(ψ∗).

It follows that Kψ is a cyclic extension over Q of degree gψ with conductor fψ.
We assume from now that ψ is even or, equivalently, Kψ is real:

ψ(−1) = 1, Kψ ⊂ R.

Let Eψ denote the group of units ε of Kψ such that NKψ/k(ε) = ±1 for every proper
subfield k of Kψ. Note that

Eψ ⊇ 〈−1〉 = {±1}

and that every conjugate over Q of an element of Eψ also belongs to Eψ. If a unit ε in
Eψ belongs to a proper subfield k of Kψ, then ε2[Kψ:k] = NKψ/k(ε)2 = 1 so that ε2 = 1.
Thus

Kψ = Q(ε) for every ε in Eψ \ {±1}. (1)

Remark 1. The elements of Eψ are the proper ψ̂-relative units in the sense
of Leopoldt (cf. [5, §4]), where ψ̂ denotes the rational irreducible character of Gal
(Q(ζfψ

)/Q) such that

ψ̂(τ) =
∑

u

ψ∗(τ)u for all τ ∈ Gal(Q(ζfψ
)/Q),
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the sum taken over the positive integers u ≤ gψ with gcd(u, gψ) = 1.

Next, let σ be any generator of Gal(Kψ/Q), and let α run through Z[ζgψ
]. For each

α, there uniquely exist integers a1, · · · , aϕ(gψ) satisfying

α =
ϕ(gψ)∑

j=1

ajζ
j−1
gψ

,

so we define

ασ =
ϕ(gψ)∑

j=1

ajσ
j−1

in Z[Gal(Kψ/Q)], the group ring of Gal(Kψ/Q) over Z. It follows that εασ always
belongs to Eψ as ε runs through Eψ. The map (α, ε2) 7→ ε2ασ then defines an action
of the Dedekind domain Z[ζgψ

] on the abelian group E2
ψ = {ε2 | ε ∈ Eψ}, since the

definition of Eψ implies that ε2 is annihilated by

gψ/n∑
u=1

σ(u−1)n

for all positive divisors n of gψ smaller than gψ, and since the gψ-th cyclotomic polynomial
in an indeterminate y is the monic greatest common divisor in Z[y] of

gψ/n∑
u=1

y(u−1)n =
ygψ − 1
yn − 1

for all positive divisors n of gψ smaller than gψ. At the same time, the quotient group
Eψ/〈−1〉 is made into a unitary Z[ζgψ

]-module by the map (α, {±ε}) 7→ {±εασ}, and
the map ε2 7→ {±ε} defines a Z[ζgψ

]-isomorphism

ιψ : E2
ψ

∼−→ Eψ/〈−1〉.

Henceforth, we assume further that the even Dirichlet character ψ is nonprincipal.
It is verified in [5, §§5–6] that the Z[ζgψ

]-modules E2
ψ, Eψ/〈−1〉 are isomorphic to a

nonzero ideal of Z[ζgψ
]. Now we let

θψ =
∏

b

(
ζ b
2fψ

− ζ−b
2fψ

)
,

with the product taken over the integers b satisfying

ψ(b) = 1, 2 - b, 0 < b <
fψ

gcd(2, fψ)
.
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Note that the number of such integers b is ϕ(fψ)/2gψ. Take an automorphism sψ in
Gal(Q(ζfψ

)/Q) for which

ψ∗(sψ) = ζgψ
,

so that the restriction sψ|Kψ is a generator of the cyclic group Gal(Kψ/Q). Fix an
extension σ(ψ) of sψ in Gal(Q(ζ2fψ

)/Q), and put

∆(ψ) =
∏
p

(
1− σ(ψ)gψ/p

)

in Z[Gal(Q(ζ2fψ
)/Q)], where p ranges over the prime divisors of gψ. Considering

Q(ζ2fψ
)× to be a module over Z[Gal(Q(ζ2fψ

)/Q)] in the obvious manner, we then let

ηψ = θ
∆(ψ)
ψ .

This belongs to Eψ; because the real number θ
1−σ(ψ)
ψ is a unit of Kψ, θ2

ψ is the product
of (−1)ϕ(fψ)/2gψ and the norm of 1− ζfψ

for Q(ζfψ
)/Kψ, and

NKψ/k

(
θ2

ψ

)∆(ψ) = 1

for each subfield k of Kψ with [Kψ : k] ∈ P . We also easily see that the class {±ηψ} in
Eψ/〈−1〉 as well as η2

ψ in E2
ψ does not depend on the choice of sψ or σ(ψ) but depends

only on ψ.

Remark 2. Unless gψ is 2 or a power of an odd prime, ηψ itself depends only on
ψ.

Let Hψ denote the subgroup of Eψ generated by −1 and by all conjugates of ηψ over
Q. It then follows from the class number formula for Kψ that the index of Hψ in Eψ is
finite (cf. [5, §8]). We write hψ for the index:

hψ = (Eψ : Hψ) < ∞.

On the other hand, H2
ψ becomes a cyclic Z[ζgψ

]-submodule of E2
ψ generated by η2

ψ, the
quotient group Hψ/〈−1〉 becomes a cyclic Z[ζgψ

]-submodule of Eψ/〈−1〉 generated by
{±ηψ} so that the quotient group Eψ/Hψ becomes a Z[ζgψ

]-module, and ιψ induces
Z[ζgψ

]-isomorphisms

H2
ψ

∼−→ Hψ/〈−1〉, E2
ψ/H2

ψ
∼−→ Eψ/Hψ.

Thus the Z[ζgψ
]-modules H2

ψ, Hψ/〈−1〉 are isomorphic to Z[ζgψ
].
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2.

The purpose of this section is to prove some preliminary results for the proof of The-
orem 1. Let χ be a nonprincipal even Dirichlet character, which will be fixed throughout
the section:

χ(−1) = 1, gχ ≥ 2, fχ ≥ 5.

We shall put, for simplicity,

f = fχ, g = gχ

in the proofs of our assertions.

Proposition 1. Let l be a prime number not dividing gχ, σ a generator of
Gal(Kχ/Q), and k an extension in Q(ζgχ

) of the decomposition field of l for Q(ζgχ
)/Q.

Then l divides hχ if and only if there exists a prime ideal l of k dividing l such that the
absolute value

∣∣ηασ
χ

∣∣ is an l-th power in Eχ for any element α of the integral ideal ll−1

of k.

Proof. Let d be the degree of Q(ζg) over k:

d = [Q(ζg) : k], g = gχ.

Let o be the ring of algebraic integers in k. Then 1, ζg, · · · , ζd−1
g form a free basis of the

o-module Z[ζg];

Z[ζg] = o⊕ oζg ⊕ · · · ⊕ oζd−1
g .

Assume first that l divides hχ. Since the finite Z[ζg]-module Eχ/Hχ is isomorphic,
as an o-module, to the direct sum

⊕
a∈S (o/a) for some finite set S of nonzero ideals

of o, there are a prime ideal l of k dividing l and an injective o-module homomorphism
o/l → Eχ/Hχ. Hence there exists a unit ε in Eχ \ Hχ such that every β in l satisfies
εβσ ∈ Hχ, namely, ε2βσ ∈ H2

χ. In particular,

ε2l = η2ωσ
χ (2)

with some ω in Z[ζg], which is expressed uniquely in the form

ω =
d∑

j=1

γjζ
j−1
g with γ1, · · · , γd ∈ o.

Let L be the ideal of Z[ζg] generated by l. Then, as an o-module, L coincides with
l⊕ lζg⊕· · ·⊕ lζd−1

g and, by the hypothesis of the proposition, L is the only prime ideal of
Q(ζg) dividing l. Let us consider the case ω ∈ L. In this case, γ1, · · · , γd belong to l. As
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l is unramified for k/Q, there exists an algebraic integer β′ in ll−1 satisfying 1− β′ ∈ l.
We note that β′γ1l

−1, · · · , β′γdl
−1 belong to o. On the other hand, (2) gives

ε2lβ′σ = η
2(
Pd

j=1 β′γjζj−1
g )σ

χ .

Consequently,

ε2 = ε2(1−β′+β′)σ = ε2(1−β′)ση
2(
Pd

j=1 β′γj l−1ζj−1
g )σ

χ ∈ H2
χ.

This is a contradiction, however. Thus the case ω ∈ L does not occur. Let G =
Gal(Q(ζg)/k). Then

ωτ 6∈ L for any τ in G, (3)

since L is invariant under τ . We next define a square matrix Y of degree d with coefficients
in o by

Y




1
ζg

...
ζd−1
g




= ω




1
ζg

...
ζd−1
g




.

Clearly,

Y




1
ζτ
g
...

ζ
(d−1)τ
g




= ωτ




1
ζτ
g
...

ζ
(d−1)τ
g




for all τ in G,

so that

det(Y ) =
∏

τ∈G

ωτ .

Hence it follows from (3) that

det(Y ) 6∈ l, i.e., 1− β′′ det(Y ) ∈ l for some β′′ in o.

Now let α be any element of ll−1. We then find that

ηασ
χ = η(det(Y ))σ(αβ′′)σ

χ η(α(1−β′′ det(Y )))σ
χ .
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Furthermore, from (2), we obtain η
2(ωζj−1

g )σ

χ = ε2l(ζj−1
g )σ as j runs through {1, · · · , d},

and hence, by the definition of Y ,

η2(det(Y ))σ
χ = ε2l(

Pd
j=1 ∂jζj−1

g )σ ,

with ∂j denoting the (j, 1)-cofactor of Y . Since l divides α(1−β′′ det(Y )), it follows that
η2ασ

χ is a 2l-th power in E2
χ, namely,

∣∣ηασ
χ

∣∣ is an l-th power in Eχ.
Next, without assuming l | hχ, let α′ be any algebraic integer in ll−1 such that l is

relatively prime to α′l−1l, and assume that
∣∣ηα′σ

χ

∣∣ is an l-th power in Eχ. Then

H
2α′σ
χ =

{
η
2α′σγσ
χ | γ ∈ Z[ζg]

} ⊆ E2l
χ .

We also know that

(
E2

χ : H2
χ

)
= hχ,

(
E2

χ : E2l
χ

)
= lϕ(g),

(
H2

χ : H
2α′σ
χ

)
=

∣∣NQ(ζg)/Q(α′)
∣∣.

Let d′ be the degree of Q(ζg) over the decomposition field of l for Q(ζg)/Q. As l does
not divide g, our choice of α′ implies that lϕ(g)−d′ is the l-part of NQ(ζg)/Q(α′). Hence
ld
′
must divide hχ. The proposition is thus completely proved. ¤

The above proof may be a natural generalization of the proof of [3, Lemma 2]
combined with [3, Remark 2]. The following simple proof of Proposition 1 is due to the
referee.

Another Proof of Proposition 1. We first assume that k = Q(ζg). Let O =
Z[ζg]. Then we have the following commutative diagram of O-modules for some integral
ideal I of Q(ζg) and some β ∈ I :

E2
χ

∼−−−−→ Ix
x

H2
χ

∼−−−−→ βO,

where the vertical maps are the natural inclusions. Since Eχ/Hχ ' E2
χ/H2

χ ' I /βO '
O/βI −1, l | hχ is equivalent to that there exists a prime ideal L of O dividing l such
that βI −1 ⊆ L , which is also equivalent to lL −1 ⊆ lI β−1. Furthermore we note that
H2

χ = (E2
χ)βI−1

. Here, for each O-submodule Ω of E2
χ and each integral ideal J of

Q(ζg), ΩJ denotes the O-submodule of E2
χ generated by all εγσ , (γ, ε) ∈ J ×Ω.

Assume that l | hχ, i.e., βI −1 ⊆ L with some prime ideal L of O dividing l. It
follows from the above diagram that there exist a positive s ∈ Z, ε1, . . . , εs ∈ Eχ, and
γ1, . . . , γs ∈ βI −1 such that η2

χ = ε
2(γ1)σ

1 · · · ε2(γs)σ
s . Hence

η2ασ
χ = ε

2(αγ1)σ

1 · · · ε2(αγs)σ
s ∈ E2l

χ for α ∈ lL −1
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because αγ1, . . . , αγs ∈ lL −1βI −1 ⊆ lO by lL −1 ⊆ lI β−1. Therefore
∣∣ηασ

χ

∣∣ ∈ El
χ

holds for α ∈ lL −1.
Conversely we assume that there exists a prime ideal L of O above l such that∣∣ηασ

χ

∣∣ ∈ El
χ for any α ∈ lL −1. Since η2

χ generates H2
χ over O, this implies (H2

χ)lL−1 ⊆
E2l

χ . Then it follows from the above diagram that lL −1βO ⊆ lI , which implies βI −1 ⊆
L . Hence we have l | hχ.

The proposition for general k is derived from that for the case k = Q(ζg): Let o be
the integer ring of k, and let Λ be the set of prime ideals of o above l. The implication

l | hχ =⇒ ∃l ∈ Λ, ∀α ∈ ll−1,
∣∣ηασ

χ

∣∣ ∈ El
χ

follows from the case k = Q(ζg), because L ∩ o ∈ Λ for any prime ideal L of O above l

and l(L ∩ o)−1 = lL −1 ∩ o by the assumption on k. Another implication also follows;
because lO is a prime ideal of O for any l ∈ Λ by the assumption on k, and the statement
that

∣∣ηασ
χ

∣∣ ∈ El
χ for all α ∈ ll−1 implies that

∣∣ηασ
χ

∣∣ ∈ El
χ for all α in l(lO)−1 = (ll−1)O.

¤

Given any algebraic number z, we denote by ‖z‖ the maximum of the absolute values
of all conjugates of z over Q. It follows that, for any algebraic numbers z1, z2, and for
any non-negative integer a,

‖z1z2‖ ≤ ‖z1‖ · ‖z2‖, ‖za
1‖ = ‖z1‖a.

Lemma 1. Let u be a positive integer and ε an element of Eχ \ {±1}. If ε is a
u-th power in Eχ, then

2u < ‖ε‖

except in the case fχ ∈ {9} ∪ P .

Proof. Assume not only that ε = εu
0 with some ε0 in Eχ but also that 2u ≥ ‖ε‖.

It suffices to prove that f = fχ is either 9 or a prime number. Since the above assumption
implies that

ε2
0 6= 1, ‖ε0‖ ≤ 2,

(1) yields Kχ = Q(ε0) and, by the theorem of Kronecker [4, II], ε0 = δ + δ−1 holds for
some root δ of unity. Therefore we obtain Q(ζf ) = Q(δ), so that ζf + ζ−1

f belongs to
Eχ \ {±1}. Furthermore, ζ2a + ζ−1

2a is not a unit for any non-negative integer a. Hence
there exists an odd prime p dividing f . In the case p2 | f ,

Q
(
ζf/p + ζ−1

f/p

) ⊂ Q
(
ζf + ζ−1

f

)
= Kχ, NKχ/Q(ζf/p+ζ−1

f/p
)

(
ζf + ζ−1

f

)
= ζf/p + ζ−1

f/p,

the relation ζf/p +ζ−1
f/p = ±1 implies that f/p = 3 or 6, and consequently we have f = 9.

Thus, in the rest of the proof, we may suppose that f is not divisible by the square of
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any odd prime. As Q(ζf + ζ−1
f )/Q is a cyclic extension, f belongs to {p, 4p, pq}, with

some odd prime q other than p. However, in view of ζ4p + ζ−1
4p = ζ4p(1 − ζ

(p−1)/2
p ), we

have f 6= 4p. Let us finally consider the case f = pq. We may suppose p < q. It follows
that

ζpζq + ζ−1
p ζ−1

q ∈ Eχ, NKχ/Q(ζq+ζ−1
q )

(
ζpζq + ζ−1

p ζ−1
q

)
=

ζp
q + ζ−p

q

ζq + ζ−1
q

.

Therefore,

ζ2p
q + 1 = ±(

ζp+1
q + ζp−1

q

)
;

but this is impossible, because q ≥ 5 and, if 2p > q − 1, then 1 ≤ 2p− q ≤ q − 4. ¤

Remark. Let ψ0 be the Dirichlet character of order 3 with conductor 9 such that
ψ0(2) = ζ2

3 . In the case fχ = 9,

χ = ψ0 or ψ2
0 , Kχ = Q

(
cos

π

9

)
,

Eχ is the unit group of Q(cos(π/9)), and a unit ε in Eχ satisfies ‖ε‖ ≤ 2 if and only
if ε or −ε is conjugate to ηψ0 = −2 cos(4π/9) over Q. Moreover, in the present case,
the class number formula shows that hχ coincides with the class number of Q(cos(π/9)),
which is known to equal 1: hχ = 1.

For each Dirichlet character ψ, we let λ(ψ) denote the number of distinct prime
divisors of gψ.

Lemma 2.

max
(‖ηχ‖,

∥∥η−1
χ

∥∥)
<

(
fχ

π
+ 1

)2λ(χ)−2ϕ(fχ)/gχ

.

Proof. Let p be a prime number dividing g, and r an integer such that ζ
σ(χ)−g/p

2f =
ζr
2f . Then

∥∥∥
(
ζ2f − ζ−1

2f

)1−σ(χ)g/p∥∥∥ =
∥∥∥
(
ζf − 1

)σ(χ)−g/p−1
∥∥∥

and, for each integer j relatively prime to f ,

∣∣∣
(
ζj
f − 1

)σ(χ)−g/p−1
∣∣∣ =

∣∣∣∣
sin(πjr/f)
sin(πj/f)

∣∣∣∣ .

Therefore, when m ranges over the positive integers less than f/2 relatively prime to f ,
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∥∥∥
(
ζ2f − ζ−1

2f

)1−σ(χ)g/p∥∥∥ ≤ max
m

∣∣∣∣
sin(πmr/f)
sin(πm/f)

∣∣∣∣

= max
m

∣∣∣∣
sin(πm(r − 1)/f)

tan(πm/f)
+ cos

πm(r − 1)
f

∣∣∣∣ < max
m

(
f

πm
+ 1

)
.

We thus obtain

∥∥∥
(
ζ2f − ζ−1

2f

)1−σ(χ)g/p∥∥∥ <
f

π
+ 1.

Similarly, we have

∥∥∥
(
ζ2f − ζ−1

2f

)σ(χ)g/p−1
∥∥∥ <

f

π
+ 1.

The lemma now follows from the definition of ηχ. ¤

For each positive integer m, we let Dm denote the absolute value of the discriminant
of Q(ζm). We also let

Ξ(m) = (ϕ(m)− 1)(ϕ(m)−1)/2 or Ξ(m) = 1

according as m ≥ 3 or m ≤ 2.

Proposition 2. Let l be a prime number not dividing gχ, and n a positive divisor
of gχ such that Q(ζn) contains the decomposition field of l for Q(ζgχ)/Q. Assume that
l divides hχ, hence fχ 6= 9, and that fχ is not a prime number. Then

l <
√

Dn

(
2λ(χ)−2ϕ(fχ)ϕ(n)2Ξ(n)

(log 2)gχ

√
Dn

log
(

fχ

π
+ 1

))ϕ(n)

.

Proof. Let σ be a generator of Gal(Kχ/Q). By Proposition 1, there exists a
prime ideal l of Q(ζn) dividing l such that, for each γ in ll−1, |ηγσ

χ | is an l-th power
in Eχ. Let K be the decomposition field of l for Q(ζg)/Q. Since the norm of ll−1 for
Q(ζn)/Q is l([K:Q]−1)[Q(ζn):K], Minkowski’s lattice theorem shows that

‖α‖ ≤
(√

Dnl([K:Q]−1)[Q(ζn):K]
)1/ϕ(n)

with some element α of ll−1 \ {0}. It follows that

0 < ‖α‖ ≤
(√

Dnlϕ(n)−1
)1/ϕ(n)

; (4)

in particular, α = ±1 if n ≤ 2. Let us write α in the form
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α =
ϕ(n)∑

j=1

ajζ
j−1
n with a1, · · · , aϕ(n) ∈ Z.

Then, in Z[Gal(Kχ/Q)],

ασ =
ϕ(n)∑

j=1

aj(σg/n)j−1,

so that

∥∥ηασ
χ

∥∥ ≤ max
(‖ηχ‖,

∥∥η−1
χ

∥∥)Pϕ(n)
j=1 |aj |

.

Hence we obtain, from Lemma 2,

log
∥∥ηασ

χ

∥∥ ≤ 2λ(χ)−2ϕ(f)
g

log
(

f

π
+ 1

) ϕ(n)∑

j=1

|aj |. (5)

We next define a square matrix X of degree ϕ(n) by

X =
(
ζru(j−1)
n

)
u,j=1,··· ,ϕ(n)

.

Here ru denotes, for each positive integer u ≤ ϕ(n), the u-th positive integer relatively
prime to n. Note that, by definition,

Dn = |det(X)|2. (6)

Now, take any positive integer j ≤ ϕ(n). For each positive integer u ≤ ϕ(n), let du

denote the (j, u)-cofactor of X. Then

aj =
1

det(X)

ϕ(n)∑
u=1

duα(u),

with α(u) for each u the image of α under the automorphism of Q(ζn) mapping ζn to
ζru
n . Hence (4), (6), and Hadamard’s inequality yield

|aj | ≤ ϕ(n)Ξ(n)√
Dn

(√
Dnlϕ(n)−1

)1/ϕ(n)

.

We therefore see from (5) that

log
∥∥ηασ

χ

∥∥ ≤ 2λ(χ)−2ϕ(f)ϕ(n)2Ξ(n)
g
√

Dn

(√
Dnlϕ(n)−1

)1/ϕ(n)

log
(

f

π
+ 1

)
. (7)
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On the other hand, the l-th power |ηασ
χ | in Eχ is not equal to 1; because η2

χ generates
over Z[ζg] the cyclic free Z[ζg]-module H2

χ. Hence, by Lemma 1, we have

l log 2 < log
∥∥ηασ

χ

∥∥.

This and (7) then give us the inequality to be proved. ¤

3.

We devote this section to giving some elementary lemmas, which will be needed in
the next section.

Lemma 3. Let p be a prime number, m a positive integer not divisible by p, U

a finite set of integers, and w a map U → Z[ζm]. Taking an integer a > 1, a positive
integer a′ < a, and any integer b, put

ω =
∑

u∈U

w(u)ζu
pa , ω′ =

∑

u∈U ′
w(u)ζu

pa ,

where U ′ denotes the set of all u ∈ U with u ≡ b (mod pa′).

(i) If ω = 0, then ω′ = 0.
(ii) If c is an integer and if ω ≡ 0 (mod c), namely ω ∈ cZ[ζmpa ], then ω′ ≡ 0

(mod c).

Proof. The assertion (i) follows from the fact that the pa-th cyclotomic polynomial
in an indeterminate y belongs to Z[ypa−1

] and is irreducible over Q(ζm). The assertion
(ii) is an immediate consequence of (i). ¤

As in the introduction, we let

q̃ = gcd(2, q)q for each q ∈ P .

Lemma 4. Let p be a prime number, m a positive integer not divisible by p, a a
positive integer which exceeds 2 in the case p = 2, V a complete set of representatives of
the factor ring Z/p̃Z, and r an integer such that p̃ is the p-part of r− 1. Then ζjru

pa , for
all j ∈ V \ pZ and all non-negative integers u < ϕ(pa/p̃), are linearly independent over
Q(ζm).

Proof. When the integer pa/p̃ is 1 or 2, the lemma certainly holds. Let us consider
the case where pa/p̃ > 2, i.e, p̃2 | pa. Let s = pa/p̃2, let w be any non-negative integer
less than s, and let t = (rs − 1)p̃/pa so that t is an integer relatively prime to p. We
assume that

ϕ(pa/p̃)−1∑
u=0

∑

j∈V \pZ

bj(u)ζjru

pa = 0



840 K. Horie

with each bj(u) in Q(ζm). Clearly, for each u, ru ≡ rw (mod pa/p̃) if and only if u ≡ w

(mod s). Therefore, by Lemma 3, we have

ϕ(p̃)−1∑
c=0

bj(w + cs)
(
ζjrw

pa

)rcs

= 0

for each j. Because every c satisfies rcs ≡ 1 + ctpa/p̃ (mod pa) in the above equation, it
follows that

ζjrw

pa

ϕ(p̃)−1∑
c=0

bj(w + cs)
(
ζjrwt
p̃

)c

= 0,

which yields bj(w + cs) = 0 for each c. ¤

Lemma 5. Let α be a nonzero algebraic integer, k a number field with finite degree,
o the ring of algebraic integers in k, β an algebraic integer in o[α], and d the degree of α

over k; d = [k(α) : k]. Let b be an ideal of o relatively prime to the principal ideal of o

generated by the product of Nk(α)/k(α) and the discriminant of α over k. Viewing o[α]
as an o-module in the usual manner, assume that

βαj ∈ b⊕ oα⊕ · · · ⊕ oαd−1

for every non-negative integer j < d. Then

β ∈ (o[α])b = b⊕ bα⊕ · · · ⊕ bαd−1.

Proof. Let Z be the square matrix of degree d with coefficients in o such that

Z




1
α
...

αd−1




= β




1
α
...

αd−1




.

Taking the conjugates α1, . . . , αd of α over k, with α1 = α, let T be the adjugate
matrix of the matrix (αj−1

m )j,m=1,...,d. Then T is invertible and TZT−1 is a diagonal
matrix whose (1, 1)-component is β. Hence the (1, 1)-component of TZ is equal to βγ,
where γ denotes the (1, 1)-component of T . On the other hand, by the assumption of
the lemma, the components of the first column of Z belong to b and, by the definition
of (1, 1)-cofactor, γ is a divisor of

Nk(α)/k(α) det
((

αj−1
m

)
j,m=1,...,d

)

in the ring o[α1, . . . , αd]. Thus the lemma is proved. ¤
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For each integer m > 1, we let Q(m) denote the set of prime-powers u > 1 dividing
m and satisfying gcd(u,m/u) = 1. Furthermore, we denote by Bm the set of roots of
unity in the form

∏

u∈Q(m)

ζju
u

where ju for each u in Q(m) ranges over the non-negative integers smaller than ϕ(u). It
is obvious that Bm contains 1 and forms a free basis of the Z-module Z[ζm].

Lemma 6. Let n be an integer greater than 1. For any algebraic integer α in
Z[ζn], let c(α) denote the coefficient of 1 in the expression of α as a linear combination
of elements of Bn with coefficients in Z. Let b be an integer relatively prime to n, and
β an algebraic integer in Z[ζn]. If c(βζj

n) ≡ 0 (mod b) for all non-negative integers
j < ϕ(n), then β ≡ 0 (mod b).

Proof. Assume that c(βζj
n) ≡ 0 (mod b) for all non-negative integers j < ϕ(n).

Then we find that c(βζj
n) ≡ 0 (mod b) for all integers j. Let P ′ be any subset of Q(n),

let u be any element of Q(n) \ P ′, and let

n′ =
∏

u′∈P ′
u′, n′′ = n′u.

Note that Bn ∩ 〈ζn/n′〉 is a free basis of the Z[ζn′ ]-module Z[ζn] and that Bn ∩ 〈ζn/n′′〉
is a free basis of the Z[ζn′′ ]-module Z[ζn]. For any α in Z[ζn], we let c′(α) denote
the coefficient of 1 in the expression of α as a linear combination of elements of Bn ∩
〈ζn/n′〉 with coefficients in Z[ζn′ ]; similarly, we let c′′(α) denote the coefficient of 1 in the
expression of α as a linear combination of elements of Bn ∩ 〈ζn/n′′〉 with coefficients in
Z[ζn′′ ]. Obviously, for every γ in Z[ζn],

c′(c′′(γ)) = c′(γ), c′′(γζu) = c′′(γ)ζu.

Now we take any n/n′′-th root ξ of unity: ξ ∈ 〈ζn/n′′〉. Since b is relatively prime to
u, it follows from Lemma 5 that, if c′(βξζj

u) ≡ 0 (mod b) for all non-negative integers
j < ϕ(u), then c′′(βξ) ≡ 0 (mod b). Hence we can complete the proof by induction on
|Q(n)|. ¤

4.

This section is a sequel to §2. With χ, f , and g the same as in §2, we shall prove
other preliminary results for the proof of Theorem 1.

Let p be any prime number. We let f(p) and g(p) denote respectively the p-part of
fχ and that of gχ. In the case p ≥ 5, let Wp denote the set of roots of unity in the form

∏

u∈Q((p−1)/2)

ζsu
2u
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where, for each u in Q((p−1)/2), su ranges over the non-negative integers smaller than u.
Let Wp = {1} in the case p ≤ 3. Then Wp, a subset of Q(ζϕ(p̃)) = Q(ζp−1), is a complete
set of representatives of the quotient group 〈ζϕ(p̃)〉/〈−1〉. Next, let a be any positive
integer. Let Φp(a) denote the set of all maps from Wp into the set of the non-negative
integers not more than a. We then put

Mp(a) = max
m∈Φp(a)

∣∣∣∣NQ(ζp−1)/Q

( ∑

δ∈Wp

m(δ)δ − 1
)∣∣∣∣.

Proposition 3. Let p be a prime number as above, l a prime number distinct
from p, and n a positive divisor of gχ such that Q(ζn) contains the decomposition field
of l for Q(ζgχ

)/Q. Assume that

p̃ | n, f(p) = p̃g(p), l - fχgχ, l | hχ.

Then

Mp

(
2(p− 1)ϕ(fχ)nl

pgχ

)
≥ f(p)

νp
,

where νp denotes the p-part of n.

Proof. As the proof is not short, we divide it into seven steps.
i) For each positive integer j, we denote by P (j) the set of prime divisors of j and,

when j is a divisor of f , we let

Gj = Gal(Q(ζf )/Q(ζj)).

It follows that G1 = Gal(Q(ζf )/Q) is the direct product of Gf/f(q) for all primes q in
P (f):

G1 =
∏

q∈P (f)

Gf/f(q) = Gf/f(p) ×Gf(p).

Given any prime v in P (g), we can fix a prime v∗ in P (f) satisfying

χ∗(Gf/f(v∗)) 3 ζg(v)

since g is the least common multiple of the orders of χ∗|Gf/f(q) for all q in P (f). We
may therefore suppose that

sχ =
∏

v∈P (g)

s(v),
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where each s(v) is an element of Gf/f(v∗) such that χ∗(s(v)) is a primitive g(v)-th root
of unity. Hence, for each v in P (g),

ζ
s(v)

f/f(v∗)
= ζf/f(v∗), sg/g(v)

χ s(v)−g/g(v) ∈ Ker(χ∗) = Gal(Q(ζf )/Kχ),

and we may also suppose that

s(v)g(v) = 1 if v∗ = v.

In particular, the assumption f(p) = p̃g(p) enables us to let

p∗ = p, s(p)g(p) = 1.

ii) Now, put

σ = sχ|Kχ = σ(χ)|Kχ.

By the assumptions on n, l and by Proposition 1, there exists a prime ideal l of Q(ζn)
dividing l such that |ηγσ

χ | is an l-th power in Eχ for every element γ of ll−1. We denote
by Z the set of elements of G1 in the form

∏

v∈P (g/g(p))

s(v)jvg/νv

where, for each v in P (g/g(p)) = P (g) \ {p}, νv denotes the v-part of n and jv ranges
over the non-negative integers less than ϕ(νv). It should be added that

χ∗
(
s(v)jvg/νv

)
= ζjv

νv
.

Let α be an algebraic integer in ll−1 \ lZ[ζn]. Writing α as

α =
ϕ(νp)∑

j=1

∑

z∈Z

az,jχ
∗(z)ζj−1

νp
with each az,j in Z,

we then have, in Z[Gal(Kχ/Q)],

ασ =
ϕ(νp)∑

j=1

∑

z∈Z

az,j(z|Kχ)σ(j−1)g/νp . (8)

Next let p be a prime ideal of Q(ζp−1) dividing p. Let f(p) denote the highest power of p

dividing f(p), and I the set of positive integers less than f(p) and congruent to suitable
elements of Wp modulo f(p). For each u in I, let [u] denote the automorphism in Gf/f(p)
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mapping ζf(p) to ζ u
f(p). As the degree of p for Q(ζp−1)/Q equals 1, {[u] | u ∈ I} is a

complete set of representatives of the quotient group

Gf/f(p)/Gal
(
Q(ζf )/Q

(
ζf/f(p), ζp̃ + ζ−1

p̃

))
.

We put, in Z[G1],

Υ =
∑

x∈Ker(χ∗)

x, ∆′ =
∏

v∈P (g/g(p))

(1− s(v)g/v).

Note that Υs(v)g/g(v) = Υs
g/g(v)
χ for each v in P (g). Let i be the complex conjugation in

G1, namely, the automorphism of Q(ζf ) mapping ζf to ζ−1
f . Let P1 be the set of primes

v in P (g) with v∗ 6= p, i.e, s(v) ∈ Gf(p), and let G′ be the subgroup of Gf(p) generated
by s(v)g(v)/νv for all v in P1 and by the image of Ker(χ∗) under the canonical surjection
G1 → Gf(p). Let T denote the direct product, as a set, of G′, I, and the set of positive
integers not exceeding ϕ(νp):

T = {(x, u, j) | x ∈ G′, u ∈ I, j ∈ Z, 1 ≤ j ≤ ϕ(νp)}.

In view of

i ∈ Ker(χ∗) \ {x[u]s(p)m | x ∈ G′, u ∈ I, m ∈ Z, 1 ≤ m ≤ g(p)},

we can define integers bx,u,j , for all (x, u, j) in T , by

Υ (1− s(p)g/p)∆′
ϕ(νp)∑

j=1

∑

z∈Z

az,jzej−1 = (1 + i)(1− s(p)g/p)
∑

(x,u,j)∈T

bx,u,jx[u]ej−1, (9)

where we put e = s(p)g/νp . Further let a′ be an integer such that

ζ
s(p)g/p

f = ζ2a′+1
f , i.e., ζa′

f (ζf − 1)1−s(p)g/p ∈ R.

Since

(
ζ2f − ζ−1

2f

)1−σ(χ)g/p

= ζ
σ(χ)g/p−1
2f (ζf − 1)1−sg/p

χ , ζ
σ(χ)g/p−1
2f ∈ 〈ζf 〉,

we then obtain, by the definition of ηχ,

η2
χ = (ζf − 1)(1−sg/p

χ )Υ∆′ =
(
ζa′
f (ζf − 1)1−s(p)g/p

)Υ∆′

.

Therefore, it follows from (8) and (9) that
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η2ασ
χ =

∏

(x,u,j)∈T

(
ζa′
f (ζf − 1)1−s(p)g/p

)2bx,u,jx[u]ej−1

.

On the other hand, since
∣∣ηασ

χ

∣∣ is an l-th power in Eχ and l does not divide f , Lemma 5
of [3] shows that the image of

∣∣ηασ
χ

∣∣ under the Frobenius automorphism of l for Q(ζf )/Q

is congruent to
∣∣ηασ

χ

∣∣l modulo l2. Hence, in the case l > 2,

∏

(x,u,j)∈T

(
ζla′
f

(
ζl
f − 1

)1−s(p)g/p)bx,u,jx[u]ej−1

≡
∏

(x,u,j)∈T

(
ζa′
f (ζf − 1)1−s(p)g/p

)lbx,u,jx[u]ej−1

(mod l2) (10)

while, in the case l = 2,

∏

(x,u,j)∈T

(
ζ2a′
f

(
ζ2
f − 1

)1−s(p)g/p)bx,u,jx[u]ej−1

≡ κ
∏

(x,u,j)∈T

(
ζa′
f (ζf − 1)1−s(p)g/p

)2bx,u,jx[u]ej−1

(mod 4) (11)

with κ = ±1.
iii) We now assume that

Mp

(
2(p− 1)ϕ(f)nl

pg

)
<

f(p)
νp

(12)

contrary to the conclusion of the propostion. Define a polynomial J(y) in an indetermi-
nate y over Z by

J(y) =
l−1∑
c=1

(−1)c−1

l

(
l

c

)
yc or J(y) = −y + 1

according as l > 2 or l = 2:

(y − 1)l = yl − 1 + lJ(y).

Take an integer r satisfying

ζ r
f(p) = ζ

s(p)g/g(p)

f(p) ,
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so that the p-part of r − 1 is p̃. In the rest of this proof, we let

ζ = ζf/f(p), d = rg(p)/νp , t = rg(p)/p = dνp/p,

and let, for each positive integer j,

ξj = ζej−1

f(p) = ζdj−1

f(p) .

iv) For the present, let us consider the case where l > 2 or (l, κ) = (2, 1). We easily
see from (10) or (11) that

∏

(x,u,j)∈T

(
ζlxξlu

j − 1
ζlxξltu

j − 1

)bx,u,j

≡
∏

(x,u,j)∈T

(
ζxξu

j − 1
ζxξtu

j − 1

)lbx,u,j

(mod l2).

Furthermore, in the above,

(
ζxξu′

j − 1
)lbx,u,j ≡ (

ζlxξlu′
j − 1

)bx,u,j−1(
ζlxξlu′

j − 1 + lbx,u,jJ
(
ζxξu′

j

))
(mod l2)

with u′ = u or tu. Therefore,

∏

(x,u,j)∈T

((
ζlxξlu

j − 1
)(

ζlxξltu
j − 1 + lbx,u,jJ

(
ζxξtu

j

)))

≡
∏

(x,u,j)∈T

((
ζlxξlu

j − 1 + lbx,u,jJ
(
ζxξu

j

))(
ζlxξltu

j − 1
))

(mod l2),

that is,

( ∏

(x,u,j)∈T

(
ζlxξlu

j − 1
)) ∑

(y,w,m)∈T

by,w,mJ
(
ζyξtw

m

)
Πy,w,m

≡
( ∏

(x,u,j)∈T

(
ζlxξltu

j − 1
)) ∑

(y,w,m)∈T

by,w,mJ
(
ζyξw

m

)
Π ′

y,w,m (mod l) (13)

where, for each (y, w, m) in T ,

Πy,w,m =
(
ζlyξltw

m − 1
)−1 ∏

(x,u,j)∈T

(
ζlxξltu

j − 1
)
,

Π ′
y,w,m =

(
ζlyξlw

m − 1
)−1 ∏

(x,u,j)∈T

(
ζlxξlu

j − 1
)
.

Let Ψ be the set of maps from T to {0, 1}. For each n in Ψ , we put
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A(n) =
∑

(x,u,j)∈T

ln(x, u, j)udj−1, B(n) =
∑

(x,u,j)∈T

n(x, u, j),

Σ(n) =
∑

(x,u,j)∈T

ln(x, u, j)x

and, for each (y, w, m) in T , we put

Ψy,w,m = {v ∈ Ψ | v(y, w, m) = 0}.

It follows that

( ∏

(x,u,j)∈T

(
ζlxξlu

j − 1
)) ∑

(y,w,m)∈T

by,w,mJ
(
ζyξtw

m

)
Πy,w,m

= −
∑

(y,w,m)∈T

∑

n∈Ψ

∑

v∈Ψy,w,m

(−1)B(n)+B(v)by,w,mJ
(
ζyξtw

m

)
ζΣ(n)+Σ(v)ζ

A(n)+tA(v)
f(p) , (14)

( ∏

(x,u,j)∈T

(
ζlxξltu

j − 1
)) ∑

(y,w,m)∈T

by,w,mJ
(
ζyξw

m

)
Π ′

y,w,m

= −
∑

(y,w,m)∈T

∑

n∈Ψ

∑

v∈Ψy,w,m

(−1)B(n)+B(v)by,w,mJ
(
ζyξw

m

)
ζΣ(n)+Σ(v)ζ

tA(n)+A(v)
f(p) . (15)

v) We shall next see when a triplet (y, w, m) in T , a pair (n, v) in Ψ × Ψy,w,m, and
an integer c, with min(1, l − 2) ≤ c < l, satisfy the two congruences

ctwdm−1 + A(n) + tA(v) ≡
∑

(x,u,j)∈T

l(1 + t)udj−1 − 1 (mod f(p)/νp), (16)

cwdm−1 + tA(n) + A(v) ≡
∑

(x,u,j)∈T

l(1 + t)udj−1 − 1 (mod f(p)/νp). (17)

Since t ≡ d ≡ 1 (mod f(p)/νp), either congruence above means that

∑

u∈I\{w}

( ∑

x∈G′

ϕ(νp)∑

j=1

l(2− n(x, u, j)− v(x, u, j))
)

u− 1

+
( ∑

x∈G′

ϕ(νp)∑

j=1

l(2− n(x, w, j)− v(x, w, j))− c

)
w ≡ 0 (mod f(p)/νp). (18)

However, by the definition of G′,

ϕ(νp)|G′| ≤ (p− 1)νp

p
[Q(ζf ) : Kχ]

∏

q∈P1

νq ≤ (p− 1)ϕ(f)n
pg

.
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Hence there exists a map h in Φp(2(p− 1)ϕ(f)nl/(pg)) such that

h(δ) =
∑

x∈G′

ϕ(νp)∑

j=1

l(2− n(x, u, j)− v(x, u, j))

if δ ∈ Wp, u ∈ I \ {w}, and δ ≡ u (mod f(p)), and such that

h(δ) =
∑

x∈G′

ϕ(νp)∑

j=1

l(2− n(x, w, j)− v(x, w, j))− c

if δ ∈ Wp and δ ≡ w (mod f(p)). We can therefore transform (18) into

∑

δ∈Wp

h(δ)δ − 1 ≡ 0 (mod f(p)ν(p)−1),

where ν(p) denotes the highest power of p dividing νp. Thus (18) induces

NQ(ζp−1)/Q

( ∑

δ∈Wp

h(δ)δ − 1
)
≡ 0 (mod f(p)/νp).

As this and (12) yield

∑

δ∈Wp

h(δ)δ − 1 = 0,

Lemma 7 of [3] then implies that h(1) = 1 and that h(δ) = 0 for all δ in Wp \ {1}.
Consequently, both of (16), (17) are equivalent to the condition that

w = 1, (y, 1,m) ∈ T , v ∈ Ψy,1,m, c = l − 1;

n(x, u, j) = 1 for every (x, u, j) in T ;

v(x, u, j) = 1 for every (x, u, j) in T \ {(y, 1,m)}.

It follows, under the above condition, that

(l − 1)tdm−1 + A(n) + tA(v) =
∑

(x,u,j)∈T

l(1 + t)udj−1 − tdm−1,

(l − 1)dm−1 + tA(n) + A(v) =
∑

(x,u,j)∈T

l(1 + t)udj−1 − dm−1,

B(n) + B(v) = (p− 1)ϕ(νp)|G′| − 1,

(l − 1)y + Σ(n) + Σ(v) = l(p− 1)ϕ(νp)
∑

x∈G′
x− y.
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Hence, by (13), (14) and (15), Lemma 3 shows that

ϕ(νp)∑
m=1

∑

y∈G′
by,1,mζ−yξ−t

m ≡
ϕ(νp)∑
m=1

∑

y∈G′
by,1,mζ−yξ−1

m (mod l).

Furthermore, (t− 1)p/f(p) is an integer relatively prime to p, and

ζ t
f(p) = ζ(t−1)p/f(p)

p ζf(p), ζr
p = ζp.

We therefore obtain

(
ζ(1−t)p/f(p)
p − 1

) ϕ(νp)∑
m=1

∑

y∈G′
by,1,mζ−yξ−1

m ≡ 0 (mod l),

which gives

ϕ(νp)∑
m=1

∑

y∈G′
by,1,mζyξm ≡ 0 (mod l).

However, by Lemma 4, ξ1, . . . , ξϕ(νp) are linearly independent over Q(ζ). Hence

∑

y∈G′
by,1,mζy ≡ 0 (mod l) (19)

if m is any positive integer ≤ ϕ(νp).
vi) Since {x[u] | x ∈ G′, u ∈ I} ∪ {ix[u] | x ∈ G′, u ∈ I} is a subgroup of G1

containing Ker(χ∗) ∪ {s(v) | v ∈ P (g/g(p))}, we can deduce from (9) that

Υ∆′ ∑

z∈Z

az,jz = (1 + i)
∑

u∈I

∑

x∈G′
bx,u,jx[u] (20)

for every positive integer j ≤ ϕ(νp). Let us put

P2 = {v ∈ P1 | v∗ = v, f(v) 6= 4}.

For any prime v in P2, we have f(v) = ṽg(v) and ζs(v)g/v−1 is a primitive v-th root of
unity. Let G′′ be the subgroup of G′ generated by s(v)g/νv for all v in P1 \ P2 and by
the image of Ker(χ∗) under the canonical surjection G1 → Gf(p). Let

B =
{

z1z2

∣∣∣∣ z1 ∈ G′′, z2 ∈ Z ∩
∏

v∈P2

Gf/f(v)

}
.
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Then there exist integers bw,u, for all (w, u) in B× I, such that

Υ

( ∏
v

(1− s(v)g/v)
) ∑

z∈Z

az,1z = (1 + i)
∑

u∈I

∑

w∈B

bw,uw[u], (21)

with v running through P (g/g(p)) \ P2. Hence, by (20),

(1 + i)
∑

u∈I

∑

x∈G′
bx,u,1x[u] =

( ∏

v∈P2

(1− s(v)g/v)
)

(1 + i)
∑

u∈I

∑

w∈B

bw,uw[u]

and consequently

∑

x∈G′
bx,1,1x =

∑

w∈B

bw,1

( ∏

v∈P2

(1− s(v)g/v)
)

w.

It follows that

∑

x∈G′
bx,1,1ζ

x =
∑

w∈B

bw,1

( ∏

v∈P2

(
1− ζ(s(v)g/v−1)w

))
ζw,

since we have

ζ
Q

v s(v)g/v−1 =
∏
v

ζs(v)g/v−1

whenever v runs through any subset of P2. Therefore, in virtue of (19),

∑

w∈B

bw,1

( ∏

v∈P2

(
1− ζ(s(v)g/v−1)w

))
ζw ≡ 0 (mod l).

Next, let B0 be the set of elements w of B such that ζw
v = ζv for all v in P2. Evidently,

for any v in P2 and any w in B, ζw
v = ζv if and only if ζw−1

f(v) ∈ 〈ζ v
f(v)〉. Hence Lemma 3,

together with the above congruence, yields

( ∏

v∈P2

(
1− ζs(v)g/v−1

)) ∑

w∈B0

bw,1ζ
w ≡ 0 (mod l).

It then follows that

∑

w∈B0

bw,1ζ
w ≡ 0 (mod l).

Furthermore, Lemma 4 implies that ζw for all w in B are linearly independent over Q.
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Thus

bw,1 ≡ 0 (mod l) for all w ∈ B0.

Since a1,1 = b1,1 by (21), we particularly obtain

a1,1 ≡ 0 (mod l).

On the other hand, we know that, in what we have discussed so far, α can be replaced
by αζj

n for any non-negative integer j < ϕ(n). Lemma 6 therefore shows that

α ≡ 0 (mod l).

This conclusion, however, contradicts the choice of α.
vii) We finally consider the case (l, κ) = (2,−1), in which we still use the notations

introduced in the step iv) for the case (l, κ) = (2, 1). It follows from (11) that

∏

(x,u,j)∈T

(
ζ2xξ2u

j − 1
ζ2xξ2tu

j − 1

)bx,u,j

≡ −
∏

(x,u,j)∈T

(
ζxξu

j − 1
ζxξtu

j − 1

)2bx,u,j

(mod 4),

so that

∏

(x,u,j)∈T

((
ζ2xξ2u

j − 1
)(

ζ2xξ2tu
j − 1 + 2bx,u,jJ

(
ζxξtu

j

)))

≡ −
∏

(x,u,j)∈T

((
ζ2xξ2u

j − 1 + 2bx,u,jJ
(
ζxξu

j

))(
ζ2xξ2tu

j − 1
))

(mod 4).

Therefore, instead of (13), we have

∏

(x,u,j)∈T

((
ζ2xξ2u

j − 1
)(

ζ2xξ2tu
j − 1

))

+
( ∏

(x,u,j)∈T

(
ζ2xξ2u

j − 1
)) ∑

(y,w,m)∈T

by,w,mJ
(
ζyξtw

m

)
Πy,w,m

≡
( ∏

(x,u,j)∈T

(
ζ2xξ2tu

j − 1
)) ∑

(y,w,m)∈T

by,w,mJ
(
ζyξw

m

)
Π ′

y,w,m (mod 2).

Nevertheless,

∏

(x,u,j)∈T

((
ζ2xξ2u

j − 1
)(

ζ2xξ2tu
j − 1

))
=

∑

(n,n′)∈Ψ×Ψ

(−1)B(n)+B(n′)ζΣ(n)+Σ(n′)ζ
A(n)+tA(n′)
f(p)
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and, for each (n, n′) in Ψ × Ψ , the congruence

A(n) + tA(n′) ≡
∑

(x,j,u)∈T

2(1 + t)udj−1 − 1 (mod f(p)/νp)

can be rewritten in the form

∑

u∈I\{1}

( ∑

x∈G′

ϕ(νp)∑

j=1

2(2− n(x, u, j)− n′(x, u, j))
)

u

+
∑

x∈G′

ϕ(νp)∑

j=1

2(2− n(x, 1, j)− n′(x, 1, j))− 1 ≡ 0 (mod f(p)/νp).

Hence, checking the arguments in the steps iii), iv), v), vi), we see that the above
congruence modulo 2, together with (12), leads us to the contradiction α ≡ 0 (mod 2)
in the same way as the congruence (13) for the case (l, κ) = (2, 1).

Consequently, the assumption (12) turns out to be false and the proposition is com-
pletely proved. ¤

By means of Proposition 3, we now prove the following

Proposition 4. Let l be a prime number, n a positive divisor of gχ such that
Q(ζn) contains the decomposition field of l for Q(ζgχ

)/Q, and R a finite subset of P

such that every p in R satisfies p̃ | n and f(p) = p̃g(p). Suppose that

l | hχ, l - fχgχ, R 6=∅.

Then

l >
gχ

ϕ(fχ)n

( ∏

p∈R

pϕ(p−1)f(p)
((p− 1)ϕ(p̃))ϕ(p−1)νp

)1/
P

p∈R ϕ(p−1)

where, for each p in R, νp denotes the p-part of n.

Proof. Put

Θp =
(p− 1)ϕ(f)nl

pg

for any p in R, and take any m in Φp(2Θp). Then

∣∣∣∣NQ(ζp−1)/Q

( ∑

δ∈Wp

m(δ)δ − 1
)∣∣∣∣ =

∏
τ

∣∣∣∣
∑

δ∈Wp

m(δ)δτ − 1
∣∣∣∣,
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with τ ranging over the automorphisms of the field Q(ζp−1), and

∣∣∣∣
∑

δ∈Wp

m(δ)δτ − 1
∣∣∣∣ ≤ |m(1)− 1|+

∑

δ∈Wp\{1}
m(δ) < ϕ(p̃)Θp.

Therefore

Mp(2Θp) < (ϕ(p̃)Θp)ϕ(p−1).

Hence we see from Proposition 3 that

∏

p∈R

(ϕ(p̃)Θp)ϕ(p−1) >
∏

p∈R

f(p)
νp

,

namely that

(
ϕ(f)nl

g

)P
p∈R ϕ(p−1) ∏

p∈R

((p− 1)ϕ(p̃))ϕ(p−1)

pϕ(p−1)
>

∏

p∈R

f(p)
νp

.

¤

5.

We shall prove Theorem 1 in the present section. The notation in the preceeding
sections will be retained except that, for each Dirichlet character ψ and each p ∈ P , we
let fψ(p) and gψ(p) denote the p-parts of fψ and gψ, respectively.

As to F , there exists a unique abelian number field k0 with finite degree such that
F = k0Q

S and that, for each p ∈ S, the p-part of the conductor of k0 divides p̃. Let X

be a set of nonprincipal Dirichlet characters with the following two properties:

(i) Kψ for each ψ in X is a subfield of F ,
(ii) for any nonprincipal Dirichlet character ψ′ with Kψ′ ⊂ F , there is just one Dirichlet

character ψ in X satisfying Kψ = Kψ′ .

Let f0 denote the conductor of k0. Then, for each ψ ∈ X and each l ∈ P \ S, we easily
obtain

fψ(l) | f0, gψ(l) | [k0 : Q]. (22)

When p is any prime in S with fψ(p) 6= p̃gψ(p), we also have

fψ(p) < p̃gψ(p), gψ(p) | [k0 : Q]. (23)

Now, as in the introduction, let µp denote for each p ∈ S the p-part of the positive
integer m0 in the hypothesis of Theorem 1. Assume first that F is real: F ⊂ R. Taking
any subset R of S, let XR denote the set of Dirichlet characters ψ in X for which
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{p ∈ S | fψ(p) = p̃gψ(p), gψ(p) ≥ µp} = R.

It then follows from (23) that, for each ψ ∈ XR and each p ∈ S \R,

pfψ(p) | p̃µp[k0 : Q], gψ(p) | µp[k0 : Q]. (24)

Lemma 7. The set XR is finite or infinite according as R is empty or non-empty.

Proof. In the case R 6= ∅, let Γ denote the subfield of QS whose Galois group
over Q is topologically isomorphic to

∏
p∈R Zp. Then an element ψ of X with Kψ ⊂ Γ

belongs to XR if gψ is divisible by
∏

p∈R µp. This fact implies that XR is an infinite set.
In the case R =∅, we see from (22) and (24) that

fψ | 2f0m0[k0 : Q] for every ψ ∈ XR,

so that XR is a finite set. ¤

Remark. X is the disjoint union of XR′ for all subsets R′ of S.

Let R be the same as above. For each ψ in XR, define a positive integer nψ by

nψ = gψ

∏

p∈R

µp

gψ(p)
.

We let XR
0 denote the set of ψ in XR satisfying

gψ

ϕ(fψ)nψ

( ∏

p∈R

pϕ(p−1)fψ(p)
((p− 1)ϕ(p̃))ϕ(p−1)µp

)1/
P

p∈R ϕ(p−1)

<
√

Dnψ

(
2λ(ψ)−2ϕ(fψ)ϕ(nψ)2Ξ(nψ)

(log 2)gψ

√
Dnψ

log
(

fψ

π
+ 1

))ϕ(nψ)

.

Lemma 8. XR
0 is a finite set.

Proof. By Lemma 7, we may assume R to be non-empty. Let ψ be any Dirichlet
character in XR. In view of (22), (24) and the definition of nψ, we know that

nψ ≤ m0[k0 : Q], fψ ≤ 2f0m0[k0 : Q]
∏

p∈R

fψ(p).

Furthermore,

2λ(ψ) ≤ 2|S|[k0 : Q],
ϕ(fψ)

gψ
≤ ϕ

(
2

∏
v

v

)
,
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where v ranges over the prime numbers dividing f0 or belonging to S. Therefore the
definition of XR

0 implies that, if ψ belongs to XR
0 , then

fψ < ρ(log fψ)m2
0[k0:Q],

with a positive number ρ depending only on m0, f0 and [k0 : Q]. We thus see that fψ is
bounded as ψ runs through XR

0 . ¤

Now, let

X0 = X? ∪
( ⋃

R′
XR′

0

)
,

R′ ranging over the non-empty subsets of S. By Lemmas 7 and 8, X0 is a finite set.

Proposition 5. Still assuming F to be real, let l be a prime number such that
Q(ζm0) contains the decomposition field of l for QS(ζm0)/Q and that

l 6∈ S, f0[k0 : Q]
∏

ψ∈X0

hψ 6≡ 0 (mod l).

Then CF (l) is trivial.

Proof. It suffices to prove that the class number of any subfield of F with finite
degree is not divisible by the prime number l. Let k′ be any subfield of F with finite
degree, and X′ the set of all ψ in X with Kψ ⊆ k′. For each ψ in X′, we denote by hψ(l)
the l-part of hψ. As l - [k′ : Q] by the hypothesis of the proposition, it follows from [5,
Satz 21] that

|Ck′(l)| =
∏

ψ∈X′
hψ(l) (25)

(see also the formula (10) in [5, §9.4]).
Suppose now that some Dirichlet character χ in X′ satisfies hχ(l) > 1, namely, l | hχ.

Then there exists a unique subset R of S such that XR contains χ. We note that, for
each v ∈ P , the v-part of nχ is µv or gχ(v) according as v belongs to R or P \ R. The
hypothesis on l implies that χ is not an element of X0, l does not divide fχgχ, and Q(ζnχ

)
contains the decomposition field of l for Q(ζgχ

)/Q. In particular, R is not empty, so that
fχ is not a prime number since each p in R divides gχ. Hence, by Proposition 2,

l <
√

Dnχ

(
2λ(χ)−2ϕ(fχ)ϕ(nχ)2Ξ(nχ)

(log 2)gχ

√
Dnχ

log
(

fχ

π
+ 1

))ϕ(nχ)

and further, by Proposition 4,



856 K. Horie

l >
gχ

ϕ(fχ)nχ

( ∏

p∈R

pϕ(p−1)fχ(p)
((p− 1)ϕ(p̃))ϕ(p−1)µp

)1/
P

p∈R ϕ(p−1)

.

However χ must not belong to XR
0 , a subset of X0. This contradiction means that

hψ(l) = 1 for all ψ in X′. Hence (25) shows that |Ck′(l)| = 1, namely, the class number
of k′ is not divisible by l. ¤

Now, let us prove Theorem 1. Proposition 5 clearly implies Theorem 1 for the case
F ⊂ R. Accordingly, we assume that F is imaginary. Replacing m0 by its multiple
if necessary, we may also assume that, for each p ∈ S, the p-part of the exponent of
Gal(k0/Q) is a divisor of m0. As in the introduction, let C−F (l) denote, for each l ∈ P ,
the l-primary component of the kernel C−F of the norm map CF → CF+ , where

F+ = F ∩R = QS(k0 ∩R).

Then, by Theorem 1 of [3], there exist only finitely many l ∈ P such that C−F (l) is
nontrivial and such that Q(ζm0) contains the decomposition field of l for QS(ζm0)/Q.
On the other hand, since the norm map CF → CF+ is surjective by class field theory,
it follows for each l ∈ P that CF (l) is trivial if and only if both C−F (l) and CF+(l) are
trivial. Proposition 5 therefore completes the proof of Theorem 1.

6.

In this last section, we briefly make some additional remarks on CF and CQS with
relation to Theorem 1.

If F is imaginary, then by the remark in the introduction, C−F is infinite whence
so is CF (cf. [6]). Iwasawa theory further guarantees in this case that, for any p ∈ S,
C−F (p) can be infinite quite often, for instance, when any prime ideal of k0 ∩R dividing
p splits in k0 or when gcd(4, p̃)p divides the exponent of the kernel of the norm map
Ck0 → Ck0∩R.

Assume now that F is real. Certainly, for any finite abelian group A with order
relatively prime to all p ∈ S, there exists an example of F such that A is isomorphic
to some subgroup of CF . For any p ∈ S, however, CF (p) must always be trivial if
Greenberg’s conjecture for Zp-extensions holds in general. Hence, in view of Theorem 1,
we might expect the finiteness of CF . It would also be an important problem to know
whether CQS is trivial or not. In fact, we have not found any prime number l for which
CQS (l) is nontrivial. Moreover, if CQS turns out to be trivial or, at least, to be finite,
then it seems very likely that CL is finite for every totally real finite extension L of
QS . We note that, in the case |S| = 1, CQS is trivial if and only if QS coincides with
the Hilbert class field of QS , i.e., the maximal unramified abelian extension over QS .
Anyhow, whenever an integer u ≥ 2 is given, there exist examples of S with |S| = u such
that the Hilbert class field of QS contains an extension of degree p over QS for some
p ∈ S (cf. [2]).



Triviality in ideal class groups 857

References

[ 1 ] E. Friedman, Ideal class groups in basic Zp1 × · · · × Zps -extensions of abelian number fields,

Invent. Math., 65 (1981/82), 425–440.

[ 2 ] K. Horie, A note on the Zp ×Zq-extension over Q, Proc. Japan Acad. Ser. A Math., 77 (2001),

84–86.

[ 3 ] K. Horie, Ideal class groups of Iwasawa-theoretical abelian extensions over the rational field,

J. London Math. Soc., 66 (2002), 257–275.

[ 4 ] L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew.

Math., 53 (1857), 173–175.
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