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Abstract. For sequences of stochastic integrals
R ·
0 Kn

s−dXn
s , functional limit

theorems are presented. And stability of strong solutions of stochastic differential
equations of type

Xn = Hn +

Z ·

0
f(Xn

s−)dY n
s , ∀n ≥ 1

is discussed under jointly weak convergence of driving processes {(Hn, Y n)}n≥1.
Where Y n is an H-valued semimartingale, Hn is a G-valued càdlàg adapted process,
Kn is an L (H,G)-valued càdlàg adapted process and f : G 7→ L (H,G) satisfies a
Lipschitz condition.

1. Introduction.

For all n ≥ 1, let (Ωn,Fn,Fn
t , Pn) be a filtered probability space satisfying the

“usual conditions” and let H and G be real separable Hilbert spaces and Xn and Kn be
(Fn

t )t≥0 adapted H-valued semimartingale and L (H,G)-valued càdlàg adapted pro-
cess, respectively. Here L (H,G) is the space of bounded linear operators from H

to G. The tightness criteria of càdlàg Hilbert-valued adapted processes has been dis-
cussed by Joffe and Métivier ([6]) and Métivier and Nakao ([8]) and Xie ([14]). And
Xie also discussed limit theorems of sequences of Hilbert-valued semimartingales. By
these results, the one of purposes in this paper is to discuss functional limit theorems of
sequences of stochastic integrals

∫ ·
0
Kn

s−dXn
s under jointly weak convergence of driving

processes {(Kn, Xn)}n≥1. This problem has been studied earlier by Duffie and Protter
([1]), Jakubowski and Mémin and Pages ([5]) under simple natural conditions in real
processes.

The other purpose of this paper is to discuss the stability of the strong solutions of
stochastic differential equations (SDE) of the type

Xn = Hn +
∫ ·

0

f(Xn
s−)dY n

s , n ≥ 1, (1.1)

X = H +
∫ ·

0

f(Xs−)dYs, (1.2)
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under jointly weak convergence of driving processes {(Hn, Y n)}n≥1, where f : G 7→
L (H,G) satisfies a Lipschitz condition, i.e. there exists a constant L(> 0) such that

‖f(x)− f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ G

and Hn, H and Y n, Y are G-valued càdlàg processes and H-valued semimartingales,
respectively. It is well known by Theorem 34.7 of Métivier ([7]) that there exists a unique
strong solution of (1.1) and (1.2) for all n ≥ 1. We will give some sufficient conditions
under which {Xn}n≥1 converges to X in law. This problem has been discussed earlier by
several authors: Emery ([2], [3]) and Protter ([10]) have proved the stability of solutions
of (SDE) (1.1) and (1.2) using a very strong topology in the space of semimartingales,
and Slominski ([11], [12]) has proved the stability of solutions of (SDE) (1.1) under
jointly weak convergence of driving processes {(Hn, Y n)}n≥1 in Rk-valued processes.
We cannot expect the above problems under only the assumption of the convergence of
driving processes since they are not satisfied even in the deterministic case. Therefore,
some additional conditions on sequences of semimartingales are indispensable.

In this paper we assume that sequences of H-valued semimartingales satisfy the con-
dition called (UT) introduced by Stricker ([13]) in Rk-valued processes (where the Meyer
and Zheng’s convergence of semimartingales is considered in [9]). In Section 2, we will
prove some preparative results under the condition (UT). In Section 3, the convergence
of stochastic integrals with respect to Hilbert-valued semimartingales will be discussed,
which is an extension of Jakubowski and Mémin and Pages’s appropriate results in [5]
to Hilbert-valued processes. Finally, the sufficient conditions will be provided for the
stability of (SDE) (1.1), which is an extension of Slominski’s appropriate results in [11].

2. Preparative results under the condition (UT).

Let H and G be real separable Hilbert spaces with scalar product x · y and norm
‖ · ‖ and let {en}n≥1 and {gn}n≥1 be orthogonal bases of H and G, respectively.
For x ∈ H, put x =

∑∞
k=1 xkek. If Πm maps H onto Rm of vectors (x1, · · · , xm),

Πmx = (x1, · · · , xm), then there exists a continuous mapping Vm of Rm into H, where
Vm(x1, · · · , xm) =

∑m
k=1 xkek and clearly ‖x − VmΠmx‖ → 0 when m → ∞ for all

x ∈ H. There is the same result for x ∈ G. We will use the same mappings Πm and Vm

on H and G if there is no confusion.
The setting is as follows: for every n ≥ 1 we consider a stochastic basis Bn =

(Ωn,Fn,Fn
t , Pn), En denotes the expectation with respect to Pn. All sets, variables,

processes, etc, with the superscript n are defined on Bn, and if there is no superscript,
they are defined on stochastic basis B = (Ω, F ,Ft, P ), usually without mentioning.

Definition 2.1. Let Xn be an H-valued semimartingale. Denote by H n
t (H,G)

the set of elementary predictable processes of the form

Hn
s = Y n

0 +
k−1∑

i=1

Y n
ti

I]]ti,ti+1]](s)
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such that 0 = t0 < t1 < · · · < tk = t and Y n
ti

is Fn
ti

measurable, L (H,G)-valued random
variable such that ‖Y n

ti
‖ ≤ 1. A sequence of {Xn}n≥1 is called satisfying the condition

(UT) if, for any fixed t > 0 and real separable Hilbert space G and for every ε > 0, there
exists an N > 0 such that

sup
n

sup
Hn∈H n

t (H,G)

Pn

(∥∥∥∥
∫ t

0

Hn
s dXn

s

∥∥∥∥ ≥ N

)
< ε. (2.1)

Remark. When H = Rk for some k ≥ 1, this is similar to Stricker’s definition.

Definition 2.2. Let X be an H-valued semimartingale. An increasing positive
regular right continuous adapted process A will be called a control process of X, if for
every L (H,G)-valued elementary predictable process H and every stopping time T ,

E

{
sup
t<T

∥∥∥∥
∫ t

0

HsdXs

∥∥∥∥
2
}
≤ E

(
AT−

∫

]0,T [

‖Hs‖2dAs

)
(2.2)

for every real separable Hilbert space G.

Theorem 2.1. Let X be an H-valued càdlàg adapted process.
(i) If X is a semimartingale, then X satisfies the condition (UT );

(ii) If
{∫ t

0
Hs · dXs,H ∈ Ht(H,R)

}
is tight for all t > 0, then X is a semimartin-

gale.

Proof. (i) Suppose that X is a semimartingale. By Theorem 23.14 of Métivier
([7]), there exists a control process A such that, for any stopping time T , (2.2) is true.
For every n ≥ 1, put Sn = inf{s > 0 : As ≥ n}, then Sn is a stopping time and Sn ↑ ∞
as n ↑ ∞. This means that, for all t > 0 and ε > 0, there exists an n0 ∈ N such that
P (Sn0 ≤ t) < ε. Hence, for all H ∈ Ht(H,G),

P

(∥∥∥∥
∫ t

0

HsdXs

∥∥∥∥ ≥ N

)
≤ 1

N2
E

[
sup

t<Sn0

∥∥∥∥
∫ t

0

HsdXs

∥∥∥∥
2
]

+ P (Sn0 ≤ t)

≤ 1
N2

E(A2
Sn0−) + ε ≤ n2

0

N2
+ ε.

This implies that X satisfies the condition (UT).
(ii) Since X is a càdlàg adapted process, we deduce that sups≤t ‖Xs‖ < ∞, a.s., ∀t >

0. Hence we may suppose E
(
sups≤t ‖Xs‖

)
< ∞ (if it is necessary, we may replace P by

a equivalent probability measure with P ). Put K =
{∫ t

0
Hs · dXs,H ∈ Ht(H,R)

}
. K

is a convex subset of L1(Ω, F , P ). The hypothesis yields ξn/n
P−→ 0 for every sequence

{ξn}n≥1 in K. Theorem 12.23 of Yan ([17]) implies that there exists a bounded random
variable Z > 0 such that E(Z) = 1 and supξ∈K E(Zξ) < ∞. Put P̂ = Z · P . We have
that P̂ and P are equivalent probability measures each other and Ê

(
sups≤t ‖Xs‖

)
=

E
(
Z · sups≤t ‖Xs‖

)
< ∞.
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For every t > 0, we will prove that the stopping process Xt
s = XsI[[0,t[[(s) +

XtI[[t,∞[[(s) is a quasimartingale under P̂ . The definition of quasimartingale can see
Definition 8.12 of He, Wang and Yan ([4]). Let τ : 0 = t0 < t1 < · · · < tk be a division
of [[0, t]] and put

Hτ
s =

k−1∑

i=0

Ê(Xti+1 |Fti)−Xti

‖Ê(Xti+1 |Fti)−Xti‖
I]]ti,ti+1]](s),

we have that Hτ ∈ Ht(H,R) and Ê
[∑k−1

i=0 ‖Ê(Xti+1 |Fti
) − Xti

‖] = Ê
∫ t

0
Hτ

s · dXs.
This implies that

Var(Xt)t =̂ sup
τ

k−1∑

i=0

Ê‖Ê(Xti+1 |Fti
)−Xti

‖+ Ê(‖Xt‖)

= sup
τ

Ê

(∫ t

0

Hτ
s · dXs

)
+ Ê(‖Xt‖)

= sup
τ

E

(
Z

∫ t

0

Hτ
s · dXs

)
+ E(Z‖Xt‖) < ∞.

This means that Xt is a quasimartingale under P̂ . Hence Xt is a semimartingale under
P . Since t > 0 is arbitrary, we have X is a semimartingale under P . ¤

Definition 2.3. Let X be an H-valued càdlàg adapted process. X is called to
satisfy the condition (C), if for any ε > 0 and N > 0, there exists m0 ≥ 1 such that, for
all m ≥ m0,

sup
H∈Ht(H,G)

P

(∣∣∣∣
∫ t

0

Hs · d(Xs −VmΠmXs)
∣∣∣∣ ≥ N

)
< ε. (2.3)

Proposition 2.1. Let X be an H-valued càdlàg adapted process and satisfy the
condition (C ). X is a semimartingale if and only if the every component of X is a real
semimartingale.

Proof. We only prove the sufficiency. Suppose that every component of X is a
semimartingale. For every H ∈ Ht(H,R) and N > 0, we have

P

(∣∣∣∣
∫ t

0

Hs · dXs

∣∣∣∣ ≥ 2N

)

≤ P

(∣∣∣∣
∫ t

0

Hs · d(Xs −VmΠmXs)
∣∣∣∣ ≥ N

)
+ P

(∣∣∣∣
∫ t

0

ΠmHs · d(ΠmXs)
∣∣∣∣ ≥ N

)
.

Since ΠmX is a Rm-valued semimartingale, we have that
{∫ t

0
Hs · dXs,H ∈ H (H,R)

}
is tight by the condition (C) and Theorem 12.24 of Yan ([17]). Theorem 2.1 implies that
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X is a semimartingale. ¤

Proposition 2.2. Let {Xn}n≥1 be a sequence of H-valued semimartin-
gales. {Xn}n≥1 satisfies the condition (UT ) if and only if

{
sups≤t

∥∥∫ s

0
Hn

u dXn
u

∥∥ ,

Hn ∈ H n
t (H,G), n ≥ 1

}
is tight for every real separable Hilbert space G.

Proof. We only prove the necessity. Suppose that {Xn}n≥1 satisfies the condition
(UT). For any ε > 0, there exists an N > 0 such that, for every real separable Hilbert
space G, (2.1) is true. For any fixed t > 0, n ∈ N , real separable Hilbert space G and
Hn ∈ H n

t (H,G), put Tn = inf
{
s > 0 :

∥∥∫ s

0
Hn

u dXn
u

∥∥ ≥ N
} ∧ t, then Tn is a stopping

time and

Pn

(
sup
s≤t

∥∥∥∥
∫ s

0

Hn
u dXn

u

∥∥∥∥ ≥ N

)
≤ Pn

(∥∥∥∥
∫ t∧T n

0

Hn
s dXn

s

∥∥∥∥ ≥ N

)
. (2.4)

Choose a sequence of stopping times {Tn,p}p≥1 such that Tn,p takes its values in finite

subset of {Tn(ω), ω ∈ Ωn} and Tn,p ↑ Tn as p →∞. Hence we have
∫ t∧T n,p

0
Hn

s dXn
s

P n

−→∫ t∧T n

0
Hn

s dXn
s . From HnI]]0,T n,p]] ∈ H n

t (H,G) and Pn
(∥∥∫ t

0
Hn

s I]]0,T n,p]](s)dXn
s

∥∥ ≥ N
)

< ε, we have, by limit theorem,

Pn

(∥∥∥∥
∫ t

0

Hn
s dXn

s

∥∥∥∥ ≥ N

)
≤ ε. (2.5)

This yields that
{∫ t

0
Hs · dXs,H ∈ Ht(H,G)

}
is tight by (2.4) and (2.5). ¤

Let Xn be an H-valued semimartingale. So is Xn − VmΠmXn for every m ∈
N . Theorem 23.14 of Métivier ([7]) implies that there exists a control process An,m of
Xn −VmΠmXn for all m ∈ N .

Theorem 2.2. For every t > 0, suppose that there exists m0 ∈ N such that

sup
n

En(An,m
t )2 < ∞, ∀m ≥ m0. (2.6)

We then have that {Xn}n≥1 satisfies the condition (UT ) if and only if {Xn,k}n≥1 satisfies
the condition (UT ) for all k ≥ 1, where Xn,k is the kth component of Xn.

Proof. The necessity is trivial. We only prove the sufficiency. For any t > 0 and
Hn ∈ H n

t (H,G),

Pn

(∥∥∥∥
∫ t

0

Hn
s dXn

s

∥∥∥∥ ≥ 2N

)

≤ Pn

(∥∥∥∥
∫ t

0

Hn
s d(VmΠmXn

s )
∥∥∥∥ ≥ N

)
+

1
N2

En

(
An,m

t

∫ t

0

‖Hn
s ‖2dAn,m

s

)

≤ Pn

(∥∥∥∥
∫ t

0

Hn
s d(VmΠmXn

s )
∥∥∥∥ ≥ N

)
+

1
N2

En(An,m
t )2
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and the hypothesis imply that (2.1) is true for sufficient large N . Hence {Xn}n≥1 satisfies
the condition (UT). ¤

Theorem 2.3. Let K be a Polish space, and Kn and Xn be a K-valued càdlàg
adapted process and an H-valued semimartingale, respectively. If (Kn, Xn) L−→ (K,X)
and {Xn}n≥1 satisfies the condition (UT ), then X is a semimartingale with respect to
the natural filtration of (K, X) under X satisfying the condition (C ).

Proof. By Theorem 2.1 of Jakubowski and Mémin and Pages ([5]), we have that
every component of X is a real semimartingale with respect to the natural filtration
of (K, X). Since X satisfies the condition (C), Proposition 2.1 implies that X is a
semimartingale. ¤

3. Convergence of stochastic integrals under UT.

Theorem 3.1. Let Xn and Kn be an H-valued semimartingale and a càdlàg
adapted process, respectively; and let {Xn}n≥1 satisfy the condition (UT ). If (Kn, Xn)
L−→ (K, X) and X satisfies the condition (C ), we then have

∫ ·
0
Kn

s− ·dXn
s

L−→ ∫ ·
0
Ks− ·dXs

and (Kn, Xn,
∫ ·
0
Kn

s− · dXn
s ) L−→ (K, X,

∫ ·
0
Ks− · dXs).

Proof. Theorem 2.3 yields that X is a semimartingale with respect to the natural
filtration of (K,X). Hence the stochastic integral

∫ ·
0
Ks− · dXs may be defined. This

theorem can be proved with the same method as the proof of Theorem 2.6 in [5]. We
omit it. ¤

Corollary 3.1. Let Xn be an H-valued semimartingale and let {Xn}n≥1 satisfy

the condition (UT ). If Xn L−→ X and X satisfies the condition (C ), we have [Xn] L−→
[X].

Proof. Theorem 26.11 of Métivier ([7]) implies that

[Xn]t = ‖Xn
t ‖2 − ‖Xn

0 ‖2 − 2
∫

]0,t]

Xn
s− · dXn

s , ∀t > 0.

By continuous theorem and Theorem 3.1, we deduce [Xn] L−→ [X]. ¤

Theorem 3.2. Let Xn and Kn be the same processes as in Theorem 3.1. We
write the semimartingale decomposition of Xn as Xn = Mn +An, where Mn (resp. An)
is the martingale (resp. finite variation) part of Xn. Suppose that

(i) {Var(An)}n≥1 is tight, where Var(An) denotes the total variation process of An;
(ii) for every t > 0, supn En

(
sups≤t ‖∆Mn

s ‖
)

< ∞.

If (Kn, Xn) L−→ (K, X) and X satisfies the condition (C ), then X is a semimartingale,
{Xn}n≥1 satisfies the condition (UT ) and

∫ ·
0
Kn

s− · dXn
s

L−→ ∫ ·
0
Ks− · dXs.

Proof. It is the same as the proof of Theorem 3 of Duffie and Protter in [1]. We
omit it. ¤
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Lemma 3.1. Let αn and α be L (H,G)-valued càdlàg functions on R+. If αn → α

in the Skorohod topology, then (αn, α∗n) → (α, α∗) in the Skorohod topology, where α∗(t)
is the conjugate operator of α(t).

Proof. It is easy to prove by ‖αn(t)− α(t)‖ = ‖α∗n(t)− α∗(t)‖. ¤

Theorem 3.3. Let an H-valued semimartingale Xn have a decomposition Xn =
Mn + An and let Kn be an L (H,G)-valued càdlàg adapted process. Suppose that

(i) {〈Mn〉}n≥1 and {Var(An)}n≥1 are C-tight;
(ii) for every ε > 0, δ > 0 and N > 0, there exists an n0 ∈ N such that, for

n, m ≥ n0,

Pn

(
sup
t≤N

∥∥∥∥
∫ t

0

Kn
s−dMn

s −VmΠm

∫ t

0

Kn
s−dMn

s

∥∥∥∥ ≥ δ

)
< ε, (3.1)

Pn

(
sup
t≤N

∥∥∥∥
∫ t

0

Kn
s−dAn

s −VmΠm

∫ t

0

Kn
s−dAn

s

∥∥∥∥ ≥ δ

)
< ε. (3.2)

If (Kn, Xn) L−→ (K, X) and X satisfies the condition (C ), then
∫ t

0
Kn

s−dXn
s

L−→∫ t

0
Ks−dXs and

(
Kn, Xn,

∫ t

0
Kn

s−dXn
s

) L−→ (
K, X,

∫ t

0
Ks−dXs

)
.

Proof. Let H1 be any fixed real separable Hilbert space. For any Kn ∈
H n

t (H,H1), L > 0 and η > 0, Lenglart’s inequality implies

Pn

(∥∥∥∥
∫ t

0

Kn
s−dXn

s

∥∥∥∥ ≥ 2L

)

≤ Pn

(∥∥∥∥
∫ t

0

Kn
s−dMn

s

∥∥∥∥ ≥ L

)
+ Pn

(∥∥∥∥
∫ t

0

Kn
s−dAn

s

∥∥∥∥ ≥ L

)

≤ η

L2
+ Pn (〈Mn〉t ≥ η) + Pn (Var(An)t ≥ L) . (3.3)

First let η and then L be sufficient large in (3.3), we can deduce that {Xn}n≥1 satisfies
the condition (UT). Since X satisfies the condition (C), we get that X is a semimartingale
by Theorem 2.3.

Kn L−→ K implies (Kn, (Kn)∗) L−→ (K, K∗) by Lemma 3.1. Moreover, for every
g ∈ G, (Kn, (Kn)∗, (Kn)∗(g), Xn) L−→ (K, K∗,K∗(g), X) and

(∫ ·
0
Kn

s−dXn
s

) · g =∫ ·
0
(Kn

s−)∗(g) ·dXn
s imply

∫ ·
0
(Kn

s−)∗(g) ·dXn
s

L−→ ∫ ·
0
K∗

s−(g) ·dXs by Theorem 3.1. Hence,

we have
(∫ ·

0
Kn

s−dXn
s

) · g L−→ (∫ ·
0
Ks−dXs

) · g. This means that
∫ ·
0
Ks−dXs is the only

possible limit point of the sequence
{∫ ·

0
Kn

s−dXn
s

}
n≥1

in the Skorohod topology. There-
fore it remains to prove that the sequence

{∫ ·
0
Kn

s−dXn
s

}
n≥1

is tight.

(a) For any ε > 0 and N > 0, Kn L−→ K yields that there exist L > 0 and n0 ∈ N

such that Pn
(
sups≤N ‖Kn

s ‖ ≥ L
)

< ε for n ≥ n0. Put Tn,L = inf{t > 0 : ‖Kn
t ‖ ≥ L}∧N .

Then Tn,L is a stopping time and Pn(Tn,L ≤ N) < ε. For C > 0 and η > 0, Lenglart’s
inequality implies
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Pn

(
sup
t≤N

∥∥∥∥
∫ t

0

Kn
s−dMn

s

∥∥∥∥ ≥ C

)

≤ η

C2
+ Pn

(∫ N

0

‖Kn
s−‖2d〈Mn〉s ≥ η, Tn,L ≥ N

)
+ Pn(Tn,L ≤ N).

We have

Pn

(
sup
t≤N

∥∥∥∥
∫ t

0

Kn
s−dMn

s

∥∥∥∥ ≥ C

)
≤ η

C2
+ Pn

(
〈Mn〉N ≥ η

L2

)
+ ε, ∀n ≥ n0. (3.4)

First let η and then C be sufficient large in (3.4), we know that
{∫ ·

0
Kn

s−dXn
s

}
n≥1

satisfies
Theorem 3.3 (i) of Xie ([14]).

(b) Let Sn and Tn be stopping times with Sn ≤ Tn ≤ N . Put Nn
t =∫ t

t∧Sn
Kn

s−dMn
s . Then Nn is a G-valued locally square integrable martingale and(∫ t

t∧Sn
‖Kn

s−‖2d〈Mn〉s
)
t≥0

strongly majorizes ‖Nn‖2. We then have, for any ε1 > 0
and δ > 0,

Pn

(∥∥∥∥
∫

]Sn,Tn]

Kn
s−dMn

s

∥∥∥∥ ≥ ε1

)
≤ δ

ε21
+ Pn

(
〈Mn〉Tn

− 〈Mn〉Sn
≥ δ

L2

)
+ ε, ∀n ≥ n0.

(3.5)

Since {〈Mn〉}n≥1 is C-tight, there exist n1 ≥ n0 and η0 > 0 such that

sup
n≥n1

Pn

(
wN (〈Mn〉, η0) ≥ δ

L2

)
< ε, (3.6)

where wN (〈Mn〉, η0) = sup
{
supt≤s1,s2≤t+η0

[〈Mn〉s2 − 〈Mn〉s1 ] : 0 ≤ t ≤ t + η0 ≤ N
}
.

If the above Sn and Tn also satisfy Tn ≤ Sn + η0, we have 〈Mn〉Tn
− 〈Mn〉Sn

≤
wN (〈Mn〉, η0). Hence, (3.5) and (3.6) yield

sup
n≥n1

sup
Tn≤N,Sn≤Tn≤Sn+η0

Pn

(∥∥∥∥
∫

]Sn,Tn]

Kn
s−dMn

s

∥∥∥∥ ≥ ε1

)
≤ δ

ε21
+ 2ε. (3.7)

By Aldous’ Theorem (Theorem 2.2.2 in [6]), we have that
{∫ ·

0
Kn

s−dMn
s

}
n≥1

satisfies
Theorem 3.3 (ii) of Xie in [14] by (3.7).

By (a), (b) and the hypothesis (3.1), we deduce that
{∫ ·

0
Kn

s−dMn
s

}
n≥1

satisfies the
conditions of Theorem 3.3 of Xie ([14]). Hence

{∫ ·
0
Kn

s−dMn
s

}
n≥1

is tight.

(c) supt≤N

∥∥∫ t

0
Kn

s−dAn
s

∥∥≤∫ N∧T n,L

0
‖Kn

s−‖d(Var(An)s) and
∫ ·
0
‖Kn

s−‖d(Var(An)s) be-
ing strongly majoration

∫ ·
0
Kn

s−dAn
s yield wN

(∫ ·
0
Kn

s−dAn
s , θ

)≤wN

(∫ ·
0
‖Kn

s−‖d(Var(An)s),
θ
)
. As the proof of (a) and (b) we can deduce that

{∫ ·
0
Kn

s−dAn
s

}
n≥1

is C-tight by (3.2).
Since

∫ ·
0
Kn

s−dXn
s =

∫ ·
0
Kn

s−dMn
s +

∫ ·
0
Kn

s−dAn
s , we obtain that

{∫ ·
0
Kn

s−dXn
s

}
n≥1

is
tight by Lemma 3.5 of Xie ([14]). ¤
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Theorem 3.4. Let An be an H-valued finite variation adapted process and let
Kn be an L (H,G)-valued càdlàg adapted process. Suppose that {Var(An)}n≥1 is tight,

(Kn, An) L−→ (K, A) and that A satisfies the condition (C ). We then have the followings:
(i) A is an H-valued finite variation adapted process;
(ii) Suppose that {Kn}n≥1 and {An}n≥1 satisfy (3.2). We then have

∫ ·
0
Kn

s−dAn
s

L−→∫ ·
0
Ks−dAs;

(iii) Choose G = R. Put [Kn]a =
∑

s≤·∆Kn
s I{‖∆Kn

s ‖>a}. Suppose {[Kn]a}n≥1

satisfy the condition (UT ) for all a > 0. Then we have

(
Kn, An,

∑

s≤·
(∆Kn

s ) · (∆An
s )

)
L−→

(
K, A,

∑

s≤·
(∆Ks) · (∆As)

)
; (3.8)

(iv) Let ‖∆Kn‖ ≤ C for some constant C > 0. Let {[(Kn)∗(g)]a}n≥1 meet the
condition (UT ) for all g ∈ G and a > 0. Suppose that, for all ε > 0, δ > 0 and N > 0,
there is an n0 ∈ N such that

Pn

(
sup
t≤N

∥∥∥∥
∫ t

0

Kn
s dAn

s −VmΠm

∫ t

0

Kn
s dAn

s

∥∥∥∥ ≥ δ

)
< ε, ∀m, n ≥ n0. (3.9)

We then have
∫ ·
0
Kn

s dAn
s

L−→ ∫ ·
0
KsdAs.

Proof. (i) By the hypothesis we deduce that {An}n≥1 satisfies the condition
(UT). Theorem 2.3 implies that A is a semimartingale. Moreover, Proposition 2.6(a) of
Jakubowshi and Mémin and Pages ([5]) implies that every component of A is a real finite
variation adapted process. This yields that the martingale part of A is zero. Hence A is
a finite variation adapted process.

(ii) This is the corollary of Theorem 3.3.
(iii) Choose a > 0 such that ∆K 6= a, P −a.s.. Hence (Kn, An) L−→ (K,A) implies

([Kn]a, A) L−→ ([K]a, A). Since {[Kn]a}n≥1 satisfies the condition (UT), by Theorem 3.1

we have
∫ ·
0
An

s− · d[Kn]as
L−→ ∫ ·

0
As− · d[K]as . By the hypotheses, it is easy to prove

(
[Kn]a, An,

∫ ·

0

[Kn]as− · dAn
s ,

∫ ·

0

An
s− · d[Kn]as

)

L−→
(

[K]a, A,

∫ ·

0

[K]as− · dAs,

∫ ·

0

As− · d[K]as

)
.

This yields that

[Kn]a ·An −
∫ ·

0

[Kn]as− · dAn
s −

∫ ·

0

An
s− · d[Kn]as

L−→ [K]a ·A−
∫ ·

0

[K]as− · dAs −
∫ ·

0

As− · d[K]as . (3.10)
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Theorem 26.11 of Métivier ([7]) and (3.10) imply that

∑

s≤·
(∆[Kn]as) · (∆An

s ) L−→
∑

s≤·
(∆[K]as) · (∆As). (3.11)

For any N > 0, since

sup
t≤N

∥∥∥∥∥∥
∑

s≤t

(∆Kn
s ) · (∆An

s )−
∑

s≤t

(∆[Kn]as) · (∆An
s )

∥∥∥∥∥∥
≤ a ·Var(An)N (3.12)

and

sup
t≤N

∥∥∥∥∥∥
∑

s≤t

(∆Ks) · (∆As)−
∑

s≤t

(∆[K]as) · (∆As)

∥∥∥∥∥∥
≤ a ·Var(A)N , (3.13)

we deduce that (3.8) is true by (3.11), (3.12) and (3.13).
(iv) Since ‖∆Kn‖ ≤ C, it is easy to prove that (3.2) is true from (3.9). Hence,

Theorem 3.3 implies that

(
Kn, An,

∫ ·

0

Kn
s−dAn

s

)
L−→

(
K, A,

∫ ·

0

Ks−dAs

)
. (3.14)

By (iii) and (3.14) we can deduce, for all g ∈ G,

( ∫ ·

0

(Kn
s−)∗(g) · dAn

s ,
∑

s≤·
(∆(Kn

s )∗(g)) · (∆An
s )

)

L−→
( ∫ ·

0

K∗
s−(g) · dAs,

∑

s≤·
(∆(Ks)∗(g)) · (∆As)

)
.

This implies that, for all g ∈ G,

∫ ·

0

(Kn
s−)∗(g) · dAn

s +
∑

s≤·
(∆(Kn

s )∗(g)) · (∆An
s )

L−→
∫ ·

0

K∗
s−(g) · dAs +

∑

s≤·
(∆(Ks)∗(g)) · (∆As).

That is,

(∫ ·

0

Kn
s dAn

s

)
· g L−→

(∫ ·

0

KsdAs

)
· g, ∀g ∈ G. (3.15)
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(3.15) means that
∫ ·
0
KsdAs is the only possible limit point of the sequence{∫ ·

0
Kn

s dAn
s

}
n≥1

in the Skorohod topology. As the proof (c) in Theorem 3.3 we can
prove that the sequence

{∫ ·
0
Kn

s dAn
s

}
n≥1

is tight. ¤

Corollary 3.2. Let Xn satisfy the conditions of Theorem 3.3, Xn L−→ X and X

meet the condition (C ).
(i) We replace Kn by Xn and suppose that (3.1) and (3.2) hold for {Xn}n≥1,

{Mn}n≥1 and {An}n≥1. We then have (Xn, [[Xn]]) L−→ (X, [[X]]);
(ii) Let Zn be an L (H⊗̂2H,G)-valued càdlàg adapted process, ‖∆Zn‖ ≤ C for

some constant C > 0 and (Zn, Xn) L−→ (Z,X). Suppose that, for above ε > 0, η > 0
and N > 0, there exists an n0 ∈ N such that

Pn

(
sup
t≤N

∥∥∥∥
∫ t

0

Zn
s−d[[Xn]]s −Vm×mΠm×m

∫ t

0

Zn
s−d[[Xn]]s

∥∥∥∥ ≥ δ

)
< ε, ∀n,m ≥ n0,

(3.16)
under the hypothesis (i) we have

(
Xn, [[Xn]],

∫ ·

0

Zn
s d[[Xn]]s

)
L−→

(
X, [[X]],

∫ ·

0

Zsd[[X]]s

)
.

Proof. (i) By Theorem 3.3 and the hypotheses for Xn, Mn and An we have

(
Xn,

∫ ·

0

Xn
s− ⊗ dXn

s

)
L−→

(
X,

∫ ·

0

Xs− ⊗ dXs

)
. (3.17)

Since ‖x ⊗ y − Vm×mΠm×mx ⊗ y‖1 = ‖y ⊗ x − Vm×mΠm×my ⊗ x‖1, the hypotheses
imply that

{∫ ·
0
dMn

s ⊗Xn
s−

}
n≥1

and
{∫ ·

0
dAn

s ⊗Xn
s−

}
n≥1

satisfy Theorem 3.3 (iii) of
Xie in [14]. As the proof of Theorem 3.3 we may prove that

{∫ ·
0
dMn

s ⊗Xn
s−

}
n≥1

and{∫ ·
0
dAn

s ⊗Xn
s−

}
n≥1

are tight by Theorem 3.3 of Xie in [14] and that
∫ ·
0
dXs ⊗ Xs− is

the only possible limit point of the sequence
{∫ ·

0
dXn

s ⊗Xn
s−

}
n≥1

. It is easy to prove

(
Xn,

∫ ·

0

dXn
s ⊗Xn

s−

)
L−→

(
X,

∫ ·

0

dXs ⊗Xs−

)
. (3.18)

By Theorem 26.11 of Métivier ([7]), the continuity of tensor product, (3.17) and (3.18),
we deduce that

[[Xn]] = (Xn)⊗2 − (Xn
0 )⊗2 −

∫ ·

0

Xn
s− ⊗ dXn

s −
∫ ·

0

dXn
s ⊗Xn

s−

L−→ X⊗2 −X⊗2
0 −

∫ ·

0

Xs− ⊗ dXs −
∫ ·

0

dXs ⊗Xs− = [[X]].

(ii) This is the corollary of (i) and Theorem 3.4(iv). ¤
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Theorem 3.5. Let Xn and Kn be an H-valued semimartingale and an L (H,G)-
valued càdlàg adapted process, respectively. Kn is a predictable process with respect to the
natural filtration of (Kn, Xn) with ‖∆Kn‖ ≤ C for some C > 0, and {[(Kn)∗(g)]a}n≥1

satisfies the condition (UT ) for all g ∈ G and a > 0. [(Kn)∗(g)]a and [K∗(g)]a are
defined as Theorem 3.4(iii). Suppose that Xn satisfies the conditions in Theorem 3.3 and
for every ε > 0, δ > 0 and N > 0, there exists an n0 ∈ N such that, for n,m ≥ n0,

Pn

(
sup
t≤N

∥∥∥∥
∫ t

0

∆Kn
s dMn

s −VmΠm

∫ t

0

∆Kn
s dMn

s

∥∥∥∥ ≥ δ

)
< ε, (3.19)

Pn

(
sup
t≤N

∥∥∥∥
∫ t

0

∆Kn
s dAn

s −VmΠm

∫ t

0

∆Kn
s dAn

s

∥∥∥∥ ≥ δ

)
< ε. (3.20)

If (Kn, Xn) L−→ (K, X) and X is a semimartingale, then
∫ ·
0
Kn

s dXn
s

L−→ ∫ ·
0
KsdXs.

Proof. By the hypotheses, Theorem 3.3 implies that
∫ ·
0
Kn

s−dXn
s

L−→ ∫ ·
0
Ks−dXs.

Hence we only prove
∫ ·
0
∆Kn

s dXn
s

L−→ ∫ ·
0
∆KsdXs.

For every fixed a > 0 such that ∆K 6= a, P − a.s.. [(Kn)∗(g)]a and [K∗(g)]a are
H-valued finite variation processes. We deduce

((Kn)∗, [(Kn)∗(g)]a , Xn)−→ (K∗, [K∗(g)]a , X) , ∀g ∈ G

by the Lemma 3.1 and the hypotheses. As the proof of Theorem 3.4(iii), we have

(
[(Kn)∗(g)]a , Xn,

∫ ·

0

[(Kn)∗(g)]as− · dXn
s ,

∫ ·

0

Xn
s− · d [(Kn)∗(g)]as

)

L−→
(

[K∗(g)]a , X,

∫ ·

0

[K∗(g)]as− · dXs,

∫ ·

0

Xs− · d [K∗(g)]as

)
.

This implies that

[[(Kn)∗(g)]a , Xn] = [(Kn)∗(g)]a ·Xn −
∫ ·

0

[(Kn)∗(g)]as− · dXn
s −

∫ ·

0

Xn
s− · d [(Kn)∗(g)]as

L−→ [K∗(g)]a ·X −
∫ ·

0

[K∗(g)]as− · dXs −
∫ ·

0

Xs− · d [K∗(g)]as

= [[K∗(g)]a , X] . (3.21)

Since [(Kn)∗(g)]a and [K∗(g)]a are H-valued predictable processes, by Yœurp’s lemma
and (3.21) we deduce

∫ ·

0

∆[(Kn)∗(g)]as · dXn
s

L−→
∫ ·

0

∆[K∗(g)]as · dXs. (3.22)
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For every N > 0, since

sup
t≤N

∣∣∣∣
∫ t

0

∆(Kn
s )∗(g) · dXn

s −
∫ t

0

∆[(Kn)∗(g)]as · dXn
s

∣∣∣∣

≤ sup
t≤N

∣∣∣∣
∫ t

0

∆(Kn
s )∗(g)I{‖∆(Kn

s )∗(g)‖≤a} · dXn
s

∣∣∣∣

and {Xn}n≥1 satisfies the condition (UT), we have the following: for all ε > 0, there
exists a δ0 > 0 such that

sup
n

Pn

(
sup
t≤N

∣∣∣∣
∫ t

0

∆(Kn
s )∗(g)I{‖∆(Kn

s )∗(g)‖≤a} · dXn
s

∣∣∣∣ ≥ ε

)
< ε0, ∀a < δ0. (3.23)

For (K∗(g), X), Theorem 2.1 implies that, for above ε > 0, there exists a δ1 > 0 (δ1 < δ0)
such that

P

(
sup
t≤N

∣∣∣∣
∫ t

0

∆K∗
s (g)I{‖∆K∗

s (g)‖≤a} · dXs

∣∣∣∣ ≥ ε

)
< ε1, ∀a < δ0. (3.24)

(3.22)–(3.24) imply that
∫ ·
0
∆(Kn

s )∗(g) · dXn
s

L−→ ∫ ·
0
∆K∗

s (g) · dXs, that is,

(∫ ·

0

(∆Kn
s )dXn

s

)
· g L−→

(∫ ·

0

(∆Ks)dXs

)
· g. (3.25)

For g ∈ G being arbitrary, (3.25) means that
∫ ·
0
(∆Ks)dXs is the only possible limit

point of sequence
{∫ ·

0
(∆Kn

s )dXn
s

}
n≥1

. As the proof of Theorem 3.3, we can prove that{∫ ·
0
(∆Kn

s )dXn
s

}
n≥1

is tight by the hypotheses. ¤

Corollary 3.3. Let Kn and Xn satisfy the conditions of Theorem 3.5. We have
that

{∫ ·
0
Kn

s dXn
s

}
n≥1

satisfies the condition (UT ).

Proof. It is easy to prove by Lenglart’s inequality. ¤

4. Stability of strong solutions of stochastic differential equations.

Theorem 4.1. Let Hn be a G-valued càdlàg adapted process and let Y n be an
H-valued special semimartingale with the canonical decomposition Y n = Mn + An and
νn be the compensator of the random measure µn associated to the jumps of Y n. Assume
that Xn and X are the strong solutions of (SDE) (1.1) and (1.2), respectively. Suppose
that the following conditions are fulfilled:

(i) {〈Mn〉}n≥1 and {Var(An)}n≥1 are tight;
(ii) {‖x‖ ∨ ‖x‖2.νn}n≥1 is tight;
(iii) For all K > 0 and ε > 0, there exists an m0 ∈ N such that, for all m ≥ m0,

sup‖y‖≤K ‖(I −VmΠm)f(x)y‖ < ε, where I is the identical operator on H.
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If (Hn, Y n) L−→ (H, Y ), then Xn L−→ X and (Hn, Y n, Xn) L−→ (H, Y, X).

Proof. Let h : H → H be a truncation function and satisfy h(x) = x for ‖x‖ ≤ 1
and h(x) = 0 for x > 2. Put

Y̌ n(h) =
∑

s≤·
[∆Y n

s − h(∆Y n
s )], Y n(h) = Y n − Y̌ n(h).

Then Y n(h) is a special semimartingale. We denote its canonical decomposition Y n(h) =
Mn(h) + An(h). By Proposition 1.4.10 of Xie ([15]), we have

An(h) = An −
∫ ·

0

∫

H

(x− h(x))νn(ds, dx), (4.1)

〈〈Mn(h)〉〉 = 〈〈Mn〉〉+
∫ ·

0

∫

H

[
h⊗2(x)− x⊗2

]
νn(ds, dx)

−
∑

s≤·

[∫

H

h(x)νn({s} × dx)
]⊗2

+
∑

s≤·

[∫

H

xνn({s} × dx)
]⊗2

. (4.2)

Moreover, (4.1) and (4.2) imply that

Var(An(h)) ≤ Var(An) + C‖x‖.νn (4.3)

and

〈Mn(h)〉 ≤ 〈Mn〉+ C‖x‖ ∨ ‖x‖2.νn (4.4)

for some constant C > 0. Conditions (i) and (ii) imply the tightness of {〈Mn(h)〉}n≥1

and {Var(An(h))}n≥1 by (4.3) and (4.4). Since 〈Mn(h)〉 and [Mn(h)] strongly majorize
each other, the tightness of {〈Mn(h)〉}n≥1 yields the tightness of {[Mn(h)]}n≥1.

For every N > 0, put

Tn
N = inf{t > 0 : ‖Xn

t ‖+ ‖Hn
t ‖ ≥ N or ‖Xn

t−‖+ ‖Hn
t−‖ ≥ N}, (4.5)

TN = inf{t > 0 : ‖Xt‖+ ‖Ht‖ ≥ N or ‖Xt−‖+ ‖Ht−‖ ≥ N}, (4.6)

then Tn
N and TN are stopping times. If for simplicity we denote Xn,N = (Xn)T n

N , Hn,N =
(Hn)T n

N , Y n,N = (Y n)T n
N , X ,N = XTN , H ,N = HTN , Y ,N = Y TN , then Xn,N and X ,N

are the strong solutions of (SDE):

Xn,N = Hn,N +
∫ ·

0

f(Xn,N
s− )dY n,N

s

and
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X ,N = H ,N +
∫ ·

0

f(X ,N
s−)dY ,N

s .

As the proof of Theorem 1 of Slominski in [11], we can prove that {Xn,N}n≥1 satisfies
the following conditions:

(a) for all ε > 0, N > 0, there exist an n0 ∈ N and a K > 0 such that

Pn

(
sup
t≤N

‖Xn,N
t ‖ ≥ K

)
< ε, n ≥ n0, (4.7)

(b) for all ε > 0, δ > 0, N > 0, there exist an n0 ∈ N and a θ > 0 such that

Pn
(
w′N (Xn,N , θ) ≥ δ

)
< ε, n ≥ n0. (4.8)

From the hypothesis (iii) and Y n L−→ Y , by using stopping skill we can prove that, for
all ε > 0, δ > 0 and N > 0, there exists n0 ∈ N such that,

Pn

(
sup
t≤N

∥∥∥∥
∫ t

0

(I −VmΠm)f(Xn
s−)dY n

s

∥∥∥∥ ≥ δ

)
<

ε

2
, ∀m, n ≥ n0. (4.9)

Since Hn L−→ H, we have that there exists n1 > n0 such that,

Pn

(
sup
t≤N

‖Xn
t −VmΠmXn

t ‖ ≥ δ

)
< ε, ∀n, m ≥ n1. (4.10)

From (4.7) to (4.10), we have that {Xn}n≥1 satisfies the conditions of Theorem
3.3 of Xie ([14]). Hence {Xn,N}n≥1 is tight. Moreover, the hypotheses yield that{
(Xn,N ,Hn,N , Y n,N )

}
n≥1

is tight. As the proof of Theorem 1 of Slominski in [11]
we can prove this theorem by using Theorem 3.3. ¤

Remark. If ‖∆Y n‖ ≤ a for some constant a > 0, then the condition (ii) in
Theorem 4.1 may be omitted.

Corollary 4.1. Let Mn and An be an H-valued local square integrable martingale
and an H-valued finite variation process with ‖∆Mn‖ ≤ a, respectively. Where a > 0
is a constant. And let f and g be continuous L (H,G)-valued mappings and satisfy a
Lipschitz condition, i.e. there exists a constant L > 0 such that

‖f(x)− f(y)‖ ≤ L‖x− y‖, ‖g(x)− g(y)‖ ≤ L‖x− y‖.

Assume that Xn and X are the strong solutions of the following (SDE):

Xn = Hn +
∫ ·

0

f(Xn
s−)dMn

s +
∫ ·

0

g(Xn
s−)dAn

s
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X = H +
∫ ·

0

f(Xs−)dMs +
∫ ·

0

g(Xs−)dAs,

where M and A be an H-valued local square integrable martingale and an H-valued finite
variation adapted process, respectively.

If Theorem 4.1 (iii) holds for f and g and if (Hn,Mn, An) L−→ (H, M, A), then
Xn L−→ X and (Hn,Mn, An, Xn) L−→ (H, M, A, X).

Proof. For every N > 0, we define Tn
N and TN as (4.5) and (4.6). As

the proof of Corollary 1 of Slominski ([11]) and Theorem 4.1, we can prove that{
(Xn,Hn,Mn, An)T n

T

}
n≥1

is tight. Using Theorem 3.3 and Theorem 3.4, this theorem
can be proved as the proof of Corollary 1 of Slominski ([11]). ¤

Definition 4.1. Let f and fn (n ≥ 1) be L (H,G)-valued functions on R+×G.
We say that {f, fn, n ≥ 1} satisfies the condition (L) if the three conditions below are
fulfilled:

(i) for all t > 0, f(t, ·) and fn(t, ·) satisfy a Lipschitz condition;
(ii) for all y ∈ G, f(·, y) and fn(·, y) are càg functions on R+;

(iii) for every sequence {α, αn, n ≥ 1} ⊂ D(G), if αn → α in the Skorohod topology,
then (αn, βn) → (α, β) in the Skorohod topology on D(G × L (H,G)), where β(t) =
f(t+, α(t)), βn(t) = fn(t+, αn(t)), D(E) is the space of all càdlàg function α : R+ → E

with the Skorohod topology, E is a Polish space.

Corollary 4.2. Let {f, fn, n ≥ 1} satisfy the condition (L). Assume that Xn

and X are the strong solutions of the following (SED):

Xn = Hn +
∫ ·

0

fn(s,Xn
s−)dY n

s ,

X = H +
∫ ·

0

f(s,Xs−)dYs.

Suppose that the conditions (i) and (ii) of Theorem 4.1 are fulfilled and that, for all K > 0
and ε > 0, there exists an n0 ∈ N such that sup‖y‖≤K ‖(I − VmΠm)fn(x)y‖ < ε for all

n,m ≥ n0. If (Hn, Y n) L−→ (H, Y ), then Xn L−→ X and (Hn, Y n, Xn) L−→ (H, Y, X).

Proof. As the Proof of Theorem 4.1 and Corollary 3 of Slominski ([11]), we
can prove that {Xn,N}n≥1 satisfies the conditions of Theorem 3.3 of Xie ([14]). This
implies that

{
Xn,N ,Hn,N , Y n,N

}
n≥1

is tight by the hypotheses. Using Theorem 3.3,
this theorem can be proved as that in Corollary 3 of Slominski ([11]). ¤
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