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Correlation functions of the shifted Schur measure
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Abstract. The shifted Schur measure introduced in [TW2] is a measure on
the set of all strict partitions, which is defined by Schur Q-functions. The main
aim of this paper is to calculate the correlation function of this measure, which is
given by a pfaffian. As an application, we prove that a limit distribution of parts of
partitions with respect to a shifted version of the Plancherel measure for symmetric
groups is identical with the corresponding distribution of the original Plancherel
measure. In particular, we obtain a limit distribution of the length of the longest
ascent pair for a random permutation. Further we give expressions of the mean value
and the variance of the size of partitions with respect to the measure defined by
Hall-Littlewood functions.

1. Introduction.

Let π be a permutation in the symmetric group SN and `(π) the length of the
longest increasing subsequence in π. Concerning a limit distribution of `(π) with respect
to the uniform measure Puniform,N on SN , it is proved in [BDJ] that

lim
N→∞

Puniform,N

(
`(π)− 2

√
N

N1/6
< s

)
= F2(s), (1.1)

where F2(s) is the Tracy-Widom distribution. The Tracy-Widom distribution is defined
by the Fredholm determinant for the Airy kernel. Namely, let Ai(x) be the Airy function

Ai(x) =
1

2π
√−1

∫ ∞eπ
√−1/3

∞e−π
√−1/3

ez3/3−xzdz (1.2)

and KAiry(x, y) the Airy kernel

KAiry(x, y) =
∫ ∞

0

Ai(x + z)Ai(z + y)dz. (1.3)

Then the Tracy-Widom distribution F2(s) is defined by
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F2(s) = det(I −KAiry)|L2([s,∞)) (1.4)

= 1 +
∞∑

k=1

(−1)k

k!

∫

[s,∞)k

det(KAiry(xi, xj))1≤i,j≤kdx1 . . .dxk

and gives a limit distribution of the scaled largest eigenvalue of a Hermitian matrix from
the Gaussian Unitary Ensemble (GUE), see [TW1].

As we see below, the Plancherel measure for partitions is related to the distribution
of the length `(π). Let fλ be the number of standard tableaux of shape λ. The Plancherel
measure assigns to each λ ` N the probability

PPlan,N ({λ}) =
(fλ)2

N !
. (1.5)

Then it follows from the Robinson-Schensted correspondence that

Puniform,N ({π ∈ SN |`(π) = h}) = PPlan,N ({λ ∈ PN |λ1 = h}), (1.6)

where PN is the set of all partitions of N (see e.g. [S]). Hence the equation (1.1) also
describes a limit distribution of λ1 with respect to Plancherel measures. This result has
been extended in [BOO], [J3], [O1] to the other rows λj ’s in a general position of a
partition. The key of the proof in [BOO] is a calculation of correlation functions of
the poissonization of the Plancherel measures. We can see the other asymptotics with
respect to the Plancherel measure in e.g. [Ho].

On the other hand, the Schur measure introduced in [O2] is a measure which assigns
to each partition the product of two Schur functions. Okounkov [O2] calculated the
correlation function of the Schur measure by using the infinite wedge. The correlation
function of the poissonized Plancherel measure is obtained as a specialization of the one
for the Schur measure.

The main aim of this paper is to calculate the correlation function of the shifted
Schur measure (see Theorem 3.1). The shifted Schur measure, introduced in [TW2], is a
measure on the set of all strict partitions, which is defined by Schur Q-functions instead
of Schur functions. The correlation function is expressed as a pfaffian and is actually
calculated by operators on the exterior algebra in place of the infinite wedge in [O2].
Further, as an application, we obtain a shifted version of the corresponding result for a
limit distribution of λj ’s in [BOO], [J3], [O1] (see Theorem 4.1). In particular, we find
that a limit distribution of the length of the longest ascent pair for a random permutation
is given by the Tracy-Widom distribution (see Corollary 4.2). Since the proof is similar
to the one in [BOO], we only discuss its main point.

In the final section, we study about a measure defined by Hall-Littlewood functions.
The measure is considered as a natural extension of the Schur measure and the shifted
Schur measure. We obtain expressions of the mean value E(|λ|) and the variance Var(|λ|)
of the size |λ| with respect to this measure explicitly. Actually, each value is written as
a sum of the product of certain power-sum functions (see Theorem 5.1). This expression
of E(|λ|) naturally leads us a similar study of E(λ1). By observing various examples, in
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the end of the section, we remark that there is a certain common property of expressions
of E(λ1) among these examples.

2. Shifted Schur measures.

We recall the Schur Q-function and the shifted Schur measure. The following facts
are known in [Mac, III-8] and [TW2].

A non-increasing sequence λ = (λ1, λ2, . . . ) of non-negative integers is called a par-
tition of N if the size |λ| := ∑

j≥1 λj equals N . We denote the number of non-zero parts
of λ by `(λ) and we call it the length of λ. A partition λ is called strict if and only if all
parts of λ are distinct and then we write λ ² N . Let DN be the set of all strict partitions
of N and D the set of all strict partitions, i.e., D = ∪∞N=0DN .

Let X = (X1, X2, . . . ) and Y = (Y1, Y2, . . . ) be infinite many variables. The sym-
metric functions qn(X) (n ≥ 0) are defined via the generating function

Q(z) = QX(z) =
∞∏

i=1

1 + Xiz

1−Xiz
=

∞∑
n=0

qn(X)zn.

In particular, we have q0 = 1. Since

log
∞∏

i=1

1 + Xiz

1−Xiz
=

∞∑

i=1

∞∑
n=1

1− (−1)n

n
Xn

i zn =
∑

n=1,3,5,...

2
n

pn(X)zn,

where pn(X) =
∑∞

i=1 Xn
i is the power-sum function, the function Q(z) is also expressed

as

Q(z) = exp

( ∑
n=1,3,5,...

2
n

pn(X)zn

)
. (2.1)

For λ = (λ1, λ2, . . . ) ∈ D of length ≤ m, the Schur Q-function Qλ(X) is defined as
the coefficient of zλ = zλ1

1 zλ2
2 · · · zλm

m in

Q(z1, z2, . . . , zm) =
m∏

i=1

Q(zi)
∏

1≤i<j≤m

zi − zj

zi + zj
. (2.2)

For r > s ≥ 0, we define

Q(r,s) = qrqs + 2
s∑

i=1

(−1)iqr+iqs−i

and Q(r,s) = −Q(s,r) for r ≤ s. We may write λ in the form λ = (λ1, λ2, . . . , λ2n) where
λ1 > λ2 > · · · > λ2n ≥ 0. Then the 2n× 2n matrix
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Mλ = (Q(λi,λj))1≤i,j≤2n

is skew symmetric, and the Schur Q-function Qλ is also given by

Qλ = Pf(Mλ), (2.3)

where Pf stands for the pfaffian. The Schur P -function Pλ is defined by Pλ = 2−`(λ)Qλ.
The shifted Schur measure is a (formal) probability measure on D defined by

PSS({λ}) =
1

ZSS
Qλ(X)Pλ(Y ) (2.4)

for each λ ∈ D . Here the normalization constant ZSS is determined by

ZSS =
∑

λ∈D

Qλ(X)Pλ(Y ) =
∞∏

i,j=1

1 + XiYj

1−XiYj
,

where the second equality is the Cauchy identity for Schur Q-functions ([Mac, p. 255]).
Further, from (2.1), the constant ZSS is also expressed as

ZSS = exp

( ∑
n=1,3,5,...

2
n

pn(X)pn(Y )

)
. (2.5)

3. Correlation functions of the shifted Schur measure.

In this section, we prove the main theorem. We identify each strict partition λ =
(λ1, λ2, . . . , λ`) (λ1 > λ2 > · · · > λ` > 0) with the finite set {λ1, λ2, . . . , λ`} of positive
integers. Define the correlation function of the shifted Schur measure PSS by

ρSS(A) := PSS({λ ∈ D |λ ⊃ A}) =
1

ZSS

∑

λ⊃A

Qλ(X)Pλ(Y ) (3.1)

for a finite subset A ⊂ Z>0. The function ρSS(A) has a pfaffian expression.

Theorem 3.1. For a finite subset A = {k1, . . . , kN} ⊂ Z>0, we have

ρSS(A) = Pf(M(A)i,j)1≤i<j≤2N , (3.2)

where the entry M(A)i,j of the skew symmetric matrix M(A) is given by

M(A)i,j =





K(ki, kj), for 1 ≤ i < j ≤ N,

K(ki,−k2N−j+1), for 1 ≤ i ≤ N < j ≤ 2N,

K(−k2N−i+1,−k2N−j+1), for N < i < j ≤ 2N,
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and K(u, v) is defined as ε(u, v) times the coefficient of zuwv in the formal series

1
2
J(z;X, Y )J(w;X, Y )

z − w

z + w
.

Here J(z;X, Y ) is defined by

J(z;X, Y ) := QX(z)QY (−z−1) =
∞∏

i=1

1 + Xiz

1−Xiz

1− Yiz
−1

1 + Yiz−1
(3.3)

and ε(u, v) is given by

ε(u, v) =





1, for u, v > 0,

(−1)v, for u > 0, v < 0,

(−1)u+v, for u, v < 0.

(3.4)

Remark 3.1. The correlation function of the Schur measure is given by a deter-
minant, see Theorem 1 in [O2].

We prove Theorem 3.1 by employing the exterior algebra. Let V be a module on
Z[X1, X2, . . . , Y1, Y2, . . . ] spanned by ek (k = 1, 2, . . . ). The exterior algebra

∧
V is

spanned by vectors

vλ = eλ1 ∧ eλ2 ∧ · · · ∧ eλ`
,

where λ = (λ1, . . . , λ`) ∈ D (λ1 > · · · > λ` ≥ 1). In particular, we have v∅ = 1. We give∧
V the inner product

〈vλ,vµ〉 = δλ,µ2−`(λ).

Putting e∨k = 2ek and v∨λ = e∨λ1
∧ · · · ∧ e∨λ`

= 2`vλ, the bases (vλ)λ∈D and (v∨λ )λ∈D are
dual to each other.

We define the operator ψk (k ≥ 1) on
∧

V by

ψkvλ = ek ∧ vλ

and let ψ∗k be the adjoint operator of ψk with respect to the inner product defined above.
The operator ψ∗k is then explicitly given by

ψ∗kvλ =
`(λ)∑

i=1

(−1)i−1

2
δk,λieλ1 ∧ · · · ∧ êλi ∧ · · · ∧ eλ`

.

These operators satisfy the following commutation relations
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ψiψ
∗
j + ψ∗j ψi = δi,j

1
2 , ψiψj = −ψjψi, ψ∗i ψ∗j = −ψ∗j ψ∗i . (3.5)

Since

ψkψ∗kvλ =

{ 1
2vλ, if k ∈ λ,

0, otherwise,
(3.6)

we see that
( ∏

k∈A 2ψkψ∗k
)
vλ is equal to vλ if A ⊂ λ and to 0 otherwise.

Define the self-adjoint operator S by Svλ = (−1)`(λ)vλ for any λ ∈ D . The operators
satisfy the relations

S2 = 1, ψkS = −Sψk, ψ∗kS = −Sψ∗k. (3.7)

For each odd positive integer n, we define the operators αn and α−n by

αn := 2
∞∑

j=1

ψjψ
∗
n+j + Sψ∗n + 2

n−1
2∑

j=1

(−1)jψ∗j ψ∗n−j ,

α−n := α∗n = 2
∞∑

j=1

ψn+jψ
∗
j + ψnS + 2

n−1
2∑

j=1

(−1)jψn−jψj .

It follows from (3.5) and (3.7) that

[αn, αm] =
n

2
δn,−m (3.8)

for any odd integers n and m, where [ , ] is the commutator; [a, b] = ab− ba.
If we put

ψ̃k =





ψk, for k ≥ 1,

S

2
, for k = 0,

(−1)kψ∗−k, for k ≤ −1,

(3.9)

and ψ(z) =
∑

k∈Z zkψ̃k, then by (3.5) and (3.7) we see that

[αn, ψ(z)] = znψ(z) for any odd integer n (3.10)

and

〈ψ̃kψ̃lv∅,v∅〉 = 0 unless l = −k ≥ 0. (3.11)
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It follows from (3.11) that

〈ψ(z)ψ(w)v∅,v∅〉 =
〈(

S2

4
+

∑

k≥1

(−1)kz−kwkψ∗kψk

)
v∅,v∅

〉
(3.12)

=
1
4

+
∑

k≥1

1
2

(
−w

z

)k

=
z − w

4(z + w)
.

Note that the operator αn is expressed as αn =
∑

k∈Z(−1)kψ̃k−nψ̃−k.
Put

Γ±(X) = exp

( ∑
n=1,3,5,...

2pn(X)
n

α±n

)
.

Observe that

Γ+v∅ = v∅, (3.13)

Γ ∗± = Γ∓, (3.14)

Γ+(X)Γ−(Y ) = ZSSΓ−(Y )Γ+(X). (3.15)

The equality (3.15) is obtained from (3.8) and (2.5). By (2.1) and (3.10), we have

Γ±(X)ψ(z) = QX(z±1)ψ(z)Γ±(X). (3.16)

The Schur Q-function is given as a matrix element of Γ− as follows.

Proposition 3.2. For each λ ∈ D , we have

〈Γ−(X)v∅,v∨λ 〉 = Qλ(X). (3.17)

More generally, for λ, µ ∈ D ,

〈Γ−(X)vµ,v∨λ 〉 = Qλ/µ(X), (3.18)

where Qλ/µ(X) is a skew Schur Q-function.

Proof. Write λ in the form λ1 > λ2 > · · · > λ2n ≥ 0. Since v∨λ =
22nψ̃λ1 · · · ψ̃λ2nv∅, the left hand side in (3.17) is equal to the coefficient of zλ1

1 · · · zλ2n
2n in

the expansion of

22n〈Γ−(X)v∅, ψ(z1) · · ·ψ(z2n)v∅〉. (3.19)

It follows from (3.13), (3.14) and (3.16) that (3.19) equals
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22nQ(z1) · · ·Q(z2n)〈ψ(z1) · · ·ψ(z2n)v∅,v∅〉.

By (2.2), in order to prove (3.17) it is sufficient to show

22n〈ψ(z1) · · ·ψ(z2n)v∅,v∅〉 = Pf
(

zi − zj

zi + zj

)
=

∏

1≤i<j≤2n

zi − zj

zi + zj
.

Note the second equality is well-known (see e.g. [Mac, III-8, Ex.5]). From (3.5), (3.7)
and (3.11), we see that

22n〈ψ(z1) · · ·ψ(z2n)v∅,v∅〉

=
2n∑

k=2

(−1)k4〈ψ(z1)ψ(zk)v∅,v∅〉4n−1〈ψ(z2) · · · ψ̂(zk) · · ·ψ(z2n)v∅,v∅〉.

Therefore, by the expansion formula of a pfaffian, we obtain

22n〈ψ(z1) · · ·ψ(z2n)v∅,v∅〉 = Pf(4〈ψ(zi)ψ(zj)v∅,v∅〉).

Hence the claim follows from (3.12). The generating function of Qλ/µ in [Mac, III-8,
Ex.9] yields the second formula (3.18) by a discussion similar to the above. ¤

From (3.6), (3.14) and (3.17), the correlation function is expressed as

ρSS(A) =
1

ZSS

∑

λ⊃A

Qλ(X)Pλ(Y ) =
1

ZSS

〈
Γ+(X)

(∏

k∈A

2ψkψ∗k

)
Γ−(Y )v∅,v∅

〉
.

It follows from (3.13), (3.14) and (3.15) that

ρSS(A) =
〈(∏

k∈A

2ΨkΨ∗k

)
v∅,v∅

〉
, (3.20)

where we put

Ψk = Ad(G)ψk, Ψ∗k = Ad(G)ψ∗k, G = Γ+(X)Γ−(Y )−1. (3.21)

Using (3.16), we have

Ad(G)ψ(z) = J(z;X, Y )ψ(z), (3.22)

where J(z;X, Y ) is defined in (3.3).

Lemma 3.3. We have
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ρSS(A) = Pf(M̃(A)i,j)1≤i<j≤2N .

Here the entry of the skew symmetric matrix M̃(A) is given by

M̃(A)i,j =





2〈Ψki
Ψkj

v∅,v∅〉, for 1 ≤ i < j ≤ N,

2〈ΨkiΨ
∗
k2N−j+1

v∅,v∅〉, for 1 ≤ i ≤ N < j ≤ 2N,

2〈Ψ∗k2N−i+1
Ψ∗k2N−j+1

v∅,v∅〉, for N < i < j ≤ 2N.

(3.23)

Proof. From (3.5) and (3.21), we have ΨkΨ∗l = −Ψ∗l Ψk (k 6= l). Therefore we
obtain

〈(∏

k∈A

ΨkΨ∗k

)
v∅,v∅

〉
= 〈Ψk1Ψk2 · · ·ΨkN

Ψ∗kN
· · ·Ψ∗k1

v∅,v∅〉.

By (3.22), the operator Ψj and Ψ∗j , respectively, is expressed as a linear combination of
ψ̃n’s over Z[X1, X2, . . . , Y1, Y2, . . . ]. Hence if we abbreviate Ψ̃j = Ψkj for 1 ≤ j ≤ N and
Ψ̃j = Ψ∗k2N−j+1

for N + 1 ≤ j ≤ 2N , we have

〈Ψ1Ψ2 · · ·ΨNΨ∗N · · ·Ψ∗1 v∅,v∅〉 = Pf(〈Ψ̃iΨ̃jv∅,v∅〉)1≤i<j≤2N

by a discussion similar to the proof of Proposition 3.2. Thus, by (3.20), we obtain the
lemma. ¤

Proof of Theorem 3.1. We compute entries in the right hand side of (3.23). It
follows from (3.12) and (3.22) that

〈2Ψ(z)Ψ(w)v∅,v∅〉 =
1
2
J(z;X, Y )J(w;X, Y )

z − w

z + w
,

where Ψ(z) = Ad(G)ψ(z). Since the coefficient of zk (k ∈ Z \ {0}) in Ψ(z) is equal to Ψk

if k > 0 and to (−1)kΨ∗−k if k < 0, we can easily see the theorem from Lemma 3.3. ¤

Remark 3.2. Though Jing [Ji] obtains the expression of Schur Q-functions by
vertex operators with the commutator relation (3.8) it seems very hard to obtain the
result in Theorem 3.1 using these vertex operators.

4. Applications.

As an application of Theorem 3.1, we give a limit distribution of λj ’s with respect
to a specialization of the shifted Schur measure.

4.1. A shifted version of the Plancherel measure.
We define a measure similar to the Plancherel measure on PN by means of the

shifted Robinson-Schensted-Knuth (RSK) correspondence (see e.g. [HH]).
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A shifted shape Sh(λ) associated with a strict partition λ is obtained by replacing
the i-th row to the right by i− 1 boxes for i ≥ 1 from the Young diagram λ. A standard
shifted tableau T of the shifted shape λ ² N is an assignment of 1, 2, . . . , N to each box
in the shifted shape Sh(λ) such that entries in T are increasing across rows and down
columns. For example,

1 2 4 6
3 5 8

7

is a standard shifted tableau of shape λ = (4, 3, 1).
Let gλ be the number of standard shifted tableaux of shape λ. It is known that gλ

is explicitly given by

gλ =
|λ|!

λ1!λ2! · · ·λ`!

∏

1≤i<j≤`

λi − λj

λi + λj

(see e.g. [Mac, III-8, Ex.12]). By means of the shifted RSK we can see that

∑

λ�N

2N−`(λ)(gλ)2 = N ! (4.1)

(see [HH]).
In view of the equality (4.1), we define a probability measure on DN , that is, we

assign to each λ ∈ DN the probability

PSPl,N ({λ}) =
2N−`(λ)

N !
(gλ)2. (4.2)

This measure, which is noted in [TW2], can be regarded as a shifted version of the
Plancherel measure defined in (1.5) in a combinatorial sense.

4.2. Ascent pairs for a permutation.
The measure defined in (4.2) is related to the so-called ascent pair for a permutation.

For π = (π(1), π(2), . . . , π(N)) ∈ SN , an ascent pair for π is a pair (φde, φin) of a
decreasing subsequence φde = (π(i1) > · · · > π(ik)), i1 < · · · < ik and an increasing
subsequence φin = (π(j1) < · · · < π(jl)), j1 < · · · < jl of π such that the sequence

(π(ik), . . . , π(i1), π(j1), . . . , π(jl))

is weakly increasing (i.e. the inequality π(i1) ≤ π(j1) is satisfied). We define the length
of the ascent pair (φde, φin) by k + l− 1. Denote the length of the longest ascent pair for
π by L(π).

Example 4.1. For a permutation
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π =
(

1 2 3 4 5 6 7 8 9
4 7 1 9 6 3 5 8 2

)

the pair (φde, φin), where φde = (4, 3, 2) and φin = (4, 7, 9), is the ascent pair with length
5. Since this is the longest ascent pair for π, we have L(π) = 5.

By the shifted RSK, the distribution of L(π) with respect to the uniform measure
on SN equals the distribution of λ1 with respect to the measure PSPl,N on DN , i.e.,

Puniform,N ({π ∈ SN |L(π) = h}) = PSPl,N ({λ ∈ DN |λ1 = h}). (4.3)

4.3. Limit distributions.
We consider the random point process on R (see the Appendix in [BOO]) whose

correlation functions ρAiry(X) = PAiry({Y ⊂ R | #Y < ∞, X ⊂ Y }) for any finite
subset X = {x1, . . . , xk} ⊂ R are given by ρAiry(X) = det(KAiry(xi, xj))1≤i,j≤k. Here
KAiry is the Airy kernel defined in (1.3). Let ζ = (ζ1 > ζ2 > · · · ) ∈ R∞ be its random
configuration. The random variables ζi’s are called the Airy ensemble. It is known that
the Airy ensemble describes the behavior of the largest eigenvalue of a GUE matrix, the
2nd largest one, and so on, see [TW1].

Theorem 4 in [BOO] (see also [J3], [O1]) asserts that the random variables

λi − 2
√

N

N1/6
, i = 1, 2, . . . , λ = (λ1, λ2, . . . ) ∈ PN (4.4)

with respect to the Plancherel measure defined by (1.5) converge, in the joint distribution,
to the Airy ensemble as N →∞. The following theorem is a shifted version of this result.

Theorem 4.1. As N →∞, the random variables

λi − 2
√

2N

(2N)1/6
, i = 1, 2, . . . (4.5)

with respect to the measure PSPl,N on DN converge to the Airy ensemble, in joint distri-
butions.

Compare (4.5) with (4.4). Especially, since the distribution of ζ1 in the Airy ensemble
is given by the Tracy-Widom distribution, we immediately see the following result from
(4.3).

Corollary 4.2. We have

lim
N→∞

Puniform,N

(
L− 2

√
2N

(2N)1/6
< s

)
= F2(s).

Compare with (1.1). Theorem 4.1 is proved by computing the correlation function of
the so-called poissonization of the measure PSPl,N . For ξ > 0, we define the poissonization
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Pξ
PSP of the measure PSPl,N by

Pξ
PSP({λ}) = e−ξ

∞∑

N=0

ξN

N !
PSPl,N ({λ}) = e−ξξ|λ|2|λ|−`(λ)

(
gλ

|λ|!
)2

(4.6)

for λ ∈ D . Here PSPl,N ({λ}) = 0 unless λ ² N . Then we have the

Theorem 4.3. For any fixed M ≥ 1 and any a1, . . . , aM ∈ R we have

lim
ξ→∞

Pξ
PSP

({
λ ∈ D

∣∣∣∣
λi − 2

√
2ξ

(2ξ)
1
6

< ai, 1 ≤ i ≤ M

})
(4.7)

= PAiry(ζi < ai, 1 ≤ i ≤ M),

where ζ1 > ζ2 > · · · is the Airy ensemble.

Since Theorem 4.1 can be proved from Theorem 4.3 by using the depoissonization
technique developed in [J1], we omit the proof, see [BOO].

4.4. The proof of Theorem 4.3.
The measure Pξ

PSP can be obtained by a specialization of the shifted Schur measure.
Actually, since the Schur Q-function can be expanded as (see [Mac])

Qλ(X) =
∑

ρ=1m13m3 ···
2`(ρ)Xλ

ρ (−1)
∏

i:odd

pk(X)mi

mi!imi
,

where Xλ
(1|λ|)(−1) = gλ (see [Mac, III-8, Ex.12]), if we make a specialization such as

pk(X) = pk(Y ) =
√

ξ
2δk1 (k ≥ 1), then we have

Qλ = (2ξ)
|λ|
2

gλ

|λ|! .

Hence the shifted Schur measure in (2.4) becomes the measure Pξ
PSP in (4.6).

Let ρξ
PSP be the correlation function of the measure Pξ

PSP.

Proposition 4.4. We have

lim
ξ→+∞

(2ξ)N/6ρξ
PSP({[2

√
2ξ + (2ξ)1/6x1], . . . , [2

√
2ξ + (2ξ)1/6xN ]})

= det(KAiry(xi, xj))1≤i,j≤N .

The limit is uniform for (x1, . . . , xN ) on a compact set of RN .

This proposition follows immediately from Theorem 3.1 and the following lemma.

Lemma 4.5. We have
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(2ξ)
1
6 KB(2

√
2ξ + x(2ξ)

1
6 , 2

√
2ξ + y(2ξ)

1
6 ) → 0, (4.8)

(2ξ)
1
6 KB(2

√
2ξ + x(2ξ)

1
6 ,−(2

√
2ξ + y(2ξ)

1
6 )) → KAiry(x, y), (4.9)

(2ξ)
1
6 KB(−(2

√
2ξ + x(2ξ)

1
6 ),−(2

√
2ξ + y(2ξ)

1
6 )) → 0, (4.10)

as ξ →∞, uniformly in x and y on compact sets in R.

Proof. By the specialization pk(X) = pk(Y ) =
√

ξ/2δk1, the function J(z;X, Y )
in (3.3) becomes e

√
2ξ(z−z−1), which is the generating function of Bessel functions. There-

fore, in order to prove Lemma 4.5, we evaluate integrals of the form

(
1

2π
√−1

) ∫∫
e2ξ(z−z−1+w−w−1) z − w

z + w

dzdw

zu+1wv+1
,

where the contours are two unit circles and u = ±(2
√

2ξ + x(2ξ)
1
6 ) and v = ±(2

√
2ξ +

y(2ξ)
1
6 ). Then Lemma 4.5 is obtained by a similar discussion in [TW2]. We leave the

detail for readers. ¤

Proof of Theorem 4.3. The proof follows from Proposition 4.4 and the discus-
sion in [BOO]. ¤

4.5. The α-specialized shifted Schur measure.
Let α be a real number such that 0 < α < 1 and let m and n be positive integers.

We put Xi = Yj = α for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and let the rest be zero in the
definition of the shifted Schur measure. This is called the α-specialization, see [TW2]
and [M]. Using Theorem 3.1, we also give a limit distribution of λi’s with respect to
the α-specialized shifted Schur measure. Denote by PSS,σ the α-specialized shifted Schur
measure, where σ = (m,n, α) denotes the set of parameters above, and put τ = m/n.

Theorem 4.6. There exist positive constants c1 = c1(α, τ) and c2 = c2(α, τ) such
that

lim
n→∞

PSS,σ

({
λ ∈ D

∣∣ λi − c1n

c2n1/3
< ai, 1 ≤ i ≤ M

})
= PAiry(ζi < ai, 1 ≤ i ≤ M)

holds for any M ≥ 1 and any a1, . . . , aM ∈ R.

When M = 1, this theorem gives the result in [TW2]. Although they assume that
α and τ satisfy the relation α2 < τ < α−2, we can remove this assumption as they expect
in the footnote of that paper.

We write ρSS, M , J(z;X, Y ) and K in Theorem 3.1 after making the α-specialization
by ρσ, Mσ, Jσ(z) and Kσ, respectively. Let c1, c2 and z0 be positive constants depending
on α and τ given in [TW2]. These constants are not explicitly given for τ 6= 1, see Section
1 in [TW2]. Employing the following proposition, we can prove Theorem 4.6 as Theorem
4.1 and so we omit the proof.
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Proposition 4.7. We have

lim
n→∞

(c2n
1
3 )Nρσ({[c1n + c2n

1
3 x1], . . . , [c1n + c2n

1
3 xN ]}) = det(KAiry(xi, xj))1≤i,j≤N .

The limit is uniform for (x1, . . . , xN ) in a compact set of RN .

Proof. From Theorem 3.1, we have

ρσ({k1, . . . , kN}) =
√

det(Mσ({k1, . . . , kN})).

Then we may write the skew matrix Mσ in the form

Mσ =
(

M1 M2

−tM2 M3

)
,

where we put N × N matrices M1 = (Kσ(ki, kj))1≤i,j≤N , M2 = (Kσ(ki,

−kN−j+1))1≤i,j≤N and M3 = (Kσ(−kN−i+1,−kN−j+1))1≤i,j≤N . Let D be an N × N

diagonal matrix whose i-th entry is given by Jσ(z0)−1zi
0. Then ρσ is expressed as

ρσ({k1, . . . , kN}) =

√
(−1)N det

(
M2 M1

M3 −tM2

)

=

√
(−1)N det

((
D 0
0 D−1

)(
M2 M1

M3 −tM2

)(
D−1 0

0 D

))

=

√
(−1)N det

(
DM2D

−1 DM1D

D−1M3D
−1 −D−1 tM2D

)

= Pf
(

DM1D DM2D
−1

−D−1 tM2D D−1M3D
−1

)
.

Thus we immediately obtain the proposition from the following lemma. ¤

Lemma 4.8. We have

Jσ(z0)−2z
2c1n+c2n

1
3 (x+y)

0 n
1
3 Kσ(c1n + c2n

1
3 x, c1n + c2n

1
3 y) → 0,

z
c2n

1
3 (x−y)

0 n
1
3 Kσ(c1n + c2n

1
3 x,−(c1n + c2n

1
3 y)) → c−1

2 KAiry(x, y),

Jσ(z0)2z
−(2c1n+c2n

1
3 (x+y))

0 n
1
3 Kσ(−(c1n + c2n

1
3 x),−(c1n + c2n

1
3 y)) → 0,

as n →∞, uniformly in x and y on compact sets in R.

The proof of this lemma is obtained by the discussion in Section 6.4 of [TW2]. Since
the assumption α2 < τ < α−2 is not used in that section, we do not need this assumption
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in Theorem 4.6.

5. Hall-Littlewood measures.

Let P be the set of all partitions. In this section, we consider the so-called Hall-
Littlewood measure on P, defined by Hall-Littlewood functions. It is considered as
a natural extension of the Schur measure and the shifted Schur measure. Let Qλ(X; t)
(respectively Pλ(X; t)) be the Hall-Littlewood Q-(respectively P -)function for a partition
λ (see [Mac, III]). We define the Hall-Littlewood measure by

PHL,X,Y,t({λ}) =
1
Z

Qλ(X; t)Pλ(Y ; t).

Here the constant Z = Z(X, Y ; t) is determined by

Z :=
∑

λ∈P

Qλ(X; t)Pλ(Y ; t) =
∞∏

i,j=1

1− tXiYj

1−XiYj
,

where the second equality is the Cauchy identity for Hall-Littlewood functions. Since
Qλ(X; t) is the Schur function sλ(X) at t = 0 and the Schur Q-function Qλ(X) at
t = −1, the Hall-Littlewood measure gives the Schur measure at t = 0 and the shifted
Schur measure at t = −1.

The mean value and the variance of the size |λ| of a partition λ are given explicitly
as follows.

Theorem 5.1. The mean value E(|λ|) and the variance Var(|λ|) of the size |λ| of
a partition with respect to the Hall-Littlewood measure are given by

E(|λ|) =
∞∑

k=1

(1− tk)pk(X)pk(Y ), (5.1)

Var(|λ|) =
∞∑

k=1

k(1− tk)pk(X)pk(Y ). (5.2)

Here pk(X) is the k-th power sum function.

Proof. Define a differential operator ∆X by

∆X =
∞∑

k=1

kpk(X)
∂

∂pk(X)
.

Since Qλ(X; t) =
∑

ρ:|ρ|=|λ| zρ(t)−1Xλ
ρ (t)

∏∞
k=1 pk(X)mk(ρ) (see [Mac, III-(7.51)]) we

have

∆XQλ(X; t) = |λ|Qλ(X; t).
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Therefore we obtain E(|λ|) = 1
Z

∑
λ |λ|Qλ(X; t)Pλ(Y ; t) = ∆X(log Z). On the other

hand, since Z = exp
( ∑∞

k=1
1−tk

k pk(X)pk(Y )
)

(see [Mac, p. 223]) we have ∆X(log Z) =∑∞
k=1(1− tk)pk(X)pk(Y ) so that we get (5.1).

In general, we see that E(|λ|n) = 1
Z ∆n

XZ. In particular, it follows that

E(|λ|2) =
1
Z

∆2
X(Z) =

1
Z

∆X

(
Z

1
Z

∆X(Z)
)

=
1
Z

∆X(Z∆X(log Z))

=
1
Z

{
∆X(Z) ·∆X(log Z) + Z∆2

X(log Z)
}

= (∆X(log Z))2 + ∆2
X(log Z).

Therefore we have

Var(|λ|) = E(|λ|2)−E(|λ|)2 = ∆2
X(log Z)

= ∆X

( ∞∑

k=1

(1− tk)pk(X)pk(Y )
)

=
∞∑

k=1

k(1− tk)pk(X)pk(Y ).

This completes the proof of the theorem. ¤

Remark 5.1. The mean value E(|λ|) with respect to the Schur measure is given
in [O3].

Next we consider the mean value E(λ1) of λ1, the first row of a partition λ. Based
on the fact in Theorem 5.1, we now examine whether E(λ1) has an expression similar
to E(|λ|). Assume X = Y in the definition of the Hall-Littlewood measure and let
M(t,X) := 2

∑∞
k=1(1− tk)pk(X).

Example 5.1. The poissonized Plancherel measure for symmetric groups is ob-
tained from the Hall-Littlewood measure by putting t = 0 and the exponential special-
ization pk(X) = pk(Y ) =

√
ξδ1k. Hence it follows that M(t,X) = 2

√
ξ. Since it is known

that E(λ1) ∼ 2
√

ξ as ξ → +∞ (see e.g. [BOO]), we have lim E(λ1)
M(t,X) = 1.

Example 5.2. The α-specialized Schur measure is obtained by putting t = 0

and the α-specialization X = Y = (
n︷ ︸︸ ︷

α, . . . , α, 0, 0, . . . ). We have hence M(t,X) =
2

∑∞
k=1 nαk = 2α

1−αn. Since it is proved in [J2] that E(λ1) ∼ 2αn
1−α as n → +∞, we

have lim E(λ1)
M(t,X) = 1.

Example 5.3. The poissonization of the shifted version of the Plancherel measure
for symmetric groups is obtained by putting t = −1 and pk(X) = pk(Y ) =

√
ξ
2δ1k. We

have hence M(t,X) = 4
√

ξ
2 = 2

√
2ξ. Since we have proved that E(λ1) ∼ 2

√
2ξ as

ξ → +∞ in Section 4, we have lim E(λ1)
M(t,X) = 1.
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Example 5.4. The α-specialized shifted Schur measure is obtained by putting

t = −1 and the α-specialization X = Y = (
n︷ ︸︸ ︷

α, . . . , α, 0, 0, . . . ). Hence we have M(t,X) =
2

∑
k≥1:odd 2nαk = 4αn

1−α2 . Since it is proved in [TW2] that E(λ1) ∼ 4αn
1−α2 as n → +∞,

we have lim E(λ1)
M(t,X) = 1.

In view of the examples above, we might expect that E(λ1)
M(t,X) always converges to 1.

However, we encounter an example that E(λ1)
M(t,X) does not converge to 1 as follows.

Example 5.5. Suppose 0 < t < 1. We make the principal specialization X = Y =
(t, t2, . . . , tn, 0, 0, . . . ) and n → +∞. Then we have

Qλ = tn(λ)+|λ|, Pλ =
tn(λ)+|λ|

∏
j≥1(t; t)mj(λ)

,

where we put n(λ) =
∑

j≥1(j− 1)λj =
∑

j≥1

(λ′j
2

)
, (a; q)m =

∏m−1
j=0 (1− aqj) and denote

the multiplicity of j in λ by mj(λ) (see [Mac, III-2 Ex.1]). Further we obtain

Z =
∞∏

i,j=1

1− ti+j+1

1− ti+j
=

∞∏
r=2

1
1− tr

.

Since 2n(λ)+|λ| = ∑
j≥1 λ′j(λ

′
j−1)+

∑
j≥1 λ′j =

∑
j≥1(λ

′
j)

2, the Hall-Littlewood measure
becomes

Pt,Prin(λ) :=
∞∏

r=2

(1− tr)
t
P

j≥1(λ
′
j)

2+|λ|
∏

j≥1(t; t)mj(λ)
.

This measure is studied by Fulman [F1].
We calculate the distribution function of λ1. Since for a positive integer h

∑

λ:λ1<h

t
P

j≥1(λ
′
j)

2+|λ|
∏

j≥1(t; t)mj(λ)
=

∑

µ:`(µ)<h

t
Ph−1

j=1 (µj)
2+|µ|

∏h−1
j=1 (t; t)µj−µj+1

=
∞∏

r=1
r 6≡0,±1 (mod 2h+1)

1
1− tr

,

(the second equality is proved by Andrews [A], see also [F2]) we have

Pt,Prin(λ1 < h) =
∏

r≥2
r≡0,±1 (mod 2h+1)

(1− tr)

=
∞∏

k=1

(1− t(2h+1)k)(1− t(2h+1)k+1)(1− t(2h+1)k−1). (5.3)

The mean value E(λ1) is given by E(λ1) =
∑∞

h=1 h(Pt,Prin(λ1 < h+1)−Pt,Prin(λ1 < h)).
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It follows from (5.3) that E(λ1) = t2 + O(t3) as t → +0. On the other hand, it is easy
to see that

M(t,X) = 2
∞∑

k=1

(1− tk)
∞∑

j=1

tjk = 2
∞∑

k=1

(1− tk)
tk

1− tk
=

2t

1− t

and therefore M(t,X) = 2t + 2t2 + O(t3) as t → +0. Therefore E(λ1) is not equal to
M(t,X).

Thus it is interesting to determine when the ratio E(λ1)
M(t,X) converges to 1. We will

study this problem in future.
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