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Abstract. A spherical t-design is a finite subset X in the unit sphere Sn−1 ⊂
Rn which replaces the value of the integral on the sphere of any polynomial of de-
gree at most t by the average of the values of the polynomial on the finite subset
X. Generalizing the concept of spherical designs, Neumaier and Seidel (1988) de-
fined the concept of Euclidean t-design in Rn as a finite set X in Rn for whichPp

i=1(w(Xi)/(|Si|))
R

Si
f(x)dσi(x) =

P
x∈X w(x)f(x) holds for any polynomial f(x)

of deg(f) ≤ t, where {Si, 1 ≤ i ≤ p} is the set of all the concentric spheres cen-
tered at the origin and intersect with X, Xi = X ∩Si, and w : X → R>0 is a weight
function of X. (The case of X ⊂ Sn−1 and with a constant weight corresponds to a
spherical t-design.) Neumaier and Seidel (1988), Delsarte and Seidel (1989) proved
the (Fisher type) lower bound for the cardinality of a Euclidean 2e-design. Let Y
be a subset of Rn and let Pe(Y ) be the vector space consisting of all the polyno-
mials restricted to Y whose degrees are at most e. Then from the arguments given
by Neumaier-Seidel and Delsarte-Seidel, it is easy to see that |X| ≥ dim(Pe(S))
holds, where S = ∪p

i=1Si. The actual lower bounds proved by Delsarte and Seidel
are better than this in some special cases. However as designs on S, the bound
dim(Pe(S)) is natural and universal. In this point of view, we call a Euclidean 2e-
design X with |X| = dim(Pe(S)) a tight 2e-design on p concentric spheres. Moreover

if dim(Pe(S)) = dim(Pe(Rn))(=
`n+e

e

´
) holds, then we call X a Euclidean tight

2e-design. We study the properties of tight Euclidean 2e-designs by applying the
addition formula on the Euclidean space. Furthermore, we give the classification of
Euclidean tight 4-designs with constant weight. It is possible to regard our main
result as giving the classification of rotatable designs of degree 2 in Rn in the sense

of Box and Hunter (1957) with the possible minimum size
`n+2

2

´
. We also give ex-

amples of nontrivial Euclidean tight 4-designs in R2 with nonconstant weight, which
give a counterexample to the conjecture of Neumaier and Seidel (1988) that there
are no nontrivial Euclidean tight 2e-designs even for the nonconstant weight case for
2e ≥ 4.

1. Introduction.

In the paper of Neumaier-Seidel [15], they gave a definition of Euclidean t-design.
Delsarte and Seidel [8] studied more precise properties of Euclidean designs on a union
of p concentric spheres centered at the origin. Here we first review these definitions.
When they consider Euclidean t-designs, they assumed that 0 6∈ X. Since we believe it
is better to drop this assumption, we first present the definition of Euclidean t-design
which is a slight modification of Neumaier-Seidel’s definition. Let X be a finite set in Rn.
We assume n ≥ 2 unless otherwise stated. Let {r1, r2, . . . , rp} = {‖x‖ |x ∈ X}. Here
‖x‖2 = (x, x) =

∑n
i=1 xi

2 for x = (x1, x2, . . . , xn) ∈ Rn, and one of ri may possibly be
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0, that is, X may possibly contain 0. For each i we define Si = {x ∈ Rn | ‖x‖ = ri}, the
sphere of radius ri centered at 0. We say that X is supported by the p concentric spheres
S1, . . . , Sp. If ri = 0, then Si = {0}. It may not be natural to consider {0} as a sphere,
however we regard it as one of the spheres supporting X. Let Xi = X ∩ Si. Let dσ(x)
be a Haar measure on the unit sphere Sn−1 ⊂ Rn. We consider a Haar measure dσi(x)
on each Si so that |Si| = ri

n−1|Sn−1|. Here |Si| and |Sn−1| are the volumes of Si and
the unit sphere Sn−1 respectively. We associate a positive real valued function w on X,
which is called a weight of X. We define w(Xi) =

∑
x∈Xi

w(x). Here if ri = 0, then we
define 1

|Si|
∫

Si
f(x)dσi(x) = f(0) for any function f(x) defined on Rn. Let S = ∪p

i=1Si.
Let εS ∈ {0, 1} be defined by

εS = 1 if 0 ∈ S, εS = 0 if 0 6∈ S.

We give some more definition of symbols we use. Let P(Rn) = R[x1, x2, . . . , xn] be
the vector space of polynomials in n variables x1, x2, . . . , xn. Let Homl(Rn) be the
subspace of P(Rn) spanned by homogeneous polynomials of degree l. Let Pl(Rn) =
⊕l

i=0Homl(Rn). Let Harm(Rn) be the subspace of P(Rn) which consists of all the
harmonic polynomials. Let Harml(Rn) = Harm(Rn) ∩ Homl(Rn). Let P(S), Pl(S),
Homl(S), Harm(S), Harml(S) be the sets of corresponding polynomials restricted to the
union S of concentric spheres. For example P(S) = {f |S | f ∈ P(Rn)}.

The concept of spherical design was given by Delsarte, Goethals and Seidel in [7].

Definition 1.1 (Spherical design). Let X be a finite set on the unit sphere Sn−1 ⊂
Rn. Let t be a natural number. Then, with the notation mentioned above, we say that
X is a spherical t-design, if the following condition is satisfied:

1
|Sn−1|

∫

x∈Sn−1
f(x)dσ(x) =

1
|X|

∑

u∈X

f(u)

for any polynomial f(x) of n variables with degree at most t.

In [7], they proved that a spherical 2e-design X satisfies the condition

|X| ≥
(

n + e− 1
e

)
+

(
n + e− 2

e− 1

)
.

The right hand side of the above inequality is the dimension of Pe(Sn−1).

Definition 1.2 (Spherical tight 2e-design). A spherical 2e-design X satisfying

|X| =
(

n + e− 1
e

)
+

(
n + e− 2

e− 1

)

is called a spherical tight 2e-design.

A generalization of spherical designs was first given by Neumaier-Seidel [15] and studied



On Euclidean tight 4-designs 777

by Delsarte-Seidel [8].

Definition 1.3 (Euclidean design). Let X be a finite set with a weight w and let
t be a natural number. Then, with the notation mentioned above, we say that X is a
Euclidean t-design, if the following condition is satisfied:

p∑

i=1

w(Xi)
|Si|

∫

x∈Si

f(x)dσi(x) =
∑

u∈X

w(u)f(u)

for any polynomial f(x) of n variables with degree at most t.

Remark 1. (1) If 0 6∈ X, then X is a Euclidean t-design in the sense of Neumaier-
Seidel. Also if 0 ∈ X and X 6= {0}, then X\{0}(= {x ∈ X | x 6= 0}) is a Euclidean
t-design in the sense of Neumaier-Seidel [15].
(2) If p = 1, r1 = 1 and w ≡ 1 on X, then X is a spherical t-design on Sn−1 (Definition
1.1, see also [7]).
(3) In the above definition of Euclidean designs, we always implicitly assumed that n ≥ 2.
If n = 1 and ri > 0, then 1

|Si|
∫

Si
f(x)dσi(x) = 1

2 (f(−ri)+f(ri)). (Note that if ri = 0, we
put as before, i.e., 1

|Si|
∫

Si
f(x)dσi(x) = f(0).) Thus if a finite set X ⊂ R is symmetric

with respect to the origin and the weight function on X is also symmetric with respect
to the origin, then X is a Euclidean t-design for any t. This is one of the reasons why
we assume that n ≥ 2 in this paper.

If X is a Euclidean 2e-design, then it is well known and easy to see that

|X| ≥ dim(Pe(S))

holds ([15], [8] and [1]). We think this lower bound is universal and natural when we
consider designs on S. At the same time, when we consider a design X on Rn we want
X to be something which represents the whole Euclidean space Rn. Based on this point
of view, we introduce the following definitions for the tightness of the designs.

Definition 1.4 (Euclidean tight 2e-design). Let X be a Euclidean 2e-design with
weight w. If

|X| =
(

n + e

e

)

and dim(Pe(S)) =
(
n+e

e

)
hold, then we call X a Euclidean tight 2e-design. Here we note

that the value
(
n+e

e

)
is exactly the dimension of Pe(Rn).

Definition 1.5 (Tight 2e-design on p concentric spheres). Let X be a Euclidean
2e-design with weight w. If

|X| = dim(Pe(S))

holds, then we call X a tight 2e-design on p concentric spheres.
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Remark 2. (1) As we will introduce in the next theorem, some better lower bounds
for the cardinalities of Euclidean 2e-designs are given by Neumaier-Seidel and Delsarte-
Seidel through the evaluation of dim(Pe(S)) ([15], [8]). They called Euclidean 2e-design
X with |X| = dim(Pe(S)), a tight 2e-design in Rn.
(2) If t is odd, then natural lower bounds for the cardinalities of antipodal Euclidean
designs are known ([8]). However, the problem is still open for not antipodal ones. In
this paper we do not consider the case when t is odd.
(3) The following are known (see [7], [8], [11] and [1]):

• If p ≤ [ e+εS

2 ], then dim(Pe(S)) = εS +
∑2(p−εS)−1

i=0

(
n+e−i−1

e−i

)

<
(
n+e

e

)(
=

∑e
i=0

(
n+e−i−1

e−i

))
.

• If p ≥ [ e+εS

2 ] + 1, then dim(Pe(S)) =
(
n+e

e

)
.

Therefore a Euclidean tight 2e-design is the same as a tight 2e-design on p concentric
spheres with p ≥ [ e+εS

2 ] + 1.
(4) Let X be a tight 2e-design on p concentric spheres. If p = 1, X 6= {0} and w is
constant on X, then X is similar to a spherical tight 2e-design (see Remark 6 given
later).

Next theorem was proved by Delsarte and Seidel [8].

Theorem 1.6 (Delsarte-Seidel). Let X be a Euclidean 2e-design with weight w.
Then the following holds:

|X| ≥ εS +
2(p−εS)−1∑

i=0

(
n + e− i− 1

e− i

)
.

Remark 3. In Definition 1.3, X = {0} is a Euclidean t-design for any t and n.
Since dim(Pe(Rn)) > 1 = dim(Pe({0}) for any e ≥ 1 and n ≥ 2, X = {0} is not a
Euclidean tight 2e-design. However if we consider {0} as a special case of a sphere, then
X = {0} is a tight 2e-design on a special sphere {0}.

The following proposition was pointed out by the referee.

Proposition 1.7. Let X be a Euclidean tight 2e-design. If 0 ∈ X, then e is even,
p = e

2 + 1 and X\{0} is a tight 2e-design on e
2 concentric spheres.

Proof. By assumption εS = 1. Then Definition 1.4 and Remark 2 (3) imply
p ≥ [ e+1

2 ] + 1. Since X\{0} is a Euclidean 2e-design on a union of p − 1 concentric
spheres with positive radii, Theorem 1.6 implies

|X\{0}| ≥
2(p−1)−1∑

i=0

(
n + e− i− 1

e− i

)
.

Therefore
(
n+e

e

) − 1 ≥ ∑2(p−1)−1
i=0

(
n+e−i−1

e−i

)
. This implies 2(p − 1) − 1 ≤ e − 1. Hence

[ e+1
2 ] + 1 ≤ p ≤ [ e

2 ] + 1. Therefore e has to be an even number and p = e
2 + 1. Since

|X\{0}| = ∑e−1
i=0

(
n+e−i−1

e−i

)
, X\{0} is a tight 2e-design on e

2 concentric spheres. ¤
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The following theorem is our main result in this paper.

Theorem 1.8. Let n ≥ 2 and X be a Euclidean tight 4-design in Rn whose weight
is constant on X\{0}. Then 0 ∈ X and X\{0} is similar to a spherical tight 4-design
on Sn−1.

Remark 4. It is known that if spherical tight 4-design in Sn−1 exists then n = 2
or n = (2m+1)2−3, where m is an integer (cf. [1], [5]). The existence of a tight 4-design
in S1 and S(2m+1)2−4 is known for m = 1 and 2. However, it is generally unknown for
m ≥ 3. Recently, Bannai, Munemasa and Venkov [5] proved the non-existence for many
values of m including m = 3 and 4.

Remark 5. The concept of a Euclidean 4-design (with constant weight) is equiv-
alent to that of rotatable design of degree 2 in the sense of Box and Hunter (1957) and
Kiefer (1960). Therefore, our main result can be regarded as giving the classification of
degree 2 rotatable designs in Rn with the possible minimum size

(
n+2

2

)
.

Several equivalent definitions of Euclidean t-design are known. The following is
proved by Neumaier and Seidel [15], which is very useful.

Theorem 1.9 ([15]). Let X be a finite subset which may possibly contain 0 and
with a weight ω. Then the following (1) and (2) are equivalent :

(1) X is a Euclidean t-design.
(2)

∑
u∈X w(u)f(u) = 0 for any polynomial f ∈ ‖x‖2jHarml(Rn) with 1 ≤ l ≤ t,

0 ≤ j ≤ [ t−l
2 ].

A rough sketch of our proof of Theorem 1.8 is as follows.

First we formulate the addition formula on Rn by using the Gegenbauer polynomials
(see Theorem 2.3 in §2). Using this addition formula we can prove the following lemma.

Lemma 1.10. Let X be a tight 2e-design on p concentric spheres in Rn. Then the
following hold :

(1) If ‖x‖ = ‖y‖, then w(x) = w(y), that is, w is a constant function on each Xi.
(2) For any i, 1 ≤ i ≤ p, Xi is an at most e-distance set.
(3) If w is constant on X\{0}, then p− εS ≤ e.

Remark 6. Let X ⊂ Rn be a tight 2e-design on p concentric spheres. Lemma
1.10 implies that if p = 1 and X 6= {0}, then X is similar to a spherical tight 2e-design
on Sn−1.

Lemma 1.10 also implies that if X is a Euclidean tight 4-design with constant weight,
then Definition 1.4, Remark 2 (3), Proposition 1.7 and Lemma 1.10 (3) imply p = 2.
Hence one of the following holds:

(1) 0 6∈ X and X is on 2 concentric spheres.
(2) 0 ∈ X and X\{0} is similar to a spherical tight 4-design.

If the case (1) given above occurs, then we may assume that |X1| ≥ 1
2 |X| =
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(n+2)(n+1)
4 . Since (n+2)(n+1)

4 > n + 1 holds for any n ≥ 3, X1 cannot be a 1-distance set
(see [7]). Hence Lemma 1.10 implies that X1 is a 2-distance set. Then we can apply the
following theorem proved by Larman, Rogers and Seidel ([14]).

Theorem 1.11 (Larman-Rogers-Seidel). Let X be a 2-distance set in Rn. If |X| >
2n + 3, then there exists a natural number k such that the ratio of the two distances of
X is given by

√
k :
√

k − 1 and k ≤ √
n
2 + 1

2 .

We evaluated the ratio of the square of the two distances of X1. It is not difficult to
see that we may assume that S1 is the unit sphere (r1 = 1). Let r = r2 and R = r2. Let
α1 and α2 be the two distances of the points in X1. Assume α1 < α2. We define k by

(
α1

α2

)2

=
k − 1

k
.

The number k has to be an integer under the condition of Larman-Rogers-Seidel’s Theo-
rem. Instead of (α1/α2)2 we consider

(
(α2

1 + α2
2)/(α2

1 − α2
2)

)2 (= (2k − 1)2). Then for
each n and |X1|, R is a solution of F (n, |X1|, R) = 0, where F (n, x, T ) is a polynomial of
n, x and T , which is of degree 3 with respect to T . We can express

(
(α2

1+α2
2)/(α2

1−α2
2)

)2

as a rational function GA(n, |X1|, R) of n, |X1| and R. We prove that for any fixed n,
GA(n, |X1|, R(n, |X1|)) is decreasing as a function of |X1|, where R(n, |X1|) is determined
by F (n, |X1|, R) = 0. Using this property we prove that GA(n, |X1|, R(n, |X1|)) cannot
be the square of an odd integer. That means the ratio of the square of the two distances
in X1 does not take the value k : k − 1 for any integer k which is required by the the
theorem of Larman-Rogers-Seidel mentioned above.

In section 2, we give some more related facts. Then we give the addition formula for
the Euclidean space using Gegenbauer polynomials and then we give a proof of Lemma
1.10.

In section 3, we discuss Euclidean tight 4-designs with constant weight and we give
a proof of Theorem 1.8.

In section 4, we give some examples of Euclidean tight 4-designs whose weight are
not constant. This gives a counterexample to Conjecture 3.4 in [15], that there exists no
nontrivial tight 4-design.

The authors thank the referee for the careful reading of the manuscript and for
many suggestions improving the details of the presentation of this paper. The authors
also thank Makoto Tagami for his help in dealing with the elimination for the cases of
n ≤ 6.

2. Addition formula and Euclidean 2e-design.

Let X be a finite subset in Rn with a positive weight w. Let S1, . . . , Sp be the p

concentric spheres defined in section 1 and let S = ∪p
i=1Si. We use the same notation

given in section 1.
For any ϕ,ψ ∈ Harm(Rn) we define 〈ϕ,ψ〉 = 1

|Sn−1|
∫
x∈Sn−1 ϕ(x)ψ(x)dσ(x). Then

the following properties are known (see [7], [8], [11], [1]):
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Proposition 2.1.

(1) Harm(Rn) is a positive definite inner product space under 〈−,−〉 and has the
orthogonal decomposition Harm(Rn) =⊥∞i=0 Harmi(Rn),

(2) Pe(Rn) =
⊕

0≤i+2j≤e ‖x‖2jHarmi(Rn),
(3) Pe(S) =

〈‖x‖2j | 0 ≤ j ≤ min
{
p− 1,

[
e
2

]}〉
⊕( ⊕

1≤i≤e,

0≤j≤min{p−εS−1,[ e−i
2 ]}

‖x‖2jHarmi (S)
)

and if p ≤ [ e+εS

2 ], then

dim(Pe(S)) = εS +
2(p−εS)−1∑

i=0

(
n + e− i− 1

e− i

)
,

if p ≥ [
e+εS

2

]
+ 1, then

dim(Pe(S)) =
(

n + e

e

)
,

where e is a nonnegative integer.

Let hl = dim(Harml(Rn)) and ϕl,1, . . . , ϕl,hl
be an orthonormal basis of Harml(Rn)

with respect to the inner product 〈−,−〉 defined above. Then

{
‖x‖2j | 0 ≤ j ≤ min

{
p− 1,

[
e

2

]}}

∪
{
‖x‖2jϕl,i(x)

∣∣∣∣ 1 ≤ l ≤ e, 1 ≤ i ≤ hl, 0 ≤ j ≤ min
{

p− εS − 1,

[
e− l

2

]}}

gives a basis of Pe(S). In the following we are going to construct more convenient
basis of Pe(S) for our purpose. Let G (Rn) be the subspace of P(Rn) spanned by
{‖x‖2j | j = 0, 1, 2, . . . , p− 1}. Let G (X) = {g|X |g ∈ G (Rn)}. Then as functions on X,
{‖x‖2j | j = 0, 1, 2, . . . , p − 1} is a basis of G (X). For each l we define an inner product
〈, 〉l on G (X) by

〈f, g〉l =
∑

x∈X

w(x)‖x‖2lf(x)g(x). (2.1)

We apply the Gram-Schmidt’s method to the basis {‖x‖2j | j = 0, 1, 2, . . . , p − 1}
and construct an orthonormal basis

{gl,1(x), gl,2(x), . . . , gl,p−1(x)}

of G (X) with respect to the inner product 〈, 〉l. We can construct them so that for any
l the following holds:

gl,j(x) is a linear combination of 1, ‖x‖2, . . . , ‖x‖2j , with deg(gl,j) = 2j

for j, 0 ≤ j ≤ p− 1.
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For example if p = 2, then we can express gl,j(x) in the following way.

gl,0(x) ≡ 1√
al

, gl,1(x) =
√

al

alal+2 − al+1
2

(
‖x‖2 − al+1

al

)
,

where ai =
∑

x∈X w(x)‖x‖2i.
Now we are ready to give a new basis of Pe(S). For any l satisfying 0 ≤ l ≤ e, we

consider the following sets of functions:

H0 =
{

g0,j | 0 ≤ j ≤ min
{

p− 1,

[
e

2

]}}
,

Hl =
{

gl,jϕl,i | 0 ≤ j ≤ min
{

p− εS − 1,

[
e− l

2

]}
, 1 ≤ i ≤ hl

}
for l ≥ 1.

Let H = ∪e
l=0Hl. Then H is a basis of Pe(S).

Next we define a matrix which plays an important role in the proof of our main result.
Let M be a matrix whose rows and columns are indexed with X and H respectively.
For (u, gl,jϕl,i) ∈ X ×H the (u, gl,jϕl,i)-entry M(u, gl,jϕl,i) of M is defined by

M(u, gl,jϕl,i) =
√

w(u)gl,j(u)ϕl,i(u). (2.2)

Definition 2.2 (Gegenbauer polynomials). Gegenbauer polynomials are a set of
orthogonal polynomials {Ql(α) | l = 0, 1, 2, . . .} of one variable α. For each l, Ql(α) is a
polynomial of degree l and defined in the following manner.

(1) Q0(α) ≡ 1, Q1(α) = nα.
(2) αQl(α) = λl+1Ql+1(α) + (1− λl−1)Ql−1(α) for l ≥ 1, where λl = l

n+2l−2 .

It is well known that hl = Ql(1) =
(
n+l−1

l

)− (
n+l−3

l−2

)
. The following theorem is also well

known (see Erdelyi et al. [11], [7]).

Theorem 2.3 (Addition formula). Let ϕl,1, . . . , ϕl,hl
be an orthonormal basis of

Harml(Rn). Then the following hold :

(1) If x, y ∈ Sn−1, then

hl∑

i=1

ϕl,i(x)ϕl,i(y) = Ql((x, y)),

where (x, y) =
∑n

i=1 xiyi.
(2) Let x and y be nonzero vectors in Rn. Then the following holds:

hl∑

i=1

ϕl,i(x)ϕl,i(y) = ‖x‖l‖y‖lQl

(
(x, y)
‖x‖‖y‖

)
.
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From Definition 2.2 it is easy to see that Gegenbauer polynomial Ql of degree l is of
the following form:

Ql(α) =
[ l
2 ]∑

j=0

γl, l−2jα
l−2j .

In the following, using the facts we explained above, we give some more properties
of Euclidean t-designs. Theorem 1.9 implies the following proposition.

Proposition 2.4. Let X be a Euclidean t-design with weight w. Then the follow-
ing (1) and (2) hold :

(1) Let λ be a positive real number and X ′ = {λu |u ∈ X}. Then X ′ is also a Euclidean
t-design with weight w′ defined by w′(u′) = w

(
1
λu′

)
, u′ ∈ X ′.

(2) Let µ be a positive real number and w′(u) = µw(u) for any u ∈ X. Then X is also
a Euclidean t-design with respect to the weight w′.

Proposition 2.5. Let X be a Euclidean 2e-design. Let M be the matrix indexed
by X ×H defined in (2.2). Then the following holds:

tM M = I.

Proof. Let us express gl,j by gl,j(x) =
∑j

k=0 αl,j,k‖x‖2k. Then the definition of
gl,j(x) implies

∑

v∈X

w(v)gl,j(v)ϕl,i(v)gl′,j′(v)ϕl′,i′(v)

=
∑

v∈X

w(v)
( j∑

k=0

αl,j,k‖v‖2k

)( j′∑

k′=0

αl′,j′,k′‖v‖2k′
)

ϕl,i(v)ϕl′,i′(v)

=
j∑

k=0

j′∑

k′=0

αl,j,kαl′,j′,k′
∑

v∈X

w(v)‖v‖2(k+k′)ϕl,i(v)ϕl′,i′(v)

=
j∑

k=0

j′∑

k′=0

αl,j,kαl′,j′,k′

∑
v∈X w(v)‖v‖2(k+k′)+l+l′

|Sn−1|
∫

ξ∈Sn−1
‖ξ‖2(k+k′)ϕl,i(ξ)ϕl′,i′(ξ)dξ

= δi,i′δl,l′

j∑

k=0

j′∑

k′=0

αl,j,kαl,j′,k′
∑

v∈X

w(v)‖v‖2(k+k′+l)

= δi,i′δl,l′
∑

v∈X

w(v)‖v‖2l

( j∑

k=0

αl,j,k‖v‖2k

)( j′∑

k′=0

αl,j′,k′‖v‖2k′
)

= δi,i′δl,l′
∑

v∈X

w(v)‖v‖2lgl,j(v)gl,j′(v) = δi,i′δl,l′δj,j′ . ¤
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Now we are ready to prove Lemma 1.10.

Proof of Lemma 1.10. By the assumption |X| = |H |. Hence M is a square
matrix. Therefore Proposition 2.5 implies M t = M−1 and M tM = I holds. Then for
nonzero vectors u, v ∈ X, (M tM)(u,v)√

w(u)w(v)
is given by

∑
1≤l≤e,

0≤j≤min{p−εS−1,[ e−l
2 ]},

1≤i≤hl

gl,j(u)gl,j(v)ϕl,i(u)ϕl,i(v) +
min{p−1,[ e

2 ]}∑

j=0

g0,j(u)g0,j(v)

=
∑

1≤l≤e,

0≤j≤min{p−εS−1,[ e−l
2 ]}

gl,j(u)gl,j(v)
∑

1≤i≤hl

ϕl,i(u)ϕl,i(v) +
min{p−1,[ e

2 ]}∑

j=0

g0,j(u)g0,j(v)

=
∑

1≤l≤e,

0≤j≤min{p−εS−1,[ e−l
2 ]}

‖u‖l‖v‖lgl,j(u)gl,j(v)Ql

(
(u, v)
‖u‖ ‖v‖

)
+

min{p−1,[ e
2 ]}∑

j=0

g0,j(u)g0,j(v).

Hence if u = v we have

∑
1≤l≤e,

0≤j≤min{p−εS−1,[ e−l
2 ]}

‖u‖2lgl,j(u)2Ql(1) +
min{p−1,[ e

2 ]}∑

j=0

g0,j(u)2 =
1

w(u)
, (2.3)

and if u 6= v, then we have

∑
1≤l≤e,

0≤j≤min{p−εS−1,[ e−l
2 ]}

‖u‖l‖v‖lgl,j(u)gl,j(v)Ql

(
(u, v)
‖u‖ ‖v‖

)
+

min{p−1,[ e
2 ]}∑

j=0

g0,j(u)g0,j(v) = 0.

(2.4)

The left hand side of the equation (2.3) is a polynomial of ‖u‖2 which does not depend
on the weight of each point. Therefore we have Lemma 1.10 (1). In the equation (2.4), if
we let u, v ∈ Xi, then ‖u‖ = ‖v‖ = ri and the left hand side is a polynomial of the inner
product (u, v) of degree at most e. This means that Xi is an at most e-distance set. As
for the proof of (3), if w is constant on X\{0}, then {ri

2 | ri > 0} are roots of the same
equation (2.3) of degree at most e. Since p − εS = |{ri

2 | ri > 0}|, this implies (3) and
completes the proof of Lemma 1.10. ¤

3. Euclidean tight 4-design.

In this section we consider a Euclidean tight 4-design X ⊂ Rn whose weight is
constant on X\{0}. As we mentioned in section 1 we have either (1) or (2) of the
following:
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(1) 0 6∈ X and X is on 2 concentric spheres.
(2) 0 ∈ X and X\{0} is a spherical tight 4-design.

Case (2) above is essentially a problem of spherical tight 4-designs. In the following we
consider the case (1).

Now we assume 0 6∈ X and X is on 2 concentric spheres. Let N =
(
n+2

2

)
and

Ni = |Xi|. We may assume N1 ≥ N2. Then N1 ≥ N
2 = (n+2)(n+1)

4 . By Proposition 2.4
we may assume r1 = 1 and w = 1. Let r2 = r. Then the constants ai =

∑
x∈X w(x)‖x‖2i

we defined in section 2 are given by

ai = N1 + (N −N1)r2i.

In particular a0 = N . Then the equation (2.3) corresponding to a point u ∈ X1 (resp.
u ∈ X2) implies the following (3.1) (resp. (3.2)). Also, the equation (2.4) corresponding
to two distinct points u, v ∈ X1 (resp. u, v ∈ X2) implies the following (3.3) (resp. (3.4)).

1
a0

+
(a0 − a1)2

a0(a0a2 − a1
2)

+
n

a1
+

(n + 2)(n− 1)
2a2

= 1. (3.1)

1
a0

+
(a0r

2 − a1)2

a0(a0a2 − a1
2)

+
nr2

a1
+

(n + 2)(n− 1)r4

2a2
= 1. (3.2)

1
a0

+
(a0 − a1)2

a0(a0a2 − a1
2)

+
n(u, v)

a1
+

n(n + 2)
2a2

(
(u, v)2 − 1

n

)
= 0 (3.3)

for any u 6= v with ‖u‖ = ‖v‖ = 1.

1
a0

+
(a0r

2 − a1)2

a0(a0a2 − a1
2)

+
n(u, v)

a1
+

n(n + 2)
2a2

(
(u, v)2 − 1

n
r4

)
= 0 (3.4)

for any u 6= v with ‖u‖ = ‖v‖ = r.

Let us denote R = r2 and substitute a0 = N = (n+2)(n+1)
2 , a1 = N1 + (N −N1)R,

a2 = N1 + (N − N1)R2, in equations (3.1) through (3.4) given above. Then (3.1) and
(3.2) give the same equation

F (n,N1, R) = 0, (3.5)

where F (n, x, T ) is a polynomial defined by

F (n, x, T ) = 4T 3(x− 1)(N − x)2 + 4T 2x(x− n− 1)(N − x)

+ 2Tx(2x− n(n + 1))(N − x) + 4x2(x−N + 1). (3.6)

Let A = ‖u − v‖2 for u, v ∈ X1 and B = ‖u − v‖2 for u, v ∈ X2. Then the equation
(3.3) is equivalent to
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(n + 2)nN1(N1 + R(N −N1))A2

− 4N1n
(
(N −N1)R2 + (n + 2)(N −N1)R + N1(n + 3)

)
A

+ 8(N −N1)2R3 + 8N1(n + 1)(N −N1)R2

+ 4N1n(n + 1)(N −N1)R + 4nN2
1 (n + 3) = 0. (3.7)

Similarly, the equation (3.4) is equivalent to

n(n + 2)(N −N1)(N1 + R(N −N1))B2

− 4n(N −N1)
(
(n + 3)(N −N1)R2 + (n + 2)N1R + N1

)
B

+ 4n(n + 3)(N −N1)2R3 + 4N1n(n + 1)(N −N1)R2

+ 8N1(n + 1)(N −N1)R + 8N2
1 = 0. (3.8)

Equations (3.7) and (3.8) are the special cases of the equation (2.4) in the proof of Lemma
1.10. Thus, as we proved in Lemma 1.10, X1 and X2 are at most 2-distance sets. In
the following using the equations (3.5), (3.6), (3.7), (3.8) we prove that the case (1) we
explained at the beginning of this section does not occur.

First we investigate the zeros of the polynomial F (n, x, T ) defined in (3.6).

Proposition 3.1. Let n ≥ 2. Then the following hold :

(1) F (n,N − 1, T ) > 0 for any T > 0.
(2) F

(
n, N

2 , T
) 6= 0 for any T > 0, satisfying T 6= 1.

(3) Let N
2 < x < N . Then F (n, x, T ) > 0 for any T ≥ 1.

(4) Let N
2 < x ≤ N − (n + 1). Then the following hold :

(a) F (n, x, T ) = 0, T ≥ 0 has exactly one solution T = T (n, x) and it is in the
interval (0, 1).

(b) ∂F (n,x,T )
∂T > 0 for T ≥ 1− 1

2n .

(c) ∂F (n,x,T )
∂x > 0 for any T satisfying 1− 1

2n ≤ T < 1.
(d) F

(
n, x, 1− 1

2n

)
< 0 < F (n, x, 1).

Proposition 3.1 immediately implies the next corollary.

Corollary 3.2.

(1) N
2 < N1 < N − 1 and the radius r of S2 satisfies r < 1.

(2) Moreover if N
2 < N1 ≤ N − (n + 1), then 1− 1

2n < R < 1 holds.

Proof of Proposition 3.1.

(1) For any T > 0, we have

F (n,N − 1, T ) = 2T 3(n2 + 3n− 2) + T 2n(n + 3)(n2 + n− 2)

+ 2Tn2(n + 3) > 0.
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(2) F

(
n,

N

2
, T

)
= −1

2
N2(1− T )

(
(N − 2)T 2 + T (n + 2)(n− 1) + N − 2

) 6= 0

(3) For any T 6= 1, we have

∂F (n, x, T )
∂T

= 12T 2(x− 1)(N − x)2 + 8Tx(x− n− 1)(N − x)

+ 2x(2x− n(n + 1))(N − x).

For T ≥ 1, we have

∂F (n, x, T )
∂T

≥ 12(x− 1)(N − x)2 + 8x(x− n− 1)(N − x)

+ 2x(2x− n(n + 1))(N − x)

= 4(N − x)
(
(n2 + 2n + 4)x− 3N

)

≥ 2N(N − x)(n2 + 2n− 2) > 0.

On the other hand

F (n, x, 1) = 4N(2x−N) > 0.

Therefore F (n, x, T ) > 0, for any x, T satisfying T ≥ 1 and N
2 < x < N .

(4) (a) We have

∂2F (n, x, T )
∂T 2

= 24(x− 1)(N − x)2T + 8x(x− n− 1)(N − x).

Since N > n(n+1)
2 ≥ x > N

2 ≥ n + 1, we have

∂2F (n, x, T )
∂T 2

> 0,

for any T ≥ 0. Therefore ∂F (n,x,T )
∂T is strictly increasing for T ≥ 0 as a function of T .

Moreover

∂F (n, x, T )
∂T

∣∣∣∣
T=0

= 2x(2x− n(n + 1))(N − x) ≤ 0,

∂F (n, x, T )
∂T

∣∣∣∣
T=1

= 4(x(n2 + 2n + 4)− 3N)(N − x) > 0,

F (n, x, 0) < 0 and F (n, x, 1) > 0 hold. Hence F (n, x, T ) = 0 has exactly one solution
and the solution is in (0, 1).
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(b) We have

∂F (n, x, T )
∂T

∣∣∣∣
T=1− 1

2n

=
(N − x)

2n2

(
(16n− 6)x2 + (n− 1)(8n3 + 12n2 + 19n− 12)x− 6N(2n− 1)2

)
. (3.9)

In equation (3.9), we have

(16n− 6)x2 + (n− 1)(8n3 + 12n2 + 19n− 12)x− 6N(2n− 1)2

>
(
(8n− 3)N + (n− 1)(8n3 + 12n2 + 19n− 12)

)N

2
− 6N(2n− 1)2

=
1
4
N(16n4 + 16n3 − 61n2 + 41n− 6) > 0. (3.10)

Hence we have

∂F (n, x, T )
∂T

∣∣∣∣
T=1− 1

2n

> 0

and therefore ∂F (n,x,T )
∂T > 0 holds for any T ≥ 1− 1

2n .
(c) We have the following inequalities:

∂3F (n, x, T )
∂x3

= 24(1 + T )(1− T )2 > 0, (3.11)

∂2F (n, x, T )
∂x2

∣∣∣∣
x= N

2

= 4(1− T )
(
(N + 2)T 2 + (n2 + n + 2)T + N + 2

)
> 0. (3.12)

Then (3.11) and (3.12) imply that ∂2F (n,x,T )
∂x2 > 0 holds for any x ≥ N

2 . Next, we have

∂F (n, x, T )
∂x

∣∣∣∣
x= N

2

= (T + 1)N
(− (N − 4)T 2 + 2(N − 2)T − (N − 4)

)
.

Then we have

∂

∂T

(− (N − 4)T 2 + 2(N − 2)T − (N − 4)
)

= −2(N − 4)T + 2(N − 2) > 4 (3.13)

for any 0 < T < 1, and also

(− (N − 4)T 2 + 2(N − 2)T − (N − 4)
)∣∣

T=1− 1
2n

=
1

8n2
(31n2 − 19n + 6) > 0.
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Hence we obtain ∂F (n,x,T )
∂x

∣∣
x= N

2
> 0 for any T ≥ 1− 1

2n . This implies (c).
(d) We have already seen that F (n, x, 1) > 0 holds. Also we have

F

(
n, x, 1− 1

2n

)
=

1
8n3

{
4(4n− 1)x3 + x

(
4x(4n4 + 3n3 + 4n2 − 11n + 3)

− 2(2n− 1)N(4n3 − 9n2 + 17n− 6)
)− 4N2(2n− 1)3

}
.

(3.14)

By (4) (c) proved above, F (n, x, 1 − 1
2n ) is increasing as a function of x for N

2 < x ≤
n(n+1)

2 . Since

F

(
n,

n(n + 1)
2

, 1− 1
2n

)
= − (n + 1)2(7n4 + 15n3 − 27n2 + 13n− 2)

4n3
< 0,

F (n, x, 1− 1
2n ) < 0 holds for any x with N

2 < x ≤ n(n+1)
2 . ¤

Next we prove the following proposition.

Proposition 3.3. If n(n+1)
2 + 1 ≤ N1 < n(n+3)

2 , and 0 < R < 1, then the
discriminant DB of the quadratic equation (3.8) with respect to B is negative.

Corollary 3.4. N
2 < N1 ≤ n(n+1)

2 .

Proof. Proposition 3.1 implies N
2 < N1 < N − 1 and 0 < R < 1. ¤

Proof of Proposition 3.3.

The discriminant DB of the equation (3.8) is given by

−16n(N −N1)
(
d4R

4 + d3R
3 + d2R

2 + d1R + d0

)

where

d4 = −n(n + 3)(N −N1)3, d1 = 4N1
2(n + 2)(N −N1),

d3 = −2nN1(n + 2)(N −N1)2, d0 = N1
2((3n + 4)N1 −Nn),

d2 = −N1((n2 + 2n + 4)N1 − 4N)(N −N1).

Since N1 ≥ n(n+1)
2 + 1 > N

2 , we have

d0 > N2
1

(
(3n + 4)

N

2
− nN

)
> 0.

Hence d1, d0 > 0 and d2, d3, d4 < 0 hold. Since 0 < R < 1 and n(n+1)
2 + 1 ≤ N1 < N , we

have
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d4R
4 + d3R

3 + d2R
2 + d1R + d0 > (d4 + d3 + d2 + d1 + d0)R2

= N2
(
(n + 1)(n + 4)N1 − n(n + 3)N

)
R2 ≥ 4N2(n + 1)R2 > 0.

This implies DB < 0. ¤

Corollary 3.2 (2) and Corollary 3.4 imply the following lemma.

Lemma 3.5. N1 and R satisfy the following inequalities:

N

2
< N1 ≤ n(n + 1)

2
and 1− 1

2n
< R2 < 1.

It is known that the cardinality of a 1-distance set in Rn is bounded above by n + 1
(see [7]). Since n ≥ 2 by assumption, X1 must be a 2-distance set. Also, if n ≥ 7, then
|X1| ≥ N

2 + 1 > 2n + 3 holds. Hence X1 satisfies the condition of Theorem 1.11. In the
following we apply Theorem 1.11 to X1.

The solutions of (3.7) are given by

GA,1(n,N1, R)±√
GA,2(n,N1, R)

GA,3(n,N1, R)
,

where GA,1(n, x, T ), GA,2(n, x, T ), GA,3(n, x, T ) are polynomials in n, x, T defined by

GA,1(n, x, T ) = 2nx
(
(N − x)T 2 + (n + 2)(N − x)T + x(n + 3)

)
, (3.15)

GA,2(n, x, T ) = 4nx(N − x)2(3nx + 4x− 4N − 2nN)T 4 − 16nx2(N − x)2(n + 2)T 3

− 4nx2(N − x)
(
(n2 + 2n + 4)x− (n2 + 2n)N

)
T 2

+ 8n2x3(n + 2)(N − x)T + 4n2x4(n + 3), (3.16)

and

GA,3(n, x, T ) = nx(n + 2)((N − x)T + x).

Remark 7. GA,3(n, x, T ) > 0 for any positive numbers n, x, T satisfying 0 < x ≤
N .

Proposition 3.6. GA,2(n, x, T ) > 0 holds for any any positive numbers n, x, T

satisfying N
2 ≤ x ≤ N and 0 < T < 1.

Proof. Since 0 < T < 1, we have

GA,2(n, x, T ) > 4nx(N − x)2(3nx + 4x− 4N − 2nN)T 4 − 16nx2(N − x)2(n + 2)T 3

− 4nx2(N − x)
(
(n2 + 2n + 4)x− (n2 + 2n)N

)
T 2

+ 8n2x3(n + 2)(N − x)T 2 + 4n2x4(n + 3)T 2
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= 4nxN2

((
x− N

2

)
(n + 4)(n + 1) +

N

2
(n2 + n− 4)

)
T 4

+ nx2

(
4(3n + 4)(N − x)

(
x− N

2

)
+ 2(7n + 12)N

(
x− N

2

)

+ (4n2 + 5n− 12)N2

)
(T 3 − T 4)

+ 4nx2
(
(n + 4)(N − x)2 + 2(n + 2)Nx + (n2 + n− 4)N2

)
(T 2 − T 3)

> 0. ¤

Let kA(n, x, T ) be a function defined by,

GA,1(n, x, T )−√
GA,2(n, x, T )

GA,1(n, x, T ) +
√

GA,2(n, x, T )
=

kA(n, x, T )− 1
kA(n, x, T )

.

Our X1 is a 2-distance set, and

GA,1(n,N1, R)−√
GA,2(n,N1, R)

GA,1(n,N1, R) +
√

GA,2(n,N1, R)

gives the ratio of the squares of the two distances of X1. Then we have

(2kA(n, x, T )− 1)2 =
GA,1(n, x, T )2

GA,2(n, x, T )
.

Let

GA(n, x, T ) =
GA,1(n, x, T )2

GA,2(n, x, T )
. (3.17)

Since N1 > 2n + 3 for n ≥ 7, Theorem 1.11 implies that kA(n,N1, R) is a natural
number and GA(n,N1, R) is the square of a positive odd integer 2kA(n,N1, R) − 1 for
any n ≥ 7.

In the following we study the function GA(n, x, T ) under the condition F (n, x, T ) =
0.

Proposition 3.7. For any n, x and T satisfying N
2 ≤ x ≤ n(n+1)

2 and 0 < T < 1
the following assertions hold :

(1)
∂GA(n, x, T )

∂T
> 0.

(2)
∂GA(n, x, T )

∂x
< 0.
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Proof.

∂GA(n, x, T )
∂T

=
−16n2(n + 2)x2(N − x)TGA,1(n, x, T )GA,4(n, x, T )

GA,2(n, x, T )2
,

where

GA,4(n, x, T ) = (3x− 2N)(N − x)2(n + 2)T 3

+ x(N − x)
(
9(n + 2)x− (7n + 16)N

)
T 2

− 9x2(n + 2)(N − x)T − x2(3(n + 2)x− nN).

Since N
2 ≤ x ≤ n(n+1)

2 and 0 < T < 1, we obtain

GA,4(n, x, T ) = − N

2
(N − x)2(n + 2)T 3 + 3

(
x− N

2

)
(N − x)2(n + 2)T 3

+ x(N − x)(9(n + 2)x− (7n + 16)N)T 2

− 9x2(n + 2)(N − x)T − x2(3(n + 2)x− nN)

< − N

2
(N − x)2(n + 2)T 3 + 3

(
x− N

2

)
(N − x)2(n + 2)T 2

+ x(N − x)(9(n + 2)x− (7n + 16)N)T 2

− 9x2(n + 2)(N − x)T 2 − x2(3(n + 2)x− nN)T 2

= − N

2
(N − x)2(n + 2)T 3 − N

2
(
(n + 2)(3N2 − x2) + 2(n + 4)Nx

)
T 2

< 0.

Clearly GA,1(n, x, T ) > 0 (see equation (3.15)). Hence we have ∂GA(n,x,T )
∂T > 0.

(2) We have

∂GA(n, x, T )
∂x

=
16n2(n + 2)NxGA,1(n, x, T )GA,5(n, x, T )T 2

GA,2(n, x, T )2
,

where GA,5(n, x, T ) is given by

GA,5(n, x, T ) = − (N − x)3
(
T 4 + (n + 2)T 3

)

+ x(10x + 4nx− 3(n + 3)N)(N − x)T 2

− 5x2(n + 2)(N − x)T + x2(nN − (2n + 3)x).

Since nN − (2n + 3)x < 0, we have
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GA,5(n, x, T ) < − (N − x)3
(
T 4 + (n + 2)T 3

)
+ x(10x + 4nx− 3(n + 3)N)(N − x)T 2

− 5x2(n + 2)(N − x)T 2 + x2(nN − (2n + 3)x)T 2

= − (N − x)3T 4 − (n + 2)(N − x)3T 3 − (n + 3)x
(
x2 + 3N(N − x)

)
T 2

< 0.

This completes the proof of (2). ¤

Proposition 3.8. Let n ≥ 2 and T = T (n, x) be the function defined implicitly
by the equation F (n, x, T ) = 0 and 0 < T < 1. Then GA(n, x, T (n, x)) is a function
of n and x. Moreover we have the following inequalities for any n and x satisfying
N
2 < x ≤ n(n+1)

2 :

(1)
∂T (n, x)

∂x
< 0.

(2)
∂GA(n, x, T (n, x))

∂x
< 0.

Proof. (1) By the definition of T (n, x), we have

∂F (n, x, T )
∂T

∂T (n, x)
∂x

+
∂F (n, x, T )

∂x
= 0.

Hence we have

∂T (n, x)
∂x

= −∂F (n, x, T )
∂x

/
∂F (n, x, T )

∂T
.

Proposition 3.1 (4)(b) implies that ∂F (n,x,T )
∂T > 0 for any n, x, T satisfying 1− 1

2n < T < 1
and N

2 < x ≤ n(n+1)
2 . Proposition 3.1 (4)(d) implies that 1 − 1

2n < T (n, x) < 1 for any
n, x satisfying N

2 < x ≤ n(n+1)
2 . Proposition 3.1 (4)(c) implies that ∂F (n,x,T )

∂x > 0 holds
for any n, x, T satisfying N

2 < x ≤ n(n+1)
2 and 1− 1

2n < T < 1. Hence we have (1).
(2) We have

∂GA(n, x, T (n, x))
∂x

=
∂GA(n, x, T )

∂x
+

∂GA(n, x, T )
∂T

∂T (n, x)
∂x

.

(1) and Proposition 3.7 imply (2). ¤

Proposition 3.8 implies that both T (n, x) and GA(n, x, T (n, x)) decrease as x in-
creases for N

2 < x ≤ n(n+1)
2 . Next we estimate the value of GA(n, x, T (n, x)).

Proposition 3.9. Let n ≥ 7. Then the following inequalities hold :

(1) n + 6 > GA

(
n, N

2 + 1, T
(
n, N

2 + 1
))

.

(2) n + 3 < GA

(
n, n(n+1)

2 , T
(
n, n(n+1)

2

))
.
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(3) GA

(
n, n(n+4)

3 , T
(
n, n(n+4)

3

))
> n + 4 > GA

(
n, n(n+4)

3 + 1, T
(
n, n(n+4)

3 + 1
))

,

(4) GA

(
n, n(n+5)

4 , T
(
n, n(n+5)

4

))
> n + 5 > GA

(
n, n(n+5)

4 + 1, T
(
n, n(n+5)

4 + 1
))

.

Proof. (1) Let 1 > T > 0. We have

n + 6−GA

(
n,

N

2
+ 1, T

)
= −n(N + 2)

4
P1(n, T )

GA,2

(
n, N

2 + 1, T
) , (3.18)

where

P1(n, T ) = (N − 2)2
(
(n2 + 11n + 12)N − 24n− 36

)
T 4

+ 6(N + 2)(N − 2)2(n + 4)(n + 2)T 3

− 2(N − 2)(N + 2)
(
(n2 − n− 24)N − 12

)
T 2

− 6n(N − 2)(N + 2)2(n + 2)T − 3n(N + 2)3(n + 3).

Since 0 < T < 1 and n ≥ 7, we have

P1(n, T ) < (N − 2)2
(
(n2 + 11n + 12)N − 24n− 36

)
T 2

+ 6(N + 2)(N − 2)2(n + 4)(n + 2)T 2

− 2(N − 2)(N + 2)
(
(n2 − n− 24)N − 12

)
T 2

− 6n(N − 2)(N + 2)2(n + 2)T 2 − 3n(N + 2)3(n + 3)T 2

= − 2(n4 − 4n3 − 23n2 + 14n + 48)N2T 2 < 0.

Then Proposition 3.6 and (3.18) imply

GA

(
n,

N

2
+ 1, T

)
< n + 6

for any T satisfying 0 < T < 1. In particular (see Proposition 3.1 (4)(d))

GA

(
n,

N

2
+ 1, T

(
n,

N

2
+ 1

))
< n + 6.

(2)

GA

(
n,

n(n + 1)
2

, 1− 1
2n

)

= n + 3 +
(4n4 + 20n3 + 16n2 − 25n + 6)(n + 2)2(2n− 1)2

(4n9 + 28n8 + 40n7 − 80n6 − 124n5 + 168n4 + 64n3 − 143n2 + 60n− 8)
.

Hence we have
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GA

(
n,

n(n + 1)
2

, 1− 1
2n

)
> n + 3.

Proposition 3.1 (4) impleis T (n, n(n+1)
2 ) > 1− 1

2n . Therefore Proposition 3.7 (1) implies

GA

(
n,

n(n + 1)
2

, T

(
n,

n(n + 1)
2

))
> n + 3.

(3) First we estimate T (n, x) for x = n(n+4)
3 , n(n+4)

3 + 1. If n = 7, then n(n+4)
3 = 77

3 and
1− 2

n2 = 1− 2
72 < 96

100 . We also have the following equations:

F

(
7,

77
3

,
96
100

)
= −158936656

421875
, F

(
7,

77
3

,
97
100

)
=

95460979
375000

.

Hence Proposition 3.1 and Proposition 3.7 imply the following inequalities:

1− 2
72

<
96
100

< T

(
7,

77
3

)
<

97
100

< 1. (3.19)

If n ≥ 8, then we have

F

(
n,

n(n + 4)
3

+ 1, 1− 2
n2

)
= − (n + 1)2(3n5 − 12n4 − 62n3 − 44n2 − 16n + 32)

27n3
< 0.

Therefore we have

1− 2
n2

< T

(
n,

n(n + 4)
3

+ 1
)

< T

(
n,

n(n + 4)
3

)
< 1. (3.20)

(i) First we will show that GA

(
n, n(n+4)

3 , T
(
n, n(n+4)

3

))
> n + 4 holds. We have

GA

(
n,

n(n + 4)
3

, T

)
− (n + 4) =

2n2(n + 4)2

81
P2(n, T )

GA,2

(
n, n(n+4)

3 , T
) , (3.21)

where

P2(n, T ) = 2(2n + 3)(n2 + n + 6)2T 4 + n(3n + 8)(2 + n)(n2 + n + 6)2T 3

+ n2(n2 + n + 6)(n3 + 15n2 + 48n + 52)T 2

− 2n3(n + 4)(2 + n)(n2 + n + 6)T − 2n4(3 + n)(n + 4)2.

If n ≥ 7 and 1− 2
n2 < T < 1, then we have
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P2(n, T ) > 2(2n + 3)(n2 + n + 6)2
(

1− 2
n2

)4

+ n(3n + 8)(2 + n)(n2 + n + 6)2
(

1− 2
n2

)3

+ n2(n2 + n + 6)(n3 + 15n2 + 48n + 52)
(

1− 2
n2

)2

− 2n3(n + 4)(2 + n)(n2 + n + 6)− 2n4(3 + n)(n + 4)2

=
2
n8

(
7n13 + 43n12 + 13n11 − 467n10 − 1320n9 − 1140n8 + 1364n7

+ 4224n6 + 3120n5 − 2096n4 − 5248n3 − 2448n2 + 1728n + 1728
)

> 0.

Therefore Proposition 3.6, (3.19), (3.20) and (3.21) imply

GA

(
n,

n(n + 4)
3

, T

(
n,

n(n + 4)
3

))
> n + 4.

(ii) Next we will prove GA

(
n, n(n+4)

3 + 1, T
)

< n + 4 for any T with 0 < T < 1.

GA

(
n,

n(n + 4)
3

+ 1, T

)
− (n + 4) = −n2(n + 3)(n + 1)4P3(n, T )

81GA,2

(
n, n(n+4)

3 + 1, T
) , (3.22)

where

P3(n, T ) = n2T 4 − 2n(n + 3)(n + 2)(3n + 8)T 3

− 2(n + 3)(n3 + 14n2 + 46n + 48)T 2 + 4n(n + 2)(n + 3)2T + 4(n + 3)4.

Since 0 < T < 1, we have

P3(n, T ) > n2T 4 − 2n(n + 3)(n + 2)(3n + 8)T 2 − 2(n + 3)(n3 + 14n2 + 46n + 48)T 2

+ 4n(n + 2)(n + 3)2T 2 + 4(n + 3)4T 2

= n2T 4 + 4(n + 3)(2n + 3)T 2 > 0.

Therefore Proposition 3.6 and (3.22) imply GA

(
n, n(n+4)

3 + 1, T
(
n, n(n+4)

3 + 1
))

< n + 4.
(4) (i) First we will estimate the lower bound of T

(
n, n(n+5)

4 + 1
)
. By Proposition 3.1

(4) (b), F
(
n, n(n+5)

4 + 1, T
)

is increasing for T ≥ 1− 1
2n as a function of T . Therefore

F

(
n,

n(n + 5)
4

+ 1, 1− 1
n2

)
= − 1

16n3
(4n5 − 8n4 − 44n3 − 4n2 − 3n + 5)(n + 1)2 < 0

and F
(
n, n(n+5)

4 + 1, T
)

= 0 imply T > 1− 1
n2 . Hence T

(
n, n(n+5)

4 + 1
)

> 1− 1
n2 holds.

By Proposition 3.8, T (n, x) is decreasing as a function of x. Hence we have
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T

(
n,

n(n + 5)
4

)
> T

(
n,

n(n + 5)
4

+ 1
)

> 1− 1
n2

. (3.23)

(ii) Next we will prove GA

(
n, n(n+5)

4 , T
(
n, n(n+5)

4

))
> n + 5.

GA

(
n,

n(n + 5)
4

, T

)
− (n + 5) =

n2(n + 5)2

64
P4(n, T )

GA,2

(
n, n(n+5)

4 , T
) , (3.24)

where

P4(n, T ) = (n3 + 2n2 + 12n + 16)(n2 + n + 4)2T 4

+ 2n(3n + 10)(n + 2)(n2 + n + 4)2T 3

− n2(n2 + n + 4)(n3 − 11n2 − 52n− 76)T 2

− 4(n + 5)n3(n + 2)(n2 + n + 4)T − 2n4(n + 3)(n + 5)2.

For T with 1 > T > 1− 1
n2 , we have

P4(n, T ) > (n3 + 2n2 + 12n + 16)(n2 + n + 4)2
(

1− 1
n2

)4

+ 2n(3n + 10)(n + 2)(n2 + n + 4)2
(

1− 1
n2

)3

+ n2(n2 + n + 4)(11n2 + 52n + 76)
(

1− 1
n2

)2

− n5(n2 + n + 4)

− 4(n + 5)n3(n + 2)(n2 + n + 4)− 2n4(n + 3)(n + 5)2

=
1
n8

(26n13 + 182n12 + 332n11 − 281n10 − 1755n9 − 2180n8 − 5n7

+ 2732n6 + 2465n5 − 318n4 − 1748n3 − 752n2 + 320n + 256) > 0.

Hence Proposition 3.6 and (3.24) imply

GA

(
n,

n(n + 5)
4

, T

(
n,

n(n + 5)
4

))
> n + 5.

(iii) Next we will prove GA

(
n, n(n+5)

4 + 1, T
(
n, n(n+5)

4 + 1
))

< n + 5.

GA

(
n,

n(n + 5)
4

+ 1, T

)
− (n + 5) =

n2(n + 4)(n + 1)4P5(n, T )

64GA,2

(
n, n(n+5)

4 + 1, T
) , (3.25)

where
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P5(n, T ) = n2(n2 + 6n + 4)T 4 + 2n(3n + 10)(n + 4)(n + 2)T 3

− (n + 4)(n3 − 12n2 − 60n− 80)T 2

− 4n(n + 2)(n + 4)2T − 2(n + 3)(n + 4)3.

For any T with 1 > T > 0, we have

P5(n, T ) < n2(n2 + 6n + 4)T 2 + 2n(3n + 10)(n + 4)(n + 2)T 2

− (n + 4)(n3 − 12n2 − 60n− 80)T 2

− 4n(n + 2)(n + 4)2T 2 − 2(n + 3)(n + 4)3T 2

= − 16(n + 2)2T 2 < 0.

Hence Proposition 3.6 and (3.25) imply

GA

(
n,

n(n + 5)
4

+ 1, T

(
n,

n(n + 5)
4

+ 1
))

< n + 5. ¤

Proof of Theorem 1.8. Let X be a Euclidean tight 4-design whose weight is
constant on X\{0}. Assume that the case (1) given at the beginning of this section
holds. Then by Lemma 3.5 we have N

2 < N1 ≤ n(n+1)
2 and X1 is a 2-distance set. Let

α and β be the two distances of X1. Assume α < β. We have N1 > N
2 > 2n + 3 for

any n ≥ 7. Hence if n ≥ 7, then there exists a natural number k satisfying
(

α
β

)2 =
k−1

k . Let R = ‖u‖2, u ∈ X2. Then GA(n,N1, R) = (2k − 1)2. By Proposition 3.9,
n + 3 < GA(n, x, T (n, x)) < n + 6 holds for any real number x satisfying N

2 + 1 ≤
x ≤ n(n+1)

2 and GA(n, x, T (n, x)) = n + 4 for some real number x in the open interval(n(n+4)
3 , (n(n+4))

3 + 1
)

and GA(n, x, T (n, x)) = n + 5 for some real number x in the open
interval

(n(n+5)
4 , n(n+5)

4 + 1
)
. Hence we have either (1) or (2) of the following:

(1) (2k − 1)2 = n + 4, and N1 ∈
(n(n+4)

3 , n(n+4)
3 + 1

)
.

(2) (2k − 1)2 = n + 5, and N1 ∈
(n(n+5)

4 , n(n+5)
4 + 1

)
.

Assume (1) holds. Then n = (2k+1)(2k−3) and n(n+4)
3 = 1

3 (2k+1)(2k−3)(2k−1)2.
Hence n(n+4)

3 is an integer. This contradicts N1 ∈
(n(n+4)

3 , n(n+4)
3 + 1

)
.

Similarly assume (2) holds. Then n = 4(k2 − k − 1). Hence n(n+5)
4 is an integer.

This contradicts N1 ∈
(n(n+5)

4 , n(n+5)
4 + 1

)
.

In the proof of Proposition 3.9 we need the condition n ≥ 7. Therefore if n ≥ 7, then
the proof of our main theorem is completed. We can prove the nonexistence of a Euclidean
tight 4-design satisfying the condition of case (1) for n ≤ 6 by direct calculations. In the
following we discuss the cases 2 ≤ n ≤ 6 and give a table of possible distances between
the distinct points in X1 and X2. We use one more notation. For a finite subset Y in
Rn we define
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A(Y ) = {‖u− v‖ |u,v ∈ Y,u 6= v}.

Case n = 2.
In this case N = 6 and n(n+1)

2 = 3 = N
2 . Hence Lemma 3.5 implies that there is no tight

4-design with constant weight on 2 concentric spheres in R2.

Case n = 3.
In this case N = 10 and n(n+1)

2 = 6. Therefore the only possibility is N1 = 6, N2 = 4.
Then X1 is a 2-distance set. We have F (3, 6, R) = 320R3 + 192R2 − 432. Substitute
n = 3, N1 = 6 in the equation (3.8) we obtain

8
(

B − 8R

3

)(
(30R + 45)B − 4(16R2 + 15R + 9)

)− 2
3
F (3, 6, R) = 0.

On the other hand, lengths of the edges of a regular tetrahedron on the sphere of radius
r =

√
R are

√
8R
3 . Therefore X2 is either a regular tetrahedron on S2, or X2 is a

2-distance set with A(X2) =
{√

8R
3 , 2

√
16R2+15R+9

30R+45

}
.

Case n = 4.
In this case we have N = 15, n(n+1)

2 = 10. Therefore the remaining case is N1 = 8, 9, 10.
In these cases X1 is a 2-distance set. If N1 = 10, then N2 = 5. We have F (4, 10, R) =
900R3 + 1000R2 − 1600 and the equation (3.8) implies

(3R + 6)
(

B − 5R

2

)(
B − 13R2 + 18R + 8

6(R + 2)

)
− 1

400
F (4, 10, R) = 0.

On the other hand, the length of the edges of a regular simplex on the sphere of ra-
dius r =

√
R equals

√
5R
2 . Therefore X2 is either a regular simplex or a 2-distance set with

A(X2) =
{√

5R
2 ,

√
13R2+18R+8

6(R+2)

}
. If N1 = 8 or 9, then X2 is a 2-distance set.

Case n = 5.
In this case N = 21 and n(n+1)

2 = 15. Hence remaining cases are N1 = 11, 12, 13, 14, 15.
Since 2n + 3 = 13, we can apply the Theorem by Larman-Rogers-Seidel for the case
N1 ≥ 14. We have

8−GA(5, x, T )

= −2940T 2x(21− x)
GA,2(5, x, T )

(
(16− x)(21− x)T 2 + 2(21− x)xT + x(x− 5)

)
. (3.26)

Since GA,2(5, x, T ) > 0 by Proposition 3.6 we have GA(5, x, T ) > 8 for any 0 < T < 1.
In particular GA(5, N1, R) > 8. Next, we have

11−GA(5, x, T ) =
120x

GA,2(5, x, T )
P6(x, T ),

where
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P6(x, T ) = (34x− 539)(x− 21)2T 4 − 63x(x− 21)2T 3

− 2x(22x− 245)(21− x)T 2 + 35x2(21− x)T + 20x3.

Since 34x− 539 < 0 and 0 < T < 1, we have

P6(x, T ) > (34x− 539)(x− 21)2T 2 − 63x(x− 21)2T 2

− 2x(22x− 245)(21− x)T 2 + 35x2(21− x)T 2 + 20x3T 2

= 147T 2(137x− 1617) > 0.

Hence Proposition 3.6 implies 11 − GA(5, x, T ) > 0 for any 0 < T < 1. Therefore
GA(5, N1, R) = 9 or 10. On the other hand GA(5, N1, R) has to be the square of an odd
integer. Hence we have GA(5, N1, R) = 9. We have

9−GA(5, x, T ) =
40x

GA,2(5, x, T )
P7(x, T ),

where

P7(x, T ) = (83x− 1323)(x− 21)2T 4 − 161x(x− 21)2T 3

+ 3x(31x− 245)(x− 21)T 2 − 35x2(x− 21)T + 20x3.

Since Lemma 3.5 implies 9
10 < R < 1, we obtain

P7(14, R) = −343
(
23R4 + 322R3 + 162R2 − 140R− 160

)

< −343
(

23
(

9
10

)4

+ 322
(

9
10

)3

+ 162
(

9
10

)2

− 140− 160
)

= −277995669
10000

< 0.

Therefore G(5, 14, R) = 9 is impossible. Similarly 9
10 < R < 1 implies

P7(15, R) = −54
(

52
(

R− 9
10

)4

+
8986

5

(
R− 9

10

)3

+
142493

25

(
R− 9

10

)2

+
1292233

250

(
R− 9

10

)
+

38317
625

)
< 0.

Therefore G(5, 15, R) = 9 is impossible. Hence the possibilities of N1 are 11, 12 or 13.
In those cases both X1 and X2 are 2-distance sets.

Case n = 6.
In this case N = 28 and n(n+1)

2 = 21. Hence 21 ≥ N1 > N
2 = 14. If 21 ≥ N1 > 15, then
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we can apply the Theorem by Larman-Rogers-Seidel. We have

9−GA(6, x, T ) = −4608x(28− x)T 2
(
(21− x)(28− x)T 2 + 2(28− x)xT + x(x− 7)

)

GA,2(6, x, T )
.

Hence we have GA(6, N1, R) > 9. Next we have

12−GA(6, x, T ) =
144xP8(x, T )
GA,2(6, x, T )

,

where

P8(x, T ) =− (896− 43x)(28− x)2T 4 − 80x(28− x)2T 3

− 2x(29x− 448)(28− x)T 2 + 48x2(28− x)T + 27x3.

Then 0 < T < 1 implies

P8(21, T ) = −82320T 3 + 148176T − 47334T 2 + 343T 4 + 250047

> −82320− 47334 + 250047 = 120393 > 0.

If 16 ≤ x ≤ 20, then 0 < T < 1 implies

P8(x, T ) > − (896− 43x)(28− x)2T − 80x(28− x)2T

− 2x(29x− 448)(28− x)T + 48x2(28− x)T + 27x3T

= 784T (59x− 896) > 0.

Therefore Proposition 3.6 implies 12 − GA(6, N1, R) > 0. Hence GA(6, N1, R) = 10 or
11. Since GA(6, N1, R) has to be the square of an integer, this is impossible. Therefore
the only possibility for N1 is 15. In this case X1 and X2 are 2-distance sets.

The following table is the list of all the remaining cases for n ≤ 6.
The remaining cases for n ≤ 6, no. 1∼no. 10, in the table given above are eliminated

by the following arguments. The authors thank Hisakazu Iwai and Makoto Tagami for
their help in finishing this calculation. The following explanation was provided by Makoto
Tagami.

For a 2-distance set X (of size m) in Rn, we attach a graph G = (X, E) whose
vertex set is X and the edges are the pairs of two vertices with the longer distance. Let
D be the adjacency matrix of the graph G. For an indeterminate x, let C be the m×m

matrix C = xD +J − I. Let L be the (m− 1)× (m− 1) matrix whose (i− 1, j− 1)-entry
is given by C1i + C1j − Cij , where Cij means the (i, j)-entry of C and i, j are from 2
to m. Let us define D(x) = det(L). The polynomial D(x) is called the discriminating
polynomial. Then we have the following proposition due to Einhorn and Schoenberg [9].
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n N N1 r A(X1) A(X2)

no. 1 3 10 6 0.9680647814 1.261060863, 1.786166652
q

8
3
r, 2

q
16r4+15r2+9

30r2+45

no. 2 6 0.9680647814 1.261060863, 1.786166652
q

8
3
r

no. 3 4 15 8 0.9939261031 1.276759120, 1.741496326 1.300453366, 1.709766283

no. 4 9 0.9811021675 1.254736241, 1.755718569 1.333656789, 1.651822070

no. 5 10 0.9657425649 1.238414571, 1.765989395
q

5
2
r,
q

13r4+18r2+8
6(r2+2)

no. 6 10 0.9657425649 1.238414571, 1.765989395
q

5
2
r

no. 7 5 21 11 0.9971108543 1.271295203, 1.718624969 1.282657854, 1.703400226

no. 8 12 0.9911792529 1.259432011, 1.726557780 1.294778760, 1.679423700

no. 9 13 0.9847128738 1.249832383, 1.732878630 1.313837759, 1.648459113

no. 10 6 28 15 0.9968820164 1.265543361, 1.702045669 1.278207059, 1.685182835

Proposition 3.10 (Einhorn and Schoenberg). If the graph G is realized in Rn as
above as a 2-distnce set in Rn with the 2 distances {α, 1}, where α > 1, then α2−1 must
be a zero of D(x) with multiplicity m− n− 1.

For any 2-distance set X1 ⊂ Rn listed in the table given above, any n + 2 (≤ 8)
points subset is also a 2-distance set. So we list up all the graphs with at most 8 vertices
by using computer software Magma, more precisely by using the library nauty (refer
http://cs.anu.edu.au/̃ bdm/nauty). For each such graph, we determined the discrimi-
nating polynomial explicitly. Then we check that for each possible α which is obtained
from each pair of the two distances in A(X1) in the table given above, we show that
α2 − 1 is not a zero of any of such discriminating polynomials D(x). This calculation is
rigorous because of the following reason. Our values of α is calculated with the error at
most 10−8, since they are the zeros of very explicit polynomials of degree either 2 or 3.
The degree of discriminating polynomial D(x) are at most 7 and the coefficients are at
most 280 in absolute values. Therefore in order that D(α2 − 1) becomes exactly 0, its
value must be less than 10−4. However, this is shown not to be so. This completes the
proof of our result for n ≤ 6.

4. Examples of tight 4-designs with nonconstant weight.

So far, we only considered Euclidean tight 4-designs with constant weight. (This was
enough to treat tight rotatable 4-designs.) Our method is also applied to study Euclidean
tight 4-designs with nonconstant weight, as we have seen in Lemma 1.8. Neumaier
and Seidel [15] and Delsarte and Seidel [8] conjectured that there are no nontrivial
Euclidean tight 4-designs even for the nonconstant weight case. (See Conjecture 3.4 in
[15].) However, we were able to find new nontrivial examples of Euclidean tight 4-designs
in R2 with non-constant weight. We will describe these examples below. Currently, we
are not aware of other nontrivial examples of tight 4-designs (with nonconstant weight)
in Rn for n ≥ 3, but we suspect that further examples is likely to exist. Anyway, it
seems to be very interesting to try to classify Euclidean tight 4-designs also in the case
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of nonconstant weight. Let X be the set of 6 points in R2 given below:

X =
{

(1, 0),
(
− 1

2
,

√
3

2

)
,

(
− 1

2
,−
√

3
2

)
, (−r, 0),

(
r

2
,

√
3r

2

)
,

(
r

2
,−
√

3r

2

)}
,

where r is any positive real number r 6= 1.
X1 =

{
(1, 0),

(− 1
2 ,
√

3
2

)
,

(− 1
2 ,−

√
3

2

)}
is the set of vertices of a regular triangle on

the unit circle and X2 = {(−r, 0),
(

r
2 ,
√

3r
2

)
,

(
r
2 ,−

√
3r
2

)}
is the set of vertices of a regular

triangle on the circle of radius r.

Define a weight function w on X by w(x) =





1 for x ∈ X1

1
r3

for x ∈ X2.

It is easy to see that X is a 4-design. This means X is a Eucledean tight 4-design. (If
r = 1, then X is also a 4-design. However it is on the unit circle S1.)
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