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Lou’s fixed point theorem in a space of continuous mappings
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Abstract. We present a very simple proof of Lou’s fixed point theorem in a
space of continuous mappings [Proc. Amer. Math. Soc., 127 (1999), 2259–2264]. We
also discuss another similar fixed point theorem.

1. Introduction.

The following famous theorem is referred to as the Banach contraction principle.

Theorem 1 (Banach [1]). Let F be a nonempty closed subset of a Banach space
(X, ‖ · ‖). Let A be a contractive mapping from F into itself, i.e., there exists r ∈ [0, 1)
such that

‖Ax−Ay‖ ≤ r ‖x− y‖

for all x, y ∈ F . Then A has a unique fixed point.

Put I = [0, T ] for some T > 0 and let (E, ‖ · ‖E) be a Banach space. Let C(I, E) be
the Banach space consisting of all continuous mappings from I into E with norm

‖u‖C = max
{‖u(t)‖E : t ∈ I

}

for u ∈ C(I, E). In 1999, Lou [4] proved the following fixed point theorem.

Theorem 2 (Lou [4]). Let F be a nonempty closed subset of C(I, E) and let A be
a mapping from F into itself. Assume that there exist α, β ∈ (0, 1) and K ≥ 0 such that

‖Au(t)−Av(t)‖E ≤ β ‖u(t)− v(t)‖E +
K

tα

∫ t

0

‖u(s)− v(s)‖E ds

for all u, v ∈ F and t ∈ I \ {0}. Then A has a unique fixed point.

Lou applied this theorem to integro-differential equations. Using the notion of K-
normed spaces, de Pascale and de Pascale in [2] proved a fixed point theorem (Theorem
3) similar to Theorem 2. Very recently, de Pascale and Zabreiko generalized them in [3].
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We remark that the mapping A in Theorem 2 is not necessarily contractive relative
to the original norm ‖ · ‖C (so that Theorem 1 cannot be directly applied). Nevertheless,
it was shown in [4] that iterations Anu form a Cauchy sequence (so that the limit point
gives rise to a fixed point as in the standard proof of Theorem 1). In this paper, we
shall present a very simple proof of Theorem 2. Namely, we show that a modified norm
equivalent to ‖ · ‖C can be introduced on C(I, E) in such a way that A is contractive
relative to this new norm. This obviously implies that Theorem 2 follows from Theorem
1. We will also present an alternative proof to [2] by a similar method, and our method
has the advantage that the notion of K-normed spaces is not needed.

2. Proof of Theorem 2.

In this section, we present a very simple proof of Theorem 2. Compare it with the
proof in [4].

Proof of Theorem 2. We choose τ ∈ (0, T ) satisfying

β + K τ1−α < 1

and define a nonincreasing function f from I into (0,∞) by

f(t) =

{
1, if 0 ≤ t ≤ τ ,

exp(1− t/τ), if τ ≤ t ≤ T

for t ∈ I. Define another norm ‖ · ‖ on C(I, E) by

‖u‖ = max
{
f(t) ‖u(t)‖E : t ∈ I

}

for u ∈ C(I, E). Since

f(T ) ‖u‖C ≤ ‖u‖ ≤ ‖u‖C

for all u ∈ C(I, E), the two norms ‖ · ‖C and ‖ · ‖ are equivalent. Thus, (C(I, E), ‖ · ‖)
is complete and F is also closed with respect to ‖ · ‖. We shall show

‖Au−Av‖ ≤ (β + K τ1−α) ‖u− v‖ (1)

for all u, v ∈ F . Fix u, v ∈ F . In the case of 0 < t ≤ τ , we note ‖u(t)− v(t)‖E ≤ ‖u− v‖.
We have

f(t) ‖Au(t)−Av(t)‖E = ‖Au(t)−Av(t)‖E

≤ β ‖u(t)− v(t)‖E +
K

tα

∫ t

0

‖u(s)− v(s)‖E ds
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≤ β ‖u− v‖+
K

tα

∫ t

0

‖u− v‖ ds

= (β + K t1−α) ‖u− v‖
≤ (β + K τ1−α) ‖u− v‖.

From the continuity of Au and Av, we obtain

f(0) ‖Au(0)−Av(0)‖E ≤ (β + K τ1−α) ‖u− v‖.

In the case of τ < t ≤ T , we note

‖u(t)− v(t)‖E ≤ exp(−1 + t/τ) ‖u− v‖.

We have

∫ t

0

‖u(s)− v(s)‖E ds =
∫ τ

0

‖u(s)− v(s)‖E ds +
∫ t

τ

‖u(s)− v(s)‖E ds

≤
∫ τ

0

‖u− v‖ ds +
∫ t

τ

exp(−1 + s/τ) ‖u− v‖ ds

= τ exp(−1 + t/τ) ‖u− v‖

and hence

f(t) ‖Au(t)−Av(t)‖E

= exp(1− t/τ) ‖Au(t)−Av(t)‖E

≤ exp(1− t/τ)
(

β ‖u(t)− v(t)‖E +
K

tα

∫ t

0

‖u(s)− v(s)‖E ds

)

≤ exp(1− t/τ)
(

β exp(−1 + t/τ) ‖u− v‖+
K

τα
τ exp(−1 + t/τ) ‖u− v‖

)

= (β + K τ1−α) ‖u− v‖.

Therefore

f(t) ‖Au(t)−Av(t)‖E ≤ (β + K τ1−α) ‖u− v‖

for all t ∈ I. This implies (1). By Theorem 1, A has a unique fixed point. ¤

3. De Pascale and De Pascale’s Theorem.

In this section, we present an alternative proof of de Pascale and de Pascale’s theorem
in [2] without using the notion of K-normed spaces. We put I = [1,∞) and let BC(I, E)
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be the Banach space consisting of all bounded continuous mappings from I into E with
norm

‖u‖B = sup
{‖u(t)‖E : t ∈ I

}

for u ∈ BC(I, E). De Pascale and de Pascale in [2] proved the following.

Theorem 3 (de Pascale and de Pascale [2]). Let F be a nonempty closed subset of
BC(I, E) and let A be a mapping from F into itself. Assume that there exist α ∈ (1,∞),
β ∈ (0, 1) and K ≥ 0 such that

‖Au(t)−Av(t)‖E ≤ β ‖u(t)− v(t)‖E +
K

tα

∫ t

1

‖u(s)− v(s)‖E ds

for all u, v ∈ F and t ∈ I. Then A has a unique fixed point.

Proof. We choose c > 0 and τ ∈ (1,∞) satisfying

β +
K

c
+

K

τα−1
< 1.

Define a nonincreasing function f from I into (0,∞) by

f(t) =

{
exp(−c t), if 1 ≤ t ≤ τ ,

exp(−c τ), if τ ≤ t

for t ∈ I. Define another norm ‖ · ‖ on BC(I, E) by

‖u‖ = sup
{
f(t) ‖u(t)‖E : t ∈ I}

for u ∈ BC(I, E). Then we have

f(τ) ‖u‖B ≤ ‖u‖ ≤ f(1) ‖u‖B

for all u ∈ BC(I, E). So the two norms ‖ · ‖B and ‖ · ‖ are equivalent. Hence, (BC(I, E),
‖ · ‖) is complete and F is also closed with respect to ‖ · ‖. We shall show

‖Au−Av‖ ≤
(

β +
K

c
+

K

τα−1

)
‖u− v‖ (2)

for all u, v ∈ F . Fix u, v ∈ F . In the case of 1 ≤ t ≤ τ , we note

‖u(t)− v(t)‖E ≤ exp(c t) ‖u− v‖.

We have
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∫ t

1

‖u(s)− v(s)‖E ds ≤
∫ t

1

exp(c s) ‖u− v‖ ds

≤ exp(c t)
c

‖u− v‖

and hence

f(t) ‖Au(t)−Av(t)‖E = exp(−c t) ‖Au(t)−Av(t)‖E

≤ exp(−c t)
(

β ‖u(t)− v(t)‖E +
K

tα

∫ t

1

‖u(s)− v(s)‖E ds

)

≤ exp(−c t)
(

β exp(c t) ‖u− v‖+
K

tα
exp(c t)

c
‖u− v‖

)

=
(

β +
K

tα
1
c

)
‖u− v‖

≤
(

β +
K

c

)
‖u− v‖

≤
(

β +
K

c
+

K

τα−1

)
‖u− v‖.

In the case of τ < t, we note

‖u(t)− v(t)‖E ≤ exp(c τ) ‖u− v‖.

We have

∫ t

1

‖u(s)− v(s)‖E ds =
∫ τ

1

‖u(s)− v(s)‖E ds +
∫ t

τ

‖u(s)− v(s)‖E ds

≤ exp(c τ)
c

‖u− v‖+
∫ t

τ

exp(c τ) ‖u− v‖ ds

=
(

1
c

+ t− τ

)
exp(c τ) ‖u− v‖

≤
(

1
c

+ t

)
exp(c τ) ‖u− v‖

and hence

f(t) ‖Au(t)−Av(t)‖E = exp(−c τ) ‖Au(t)−Av(t)‖E

≤ exp(−c τ)
(

β ‖u(t)− v(t)‖E +
K

tα

∫ t

1

‖u(s)− v(s)‖E ds

)
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≤ exp(−c τ)
(

β exp(c τ) ‖u− v‖+
K

tα

(
1
c

+ t

)
exp(c τ) ‖u− v‖

)

=
(

β +
K

tα

(
1
c

+ t

))
‖u− v‖

≤
(

β +
K

c
+

K

τα−1

)
‖u− v‖.

Therefore

f(t) ‖Au(t)−Av(t)‖E ≤
(

β +
K

c
+

K

τα−1

)
‖u− v‖

for all t ∈ I. This implies (2). By Theorem 1, A has a unique fixed point. ¤
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