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Abstract. Let a be a positive integer which is not a perfect b-th power with
b ≥ 2, q be a prime number and Qa(x; qi, j) be the set of primes p ≤ x such that the
residual order of a (mod p) in (Z/pZ)× is congruent to j modulo qi. In this paper,
which is a sequel of our previous papers [1] and [6], under the assumption of the
Generalized Riemann Hypothesis, we determine the natural densities of Qa(x; qi, j)
for i ≥ 3 if q = 2, i ≥ 1 if q is an odd prime, and for an arbitrary nonzero integer j
(the main results of this paper are announced without proof in [3], [7] and [2]).

1. Introduction.

This paper is a sequel of our previous papers [1] and [6], and here we present full
proofs of the results announced in [3], [7] and [2].

Let a (≥ 2) be a natural number which is not a perfect b-th power with b ≥ 2, j and
k be integers with 0 ≤ j < k. For a prime p with p - a, we define the number

Da(p) = ]〈a (mod p)〉
(the order of the class a (mod p) in (Z/pZ)×)

and consider the set

Qa(x; k, j) = {p ≤ x ; p - a, Da(p) ≡ j (mod k)}.

The set Qa(x; k, 0) attracted attention of many mathematicians and its natural density
is completely determined (see Hasse [4], [5], Odoni [8], Wiertelak [12]). But when j 6= 0,
determining the density of Qa(x; k, j) requires much more exacting analysis. In [1] and
[6], we considered the set Qa(x; 4, j) with j = 1 and 3 (when j = 2, we can get the
density easily).

All primes ≤ x are divided into the two sets, Qa(x; 2, 0) and Qa(x; 2, 1), and our
motivation of studying Qa(x; 4, j) came from the observation that, for an usual a,

]Qa(x; 2, 0) ∼ 2
3
π(x), ]Qa(x; 2, 1) ∼ 1

3
π(x),
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where π(x) denotes the number of primes up to x. This means that, when p varies, the
parity of Da(p) – even or odd – is not equi-distribution.

In order to study this phenomenon more closely, we investigated the density of
Qa(x; 4, j) and observed how the two sets Qa(x; 2, 0) and Qa(x; 2, 1) are divided into
Qa(x; 4, j)’s. Then we found out that the densities mod 4 had even more intricate
structures. In fact, in [1] and [6], we proved the existence of the density of Qa(x; 4, j)
on the assumption of Generalized Riemann Hypothesis (= GRH) for a certain family of
algebraic number fields, and determined these values exactly:

Theorem 1.1 ([6]). Let νp(a) denote the non-negative integer such that pνp(a) ‖ a.
We assume GRH, then the natural densities δa(j) of Qa(x; 4, j) (j = 1, 3) exist and both
equal to 1/6 if ν2(a) is even, while if ν2(a) is odd, then

δa(3)− δa(1) = C
∏

p:νp(a) is odd

(
1− (−1

p

))
p

p3 − p2 − p− 1

where

C :=
1
8

∏

p≡3 (mod 4)

(
1− 2p

(p2 + 1)(p− 1)

)
≈ 0.080456

and (−1
p ) is the Legendre symbol.

In particular, δa(3) is equal to δa(1) if the square-free part of a is odd or divisible by
any p ≡ 1 (mod 4), and δa(3) is strictly greater in all other cases.

In the present paper, we extend this result to the case of an arbitrary prime power
modulus, i.e. we consider the density of Qa(x; qi, j) (i ≥ 3 if q = 2, i ≥ 1 if q is an
odd prime). In this study, we are interested in the relation between Qa(x; qi−1, j) and
Qa(x; qi, j). Of course Qa(x; qi−1, j) is decomposed into

Qa(x; qi, j + tqi−1), (t = 0, 1, · · · , q − 1)

so we investigate whether ]Qa(x; qi, j + tqi−1) ∼ 1
q ]Qa(x; qi−1, j) for any t — a local

equi-distribution property — or not.
Roughly speaking, our results show that, when q ≥ 3 (i.e. an odd prime), we have

the above “equi-distribution property” for i ≥ 2 (q: odd prime), and for i ≥ 4 (q = 2),
but do not have for the other cases.

Let ∆a(qi, j) be the natural density of the set Qa(x; qi, j). We prove the existence
of the density in Section 2 (Theorem 2.1). The basic mechanism is the same as that of
[1, Section 4, Part I], so we give only the outline.

In Section 3, in order to calculate the density explicitly, we start from the formula
(2.2) of Theorem 2.1, and consider the most difficult quantity — the coefficient cr(k, n, d),
which is determined according to the existence or nonexistence of a certain automorphism
over an algebraic number field of the Kummer type.

The computation of ∆a(q, j) (q: an odd prime) needs somewhat hard calculation,
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and is outlined in Section 4 (the reader is also referred to [6, Section 5]). The precise
statement is given in Theorem 1.2.

On the contrary, the case of higher power moduli (Theorem 1.3) is treated with less
complexity (with two exceptions ∆a(8, 2) and ∆a(8, 6)). In this case, we can employ two
different methods according to the values (qi, j). For some cases, we prove the recurrence
relation between ∆a(qi, j) and ∆a(qi−1, j) directly. For other cases, we observe that all
∆a(qi, j) (1 ≤ j ≤ qi−1, qe ‖ j for a fixed e) have the same infinite series expression and
therefore the same value. Then we obtain the exact values of them from the unconditional
result for ∆a(qe, 0)−∆a(qe+1, 0) (see (5.1)). See also Wiertelak [11].

Let a1 be the square free part of a. For an odd prime q, let G = (Z/qZ)×, Ĝ be
the character group of G, ( ·q ) the Legendre symbol, and we define for each χ ∈ Ĝ, an
absolute constant Cχ by

Cχ =
∏

p:prime
p6=q

p3 − p2 − p + χ(p)
(p− 1)(p2 − χ(p))

. (1.1)

Moreover we define

ηχ,a =





1, if a1 ≡ 1 (mod 4),

χ(2)2

16
, if a1 ≡ 2 (mod 4),

χ(2)
4

, if a1 ≡ 3 (mod 4).

Here are our main results:

Theorem 1.2. Let q be an odd prime, 1 ≤ h ≤ q − 1, and we assume GRH.

(I) If q - a1, then

∆a(q, h) =
q2

(q − 1)(q2 − 1)
− 1

(q − 1)2
∑

χ∈Ĝ

Cχχ(−h)
(

1+ηχ,a

∏

p|2a1

p(χ(p)− 1)
p3 − p2 − p + χ(p)

)
.

(II) If q|a1, then

∆a(q, h) =
q2

(q − 1)(q2 − 1)
− 1

(q − 1)2

[ ∑

χ∈Ĝ

Cχ

{
χ(−h)−

(
χ(−h) + 2

∑
r

χ(r)−1

)
ηχ,a

·
∏

p|2a1

p(χ(p)− 1)
p3 − p2 − p + χ(p)

}]
,

where
∑

r means a sum over all r (1 ≤ r ≤ q − 1) such that (hr+1
q ) = 1 and a1 is the

q-free part of a1 (i.e. a1 = a1/q).



696 K. Chinen and L. Murata

Theorem 1.3. We assume GRH.

(I) We have ∆a(8, 2) = ∆a(4, 3), ∆a(8, 6) = ∆a(4, 1), and ∆a(8, j) = 1
2∆a(4, j) unless

j = 2, 6.
(II) (Local equi-distribution property) We suppose i ≥ 2 when q is an odd prime, and

i ≥ 4 when q = 2. Then for an arbitrary j, we have the relation

∆a(qi, j) =
1
q
∆a(qi−1, j).

In general, the constants Cχ are not real numbers, and we are interested in the fact
that the real number ∆a(qi, j) is expressed as a combination of these complex constants.

We take q = 5, — the smallest modulus where non-real Cχ appears — and Ĝ =
{χ0, χ1, χ2, χ3}, where χ0 is principal and χ2

1 = χ0. From Theorem 1.2,

Cχ0 = 1, Cχ1 =
∏

p≡2,3 (mod 5)

(
1− 2p

(p− 1)(p2 + 1)

)
≈ 0.1293079,

Cχ2 =
∏

p≡2 (mod 5)

(
1 +

(p(
√−1− 1))

(p− 1)(p2 −√−1)

) ∏

p≡3 (mod 5)

(
1− (p(

√−1 + 1))
(p− 1)(p2 +

√−1)

)

·
∏

p≡4 (mod 5)

(
1− 2p

(p− 1)(p2 + 1)

)
≈ 0.3640896 + 0.2240411

√−1 (1.2)

and Cχ3 = Cχ2 . Then for a = 13, we have

∆13(5, 1) =
25
96
− 1

16

{
1 +

1059
1007

Cχ1 − 2Re
(

10255371− 52338
√−1

10150565
Cχ2

)}

≈ 0.235543,

∆13(5, 2) =
25
96
− 1

16

{
1− 1059

1007
Cχ1 + 2Re

(
10255371− 52338

√−1
10150565

Cχ2

)}

≈ 0.178356,

∆13(5, 3) =
25
96
− 1

16

{
1− 1059

1007
Cχ1 − 2Re

(
10255371− 52338

√−1
10150565

Cχ2

)}

≈ 0.234475,

∆13(5, 4) =
25
96
− 1

16

{
1 +

1059
1007

Cχ1 + 2Re
(

10255371− 52338
√−1

10150565
Cχ2

)}

≈ 0.143292.

(1.3)

These “theoretical densities” are well-matched with experimental densities. For more
examples, cf. Section 6.

We give the explicit values of ∆a(qi, j), but it seems very difficult to prove ∆a(qi, j) >
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0, because we have only little knowledge about number theoretical properties of Cχ’s from
its Euler product expression.

We start from the observations ∆a(2, 1) = 1/3 and ∆a(4, 3) = 1/6 for a usual a, but
now we know that (qi, j) for which “∆a(qi, j) ∈ Q” are rather exceptional. For example,
when q is an odd prime, ∆a(qi, j) ∈ Q seems to happen only when q|j (see also Theorem
1.1).

2. Existence of the Density.

First we introduce some more notations. For k ∈ Z, let ζk = exp(2πi/k). We
denote Euler’s totient and the Möbius function by ϕ(k) and µ(k), respectively. For a
prime power qt, qt ‖ m means that qt|m and qt+1 - m. Note that q0 ‖ m means q - m.
For integers m1,m2, · · · ,mn, 〈m1,m2, · · · ,mn〉 denotes the least common multiple of
m1,m2, · · · ,mn.

We assume a ∈ N is not a perfect b-th power with b ≥ 2. We are interested in the
set Qa(x; qi, j) with 1 ≤ j ≤ qi − 1, so we put j = hqe with q - h and 0 ≤ e ≤ i− 1. For
1 ≤ r < qi (q - r), f ≥ e and l ≥ 0, let

k = {(hr) (mod qi−e) + lqi−e}qf−e (2.1)

where hh ≡ 1 (mod qi−e), and (hr) (mod qi−e) means the least natural number which is
congruent to hr modulo qi−e. And let

k0 =
∏

p|k
p:prime

p (the core of k).

For above f, i, k and n ≥ 1, d ≥ 1, d|k0, we define the following two types of number
fields:

Gk,n,d = Q
(
a1/kn, ζkd, ζn

)
,

G̃k,n,d = Gk,n,d(ζqf+i)

(note that k and d depend on f and i). We take an automorphism σr ∈ Gal(Q(ζqf+i)/Q)

determined uniquely by the condition σr : ζqf+i 7→ ζ 1+rqf

qf+i (1 ≤ r < qi, q - r), and we
consider an automorphism σ∗r ∈ Gal(G̃k,n,d/Gk,n,d) which satisfies σ∗r |Q(ζ

qf+i ) = σr.
Clearly, such a σ∗r is unique if it exists (see [1, Lemma 4.3]).

The main result of this section is the following:

Theorem 2.1. Under GRH, we have

]Qa(x; qi, hqe) = ∆a(qi, hqe) li x + O

(
x

log x log log x

)

as x →∞, where
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∆a(qi, hqe) =
∑

1≤r<qi

q-r

∑

f≥e

∑

l≥0

k0

ϕ(k0)

∑

d|k0

µ(d)
d

∞∑
n=1

µ(n)cr(k, n, d)[
G̃k,n,d : Q

] (2.2)

and

cr(k, n, d) =

{
1, if σ∗r exists,

0, otherwise.

The series in the right hand side of (2.2) always converge.

Remark. We can find ∆a(2i, 2i−1) (i ≥ 3) unconditionally because ∆a(2i, 2i−1) =
∆a(2i−1, 0)−∆a(2i, 0) (see Lemma 5.1 (ii)).

The following lemma is the starting point of the proof of Theorem 2.1. It is a
generalization of [1, Lemma 3.1 (iii), (iv)]. We give the proof here because it was omitted
in [1].

Lemma 2.2. Let Ia(p) = |(Z/pZ)× : 〈a (mod p)〉|, the residual index mod p of a.
Then,

]Qa(x; qi, hqe) =
∑

1≤r<qi

q-r

∑

f≥e

∑

l≥0

]
{
p ≤ x ; Ia(p) = k, p ≡ 1 + rqf (mod qf+i)

}
. (2.3)

Proof. We take p ∈ Qa(x; qi, hqe) and define f by qf ‖ p − 1. We have f ≥ e

because qe|Da(p). We can write p − 1 = qf (r + mqi) and Da(p) = hqe + nqi (m,n, r ∈
N ∪ {0}, q - r). Then by the relation Da(p)Ia(p) = p− 1, we have

(h + nqi−e)Ia(p) = qf−e(r + mqi).

We can see qf−e ‖ Ia(p) and

h · Ia(p)
qf−e

≡ r (mod qi−e).

This yields

Ia(p) ≡ {(hr) (mod qi−e)} · qf−e (mod qf+i−2e). (2.4)

Conversely, p ≡ 1 + rqf (mod qf+i) and (2.4) similarly lead to Da(p) ≡ hqe (mod qi) if
we note f ≥ e. Writing (2.4) in a form

Ia(p) = {(hr) (mod qi−e) + lqi−e}qf−e (l ≥ 0),

we obtain the desired result. ¤
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We can now prove Theorem 2.1. The estimation of (2.3) can be carried out by a sim-
ilar manner to [1, Section 4]. In fact, the prime set in (2.3) is Na(x; k; 1+rqf (mod qf+i))
in the notation of [1, (3.1)]. Here we sketch the proof (it can be done along the same
line as Part I of [1, Section 4], so we leave the details to the reader).

First we decompose Na(x; k; 1 + rqf (mod qf+i)) as follows:

]Na

(
x; k; 1 + rqf (mod qf+i)

)

=
1

[Kk : Q]
k0

ϕ(k0)

∑

d|k0

µ(d)
d

]B
(
x;Kk; a1/k; kd; 1 + rqf (mod qf+i)

)
,

where Kk = Q(ζk0 , a
1/k),

B(x;Kk; a1/k;N ; s (mod t)) =





p : a prime ideal in Kk, Np = p1 ≤ x,

p ≡ 1 (mod N), p ≡ s (mod t),
a1/k is a primitive root mod p





and Np is the (absolute) norm of p (note that p is a rational prime). Moreover we
introduce the set

P (x;Kk; a1/k; kd; s (mod t);n) =





p : a prime ideal in Kk, Np = p1 ≤ x,

p ≡ 1 (mod kd), p ≡ s (mod t),
the equation Xq ≡ a1/k (mod p)
is solvable in OKk

for any q|n





.

Then we have

]B
(
x;Kk; a1/k; kd; 1 + rqf (mod qf+i)

)

=
∑′

n

µ(n)]P
(
x;Kk; a1/k; kd; 1 + rqf (mod qf+i);n

)
+ O

(
x(log log x)3

log2 x

)
,

where
∑′

n means the sum over such an n ≤ x which is either 1 or a positive square free
integer composed entirely of prime factors not exceeding (1/8) log x, and the constant
implied by the O-symbol depends only on a, q, i and e (see Propositions 1 and 2 of [1]).

By the uniqueness of σ∗r , we can prove similarly to [1, Proposition 4.4]

]P
(
x;Kk; a1/k; kd; 1 + rqf (mod qf+i);n

)
= π

(
x; G̃k,n,d/Kk, {σ∗r}

)
+ O(k2

√
x),

where

π(x;L/K, C) = ]{p : a prime ideal in K, unramified in L, (p, L/K) = C, Np ≤ x}

for a finite Galois extension L/K and a conjugacy class C in Gal(L/K) and (p, L/K) is
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the Frobenius symbol. The constant implied by the O-symbol depends only on a, q, i

and e.
For the value of [G̃k,n,d : Kk] and the discriminant dG̃k,n,d

of G̃k,n,d, we have the
estimates

[
G̃k,n,d : Kk

]
= δ

d

k0ϕ((n, k0))
· knϕ(n)

where δ is an absolute constant, and

log
∣∣dG̃k,n,d

∣∣ ¿ (nkd)3 log(nkd),

where the constant implied by ¿ depend only on a, q, i and e (for the proof, see, for
example [10]).

All these results allow us to estimate the remainder terms, and we obtain the theo-
rem.

3. Determination of cr(k, n, d).

Theorem 2.1 shows that the set Qa(x; qi, hqe) has a natural density. For explicit
computation of the natural density ∆a(qi, hqe), we need to determine the values of co-
efficients cr(k, n, d). To this end, we consider the number fields Q(ζqf+i), Gk,n,d, G̃k,n,d

and their automorphisms. First we introduce a preliminary lemma:

Lemma 3.1. Let K be a number field, M be a finite extension of K, and L be a
finite Galois extension of K. Then we have the following :

(I) LM is a Galois extension of M . For σ ∈ Gal(LM/M), σ 7→ σ|L gives an injective
homomorphism from Gal(LM/M) to Gal(L/K), and [LM : M ]

∣∣ [L : K].
(II) The following three conditions are equivalent :

(i) Gal(LM/M) ∼= Gal(L/K),
(ii) [LM : M ] = [L : K],
(iii) K = L ∩M .

Proof. The proof is elementary and we omit it. ¤

Now we proceed to the determination of cr(k, n, d).

The strategy. We apply Lemma 3.1 to the case where L = Q(ζqf+i) and M = Gk,n,d.
Then LM = G̃k,n,d. We consider the automorphism σr on the intersection field K =
L ∩M .

(i) The case σr|K = id.
We have σr ∈ Gal(Q(ζqf+i)/K), so from Lemma 3.1, we can take τ ∈

Gal(G̃k,n,d/Gk,n,d) ∼= Gal(Q(ζqf+i)/K) such that τ |Q(ζ
qf+i ) = σr. Thus τ = σ∗r ,

and we have cr(k, n, d) = 1.
(ii) The case σr|K 6= id.

Similarly, we can easily verify that there is no τ ∈ Gal(G̃k,n,d/Gk,n,d) with the
property τ |Q(ζ

qf+i ) = σr, and we have cr(k, n, d) = 0.
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So, what we have to do is to determine the intersection K and to verify if σr|K = id
or not. For this purpose, we need two lemmas:

Lemma 3.2. Let m be positive and square free, m 6= 1, 0, and let dm be the dis-
criminant of Q(

√
m). Then the least cyclotomic field which contains Q(

√
m) is Q(ζ|dm|).

Especially,

Q(
√

m) ⊂ Q(ζm) and Q(
√−m) ⊂ Q(ζ4m), if m ≡ 1 (mod 4),

Q(
√±m) ⊂ Q(ζ4m), if m ≡ 2 (mod 4),

Q(
√

m) ⊂ Q(ζ4m) and Q(
√−m) ⊂ Q(ζm), if m ≡ 3 (mod 4).

Proof. See a suitable textbook of algebraic number theory. ¤

Lemma 3.3. (I) If kn is odd,

[
Gk,n,d : Q

]
= kn ϕ(〈kd, n〉),

[
G̃k,n,d : Q

]
= kn ϕ(〈kd, n, qf+i〉).

(II) If kn is even,

[
Gk,n,d : Q

]
=

{
kn ϕ(〈kd, n〉),
1
2kn ϕ(〈kd, n〉),

where the latter case happens when one of the following conditions is satisfied :

(a) a1 ≡ 1 (mod 4) and a1|〈kd, n〉,
(b) a1 ≡ 2 (mod 4) and 4a1|〈kd, n〉,
(c) a1 ≡ 3 (mod 4) and 4a1|〈kd, n〉,

and

[
G̃k,n,d : Q

]
=

{
knϕ(〈kd, n, qf+i〉),
1
2knϕ(〈kd, n, qf+i〉),

where the latter case happens when one of the following conditions is satisfied :

(a’) a1 ≡ 1 (mod 4) and a1|〈kd, n, qf+i〉,
(b’) a1 ≡ 2 (mod 4) and 4a1|〈kd, n, qf+i〉,
(c’) a1 ≡ 3 (mod 4) and 4a1|〈kd, n, qf+i〉.

Proof. This is a direct consequence of [6, Proposition 3.1]. ¤
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Lemma 3.3 allows us to calculate [G̃k,n,d : Gk,n,d]. If we find a field K ′ such that
K ′ ⊂ Gk,n,d, K ′ ⊂ Q(ζqf+i) and [Q(ζqf+i) : K ′] = [G̃k,n,d : Gk,n,d], then by Lemma 3.1,
we can conclude K = K ′.

We have to consider the two cases, q is an odd prime and q = 2, separately. We
state the results for odd q first:

Theorem 3.4 (The values of cr(k, n, d) — q: odd prime). We assume q is an odd
prime. Then the intersection field K = Gk,n,d ∩Q(ζqf+i) and the number cr(k, n, d) are
given in Table 1. In this table, Gq is the Gauss sum defined by

Gq =
∑

x∈Z/qZ×

(
x

q

)
ζq

x.

Table 1. The number cr(k, n, d) for odd q.

f − e d n kn a1 K cr(k, n, d)

f − e ≥ 1
q|d all all all Q(ζqf−e+1)

1, if e ≥ 1

0, if e = 0
(A)

q - d all all all Q(ζqf−e) 1 (B)

q|n all all Q(ζq)
1, if e ≥ 1

0, if e = 0
(C)

odd all

q - a1
Q

1, if e ≥ 1

or e = 0 and

r 6≡ −1 (mod q)

0, otherwise

(D)

f − e = 0 all q - n

even q|a1

none of (a’),
(b’), (c’)

(a’) or (b’) or
(c’)

Q(Gq)

1, if e ≥ 1

or e = 0,

r 6≡ −1 (mod q),

( r+1
q

) = 1,

0, otherwise

(E)

Proof. We give proofs for only a few typical cases.

The case (A). From Lemma 3.3, we can easily see that

[
G̃k,n,d : Gk,n,d

]
=

[
G̃k,n,d : Q

]
[
Gk,n,d : Q

] =
kn ϕ(qf+i)ϕ(〈kd, n〉)

kn ϕ(qf−e+1)ϕ(〈kd, n〉)
= qe+i−1,

where m denotes the q free part of an integer m, i.e. m = m/qe for qe ‖ m. So, the
intersection K must satisfy

[
Q(ζqf+i) : K

]
= qe+i−1.
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Since Q(ζqf+i)/Q(ζq) is cyclic (note that q is odd), the subgroup of Gal(Q(ζqf+i)/Q) is
uniquely determined by its order, and so is K. Thus we have

K = Q(ζqf−e+1).

Note that ζqf−e+1 = ζ qe+i−1

qf+i and

ζ σr

qf−e+1 = ζqf−e+1 · ζ rqe+f+i−1

qf+i .

Then we can see ζ σr

qf−e+1 = ζqf−e+1 and σr|K = id if e ≥ 1. On the other hand, if e = 0,
rqf+i−1 6≡ 0 (mod qf+i) because (r, q) = 1. Hence ζ σr

qf−e+1 6= ζqf−e+1 and σr|K 6= id.
Therefore,

cr(k, n, d) =

{
1, if e ≥ 1,

0, if e = 0.

(We can prove (B), (C) and (D) similarly.)

The case (E). From Lemma 3.3, we can see

[
G̃k,n,d : Gk,n,d

]
=

1
2
qe+i−1(q − 1).

Noting that f−e = 0, we have [Q(ζqf+i) : K] = 1
2qe+i−1(q−1) and therefore [K : Q] = 2.

Similarly to the case (A), K is determined uniquely by these conditions: since K ⊂
Q(ζq) ⊂ Q(ζqf+i) and K is quadratic, we conclude that K = Q(Gq).

Now we proceed to the observation of σr. Note that σr does not exist when e = 0
and r ≡ −1 (mod q), because q|(1+rqf ) (recall f = e = 0), and so cr(k, n, d) = 0. In the
cases where e ≥ 1 or e = 0 and r 6≡ −1 (mod q), σr always exists, so we check whether
σr|K = id or not (recall the discussion before Lemma 3.2). Since f = e, we have

ζ σr
q =

(
ζ qe+i−1

qe+i

)1+rqe

= ζq · ζ rq2e+i−1

qe+i .

When e ≥ 1, we have ζ rq2e+i−1

qe+i = 1, so ζ σr
q = ζq. Thus σr|K = id and σ∗r exists.

When e = 0 and r 6≡ −1 (mod q), we have

ζ σr
q = ζq · ζ rqi−1

qi = ζr+1
q .

Note that Gal(Q(ζq)/Q) ∼= (Z/qZ)×. Since q is odd, the quadratic residues mod q form
a subgroup of index 2 in (Z/qZ)×. Hence we can conclude

σr|K = id, if
(

r + 1
q

)
= 1
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and

σr|K 6= id, if
(

r + 1
q

)
= −1,

which proves Table 1 (E). The cases (b’) and (c’) can be dealt with similarly. ¤

We can easily see the following:

Corollary 3.5. Let q be an odd prime. When e ≥ 1, we have

cr(k, n, d) = 1

for all r, k, n, d.

Note that cr(k, n, d) does not depend on r when e ≥ 1, above all.
Now we proceed to the case q = 2.

Theorem 3.6 (The values of cr(k, n, d) — q = 2). We assume q = 2. Then the
intersection field K = Gk,n,d ∩Q(ζqf+i) and the number cr(k, n, d) are given in Tables
2 and 3 (in next pages), where m denotes the odd part of an integer m (i.e., m = m/2e

with 2e ‖ m) and a′1 = a1 when a1 ≡ 2 (mod 4).

Proof. We can prove this theorem similarly to Theorem 3.4. In Table 3, note
that we have only to consider the case e ≥ 1, and therefore k and d are always odd. The
reader is also referred to [6, Section 4]. ¤

We can easily see the following:

Corollary 3.7. Let q = 2. When e ≥ 3, we have

cr(k, n, d) = 1

for all r, k, n, d.

4. Proof of Theorem 1.2.

In this section we prove Theorem 1.2. Let q be an odd prime. Then for 1 ≤ h ≤ q−1,
we have from (2.2) that

∆a(q, h) =
∑

1≤r<q

∑

f≥0

∑

l≥0

k0

ϕ(k0)

∑

d|k0

µ(d)
d

∞∑
n=1

µ(n)cr(k, n, d)[
G̃k,n,d : Q

] , (4.1)

where k = {(hr) (mod q) + lq}qf . This number k is a little hard to deal with, so
first we remove the dependence on h from k. When r runs through the range 1 ≤
r < q, (hr) (mod q) also runs through the same range, so we change the variables
(hr) (mod q) 7→ r. Then k = (r + lq)qf , cr(k, n, d) is transformed to chr(k, n, d) (the
suffix hr is understood modulo q) and
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Table 2. The number cr(k, n, d) for q = 2 (I) (the case f − e ≥ 1).

d a1 K cr(k, n, d)

a1 ≡ 1, 3 (mod 4)

a′1 - 〈kd, n〉
Q(ζ2f−e+1)

1, if e ≥ 1

0, if e = 0
(A)

even a1 ≡ 2 (mod 4)
a′1|〈kd, n〉,
f − e ≥ 2

a′1|〈kd, n〉,
f − e = 1

Q(ζ8)
1, if e ≥ 2

0, if e = 0, 1
(B)

a1 ≡ 1 (mod 4)

a′1 - 〈kd, n〉
Q(ζ2f−e) 1 (C)

a′1|〈kd, n〉,
f − e ≥ 3

odd

a2 ≡ 2 (mod 4)

a′1|〈kd, n〉,
f − e = 1, 2

Q(
√

2) if

a′1 ≡ 1 (mod 4),

f − e = 1

1, if e ≥ 2 or

e = 0, r ≡ 3 (mod 4),

0, if e = 1 or

e = 0, r ≡ 1 (mod 4)

(D)

Q(
√−2) if

a′1 ≡ 3 (mod 4),

f − e = 1

1, if e ≥ 2 or

e = 0, r ≡ 1 (mod 4),

0, if e = 1 or

e = 0, r ≡ 3 (mod 4)

(E)

Q(ζ8)
1, if e ≥ 1

0, if e = 0
(F)

a1 ≡ 3 (mod 4)

a1 - 〈kd, n〉 or

a1|〈kd, n〉,
f − e ≥ 2

Q(ζ2f−e) 1 (G)

a1|〈kd, n〉,
f − e = 1

Q(ζ4)
1, if e ≥ 1

0, if e = 0
(H)

∆a(q, h) =
∑

1≤r<q

∑

f≥0

∑

l≥0

k0

ϕ(k0)

∑

d|k0

µ(d)
d

∞∑
n=1

µ(n)chr(k, n, d)[
G̃k,n,d : Q

] . (4.2)

We should also note that we have to consider only square free n because of µ(n). Theorem
3.4 tells us that, when f − e = f ≥ 1,

cr(k, n, d) =

{
1, if q - d,

0, if q|d.

So it is convenient to divide (4.2) into two parts, f ≥ 1 and f = 0:
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Table 3. The number cr(k, n, d) for q = 2 (II) (the case f − e ≥ 0).

n a1 K cr(k, n, d)

a1 ≡ 1 (mod 4)
Q 1 (I)

a′1 - 〈kd, n〉

even a1 ≡ 2 (mod 4)
a′1|〈kd, n〉

Q(
√

2) if

a′1 ≡ 1 (mod 4)

1, if e ≥ 3 or

e = 1, r ≡ 3 (mod 4),

0, if e = 2 or

e = 1, r ≡ 1 (mod 4)

(J)

Q(
√−2) if

a′1 ≡ 3 (mod 4)

1, if e ≥ 3 or

e = 1, r ≡ 1 (mod 4),

0, if e = 2 or

e = 1, r ≡ 3 (mod 4)

(K)

a1 ≡ 3 (mod 4) a1 - 〈kd, n〉 Q 1 (L)

a1|〈kd, n〉 Q(ζ4)
1, if e ≥ 2

0, if e = 1
(M)

odd all Q 1 (N)

∆(1) = ∆(1)
a (q, h) =

∑

1≤r<q

∑

f≥1

∑

l≥0

k0

ϕ(k0)

∑

d|k0

µ(d)
d

∞∑
n=1

µ(n)chr(k, n, d)[
G̃k,n,d : Q

] ,

∆(0) = ∆(0)
a (q, h) =

∑

1≤r<q
f=0

∑

l≥0

k0

ϕ(k0)

∑

d|k0

µ(d)
d

∞∑
n=1

µ(n)chr(k, n, d)[
G̃k,n,d : Q

] ,

and we estimate ∆(1) first. It turns out that ∆(1) is independent of the choice of a and
h:

Theorem 4.1. We assume GRH. For any a and h, we have

∆(1)
a (q, h) =

1
(q − 1)(q2 − 1)

.

Proof. Recall that m means the q free part of an integer m. We write k = kqf

and the sum over r and l in the form
∑

k≥1,q-k. We need explicit descriptions of the
degree [G̃k,n,d : Q]. In the present case, the second conditions of (a’), (b’) and (c’) in
Lemma 3.3 become

s|〈kd, n〉,

where s = a1 or 4a1 according to whether a1 ≡ 1 (mod 4) or a1 ≡ 2, 3 (mod 4). Noting
that

knϕ(〈kd, n, qf+1〉) = kqfn · ϕ(qf+1)ϕ(〈kd, n〉)
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(we can assume n is square free), we have

k0

ϕ(k0)
µ(d)

d

µ(n)
knϕ(〈kd, n, qf+1〉) =

1
q2f (q − 1)

k0

ϕ(k0)
µ(d)

d

µ(n)
knϕ(〈kd, n〉) .

We put

A(k, d, n) =
k0

ϕ(k0)
µ(d)

d

µ(n)
knϕ(〈kd, n〉) .

For simplicity, we abbreviate the summation
∑

k≥1,q-k
∑

d|k0,q-d
∑∞

n=1 into
∑

k

∑
d

∑
n.

Here we remark that we can prove
∑

k

∑

d

∑
n

A(k, d, n) = 1 (4.3)

(see Appendix for proof). Then, since

kn : odd ⇔ k: odd and n: odd

and
∑

f≥1 1/q2f (q − 1) = 1/(q − 1)(q2 − 1), we have by Lemma 3.3 that

(q − 1)(q2 − 1)∆(1) =

[ ∑

k
k:odd

∑

d

∑
n

n:odd

+
∑

k
k:odd

∑

d

{ ∑
n

n:even
s-〈kd,n〉

+2
∑

n
n:even

s|〈kd,n〉

}

+
∑

k
k:even

∑

d

{ ∑
n

s-〈kd,n〉

+2
∑

n
s|〈kd,n〉

}]
A(k, d, n)

=

{ ∑

k
k:odd

∑

d

∑
n

n:odd

+

( ∑

k
k:odd

∑

d

∑
n

n:even

−
∑

k
k:odd

∑

d

∑
n

n:even
s|〈kd,n〉

)

+ 2
∑

k
k:odd

∑

d

∑
n

n:even
s|〈kd,n〉

+

( ∑

k
k:even

∑

d

∑
n

−
∑

k
k:even

∑

d

∑
n

s|〈kd,n〉

)

+ 2
∑

k
k:even

∑

d

∑
n

s|〈kd,n〉

}
A(k, d, n)

=

(∑

k

∑

d

∑
n

+
∑

k
k:odd

∑

d

∑
n

n:even
s|〈kd,n〉

+
∑

k
k:even

∑

d

∑
n

s|〈kd,n〉

)
A(k, d, n).

The first threefold sum is equal to 1 by (4.3). The second threefold sum is equal to
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−1
2

∑

k
k:odd

∑

d

∑
n

n:odd
s|2〈kd,n〉

A(k, d, n) = −1
2
E, say,

and similarly, the third threefold sum is equal to

1
2

∑

k
k:even

∑

d

∑
n

n:odd
s|〈kd,n〉

A(k, d, n) =
1
2
E′, say.

Note that k0/ϕ(k0) = k/ϕ(k). If we put k = 2jk′ (j ≥ 1), we have k = 2jk′. Then we
can verify that the sum E′ is equal to

∑

j≥1

∑

k′≥1
q-k′

k′:odd

2jk′

ϕ(2jk′)

∑

d|2jk′

q-d

µ(d)
d

∞∑
n=1

n:odd
s|〈2jk′d,n〉

µ(n)
2jk′nϕ(〈2jk′d, n〉)

=
∑

j≥1

∑

k′≥1
q-k′

k′:odd

∑

d|k′
q-d

(
µ(d)

d

∞∑
n=1

n:odd
s|〈2jk′d,n〉

µ(n)
2jk′nϕ(〈2jk′d, n〉)

+
µ(2d)

2d

∞∑
n=1

n:odd
s|〈2jk′·2d,n〉

µ(n)
2jk′nϕ(〈2jk′ · 2d, n〉)

)

=
∑

j≥1

1
22j−1

∑

k′≥1
q-k′

k′:odd

k′

ϕ(k′)

∑

d|k′
q-d

(
µ(d)

d

∞∑
n=1

n:odd
s|2j〈k′d,n〉

µ(n)
k′nϕ(〈k′d, n〉)

− 1
4

µ(d)
d

∞∑
n=1

n:odd
s|2j+1〈k′d,n〉

µ(n)
k′nϕ(〈k′d, n〉)

)
.

(a’) When a1 ≡ 1 (mod 4), s = a1 is odd, so we have

s|2j〈k′d, n〉 ⇔ s|〈k′d, n〉,
s|2j+1〈k′d, n〉 ⇔ s|〈k′d, n〉.

Therefore

E′ =
∑

k′

k′:odd

∑

d

∑
n

n:odd
s|〈k′d,n〉

A(k′, d, n) = E.
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Consequently we have

(q − 1)(q2 − 1)∆(1) = 1. (4.4)

(b’) When a1 ≡ 2 (mod 4), s = 4a1 and 8 ‖ s, so putting s = 8s′, we have

s|2j〈k′d, n〉 ⇔
{

j ≥ 3,

s′|〈k′d, n〉,

s|2j+1〈k′d, n〉 ⇔
{

j ≥ 2,

s′|〈k′d, n〉.

Therefore

E′ =
( ∑

j≥3

1
22j−2

− 1
4

∑

j≥2

1
22j−2

) ∑

k

∑

d

∑
n

n:odd
s′|〈k′d,n〉

A(k, d, n) = 0.

Moreover, we have E = 0 since s|〈kd, n〉 does not hold in this case. Hence we get the
same formula as (4.4).

(c’) When a1 ≡ 3 (mod 4), s = 4a1 and 4 ‖ s, so putting s = 4s′, we have

s|2j〈k′d, n〉 ⇔
{

j ≥ 2,

s′|〈k′d, n〉,
s|2j+1〈k′d, n〉 ⇔ s′|〈k′d, n〉.

Therefore

E′ =
( ∑

j≥2

1
22j−2

− 1
4

∑

j≥1

1
22j−2

) ∑

k

∑

d

∑
n

n:odd
s′|〈k′d,n〉

A(k, d, n) = 0

and E = 0. Hence we get the same formula as (4.4). ¤

We proceed to the calculation of ∆(0). In the calculation of ∆
(0)
a (q, h), we encounter

the sums over a specific residue class modulo q. To deal with such sums, we need the
following lemma:

Lemma 4.2. Let G = (Z/qZ)× and Ĝ be the character group of G. For any r ∈ G

and m ∈ Z, we define

fr(m) =
1

q − 1

∑

χ∈Ĝ

χ(r)−1χ(m).
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Then

fr(m) =

{
1, if m ≡ r (mod q),

0, otherwise.

Now we have:

Theorem 4.3. (I) If q - a1, then we have under GRH that

∆(0)
a (q, h) =

1
q − 1

− 1
(q − 1)2

∑

χ∈Ĝ

Cχχ(−h)
(

1 + ηχ,a

∏

p|2a1

p(χ(p)− 1)
p3 − p2 − p + χ(p)

)
.

(II) If q|a1, then we have under GRH that

∆(0)
a (q, h) =

1
q − 1

− 1
(q − 1)2

[ ∑

χ∈Ĝ

Cχ

{
χ(−h)−

(
χ(−h) + 2

∑
r

χ(r)−1

)
ηχ,a

·
∏

p|2a1

p(χ(p)− 1)
p3 − p2 − p + χ(p)

}]
,

where
∑

r means a sum over all r (1 ≤ r ≤ q − 1) such that (hr+1
q ) = 1 and a1 is the

q-free part of a1 (i.e. a1 = a1/q).

Proof. We give a proof of (I) only, because we can prove (II) in a similar way. In
this proof we abbreviate the sum

∑
k≥1, q-k

∑
d|k0

∑
n≥1, q-n into

∑
k

∑
d

∑
n and let

A(k, d, n) =
k0

ϕ(k0)
µ(d)

d

µ(n)
knϕ(〈kd, n〉) .

We define s = a1 or s = 4a1 according to a1 ≡ 1 (mod 4) or a1 ≡ 2, 3 (mod 4).
By Lemma 3.3, Theorem 3.4 and a method similar to Theorem 4.1, we obtain

(q − 1)∆(0)
a (q, h) =

{∑

k

∑

d

∑
n

−1
2

∑

k
k:odd

∑

d

∑
n

n:odd
s|〈kd,n〉

+
1
2

∑

k
k:even

∑

d

∑
n

n:odd
s|〈kd,n〉

−
( ∑

k
hr≡−1 (mod q)

∑

d

∑
n

−1
2

∑

k
k:odd

hr≡−1 (mod q)

∑

d

∑
n

n:odd
s|〈kd,n〉

+
1
2

∑

k
k:even

hr≡−1 (mod q)

∑

d

∑
n

n:odd
s|〈kd,n〉

)}
A(k, d, n).
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From Lemma 4.2, we have the following:

(a’) When a1 ≡ 1 (mod 4),

(q − 1)∆(0)
a (q, h) =

∑

k

∑

d

∑
n

A(k, d, n)− 1
q − 1

∑

χ∈Ĝ

χ(−h)

·
{∑

k

∑

d

∑
n

+
(

3
2

∑

j≥1

(
χ(2)

4

)j

− 1
2

) ∑

k
k:odd

∑

d

∑
n

n:odd
s|〈kd,n〉

}

· χ(k)A(k, d, n).

(b’) When a1 ≡ 2 (mod 4),

(q − 1)∆(0)
a (q, h) =

∑

k

∑

d

∑
n

A(k, d, n)− 1
q − 1

∑

χ∈Ĝ

χ(−h)

·
{∑

k

∑

d

∑
n

+
1
2
(χ(2)− 1)

∑

j≥3

(
χ(2)

4

)j−1 ∑

k
k:odd

∑

d

∑
n

n:odd
s′|〈kd,n〉

}

· χ(k)A(k, d, n),

where s′ is the odd part of s.

(c’) When a1 ≡ 3 (mod 4),

(q − 1)∆(0)
a (q, h) =

∑

k

∑

d

∑
n

A(k, d, n)− 1
q − 1

∑

χ∈Ĝ

χ(−h)

·
{∑

k

∑

d

∑
n

+
1
2
(χ(2)− 1)

∑

j≥2

(
χ(2)

4

)j−1 ∑

k
k:odd

∑

d

∑
n

n:odd
s′|〈kd,n〉

}

· χ(k)A(k, d, n),

where s′ is the odd part of s.

Now we can prove
∑

k

∑

d

∑
n

χ(k)A(k, d, n) = Cχ (4.5)

(see Appendix for proof). Then

∑

k
k:odd

∑

d

∑
n

n:odd
s|〈kd,n〉

χ(k)A(k, d, n) =
4− χ(2)
2 + χ(2)

Cχ

∏

p|s

p(χ(p)− 1)
p3 − p2 − p + χ(p)
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(in the last formula, s should be replaced by s′ when a1 ≡ 2, 3 (mod 4)).
Combining these results we obtain the conclusion. ¤

5. Proof of Theorem 1.3.

In this section we sketch the proof of Theorem 1.3. First we state a lemma which is
needed for the proof of (II).

Lemma 5.1. (i) Let q be an odd prime. Then for all e ≥ 1, we have

∆a(qe, 0) =
1

qe−2(q2 − 1)
.

(ii) If a1 6= 2, then for all i ≥ 1, we have

∆a(2i, 0) =
1

3 · 2i−2
.

If a1 = 2, we have

∆a(2, 0) =
17
24

, ∆a(4, 0) =
5
12

and for all i ≥ 3,

∆a(2i, 0) =
1

3 · 2i−1
.

Proof. See Wiertelak [12]. A little weaker but simpler formulation can be found
in [1, Theorem 1.1]. ¤

Proof of (I). When qi = 23, we obtain ∆a(8, 2) = ∆a(4, 3) and ∆a(8, 6) =
∆a(4, 1) under GRH by direct calculation of the series (2.2). For other j, we can prove
the recurrence relation by Method II of (II) below (see also the remark after Theorem
2.1).

Proof of (II). We employ two different methods.

Method I. Here we consider the case where q is an odd prime, i ≥ 2 and q|j. In this
case the value ∆a(qi, j) can be found directly, not via the recurrence relation stated in
the theorem. Assume qe ‖ j (e ≥ 1). First we note the following identity:

∆a(qe, 0)−∆a(qe+1, 0) =
∑

1≤j≤qi−1
qe‖j

∆a(qi, j) (5.1)

for i ≥ e + 1. We have

∆a(qe, 0)−∆a(qe+1, 0) =
1

qe−1(q + 1)
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from Lemma 5.1 (i).
On the other hand, we can verify from Corollary 3.5 that all the summands in the

right hand side of (5.1) have the same value. Indeed, the series in (2.2) becomes

∆a(qi, j) = ∆a(qi, hqe) =
∑

1≤r<qi

q-r

∑

f≥e

∑

l≥0

k0

ϕ(k0)

∑

d|k0

µ(d)
d

∞∑
n=1

µ(n)[
G̃k,n,d : Q

] (5.2)

where k = {(hr) (mod qi−e) + lqi−e}qf−e. If r runs through 1 ≤ r < qi, (q, r) = 1, then
(hr) (mod qi−e) takes each value in {y ; 1 ≤ y < qi−e, (y, q) = 1} exactly qe − 1 times.
This shows that (5.2) does not depend on h.

It follows that the quantity ∆a(qe, 0)−∆a(qe+1, 0) is divided equally among ϕ(qi−e)
summands in (5.1). Thus we have under GRH

∆a(qi, j) =
1

ϕ(qi−e)
· 1
qe−1(q + 1)

=
1

qi−2(q2 − 1)

for all j (q|j).
The same method can be applied to the case (qi, j) = (2i, j) where i ≥ 4 and 8|j if

we use Lemma 5.1 (ii) and Corollary 3.7:

Theorem 5.2. We assume GRH. Let i ≥ 4. If a1 6= 2, for all j with 8|j, we have

∆a(2i, j) =
1

3 · 2i−2
.

If a1 = 2, for all j with 8|j, we have

∆a(2i, j) =
1

3 · 2i−1

(the case (2i, j) = (16, 8) is unconditional, cf. the remark after Theorem 2.1).

When i ≥ 4 and 4 ‖ j, a slightly more delicate but similar argument yields the
following result:

Theorem 5.3. We assume GRH. Let i ≥ 4 and 4 ‖ j. Then we have

∆a(2i, j) =





1
3 · 2i−3

, if a1 = 2,

1
3 · 2i−2

, otherwise.

Method II. Next we consider the case j = h where q is an odd prime, i ≥ 2 and q - h.
We assume q - a1 (the case q|a1 is similar).

From (2.2), the partial sums for f ≥ 1 becomes
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∆(1)
a (qi, h) =

∑

1≤r<qi

q-r

∑

l≥0

∑

f≥1

k0

ϕ(k0)

∑

d|k0

µ(d)
d

∞∑
n=1

µ(n)cr(k, n, d)[
G̃k,n,d : Q

] , (5.3)

∆(1)
a (qi−1, h′) =

∑

1≤r<qi−1

q-r

∑

l≥0

∑

f≥1

k′0
ϕ(k′0)

∑

d|k′0

µ(d)
d

∞∑
n=1

µ(n)cr(k′, n, d)[
G̃k′,n,d : Q

] , (5.4)

where h′ ≡ h (mod qi−1), k = {(hr) (mod qi) + lqi}qf and k′ = {(h′r) (mod qi−1) +
lqi−1}qf .

The degree [G̃k,n,d : Q] in (5.3) equals

εknϕ(〈kd, n, qf+i〉) = q · εknϕ(〈kd, n, qf+i−1〉), (ε = 1 or 1/2)

which always coincides with q times [G̃k′,n,d : Q] in (5.4), since the parity of kn and the
divisibility condition (cf. Lemma 3.3) remain unchanged:

s|〈kd, n, qf+i〉 ⇔ s|〈kd, n, qf+i−1〉. (s = a1 or 4a1).

Next we can easily verify that the numbers k = k/qf and k′ = k′/qf run through the
same range, then the sums with respect to r and l in (5.3) and (5.4) both turn out to be∑

k≥1, q-k.

Hence we have ∆
(1)
a (qi, h) = ∆

(1)
a (qi−1, h′)/q.

We can prove the same formula for ∆
(0)
a (qi, h) = ∆a(qi, h) − ∆

(1)
a (qi, h) similarly,

then obtain the conclusion.
A similar machinery works for the following cases:

∆a(2i, h) (i ≥ 3, h : odd),

∆a(2i, j) (i ≥ 4, 2 ‖ j).

6. Numerical Examples.

In this section we show some numerical examples (both theoretical and experimental)
of the densities ∆a(qi, j).

6.1. Odd Prime Moduli.
We take q = 5. For the values of Cχ, see (1.2).

Example 6.1. We take a = 13. Let us compare the “theoretical densities” (table
4) and “experimental densities” (table 5). As the experimental densities, we use the
value ]Qa(x; 5, j)/π(x) with x = 179424673 (the first 107 primes).

Example 6.2. We take a = 5, a1 = 1. Then, under GRH, we have theoretically,
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Table 4. Theoretical values of ∆a(5, j).

a j = 0 j = 1 j = 2 j = 3 j = 4
13 0.208333 0.235543 0.178356 0.234475 0.143292
21 0.208333 0.235494 0.176925 0.233715 0.145532
2 0.208333 0.240605 0.178686 0.229270 0.143106
14 0.208333 0.235235 0.177947 0.234248 0.144237
3 0.208333 0.238076 0.169818 0.235252 0.148521
7 0.208333 0.236323 0.177549 0.233657 0.144139

Table 5. Experimental values of ∆a(5, j).

a j = 0 j = 1 j = 2 j = 3 j = 4
13 0.208290 0.235644 0.178338 0.234455 0.143274
21 0.208355 0.235556 0.176819 0.233788 0.145483
2 0.208334 0.240509 0.178770 0.229434 0.142952
14 0.208359 0.235345 0.177819 0.234200 0.144276
3 0.208339 0.238149 0.169796 0.235340 0.148377
7 0.208388 0.236100 0.177606 0.233777 0.144128

∆5(5, 1) =
25
96
− 1

16
{
1− 3Cχ1 + (1 + 2

√−1)Cχ2 + (1− 2
√−1)Cχ3

}

≈ 0.232661,

∆5(5, 2) =
25
96
− 1

16
{
1 + 3Cχ1 − (2−√−1)Cχ2 − (2 +

√−1)Cχ3

}

≈ 0.292699,

∆5(5, 3) =
25
96
− 1

16
{
1 + 3Cχ1 + (2−√−1)Cχ2 + (2 +

√−1)Cχ3

}

≈ 0.054644,

∆5(5, 4) =
25
96
− 1

16
{
1− 3Cχ1 − (1 + 2

√−1)Cχ2 − (1− 2
√−1)Cχ3

}

≈ 0.211663.

The following Tables 6 and 7 show the comparison of theoretical values of ∆a(5, j) with
their experimental values.

6.2. Higher Power Moduli.
Here we show some results of computer experiments on ∆a(qi, j) (i ≥ 2) to observe

the phenomenon ∆a(qi, j) = 1
q ∆a(qi−1, j).

The following tables show the experimental densities ]Qa(x; 52, j)/π(x) with x =
179424673. We know all their theoretical densities from Tables 4, 6 and Theorem 1.3
(II). Examining the following tables, we verify the above relation numerically.
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Table 6. Theoretical values of ∆a(5, j).

a j = 0 j = 1 j = 2 j = 3 j = 4
5 0.208333 0.232661 0.292699 0.054644 0.211663
10 0.208333 0.239555 0.166783 0.241173 0.144156
30 0.208333 0.236025 0.181032 0.232697 0.141913
15 0.208333 0.230120 0.180710 0.224360 0.156478

Table 7. Experimental values of ∆a(5, j) with x = 179424673.

a j = 0 j = 1 j = 2 j = 3 j = 4
5 0.208356 0.232685 0.292800 0.054449 0.211710
10 0.208358 0.239664 0.166742 0.241154 0.144082
30 0.208296 0.236104 0.181086 0.232714 0.141800
15 0.208341 0.230307 0.180646 0.224381 0.156325

a = 2
j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

0.041681 0.048136 0.035808 0.045871 0.028601 0.041675 0.048085 0.035785 0.045928 0.028616

j = 10 j = 11 j = 12 j = 13 j = 14 j = 15 j = 16 j = 17 j = 18 j = 19

0.041641 0.048126 0.035732 0.045811 0.028565 0.041690 0.048125 0.035697 0.045834 0.028591

j = 20 j = 21 j = 22 j = 23 j = 24

0.041648 0.048038 0.035749 0.045991 0.028579

a = 3
j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

0.041641 0.047685 0.033986 0.047026 0.029693 0.041696 0.047582 0.033967 0.047093 0.029713

j = 10 j = 11 j = 12 j = 13 j = 14 j = 15 j = 16 j = 17 j = 18 j = 19

0.041647 0.047604 0.033958 0.047095 0.029695 0.041733 0.047666 0.033949 0.047060 0.029600

j = 20 j = 21 j = 22 j = 23 j = 24

0.041621 0.047612 0.033936 0.047066 0.029676

a = 5
j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

0.041645 0.046523 0.058576 0.010876 0.042363 0.041712 0.046593 0.058550 0.010871 0.042389

j = 10 j = 11 j = 12 j = 13 j = 14 j = 15 j = 16 j = 17 j = 18 j = 19

0.041678 0.046492 0.058554 0.010918 0.042290 0.041632 0.046549 0.058538 0.010899 0.042301

j = 20 j = 21 j = 22 j = 23 j = 24

0.041690 0.046528 0.058582 0.010886 0.042367

a = 10
j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

0.041657 0.048004 0.033357 0.048235 0.028830 0.041650 0.047946 0.033342 0.048316 0.028824

j = 10 j = 11 j = 12 j = 13 j = 14 j = 15 j = 16 j = 17 j = 18 j = 19

0.041741 0.047961 0.033369 0.048190 0.028822 0.041652 0.047869 0.033325 0.048194 0.028812

j = 20 j = 21 j = 22 j = 23 j = 24

0.041659 0.047883 0.033350 0.048219 0.028792

Next we see the case ∆a(2i, j) for i = 2, 3, 4. When i = 3, we find the break of the
local equi-distribution (written in bold face), on the contrary, when i = 4, we confirm
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the local equi-distribution property as in the case qi = 52. For the theoretical densities
∆a(4, j), the reader is referred to Sections 1 and 2 of [6].

a = 2, i = 2

j = 0 j = 1 j = 2 j = 3

0.416669 0.065372 0.291650 0.226309

a = 2, i = 3

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

0.083335 0.032733 0.226335 0.113143 0.333334 0.032640 0.065315 0.113166

a = 2, i = 4

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

0.041643 0.016356 0.113147 0.056497 0.166697 0.016317 0.032617 0.056562

j = 8 j = 9 j = 10 j = 11 j = 12 j = 13 j = 14 j = 15

0.041691 0.016377 0.113188 0.056645 0.166638 0.016322 0.032698 0.056604

a = 5, i = 2

j = 0 j = 1 j = 2 j = 3

0.333346 0.166743 0.333298 0.166613

a = 5, i = 3

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

0.166730 0.083405 0.166543 0.083284 0.166616 0.083338 0.166754 0.083329

a = 5, i = 4

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

0.083341 0.041719 0.083250 0.041605 0.083335 0.041677 0.083369 0.041584

j = 8 j = 9 j = 10 j = 11 j = 12 j = 13 j = 14 j = 15

0.083389 0.041687 0.083293 0.041679 0.083282 0.041661 0.083386 0.041745

a = 10, i = 2

j = 0 j = 1 j = 2 j = 3

0.333378 0.166623 0.333356 0.166644



718 K. Chinen and L. Murata

a = 10, i = 3

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

0.166707 0.083309 0.166710 0.083324 0.166671 0.083314 0.166646 0.083320

a = 10, i = 4

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

0.083345 0.041666 0.083309 0.041629 0.083319 0.041675 0.083354 0.041672

j = 8 j = 9 j = 10 j = 11 j = 12 j = 13 j = 14 j = 15

0.083362 0.041643 0.083401 0.041694 0.083352 0.041639 0.083292 0.041648

Appendix. Proofs of (4.3) and (4.5).

Here we give a proof of (4.5). In Section 4, there are many other triple sums with
respect to k, d and n. All these are variants of (4.5) and are estimated similarly (the
reader is also referred to [1, Section 5]).

Let

Sχ =
∑

k≥1
q-k

∑

d|k0

∑

n≥1
q-n

χ(k)A(k, d, n).

Note that n = n. The series

∑

d|k0

µ(d)
d

∑

n≥1
q-n

µ(n)
nϕ(〈kd, n〉)

are absolutely convergent since
∑

n≥1 1/nϕ(n) converges (see Prachar [9, Satz 5.1]). So
we have

Sχ =
∑

k≥1
q-k

χ(k)k0

ϕ(k0)k

∑

n≥1
q-n

µ(n)
n

∑

d|k0

µ(d)
dϕ(〈kd, n〉) .

Putting k =
∏t

i=1 qei
i (qi: prime, qi 6= q) and d =

∏t
i=1 qεi

i (εi = 0, 1), we have

Sχ =
∑

k≥1
q-k

χ(k)k0

ϕ(k0)k

∑

n≥1
q-n

µ(n)
n

∏

p|n
p6=qi

1
p− 1

∑

d|k0

µ(d)
dϕ(kd)

.

Since the function h1(d) := ϕ(kd)/ϕ(k) is multiplicative, we have



A property of the residual order of a (mod p) — III 719

Sχ =
∑

k≥1
q-k

χ(k)k0

ϕ(k0)k

∑

n≥1
q-n

µ(n)
n

∏

p|n
p6=qi

1
p− 1

1
ϕ(k)

t∏

i=1

(
1− 1

qih1(qi)

)

=
∑

k≥1
q-k

χ(k)k0

ϕ(k0)k

t∏

i=1

qi + 1
qei+1
i

∑

n≥1
q-n

µ(n)
n

∏

p|n
p6=qi

1
p− 1

.

Let h2(n) =
∏

p|n, p 6=qi
(p− 1). Then it is multiplicative and for a prime p,

h2(p) =

{
1, if p = qi,

p− 1, otherwise.

So we have

Sχ =
∑

k≥1
q-k

χ(k)k0

ϕ(k0)k

t∏

i=1

qi + 1
qei+1
i

∏

p6=q,qi

(
1− 1

p(p− 1)

) t∏

i=1

(
1− 1

qi

)

=
∏

p6=q

(
1− 1

p(p− 1)

) ∑

k≥1
q-k

χ(k)
t∏

i=1

(qi + 1)(qi − 1)
q2ei
i (q2

i − qi − 1)
.

Since the function

h3(k) =
{ t∏

i=1

(qi + 1)(qi − 1)
q2ei
i (q2

i − qi − 1)

}−1

is multiplicative, we have

Sχ =
∏

p6=q

(
1− 1

p(p− 1)

)(
1 +

χ(p)
h3(p)

+
χ(p2)
h3(p2)

+ · · ·
)

=
∏

p6=q

(
1− 1

p(p− 1)

){
1 +

(p + 1)(p− 1)
p2 − p− 1

∞∑

j=1

(
χ(p)
p2

)}

=
∏

p6=q

(
1− 1

p(p− 1)

)(
1 +

(p + 1)(p− 1)
p2 − p− 1

χ(p)
p2 − χ(p)

)
.

We get (4.5) from this formula and (4.3) for χ = 1.
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