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Abstract. Let a be a positive integer which is not a perfect b-th power with
b > 2, q be a prime number and Qq(z; ¢%, j) be the set of primes p < x such that the
residual order of a (mod p) in (Z/pZ)* is congruent to j modulo ¢*. In this paper,
which is a sequel of our previous papers [1] and [6], under the assumption of the
Generalized Riemann Hypothesis, we determine the natural densities of Qq(x; qi,j)
fort>3if ¢ =2,4 > 1if ¢ is an odd prime, and for an arbitrary nonzero integer j
(the main results of this paper are announced without proof in [3], [7] and [2]).

1. Introduction.

This paper is a sequel of our previous papers [1] and [6], and here we present full
proofs of the results announced in [3], [7] and [2].

Let a (> 2) be a natural number which is not a perfect b-th power with b > 2, j and
k be integers with 0 < j < k. For a prime p with p { a, we define the number

Dq(p) = #(a (mod p))
(the order of the class a (modp) in (Z/pZ)*)

and consider the set
Qa(xik,j) ={p<z; pfa, Dy(p) =7 (mod k)}.

The set Q,(x; k,0) attracted attention of many mathematicians and its natural density
is completely determined (see Hasse [4], [5], Odoni [8], Wiertelak [12]). But when j # 0,
determining the density of Q. (z;k, j) requires much more exacting analysis. In [1] and
[6], we considered the set Q,(z;4,7) with j = 1 and 3 (when j = 2, we can get the
density easily).

All primes < z are divided into the two sets, Q(x;2,0) and Q.(x;2,1), and our
motivation of studying Q,(z;4,7) came from the observation that, for an usual a,

HQu(:2,0) ~ 37(0),  1Qa(wi2,1) ~ 37(a),
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where 7(z) denotes the number of primes up to x. This means that, when p varies, the
parity of D, (p) — even or odd — is not equi-distribution.

In order to study this phenomenon more closely, we investigated the density of
Qo(z;4,7) and observed how the two sets Qq(x;2,0) and Q,(x;2,1) are divided into
Qu(z;4,7)’s. Then we found out that the densities mod 4 had even more intricate
structures. In fact, in [1] and [6], we proved the existence of the density of Q,(z;4, j)
on the assumption of Generalized Riemann Hypothesis (= GRH) for a certain family of
algebraic number fields, and determined these values exactly:

THEOREM 1.1 ([6]). Let v,(a) denote the non-negative integer such that p*»(@ || a.
We assume GRH, then the natural densities 0,(j) of Qa(x;4,7) (j = 1,3) exist and both
equal to 1/6 if vo(a) is even, while if va(a) is odd, then

I -G

—5(1) = . pJ7
5@(3) 5@( ) ¢ p3 _p2 —p— 1

p:vp(a) is odd

where

1
C’::§ H
3 (mod 4

pP=

2p )
1— —— 2 ) ~0.080456
) < P*+DpP-1)

and (%) is the Legendre symbol.
In particular, 0,(3) is equal to d,(1) if the square-free part of a is odd or divisible by
any p =1 (mod 4), and §,(3) is strictly greater in all other cases.

In the present paper, we extend this result to the case of an arbitrary prime power
modulus, i.e. we consider the density of Qqu(x;¢%,j) (i > 3 if ¢ = 2,7 > 1if ¢ is an
odd prime). In this study, we are interested in the relation between Q. (z;q¢*~1,j) and
Qu(z;4%, 7). Of course Q,(z;¢" 1, ) is decomposed into

Qa(z’qa]‘i’tqlil)a (t:()ala 7q71)

so we investigate whether $Q,(v;¢%,j + tg'=1) ~ %]iQa(x;qi_l,j) for any ¢ — a local
equi-distribution property — or not.

Roughly speaking, our results show that, when ¢ > 3 (i.e. an odd prime), we have
the above “equi-distribution property” for i > 2 (¢: odd prime), and for i > 4 (¢ = 2),
but do not have for the other cases.

Let A,(q%, j) be the natural density of the set Q,(z;¢’,j). We prove the existence
of the density in Section 2 (Theorem 2.1). The basic mechanism is the same as that of
[1, Section 4, Part I], so we give only the outline.

In Section 3, in order to calculate the density explicitly, we start from the formula
(2.2) of Theorem 2.1, and consider the most difficult quantity — the coefficient ¢,.(k, n, d),
which is determined according to the existence or nonexistence of a certain automorphism
over an algebraic number field of the Kummer type.

The computation of A,(g,7) (¢: an odd prime) needs somewhat hard calculation,
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and is outlined in Section 4 (the reader is also referred to [6, Section 5]). The precise
statement is given in Theorem 1.2.

On the contrary, the case of higher power moduli (Theorem 1.3) is treated with less
complexity (with two exceptions A,(8,2) and A,(8,6)). In this case, we can employ two
different methods according to the values (¢‘, j). For some cases, we prove the recurrence
relation between A,(q%,7) and A,(¢*~!,j) directly. For other cases, we observe that all
Auld',5) (1 <5< ¢t ¢°| j for a fixed €) have the same infinite series expression and
therefore the same value. Then we obtain the exact values of them from the unconditional
result for A, (g%, 0) — Au(g“™1,0) (see (5.1)). See also Wiertelak [11].

Let a; be the square free part of a. For an odd prime ¢, let G = (Z/qZ)*, G be
the character group of G, (E) the Legendre symbol, and we define for each y € G, an
absolute constant C, by

P —p* —p+x(p
oo p:};[me (p—1D@* - x(z(v)))' (1.1)
p74q
Moreover we define
L, ifay=1(mod4),
pa= { M =2 o,
@’ if a3 =3 (mod 4).

Here are our main results:
THEOREM 1.2. Let g be an odd prime, 1 < h < q—1, and we assume GRH.

(1) If ¢t a1, then

2

Aalg:h) = : a (q _1 1)2 Z Cyx(=h) <1+77x,a H px(p) ~ 1)

-1 2_1 3 _p2 _
(¢=1)(¢* = 1) et e, PP P x()

(I1) If qlay, then

2 1 1
Aa(qa h) = (q — 15((]2 — 1) - (q — 1)2 |:Z CX{X(_h) - (X(_h) + QXT:X(T)_ )nX,a

1 - p(x(p) —1) H

—p2
Jpa, PP P2 P X(D)

where Y, means a sum over all v (1 < r < q—1) such that (%) =1 and ay is the
q-free part of a1 (i.e. a1 =a1/q).

)
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THEOREM 1.3. We assume GRH.

(I) We have Aq(8,2) = Ay(4,3), Au(8,6) = Aq(4,1), and Ay(8,5) = 1 A,(4, 5) unless
j=2,6.

(IT) (Local equi-distribution property) We suppose i > 2 when q is an odd prime, and
1 >4 when q = 2. Then for an arbitrary j, we have the relation

- 1 i1 .
Aa(qlaj):aAa(q L ).

In general, the constants C, are not real numbers, and we are interested in the fact
that the real number A, (q', j) is expressed as a combination of these complex constants.

We take ¢ = 5, — the smallest modulus where non-real C', appears — and G =
{X0, X1, X2, X3}, where Y is principal and x% = xo. From Theorem 1.2,

2p
Cyo =1, Cy = 11 (1 - 2) ~ 0.1293079,
p=2,3 (mod 5) (p - 1)(p + 1)
V=1-1 V=I+1
com T (585 I (55w A)
p=2 (mod 5) p p p=3 (mod 5) p p
2p
1———= ) ~0.3640896 + 0.2240411v/—1 1.2
0 (o) * 2
p=4 (mod 5)
and Cy, = C,,. Then for a = 13, we have
25 1 1059 10255371 — 52338y/—1
A1) = 55 = 16{1 + Jo07 S~ ( 10150565 X)}
~ 0.235543,
25 1 1059 10255371 — 52338y/—1
A3(5,2) = = — —J1——"2C,, +2R c
13(5,2) = gg 16{ 1007 TR ( 10150565 X)}
~ 0.178356,
(1.3)
25 1 1059 10255371 — 52338y/—1
Ai(5,3) =2 — —{1-—"C,, -2
13(5,3) = gg 16{ 1007 ¢ ( 10150565 X)}
~ 0.234475,
25 1 1059 10255371 — 52338y/—1
Ap(5,4) == — — 14— 2
13(5,4) = g 16{  Jo07 O T2Re ( 10150565 CX?)}
~ 0.143292.

These “theoretical densities” are well-matched with experimental densities. For more
examples, cf. Section 6.
We give the explicit values of A,(q?, j), but it seems very difficult to prove A, (¢¢, j) >
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0, because we have only little knowledge about number theoretical properties of Cy,’s from
its Euler product expression.

We start from the observations A,(2,1) = 1/3 and A,(4,3) = 1/6 for a usual a, but
now we know that (¢, j) for which “A,(q%, j) € Q" are rather exceptional. For example,
when ¢ is an odd prime, A,(q¢*,j) € Q seems to happen only when ¢|j (see also Theorem
1.1).

2. Existence of the Density.

First we introduce some more notations. For k € Z, let {; = exp(2wi/k). We
denote Euler’s totient and the Md&bius function by ¢(k) and p(k), respectively. For a
prime power ¢', ¢! || m means that ¢*|m and ¢'*! f m. Note that ¢° || m means ¢ { m.
For integers mq,ma, -+ , My, (M1, ma, -+ ,my,) denotes the least common multiple of
my,mo,--+ ,Mpy.

We assume a € IN is not a perfect b-th power with b > 2. We are interested in the
set Qu(7;q%,7) with 1 < j < ¢' — 1, so we put j = hq® with gt h and 0 < e <i— 1. For
1<r<q¢ (qtr), f>eandl >0, let

k= {(hr) (mod ¢"=¢) + lg*~¢}¢' ¢ (2.1)

where hh = 1 (mod ¢*~¢), and (hr) (mod ¢*~¢) means the least natural number which is
congruent to hr modulo ¢"~¢. And let

ko = H p (the core of k).

plk
p:prime

For above f,i,k and n > 1,d > 1,d|ko, we define the following two types of number
fields:

Grma = Q(a™, Ca, ),
Grond = Gryn,d(Cor+i)

(note that k and d depend on f and 7). We take an automorphism o, € Gal(Q((,r+:)/Q)

f .
determined uniquely by the condition o, : ( r+i — Cq}ﬂq (1 <r<q,qtr), and we

consider an automorphism o} € Gal(ék,n7d/Gk7n7d) which satisfies a;f|Q(qu+i) = o,.
Clearly, such a ¢ is unique if it exists (see [1, Lemma 4.3]).

The main result of this section is the following;:

THEOREM 2.1. Under GRH, we have

L e\ _ 7 e : #
1Qu(w; ', hg") = A(d' hg) i x+o<logxloglog$)

as x — oo, where
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k > Yer (kyn,d
Auld'hg) =Y ZZ O Zu Zl“Gm Q]) (2.2)

1<T<q f>el>0 Mk
qfr
and
1, if oF exists,
cr(kyn, d) = L
0, otherwise.

The series in the right hand side of (2.2) always converge.
REMARK. We can find A,(2¢,2¢71) (i > 3) unconditionally because A, (2¢,2i71) =
Ay (2071,0) — A,(2%,0) (see Lemma 5.1 (ii)).

The following lemma is the starting point of the proof of Theorem 2.1. It is a
generalization of [1, Lemma 3.1 (iii), (iv)]. We give the proof here because it was omitted
in [1].

LEMMA 2.2.  Let I,(p) = |(Z/pZ)* : (a (mod p))|, the residual index mod p of a.
Then,

1Qa(zsq' ha?) = > D > #H{p<a: Lp) =k p=1+r¢ (mod ¢/} (2.3)
1<r<q f>el>0
afr

ProoF. We take p € Qq(;q",hq®) and define f by ¢/ || p — 1. We have f > e
because ¢°|Dq(p). We can write p — 1 = ¢/ (r + mq®) and D,(p) = hq® + ng* (m,n,r €
N U {0}, ¢tr). Then by the relation D,(p)I,(p) = p — 1, we have

(h+ng"=)a(p) = ¢/ ~(r + mq").

We can see ¢/ ~¢ || I,(p) and

]ﬁgﬁ — i—e
h- e r (mod ¢'~¢)
This yields
I(p) = {(hr) (mod ¢"~)} - ¢/~ (mod ¢/ T"7%). (2.4)

Conversely, p = 1+ rq¢/ (mod ¢/*%) and (2.4) similarly lead to D,(p) = hq® (mod ¢°) if
we note f > e. Writing (2.4) in a form

L.(p) = {(hr) (mod ¢'~°) +1g" “}¢/ = (1 >0),

we obtain the desired result. O
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We can now prove Theorem 2.1. The estimation of (2.3) can be carried out by a sim-
ilar manner to [1, Section 4]. In fact, the prime set in (2.3) is N, (x; k; 1+7¢ (mod ¢/*?))
in the notation of [1, (3.1)]. Here we sketch the proof (it can be done along the same
line as Part T of [1, Section 4], so we leave the details to the reader).

First we decompose N, (x;k; 1+ rq/ (mod ¢f*7)) as follows:

N, (x; kil + rqf (mod qf”))

[ ko Z uld :c Kk;al/k;kd;l +rq/ (mod qf“))
d|ko

where Kj, = Q(Cp,,a'/*),

p: a prime ideal in Kj, Np =p! <z,
B(z; Ki;a*/*; N s (mod t)) =< p=1 (mod N), p=s (mod ),

a'/* is a primitive root mod p

and Np is the (absolute) norm of p (note that p is a rational prime). Moreover we
introduce the set

p : a prime ideal in Ky, Np =p' < z,
=1 (mod kd), p=s (mod t),

the equation X7 = a'/* (mod p)

is solvable in Ok, for any ¢|n

P(x; Ki;a*/*; kd; s (mod t);n) =

Then we have

ﬁB(a:; Ky a'*: kd: 1+ rq’ (mod qu))

log log )3
—Z P (a; Ki; /% kd; 1+ rg? (mod ¢/*); )+O<x(?g§gx)>7
og-x

where Z’n means the sum over such an n < x which is either 1 or a positive square free

integer composed entirely of prime factors not exceeding (1/8)logx, and the constant

implied by the O-symbol depends only on a, ¢, ¢ and e (see Propositions 1 and 2 of [1]).
By the uniqueness of ¢, we can prove similarly to [1, Proposition 4.4]

ﬁP(x;Kk; a'’*: kd; 1+ rq’ (mod qf+i);n) = ﬂ'(a:; ék,md/Kk, {a;"}) + O(k*Vx),

where

m(x; L/K,C) = #{p : a prime ideal in K, unramified in L, (p, L/K)=C, Np <z}

for a finite Galois extension L/K and a conjugacy class C' in Gal(L/K) and (p, L/K) is
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the Frobenius symbol. The constant implied by the O-symbol depends only on a, g, @
and e.

For the value of [ék,n’d : Kj] and the discriminant dék,n.d of ék,n’d, we have the
estimates

N d
[Gk)md : Kk} = (5m -knp(n)

where § is an absolute constant, and

log|dg, | < (nkd)®log(nkd),

where the constant implied by < depend only on a, ¢, i and e (for the proof, see, for
example [10]).

All these results allow us to estimate the remainder terms, and we obtain the theo-
rem.

3. Determination of ¢,(k,n,d).

Theorem 2.1 shows that the set Q. (z;q’,hq®) has a natural density. For explicit
computation of the natural density A,(¢%, hq®), we need to determine the values of co-
efficients c,.(k,n,d). To this end, we consider the number fields Q((yr+:), Gk n.d, G‘km,d
and their automorphisms. First we introduce a preliminary lemma:s:

LEMMA 3.1. Let K be a number field, M be a finite extension of K, and L be a
finite Galois extension of K. Then we have the following:

(I) LM is a Galois extension of M. For o € Gal(LM/M), o+ o|r gives an injective
homomorphism from Gal(LM /M) to Gal(L/K), and [LM : M] | [L : K.
(IT) The following three conditions are equivalent:
(i) Gal(LM/M)= Gal(L/K),
(i) [LM: M| =|[L: K],
(iii) K = LN M.

PROOF. The proof is elementary and we omit it. O

Now we proceed to the determination of ¢, (k,n,d).

The strategy. We apply Lemma 3.1 to the case where L = Q((ys+i) and M = G nq-
Then LM = ék7n7d. We consider the automorphism o, on the intersection field K =
LNM.

(i) The case o,.|x = id.

We have o, € Gal(Q((yr+:)/K), so from Lemma 3.1, we can take 7 €
Gal(Grn,a/Grn,a) = Gal(Q(Cyr)/K) such that 7l .,y = or. Thus 7 = o7,
and we have ¢, (k,n,d) = 1.

(ii) The case o.|x # id.

Similarly, we can easily verify that there is no 7 € Gal(ékm,d/ka,d) with the

property T|Q(qu+i) = o,, and we have ¢.(k,n,d) = 0.
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So, what we have to do is to determine the intersection K and to verify if .| = id
or not. For this purpose, we need two lemmas:

LEMMA 3.2. Let m be positive and square free, m # 1,0, and let d,, be the dis-
criminant of Q(y/m). Then the least cyclotomic field which contains Q(y/m) is Q((|q,.|)-
Especially,

Q(vm) C Q(Gm) and Q(v=m) C Q(Cam), if m =1 (mod 4),
Q(VEm) C Q(lum), if m =2 (mod 4),
Q(vVm) C Q(Cam) and Q(v/=m) C Q(Cm), if m =3 (mod 4).

PROOF. See a suitable textbook of algebraic number theory. O

LEmMA 3.3. (1) If kn is odd,
(Grm.a : Q) = knp((kd,n)),
[G’k,n’d : Q} = kn go((kd,n,qf“».
(I1) If kn is even,

kn o ((kd, n)),

G0] - {

1kno((kd, n)),
where the latter case happens when one of the following conditions is satisfied:

(a) a1 =1 (mod 4) and aq|(kd,n),
2 (mod 4) and 4a;|{kd,n),
(¢) a1 =3 (mod 4) and 4ay|{kd,n),

and

& kno((kd,n, g/ *%)),
kn,d * = .
skne((kd,n, ¢'*7)),

where the latter case happens when one of the following conditions is satisfied:

(a’) a1 =1 (mod 4) and a1|{kd,n, qf+i>’
(b)) a1 =2 (mod 4) and 4ay |(kd,n, ¢?*7),

(¢)) a; =3 (mod 4) and 4a;|(kd,n,q’ ).

PROOF. This is a direct consequence of [6, Proposition 3.1]. O
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Lemma 3.3 allows us to calculate [ék,md ¢ Gina)- If we find a field K’ such that
K' c G, d, K' c Q(qu+i) and [Q(qu+'i) : K/] = [ék,n,d : Gk}md], then by Lemma 3.1,
we can conclude K = K'.

We have to consider the two cases, ¢ is an odd prime and ¢ = 2, separately. We
state the results for odd ¢ first:

THEOREM 3.4 (The values of ¢,.(k,n,d) — ¢: odd prime). We assume q is an odd
prime. Then the intersection field K = G n,q N Q((yr+i) and the number c.(k,n,d) are
gwen in Table 1. In this table, G, is the Gauss sum defined by

G- 3 ()

r€Z/qZ %

Table 1. The number ¢, (k,n,d) for odd gq.

f—e ‘ d ‘ n ‘ kn ‘ a1 H K ‘ cr(k,n,d) ‘
1, ife>1
d 11 11 11 —e ’ - A
Fles1 gld | all | a a Q((yr—et1) 0, ife—0 (A)
qtd| all | all all Q(Cyr—e) 1 (B)
1, ife>1
n | all all ’ = C
d Q) Dy |©
odd all l,ife>1
qta Q or e =0 and (D)
f—e=0]| all |gtn none of (a’), r#—1 (modg)
(b%), (") 0, otherwise
even | glay Life>1
, b ore=020,
el Q) | -1 med ), | B)
r4+1y\ __
(=) =1
0, otherwise

PrOOF. We give proofs for only a few typical cases.

The case (A). From Lemma 3.3, we can easily see that

[Grma: Q] knp(d/)p((kd,n)

[Grna: Q]  kno(g/=<t1)o((kd, n))

et+i—1
)

[ék,n,d : Grnal =
=q

where m denotes the ¢ free part of an integer m, i.e. m = m/q® for ¢¢ || m. So, the
intersection K must satisfy

[Q(qu+i) : K] — qe+i,1.
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Since Q((,r+i)/Q((y) is cyclic (note that ¢ is odd), the subgroup of Gal(Q({,s+:)/Q) is
uniquely determined by its order, and so is K. Thus we have

K = Q(qu*‘#l)'

et+i—1

Note that (yr-c+1 = (:q?ﬂ. and

et fri=1
Cq.g:wrl = qu*€+1 : Cq}‘g’i

Then we can see Cq‘f’;“ = (gr—e+1 and o, = id if e > 1. On the other hand, if e = 0,
rg? =1 £ 0 (mod ¢f*%) because (r,q) = 1. Hence Cilers # Cgr—es1 and op|k # id.
Therefore,

1, ife>1,

cr(k,n,d) =
( ) {O, if e=0.

(We can prove (B), (C) and (D) similarly.)

The case (E).  From Lemma 3.3, we can see

_ 1
(G : Gl = §qe+171(q —1).

Noting that f—e = 0, we have [Q((,s+:) : K] = $¢°T""!(¢—1) and therefore [K : Q] = 2.
Similarly to the case (A), K is determined uniquely by these conditions: since K C
Q(¢y) C Q(¢yr+¢) and K is quadratic, we conclude that K = Q(G,).

Now we proceed to the observation of ¢,.. Note that ¢, does not exist when e = 0
and r = —1 (mod q), because q|(1+rq’) (recall f = e = 0), and so ¢, (k,n,d) = 0. In the
cases where e > 1 or e = 0 and r #Z —1 (mod q), o, always exists, so we check whether
or|k =1id or not (recall the discussion before Lemma 3.2). Since f = e, we have

eti—1

o q 2e+i—1
o
Cq - ( qe+7',

1+7rq°®
) = Cq ’ Cqﬁi

2e+i—1 . .
When e > 1, we have Cq:i: =1,50 (" = (4. Thus o,|x = id and o} exists.

When e =0 and r # —1 (mod ¢), we have

_ rq' Tt _ el
an - Cq . qui - C; .

Note that Gal(Q((,)/Q) = (Z/qZ)*. Since q is odd, the quadratic residues mod ¢ form
a subgroup of index 2 in (Z/qZ)*. Hence we can conclude

1
@mzm,ﬁ(“*)zl
q
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and

UT'K #1d7 if <T+1> = _13
q

which proves Table 1 (E). The cases (b’) and (c¢’) can be dealt with similarly. O
We can easily see the following:

COROLLARY 3.5. Let q be an odd prime. When e > 1, we have
cr(kyn,d) =

for all r, k,n,d.

Note that ¢,.(k,n,d) does not depend on r when e > 1, above all.
Now we proceed to the case ¢ = 2.

THEOREM 3.6 (The values of ¢, (k,n,d) — q=2). We assume ¢ = 2. Then the
intersection field K = Gy n.a N Q((ysr+i) and the number c.(k,n,d) are given in Tables
2 and 3 (in next pages), where m denotes the odd part of an integer m (i.e., m = m/2¢
with 2¢ || m) and @} = a1 when a; =2 (mod 4).

PrROOF. We can prove this theorem similarly to Theorem 3.4. In Table 3, note
that we have only to consider the case e > 1, and therefore k and d are always odd. The
reader is also referred to [6, Section 4]. O

We can easily see the following:
COROLLARY 3.7. Let g =2. When e > 3, we have
er(kym,d) =

for all v, k,n,d.

4. Proof of Theorem 1.2.

In this section we prove Theorem 1.2. Let ¢ be an odd prime. Then for 1 < h < ¢—1,
we have from (2.2) that

k = - (kym,d
- Y ST g SRR
1<r<q f>0 z>0 d|k n=1 k,n.d - Q]

where k = {(hr) (mod ¢) + l¢}q/. This number k is a little hard to deal with, so
first we remove the dependence on h from k. When r runs through the range 1 <
r < g, (hr) (mod q) also runs through the same range, so we change the variables
(hr) (mod q) — r. Then k = (r + lq)q”, ¢ (k,n,d) is transformed to c,(k,n,d) (the
suffix hr is understood modulo ¢) and
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Table 2. The number ¢, (k,n,d) for ¢ =2 (I) (the case f —e > 1).

| d | a1 | K \ er(k,n, d) |
a1 = 1,3 (mod 4)
"1 (kd,n 1, ife>1
= T(,id 7;> QGor-en) 0 ;f Z =0 )
even | a1 = 2 (mod 4) TGS T ’ -
f—e>2
a’l‘(@vﬂ)? 17 lerQ
foe=1 QG 0, ife=0,1 (B)
a1 =1 (mod 4)
ay { (kd,n)
—e 1 C
o, Q(Gor-) ©)
f—e>3
) 1, ife>2or
9(\/5) if e=0,7 =3 (mod 4),
odd ai =1 (mod 4), 0. ife=1or (D)
az =2 (mod 4) ’ > foe=1 e=0,r =1 (mod 4)
a1|(kd, n), 1, ife>2or
f-e=12 ?(\/j)lf e=0,7=1 (mod 4),
ay =3 (mod 4), 0. ife1or (E)
fe=1 e=0,r =3 (mod 4)
1, ife>1
Q) e (¥)
a1 1 {kds ) or
ar|(kd, ), Qo) ! @)
a1 =3 (mod4) | f—e>2
a1|(kd, n), 1, ifex1
H
foe=1 Q) 0, ife=0 )

k 2 u(n)eny (kyn, d
SOOI B et N

1<r<q f>0 l>0 d|ko n=1

We should also note that we have to consider only square free n because of u(n). Theorem
3.4 tells us that, when f —e= f > 1,

1, ifqtd,
cr(kym,d) = af
0, if q|d.

So it is convenient to divide (4.2) into two parts, f > 1 and f = 0:
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Table 3. The number ¢, (k,n,d) for ¢ = 2 (II) (the case f —e > 0).

’ n ‘ a1 H K ‘ cr(kyn, d) ‘
a1 =1 (mod 4)
I
ay 1 (kd,n) Q ! M
1, ife>3or
Q(V2) if e=1,r =3 (mod 4), @
ai =1 (mod 4) |0, ife=2or
even | a1 =2 (mod 4) 4| (kd, n) e=1,7=1 (mod 4)
1, ife>3or
Q(V/-2) if e=1,r=1 (mod 4), (K)
ai =3 (mod 4) | 0, ife=2or
e=1,r =3 (mod 4)
a1 =3 (mod 4) | a1 1 (kd,n) Q 1 (L)
altbdn) | Q) Cieca oo
odd all Q 1 (N)

ko p(d) = p(n)enr (k,n, d)
1§<q F>11>0 (ko) L%;O d n; [ékﬁud : Q]
)

)

ko 11(d) =~ p(n)enr(k,n, d)
<q >0 @(kO) % d 7;1 [Gk,n,d : Q]

)

and we estimate A first. It turns out that A is independent of the choice of a and
h:

THEOREM 4.1. We assume GRH. For any a and h, we have

1

Al = ey

PROOF. Recall that m means the ¢ free part of an integer m. We write k = kg’
and the sum over r and [ in the form ), otk We need explicit descriptions of the

degree [Gn.a : Q]. In the present case, the second conditions of (a’), (b’) and (c’) in
Lemma 3.3 become

s|(kd,n),

where s = a; or 4a; according to whether a; =1 (mod 4) or a; = 2,3 (mod 4). Noting
that

kng((kd,n, ¢ 1)) = ke'n - o(a ) p((kd, n))
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(we can assume n is square free), we have

ko p(d) p(n) _ 1 ko p(d)  p(n)
p(ko) d  knp((kd,n,q/t1))  ¢*/(q—1) p(ko) d Eno((kd,n))

We put

For simplicity, we abbreviate the summation Zk>1.q,{k Zd|ko7q)fd oo into Do >
Here we remark that we can prove

DY Alkdn) =1 (4.3)
kE d n
(see Appendix for proof). Then, since
kn: odd < k: odd and n: odd

and 37, 1/¢*/ (¢ —1) =1/(qg — 1)(¢*> — 1), we have by Lemma 3.3 that

CEECSIZLED 35 35 S S 5 I LD 3

n:odd n: eve even

krodd kiodd stihdm) sl (kd.n)
+ D8 > 42 > }A(k,dn)
pon © Cstidm)  sl(kd.m)
{rryrry -y ¥
k d n:gdd k d n'eT\L/en k d n:eT\L/en
kodd krodd kodd | (kd.n)
505D MRI( 35 3 35D 3 S ol
kE d . k d n k d n
k:0dd ol (kd.m) k:even k:even s|(kd,n)
+2 )Y > }A(k,d,n)
pooven © sl(kd.n)
£33 35 35 3 SIS 3b olb ol KRS
k d n k d n k d n
k:odd s?(ié?ﬁ) k:even s|(kd,n)

The first threefold sum is equal to 1 by (4.3). The second threefold sum is equal to
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1 1
-5 Z zd: ZL: A(k,d,n)=—§Ev say,

. kd ) Jad
even s|(kd,n)

Note that ko/p(ko) = k/@(k). If we put k = 27k’ (j > 1), we have k = 2/k’. Then we
can verify that the sum E’ is equal to

27 k! u = p(n)
Z Z (27K Z zjl 2 k'np((27k'd, n))

j>1 k >1 d\27k/ n:dd
K td Iy
qtk’ q s[(27k’d,n)

k’:0dd

pd) N p(n)
YT Y

j>1 ’ n=
g2t k21 dlk n:odd

e, (271 d,m)
p(2d) i p(n)
20 2 TRk 20 m)
n:odd
S1(27 k' -2d,m)
B 1 K pld) < p(n)
_222]"1 2 p(k) Z( d 2 Ene((k'd,n))
i>1 >1 ik =1
qtk’ qtd s|2j .<k:'d n)
k':0dd =0
IRVIGEEES p(n) >
= kE'np((k'd,n))
s|29 T (k' d,n)
(a’) When a; =1 (mod 4), s is odd, so we have

5|2/ (k'd, n) & s|(K'd,n),
8|27 E d,n) < s|(k'd,n).

Therefore
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Consequently we have

(q—1)(¢* - 1AW =1. (4.4)
b’) When a1 =2 (mod 4), s = 4a; and 8 || s, so putting s = 8s’, we have

ay g

: Jj=3,
s|27(k'd,n) <
s'|(k'd,n),

J=2,

5|29 K d,n) <
S| d,m).

Therefore

E’:(ZQQH— P 2)2};%2 > A(k.d,n)

n
j=>3 Jjz niodd

s'|(k'd,n)

Moreover, we have E = 0 since s|(kd,n) does not hold in this case. Hence we get the
same formula as (4.4).

(c’) When a; =3 (mod 4), s = 4a; and 4 || s, so putting s = 4s’, we have

J=z2

5|27 (k'd, n) <
s'|(k'd,n),

5|2j+1<ﬂd,@> & §|(K'd,n).

Therefore
1
[
P (Lmm 1Y ms) XY X Aldn) -0
i>2 Eod o .0da
S/I k:i/ 7 >
and E = 0. Hence we get the same formula as (4.4). O

We proceed to the calculation of A, In the calculation of AY (g, h), we encounter
the sums over a specific residue class modulo ¢q. To deal with such sums, we need the
following lemma:

LEMMA 4.2. Let G = (Z/qZ)* and G be the character group of G. For anyr € G
and m € Z, we define
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Then

0, otherwise.

{1, if m=r (mod q),

Now we have:

THEOREM 4.3. (1) If ¢ 1 a1, then we have under GRH that

o) L p(x(p) — 1)
Al (q7h> P q712ZCXX <1+77X,aHp3p2p+X(p)>.

p|2a1

(I1) If qla1, then we have under GRH that

AV = - [Zc{ )= (M 200

—1
. p(x(p) —1)
11 PP —p>—p+xp) H

pl2a1

where )", means a sum over all v (1 < r < q—1) such that (%) =1 and ay is the
q-free part of ay (i.e. a1 = ai/q).

PrROOF. We give a proof of (I) only, because we can prove (II) in a similar way. In
this proof we abbreviate the sum > 7~ o0 D qikg Don>1, g 1180 224 D05 >, and let

ko pld)  pn)
p(ko) d kne((kd,n))’

A(k,d,n) =

We define s = a; or s = 4ay according to a; = 1 (mod 4) or a1 = 2,3 (mod 4).
By Lemma 3.3, Theorem 3.4 and a method similar to Theorem 4.1, we obtain

IRECIEIP S IED IO D IRED 3D 3D S

kiodd SR&?% poven - iodd,
- ( Y ¥y ¥ T X%
hr=-1 (mod q) hr:—kl (mod q) s\(ko?n)
1
n 5 Z Z Z )} (k,d,n).

k: even n: Odd
hr=—1 (mod gq) s|(kd,n)
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From Lemma 4.2, we have the following:

(a’) When a; =1 (mod 4),

k xGG‘
3 2\’ 1
(Crs(iz () -)ry x|
bodom izl k:c]fdd d lnilc%d)
X(k)A(k, d, ) )
(b’) When a; = 2 (mod 4),
(¢—1)A ZZZAkdnf—Z
xGG
1 2)\’ !
-{ZZZ+2<><<2>— > (X“) Y Y |
bodom j=3 k:c]fdd d g,nzgg%
X(k)A(k,d, n), -
where s’ is the odd part of s.
(¢’) When a1 = 3 (mod 4),
(- 1A ZZZA (k,d,n) Z
xEG
1 2)\’ "
~{ZZZ+2<><<2>— > (XEJ) ¥y ¥ |
k d n j>2 L d s/"{gs,dm

X(k)A(kv d, n),

where s’ is the odd part of s.

Now we can prove

SOSTS Xk Ak dyn) = Gy, (4.5)
k d

(see Appendix for proof). Then

4-x(2) px(p) = 1)
ZZ Z Ak, d,n) = 2+X(2)CXE 3_ 2

d
nodd
kodd s|(kd,n)
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(in the last formula, s should be replaced by s’ when a; = 2,3 (mod 4)).
Combining these results we obtain the conclusion. O

5. Proof of Theorem 1.3.

In this section we sketch the proof of Theorem 1.3. First we state a lemma which is
needed for the proof of (II).

LEMMA 5.1. (i) Let g be an odd prime. Then for all e > 1, we have

1
Au(¢%,0) = ————.
(ii) If a1 # 2, then for all i > 1, we have
i 1
Ay(2,0) = Tk
If a1 = 2, we have
17 5
Ay(2,0) = oYk A, (4,0) 2
and for all i > 3,
i 1
Ay(2,0) = 3 9T

PrROOF. See Wiertelak [12]. A little weaker but simpler formulation can be found
in [1, Theorem 1.1]. O

PROOF OF (I).  When ¢' = 23, we obtain A,(8,2) = A,(4,3) and A,(8,6) =
Ay (4,1) under GRH by direct calculation of the series (2.2). For other j, we can prove
the recurrence relation by Method II of (II) below (see also the remark after Theorem
2.1).

PrOOF OF (II). We employ two different methods.

Method I. Here we consider the case where ¢ is an odd prime, i > 2 and ¢|j. In this
case the value A,(q¢’,7) can be found directly, not via the recurrence relation stated in
the theorem. Assume ¢° || 7 (e > 1). First we note the following identity:

Ag(q°,0) = A(¢®T,0) = > Auld'.]) (5.1)
1<j<q’—1
q°llj

for : > e+ 1. We have

Aa(q%,0) — Ag(¢°T1,0) = ————
(¢%,0) (q ) T D
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from Lemma 5.1 (i).
On the other hand, we can verify from Corollary 3.5 that all the summands in the
right hand side of (5.1) have the same value. Indeed, the series in (2.2) becomes

Aalq'5) = Aald’ hg*) = Y ZZ P Z“ > Gk - Q] (5.2)
1<r<q® f>e l>0 d\k n=1 n,

afr

where k = {(hr) (mod ¢"~¢) + 1g"°}¢ ~¢. If r runs through 1 < r < ¢*, (¢,7) = 1, then
(hr) (mod ¢'~¢) takes each value in {y ; 1 <y < ¢"~%, (y,q) = 1} exactly ¢° — 1 times.
This shows that (5.2) does not depend on h.

It follows that the quantity A, (g%, 0) — A, (¢°Tt,0) is divided equally among ¢(q*—¢)
summands in (5.1). Thus we have under GRH

) 1 1 1
Aa ql7j = ; : =
(¢.9) o(g=) ¢ Hg+1) ¢ 2(¢?

_1)

for all j (q|j).
The same method can be applied to the case (¢°,7) = (2%, ) where i > 4 and 8|j if
we use Lemma 5.1 (ii) and Corollary 3.7:

THEOREM 5.2.  We assume GRH. Let i > 4. If a1 # 2, for all j with 8|j, we have

. 1
Aa(z 73) - 3.21'_2‘
If ay = 2, for all j with 8|j, we have
. 1
Ay (24, ) = ,
a(25,9) = 35

(the case (2, ) = (16,8) is unconditional, cf. the remark after Theorem 2.1).

When ¢ > 4 and 4 || j, a slightly more delicate but similar argument yields the
following result:

THEOREM 5.3.  We assume GRH. Let i > 4 and 4 || j. Then we have

1

. 3.9i-3’ if a1 =2,
Aq(2%,5) = )
3 i otherwise.

Method II. Next we consider the case j = h where ¢ is an odd prime, i > 2 and ¢ 1 h.
We assume ¢ 1 a1 (the case gla; is similar).
From (2.2), the partial sums for f > 1 becomes
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(1) /90 p(d) = p(n)e,(k,n,d)
AP (g h) = > ZZ Z ; Grna Q] (5.3)

1<r<gq® >0 f>1 d|k
atr
R EED MO S) Dr=. < B i“ amd) gy
¢ ’ s 7 —~ [Gyma: Q]
1<r<q 01 d\k =
qtr

where 1 = h (mod ¢'), & = {(r) (mod ¢') + lq'}g’ and k' = {('r) (mod ¢'1) +
lg=1}q’. )
The degree [Ggn.q : Q] in (5.3) equals

eknp((kd,n,q"*") = q - eknp((kd, n,q" 7)), (e =1or1/2)

which always coincides with ¢ times [Gp/ .4 : Q] in (5.4), since the parity of kn and the
divisibility condition (c¢f. Lemma 3.3) remain unchanged:

s|(kd,n, ¢’ ™) < s|(kd,n,¢' 7). (s = ay or 4ay).

Next we can easily verify that the numbers k = k/¢f and &' = k’/¢/ run through the
same range, then the sums with respect to r and [ in (5.3) and (5.4) both turn out to be
2k>1, gl

Hence we have Agl)(qi, h) = Agl)(qi’l, h')/q.

We can prove the same formula for A,(IO)(qi7 h) = Au(q¢', h) — A{(ll)(qi, h) similarly,
then obtain the conclusion.

A similar machinery works for the following cases:

Ay (2% h) (1 >3, h:odd),
Au(245) (>4, 2 7).

6. Numerical Examples.

In this section we show some numerical examples (both theoretical and experimental)
of the densities A,(q’, 7).

6.1. Odd Prime Moduli.
We take ¢ = 5. For the values of C), see (1.2).

ExXAMPLE 6.1. We take a = 13. Let us compare the “theoretical densities” (table
4) and “experimental densities” (table 5). As the experimental densities, we use the
value 1Q, (;5,7)/7(x) with & = 179424673 (the first 107 primes).

ExAMPLE 6.2. We take a = 5, a; = 1. Then, under GRH, we have theoretically,



A property of the residual order of a (modp) — III 715

Table 4. Theoretical values of Aq(5, 7).

a 7=0 j=1 j=2 7=3 j=4

13 || 0.208333 | 0.235543 | 0.178356 | 0.234475 | 0.143292
21 || 0.208333 | 0.235494 | 0.176925 | 0.233715 | 0.145532
2 || 0.208333 | 0.240605 | 0.178686 | 0.229270 | 0.143106
14 | 0.208333 | 0.235235 | 0.177947 | 0.234248 | 0.144237
3 || 0.208333 | 0.238076 | 0.169818 | 0.235252 | 0.148521
7 || 0.208333 | 0.236323 | 0.177549 | 0.233657 | 0.144139

Table 5. Experimental values of A, (5, j).
a 7=0 j=1 j=2 j=3 j=4

13 || 0.208290 | 0.235644 | 0.178338 | 0.234455 | 0.143274
21 || 0.208355 | 0.235556 | 0.176819 | 0.233788 | 0.145483
2 || 0.208334 | 0.240509 | 0.178770 | 0.229434 | 0.142952
14 || 0.208359 | 0.235345 | 0.177819 | 0.234200 | 0.144276
3 || 0.208339 | 0.238149 | 0.169796 | 0.235340 | 0.148377
7 || 0.208388 | 0.236100 | 0.177606 | 0.233777 | 0.144128

25 1
As(5,1) = % 16 1-3Cy, + (14+2V-1)Cy, + (1 —2V-1)Cy, }
~ 0.232661,
25 1 — —
A5(5a2) = % - E{l + 30)(1 - (2 - _1)09(2 - (2 + _I)CXB}
~ 0.292699,
25 1
A5(5,3) = % E{l +3Cy, + (2= V-1)Cy, + 2+ V-1)Cy, }
~ 0.054644,
25 1
As(5,4) = 5% E{l —-3Cy, — 1+2V-1)Cy, — (1 —2v=1)Cy, }
~ 0.211663.

The following Tables 6 and 7 show the comparison of theoretical values of A,(5,j) with
their experimental values.

6.2. Higher Power Moduli.

Here we show some results of computer experiments on A, (q*,j) (i > 2) to observe
the phenomenon A, (q¢*,j) = %Aa(qi_l,j).

The following tables show the experimental densities #Q,(z;5%,7)/7(x) with z =
179424673. We know all their theoretical densities from Tables 4, 6 and Theorem 1.3

(IT). Examining the following tables, we verify the above relation numerically.
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Table 6. Theoretical values of Aq(5, 7).

al| j=o0 j=1 j=2 i=3 j=4
5 || 0.208333 | 0.232661 | 0.292699 | 0.054644 | 0.211663
10 | 0.208333 | 0.239555 | 0.166783 | 0.241173 | 0.144156
30 || 0.208333 | 0.236025 | 0.181032 | 0.232697 | 0.141913
15 || 0.208333 | 0.230120 | 0.180710 | 0.224360 | 0.156478

Table 7. Experimental values of A, (5, ) with x = 179424673.

a 7=0 j=1 j=2 j=3 j=4
5 0.208356 | 0.232685 | 0.292800 | 0.054449 | 0.211710
10 || 0.208358 | 0.239664 | 0.166742 | 0.241154 | 0.144082
30 || 0.208296 | 0.236104 | 0.181086 | 0.232714 | 0.141800
15 || 0.208341 | 0.230307 | 0.180646 | 0.224381 | 0.156325
a=2
j=0 | j=1 | j=2 | j=3 | j=4 | j=5 | j=6 | j=7 | j=8 | j=9
0.041681 | 0.048136 | 0.035808 | 0.045871 | 0.028601 | 0.041675 | 0.048085 | 0.035785 | 0.045928 | 0.028616
j=10 | j=11 | j=12 | j=13 | j=14 | j=15 | j=16 | j=17 | j=18 | j=19
0.041641 | 0.048126 | 0.035732 | 0.045811 | 0.028565 | 0.041690 | 0.048125 | 0.035697 | 0.045834 | 0.028591
j=20 | j=21 | j=22 | j=23 | j=24
0.0416438 | 0.048038 | 0.035749 | 0.045991 | 0.028579
a=3
j=0 | j=1 | j=2 | j=3 | j=4 | j=5 | j=6 | j=7 | j=8 | j=9
0.041641 | 0.047685 | 0.033986 | 0.047026 | 0.029693 | 0.041696 | 0.047582 | 0.033967 | 0.047093 | 0.029713
j=10 | j=11 | j=12 | j=13 | j=14 | j=15 | j=16 | j=17 | j=18 | j=19
0.041647 | 0.047604 | 0.033958 | 0.047095 | 0.029695 | 0.041733 | 0.047666 | 0.033949 | 0.047060 | 0.029600
j=20 | j=21 | j=22 | j=23 | j=24
0.041621 | 0.047612 | 0.033936 | 0.047066 | 0.029676
a=2>5
j=0 | j=1 | j=2 | j=3 | j=4 | j=5 | j=6 | j=7 | j=8 | j=9
0.041645 | 0.046523 | 0.058576 | 0.010876 | 0.042363 | 0.041712 | 0.046593 | 0.058550 | 0.010871 | 0.042389
j=10 | j=11 | j=12 | j=13 | j=14 | j=15 | j=16 | j=17 | j=18 | j=19
0.041678 | 0.046492 | 0.058554 | 0.010918 | 0.042290 | 0.041632 | 0.046549 | 0.058538 | 0.010899 | 0.042301
j=20 | j=21 | j=22 | j=23 | j=24
0.041690 | 0.046528 | 0.058582 | 0.010886 | 0.042367
a=10
j=0 | j=1 | j=2 | j=3 | j=4 | j=5 | j=6 | j=7 | j=8 | j=9
0.041657 | 0.048004 | 0.033357 | 0.048235 | 0.028830 | 0.041650 | 0.047946 | 0.033342 | 0.048316 | 0.028824
j=10 | j=11 | j=12 | j=13 | j=14 | j=15 | j=16 | j=17 | j=18 | j=19
0.041741 | 0.047961 | 0.033369 | 0.048190 | 0.028822 | 0.041652 | 0.047869 | 0.033325 | 0.048194 | 0.028812
j=20 | j=21 | j=22 | j=23 | j=24
0.041659 | 0.047883 | 0.033350 | 0.048219 | 0.028792

Next we see the case A,(2¢,7) for i = 2,3,4. When i = 3, we find the break of the
local equi-distribution (written in bold face), on the contrary, when i = 4, we confirm
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the local equi-distribution property as in the case ¢* = 52. For the theoretical densities
A, (4,7), the reader is referred to Sections 1 and 2 of [6].

a=2,1=2

j=0 | j=1 ] j=2] j=3
0.416669 ‘ 0.065372 ‘ 0.291650 ‘ 0.226309 ‘

a=2,1=3
i0 [im | ama = | ama | ams | amo [ et
0.083335 ‘ 0.032733 ‘ 0.226335 ‘ 0.113143 ‘ 0.333334 ‘ 0.032640 ‘ 0.065315 ‘ 0.113166 ‘

a=2,i=4
Jj=0 j=1 Jj=2 Jj=3 J=4 Jj=5 j=6 =7
0.041643 | 0.016356 | 0.113147 | 0.056497 | 0.166697 | 0.016317 | 0.032617 | 0.056562

j=8 | j=9 | j=10 | j=11 | j=12 | j=13 | j=14 | j=15
0.041691 | 0.016377 | 0.113188 | 0.056645 | 0.166638 | 0.016322 | 0.032698 | 0.056604

a=5,i=2
j=0 | j=1 ] j=2 ] j=3
0.333346 | 0.166743 | 0.333298 | 0.166613

=5,i=3

I

J=0 | jg=1 1 j=2 ] j=3 | j=4 | j=5 | j=6 | j=7
0.166730 | 0.083405 | 0.166543 | 0.083284 | 0.166616 | 0.083338 | 0.166754 | 0.083329

a=5i=4
J=0 J=1 J=2 J=3 j=4 J=95 Jj=6 J=7
0.083341 | 0.041719 | 0.083250 | 0.041605 | 0.083335 | 0.041677 | 0.083369 | 0.041584

j=8 | j=9 | j=10 | j=11| j=12 | j=13 | j=14 | j=15
0.083389 | 0.041687 | 0.083293 | 0.041679 | 0.083282 | 0.041661 | 0.083386 | 0.041745

=0 | g=1 [ g=2 | i=s |
‘ 0.333378 ‘ 0.166623 ‘ 0.333356 ‘ 0.166644 ‘
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a=10,i=3

j=0 | j=1 | j=2 | j=3 | j=4 | j=5| j=6 | j=1
0.166707 | 0.083309 | 0.166710 | 0.083324 | 0.166671 | 0.083314 | 0.166646 | 0.083320

a=10,i=4
j=0 | j=1| j=2 | j=3 | j=4 | j=5 | j=6 | j=1
0.083345 | 0.041666 | 0.083309 | 0.041629 | 0.083319 | 0.041675 | 0.083354 | 0.041672

j=8 | j=9 | j=10 | j=11 | j=12 | j=13 | j=14 | j=15
0.083362 | 0.041643 | 0.083401 | 0.041694 | 0.083352 | 0.041639 | 0.083292 | 0.041648

Appendix. Proofs of (4.3) and (4.5).

Here we give a proof of (4.5). In Section 4, there are many other triple sums with
respect to k, d and n. All these are variants of (4.5) and are estimated similarly (the
reader is also referred to [1, Section 5]).

Let

Se=>_> Y x(k)A(k.d,n).

k>1 dlko n>1
atk atn

Note that n = n. The series

p(d) p(n)
% d n%:l ng((kd,n))
qtn

are absolutely convergent since ), -, 1/np(n) converges (see Prachar [9, Satz 5.1]). So
we have

_ X (k) ko u(n) w(d)
%= ,; p(ko)k n%:l n % do((kd,n))’
qtk ain

Putting k = H';:l q;* (g;: prime, g; # ¢) and d = szl ¢;* (e, =0,1), we have

K2

x(k)ko p(n) 1 p(d)
Sx=), 11 > :
= elko)k o ow PV dp(kd)
qtk qtn P#qi

Since the function hi(d) := @(kd)/@(k) is multiplicative, we have
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_ x(k win 1 1 _ 1
B okz H _1@(k)H(1 i (QZ))

E>1 i=1 giha
atk qfn piqi

_ x ko Lgit1 p(n) 1
-y Ml ol ) L
k>1 el At pln
atk qin PFGi

Let ha(n) = [, pzq; (P — 1)- Then it is multiplicative and for a prime p,

17 if b = 4,
ha(p) =
p—1, otherwise.

So we have

k>1 PFq,q i=1 %
qtk
t
1 ) (g +1)(g; — 1)
=1I(1- 2 :
p?éq( p(p —1) = 4 (@ —a—1)
qtk

Since the function

1 4G (qi—qi—l)

is multiplicative, we have

SX:,EQ< 5om) (1 7 3(@* )
_gq< ){H pp+i](3p_1 i( )}
_};[q< )<1+ pp+lz(op 11)p X@(p))

We get (4.5) from this formula and (4.3) for y = 1.



720

(1]
(2]

(3]

[4]

(5]
[6]

(7]

(8]

[9]
(10]

(11]
(12]

K. CHINEN and L. MURATA

References

K. Chinen and L. Murata, On a distribution property of the residual order of a (mod p), J.
Number Theory, 105 (2004), 60-81.

K. Chinen and L. Murata, On a distribution property of the residual order of a (mod p), II,
In: Proceedings of the Conference “New Aspects of Analytic Number Theory”, held at Kyoto
University, November 26-30, 2001, RIMS Kokyuroku, 1274 (2002), 62-69.

K. Chinen and L. Murata, On a distribution property of the residual order of a (mod p) — IV,
In: Proceedings of the Conference “Analytic Number Theory and Surrounding Areas” held at
Kyoto University, September 29—October 3, 2003, RIMS Kokyuroku, 1384 (2004), 169-174.

H. Hasse, Uber die Dichte der Primzahlen p, fiir die eine vorgegebene ganzrationale Zahl a # 0
von durch eine vorgegebene Primzahl [ # 2 teilbarer bzw. unteilbarer Ordnung mod p ist, Math.
Ann., 162 (1965), 74-76.

H. Hasse, Uber die Dichte der Primzahlen p, fiir die eine vorgegebene ganzrationale Zahl a # 0
von gerader bzw. ungerader Ordnung mod p ist, Math. Ann., 166 (1966), 19-23.

L. Murata, and K. Chinen, On a distribution property of the residual order of a (mod p) — II,
J. Number Theory, 105 (2004), 82-100.

L. Murata, and K. Chinen, On a distribution property of the residual order of a (mod p), III,
In: Proceedings of the Conference “Diophantine Problems and Analytic Number Theory”, held
at Kyoto University, October 21-25, 2002, RIMS Kokyuroku, 1319 (2003), 139-147.

R. W. K. Odoni, A conjecture of Krishnamurthy on decimal periods and some allied problems,
J. Number Theory, 13 (1981), 303-319.

K. Prachar, Primzahlverteilung, Springer, 1957.

J.-P. Serre, Quelques applications du théoréeme de densité de Chebotarev, Publ. Math. Inst.
Hautes Etudes Sci., 54 (1981), 323-401.

K. Wiertelak, On the density of some sets of primes, I, Acta Arith., 34 (1978), 183-196.

K. Wiertelak, On the density of some sets of primes, IV, Acta Arith., 43 (1984), 177-190.

Koji CHINEN

Department of Mathematics, Faculty of Engineering
Osaka Institute of Technology

Omiya, Asahi-ku, Osaka 535-8585

Japan

E-mail: YHK03302@nifty.ne.jp

Leo MURATA

Department of Mathematics, Faculty of Economics
Meiji Gakuin University

1-2-37 Shirokanedai

Minato-ku, Tokyo 108-8636

Japan

E-mail: leo@eco.meijigakuin.ac.jp



