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Abstract. In this paper we classify all configurations of singular fibers of ellip-
tic fibrations on the double cover of P 2 ramified along six lines in general position.

1. Introduction.

In this article we work over a field of characteristic 0, although most (but not all) of
the results hold over fields of any characteristic, not 2 or 3. For example, in Corollary 1.4,
Remark 5.9 and Section 6 we need to assume that we work over a subfield of the complex
numbers.

In this article we classify all possible bad fiber configurations on Jacobian elliptic
fibrations on the K3 surface X, which is the minimal model of the double cover of P 2

ramified along six lines in ‘general position’. When we say that six lines are in ‘general
position’ we mean that the rank of the Néron-Severi group NS(X) is 16.

The strategy we use is purely geometric, and very similar to Oguiso’s classification of
Jacobian elliptic fibrations on the Kummer surface of the product of two non-isogenous
elliptic curves ([6]). It seems possible to extend this method to the case of K3 surfaces,
which are birational to a double cover of P 2 ramified along a sextic curve, such that
the Néron-Severi group of the K3 surface is generated by the (reduced) components
of the pull-back of the branch divisor together with all divisors obtained by resolving
singularities on the double cover and the pull-back of a general line in P 2.

Here we give the full list of possibilities.

Theorem 1.1. Let X be as before. Suppose π : X → P 1 be an elliptic fibration
with positive Mordell-Weil rank. Then the configuration of singular fibers is contained in
the following list.

Class Configuration of singular fibers MW -rank
1.1 I10 I2 aII bI1 2a + b = 12 4
1.2 I8 I4 aII bI1 2a + b = 12 4
1.3 2I6 aII bI1 2a + b = 12 4
1.4 IV ∗ I4 aII bI1 2a + b = 12 5

Conversely, for each class there exist a, b such that these fibrations occur.
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Class Configuration MW (π) iii + i2 3iii + 2i2 + 2ii + i1
2.1 II∗ 1 6 14
2.2 III∗ Z/2Z 7 15
2.3 III∗I∗0 1 3 9
2.4 I∗6 1 4 12
2.5 I∗4 Z/2Z 6 14
2.6 I∗4 I∗0 1 2 8
2.7 I∗2 (Z/2Z)2 8 16
2.8 I∗2 I∗0 Z/2Z 4 8
2.9 2I∗2 1 2 8
2.10 I∗2 2I∗0 1 0 8
2.11 2I∗0 (Z/2Z)2 6 12
2.12 3I∗0 Z/2Z 2 6

Table 1. List of possible configurations.

We did not establish the possible values of a and b. By Proposition 6.1 we know
that in characteristic zero, generically a ≤ 4 in 1.1, 1.2 and 1.3, a ≤ 5 in 1.4. We believe
that for each of the classes 1.1 − 1.4 we have that generically a = 0. A consequence of
Theorem 1.1 is:

Corollary 1.2. Suppose πi : X → P 2, i = 1, 2 are morphisms, obtained by taking
a minimal resolution of double cover ramified along six lines `

(i)
j in general position. Then

there is a birational automorphism of P 2 mapping {`(1)j } to {`(2)j }.
This corollary is proved in Section 8.

Theorem 1.3. Let X be as before. Let π : X → P 1 be a Jacobian elliptic fibration
with finite Mordell-Weil group. Then the configuration of singular fibers is contained in
Table 1. (In this table we list all fiber types, different from III, I2, II, I1, the structure
of MW (π) and two quantities, namely iii + i2 and 3iii + 2i2 + 2ii + i1, where iii means
the number of fibers of type III etc.) Conversely, for each class there exists a Jacobian
elliptic fibration π : X → P 1 with the given configuration of singular fibers.

Corollary 1.4. Let X be as before, and let π : X → P 1 be an elliptic fibration
with finite Mordell-Weil group. If the six lines are sufficiently general then the config-
uration of singular fibers of π is contained in Table 2. Conversely, for each class there
exists a Jacobian elliptic fibration π : X → P 1 with the given configuration of singular
fibers.

This corollary is an immediate consequence from Theorem 1.3 and Proposition 6.1.

Remark 1.5. Note that in the cases 2.7, 2.8, 2.10 and 2.11, the fiber configuration
in Theorem 1.3 and Corollary 1.4 are the same.

The generality condition is very essential in our strategy: one of the key tools in this
article uses the fact that the involution σ on X induced by the double-cover involution
acts trivially on the Néron-Severi group NS(X). Our definition of general position
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Class Configuration MW (π) i2 i1
2.1 II∗ 1 6 2
2.2 III∗ Z/2Z 7 1
2.3 III∗I∗0 1 3 3
2.4 I∗6 1 4 4
2.5 I∗4 Z/2Z 6 2
2.6 I∗4 I∗0 1 2 4
2.7 I∗2 (Z/2Z)2 8 0
2.8 I∗2 I∗0 Z/2Z 4 0
2.9 2I∗2 1 2 4
2.10 I∗2 2I∗0 1 0 8
2.11 2I∗0 (Z/2Z)2 6 0
2.12 3I∗0 Z/2Z 2 2

Table 2. List of possible configurations on a general X.

implies that σ acts trivial on NS(X).
The organization of this article is as follows. In Section 2 we introduce some basic

definitions and notation. In Section 3 we start with recalling some facts about curves
on K3 surfaces. In Section 4 we recall some standard facts concerning singular fibers of
elliptic fibrations and some special results on elliptic surfaces. In Section 5 we study the
Néron-Severi group of a double cover of P 2, ramified along six lines in general position.
In Section 6 we give a variant of [4, Proposition 2.4.6], which implies that Corollary 1.4
follows from Theorem 1.3. In Section 7 we list all types of possible singular fibers for an
elliptic fibration on X and we count the number of pre-images of the six lines contained in
each fiber type. In Section 8 we classify all fibrations in which all special rational curves
(the pre-images of the six branch lines) are contained in the singular fibers, thereby
proving Theorem 1.1. In Section 9 we prove Theorem 1.3.

Every proof of the actual existence of a fibration presented in this article runs as
follows: First we give an effective divisor D, with D2 = 0 and such that there exists an
irreducible curve C ⊂ X with D.C = 1. It is easy to see that then |D| defines an elliptic
fibration π : X → P 1 (see Lemma 3.2), that C ∼= P 1, and that (π|C)−1 : P 1 → X is a
section.

In this article all fibrations, sections and components of singular fibers are defined
over the field of definition of the six lines.

Acknowledgement. The author would like to thank Marius van der Put, Jaap
Top and Joseph Steenbrink for the many comments on an earlier version of this article.
The author would like to thank the referee for suggesting many improvements. This
article is based on a chapter in the author’s PhD thesis [3, Chapter 5].

2. Definitions and Notation.

Definition 2.1. An elliptic surface is a triple (π, X, C) with X a surface, C a
curve, π is a morphism X → C, such that almost all fibers are irreducible genus 1 curves
and X is relatively minimal, i.e., no fiber of π contains an irreducible rational curve D
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with D2 = −1.
We denote by j(π) : C → P 1 the rational function such that j(π)(P ) equals the

j-invariant of π−1(P ), whenever π−1(P ) is non-singular.
A Jacobian elliptic surface is an elliptic surface together with a section σ0 : C → X

to π. The set of sections of π is an abelian group, with σ0 as the identity element. Denote
this group by MW (π).

By an elliptic fibration on X we mean that we give a surface X a structure of an
elliptic surface.

Let NS(X) denote the group of divisors modulo algebraic equivalence. We call
NS(X) the Néron-Severi group of X. Denote by ρ(X) the rank of NS(X). We call ρ(X)
the Picard number of X.

Recall the following theorem.

Theorem 2.2 (Shioda-Tate ([8, Theorem 1.3 and Corollary 5.3])). Let π : X →
C be a Jacobian elliptic surface, such that at least one of the fibers of π is singular. Then
the Néron-Severi group of X is generated by the classes of σ0(C), a non-singular fiber,
the components of the singular fibers not intersecting σ0(C), and the generators of the
Mordell-Weil group. Moreover, let S be the set of points P such that π−1(P ) is singular.
Let m(P ) be the number of irreducible components of π−1(P ), then

ρ(X) = 2 +
∑

P∈S

(m(P )− 1) + rank(MW (π)).

3. Curves on K3 surfaces.

In this section we give some elementary, well-known results on curves on K3 surfaces.
(E.g., see [1] or [9].)

Lemma 3.1. Suppose D be a smooth curve on a K3 surface X. Then

g(D) = 1 +
D2

2
.

Proof. Since the canonical bundle KX is trivial, the adjunction formula for a
divisor on a K3 surface is 2pa(D)− 2 = D2 (see [2, Proposition V.1.5]). Since pa(D) =
g(D) for a smooth curve, this implies the result. ¤

Lemma 3.2. Suppose D is an effective divisor on a K3 surface X with pa(D) = 1.
Then |D| defines an elliptic fibration π : X → P 1. Every effective connected divisor D′

such that D ·D′ = D′2 = 0 is a multiple of a fiber of π.

Proof. From the adjunction formula [2, Proposition V.1.5] it follows that D2 = 0.
Applying Riemann-Roch [2, Theorem V.1.6] yields

dimH0(X, OX(D)) + dimH0(X, OX(−D)) ≥ 2.

Since dim H0(X, OX(−D)) = 0 (D is effective), we obtain that dim H0(X, OX(D)) > 1.
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This, combined with the fact that D2 = 0, implies that |D| is base-point-free. So we
can apply Bertini’s theorem [2, Theorem II.8.18 and Remark III.7.91], hence there is an
irreducible curve F linearly equivalent to D. By Lemma 3.1 this curve has genus 1.

The exact sequence

0 → OX → OX(F ) → OF → 0,

together with the facts H1(X, OX) = H2(X, OX(F )) = 0 and dimH2(X, OX) = 1,
gives that H1(X, OX(F )) = 0, whence by Riemann-Roch [2, Theorem V.1.6] we obtain
that the dimension of H0(X, OX(F )) equals 2, so “the” morphism associated to |D|,
π : X → P 1 is an elliptic fibration.

Since D′ is effective and D′ ·D = 0, we obtain that no irreducible component of D′

is intersecting D. Since D′ is connected we obtain that π(D′) is a point. Since D′2 = 0
and π(D′) is a point, it follows from Zariski’s Lemma [1, Lemma III.8.2] that D′ is a
multiple of a fiber. ¤

4. Kodaira’s classification of singular fibers.

In this section we describe the possible fibers for a minimal elliptic surface π : X →
P 1. The dual graph associated to a (singular, reducible) curve has a vertex for each
irreducible component of the curve and has an edge between two vertices if and only if
the two corresponding components intersect.

Theorem 4.1 (Kodaira). Let π : X → P 1 be an elliptic surface. Then the follow-
ing types of fibers are possible:

• I0: A smooth elliptic curve.
• I1: A nodal rational curve. (The dual graph is Ã0.)
• Iν , ν ≥ 2: A ν-gon of smooth rational curves. (The dual graph is Ãν−1.)
• II: A cuspidal rational curve. (The dual graph is Ã0.)
• III: Two rational curves, intersecting in exactly one point with multiplicity 2.

(The dual graph is Ã1.)
• IV : Three concurrent lines. (The dual graph is Ã2.)
• I∗ν , ν ≥ 0: The dual graph is of type D̃4+ν .
• IV ∗, III∗, II∗: The dual graph is of type Ẽ6, Ẽ7, Ẽ8.

For more on this see for example [5, Lecture I], [10, Appendix C, Theorem 15.2] or
[11, Theorem IV.8.2].

In Figure 1 we give the dual graph for some of the fiber types. For a resolution
X → Y of a fixed double covering ϕ′ : Y → P 2 ramified along R we define “special”
curve as the strict transform of a component of ϕ′−1(R), and a curve is called “ordinary”
otherwise. This notion depends heavily on our situation: it gives information on the
behavior of the double cover involution on the fiber components. We prove in Section 8
that the notion of special curves does not depend on the choice of a morphism π : X →
P 2.

Moreover, for all fiber types, except III and I2, one knows which components are
special rational curves. In the dual graphs given here a vertex is drawn as a circle if
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Figure 1. Examples of dual graphs of singular fibers.

the component is a ordinary rational curve; a vertex is drawn as a square then the
corresponding component is a special rational curve.

We now give some invariants associated to the singular fibers of an elliptic surface
π : X → P 1.

Definition 4.2. Let π : X → P 1 be an elliptic surface. Let P be a point of
P 1. Define vP (∆P ) as the valuation at P of the minimal discriminant of the Weierstrass
model, which equals the topological Euler characteristic of π−1(P ).

Proposition 4.3. Let π : X → P 1 be an elliptic surface, not birational to a
product E × P 1, with E an elliptic curve. Then

∑

P∈C

vP (∆P ) = 12(pg(X) + 1).

Proof. This follows from Noether’s formula (see [1, p. 20]). The precise reasoning
can be found in [5, Section III.4]. ¤

Remark 4.4. If P is a point on P 1, such that π−1(P ) is singular then j(π)(P )
and vp(∆p) behave as in Table 3. For proofs of these facts see [1, p. 150], [11, Theorem
IV.8.2] or [5, Lecture 1].
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Kodaira type of fiber over P j(π)(P ) vp(∆p) number of components
I∗0 6= ∞ 6 1

Iν (ν > 0) ∞ ν ν + 1
I∗ν (ν > 0) ∞ 6 + ν ν + 5

II 0 2 1
IV 0 4 3
IV ∗ 0 8 7
II∗ 0 10 9
III 1728 3 2
III∗ 1728 9 8

Table 3. Invariants of singular fiber types.

5. Divisors on double covers of P 2 ramified along six lines.

In this section we study the Néron-Severi group of a double cover of P 2 ramified
along six lines. Most of the results are probably well known to the experts and are likely
to be found somewhere in the literature.

Notation 5.1. Fix six distinct lines Li ⊂ P 2, such that no three of them are
concurrent. Denote by Pi,j the point of intersection of Li and Lj .

Let ϕ′ : Y → P 2 be the double cover ramified along the six lines Li. Then Y

has 15 double points of type A1. Resolving these points gives a surface X, with fifteen
exceptional divisors and a rational map ϕ : X → P 2. Denote by σ the involution on X

induced by the double-cover involution on Y associated to ϕ′.
Let P̃ be the blow-up of P 2 at the points Pi,j . Then X/〈σ〉 = P̃ , and ϕ : X → P 2

factors through ψ : X → P̃ . Then ψ is a degree 2 cover with branch locus B̃, the strict
transform of the six lines Li.

Denote by `i,j ⊂ X the divisor obtained by blowing up the point of Y above Pi,j (i <

j). Let `i be such that 2`i is the strict transform of ϕ′∗(Li).
Let M i,j

k,m be the line connecting Pi,j and Pk,m (i < j, k < m, i < k and i, j, k, m

pairwise distinct). Let µi,j
k,m ⊂ X be the strict transform of ϕ′∗M i,j

k,m.

With these notations we have the following intersection results.

Lemma 5.2. We have `i·`j = −2δi,j, `i,j`k,m = −2δi,kδj,m and `i·`k,m = δi,k+δi,m.

Lemma 5.3. The curve µi,j
k,m is irreducible if and only if M i,j

k,m does not intersect
any of the 13 points Pi′,j′ with (i′, j′) 6= (i, j), (k, m).

Proof. The curve µi,j
k,m is reducible if and only if the strict transform M̃ of M i,j

k,m

on P̃ intersects the branch locus B̃ of ψ : X → P̃ at every point of intersection with
even multiplicity.

Let n, n′ ∈ {1, . . . , 6} \ {i, j, k, m} such that n′ 6= n. Let P be the intersection point
of M i,j

k,m and Ln. Since the intersection multiplicity of M i,j
k,m and B at P is even this

implies that P is also on Ln′ , hence P = Pn,n′ . Conversely, if M i,j
k,m passes through Pn,n′
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then M̃ and B̃ are disjoint, hence the degree morphism from µi,j
k,m to the rational curve

ϕ′∗(M i,j
k,m) is unramified, hence µi,j

k,m is reducible. ¤

Lemma 5.4. Let N be the subgroup of NS(X) generated by the `i’s, the `i,j’s and
the µi,j

k,m’s. Then N ∼= Z16 as abelian groups. Moreover `1 and the `i,j’s form a basis for
N ⊗Q.

Proof. First we show that rankN ≤ 16. Since 2`i +
∑

j `i,j is linearly equivalent
to the pull-back of a general line L ⊂ P 2, we obtain that ϕ∗L ∈ N . Since ϕ∗L is
linear equivalent to µi,j

k,m +
∑

ak,m`k,m for some choice of ak,m, we obtain that the
`2, . . . , `6, µ

i,j
k,m are contained in

(Z[`1]⊕ 〈[`i,j ]〉)⊗Q,

hence rank(N) ≤ 16.
Since all `i,j are disjoint and `2i,j = −2, they form a subgroup N ′ of rank 15 of the

Néron-Severi group. An easy computation shows that `1 is not linearly equivalent to a
divisor contained in N ′ ⊗Q, proving that rankN = 16. Since N can be identified with
a subgroup of the torsion-free group H2(X, Z), it is torsion-free. ¤

Lemma 5.5. The action of σ on N is trivial.

Proof. This follows from the fact that for all i, j the automorphism σ|`i
is the

identity and σ fixes the curves `i,j . ¤

Lemma 5.6. Let L ⊂ P 2 be a smooth rational curve, L 6= Li. Suppose ϕ′−1(L)
has two components. Then ρ(X) ≥ 17.

Proof. Let ri, i = 1, 2 be the strict transforms on X of the components of ϕ′−1(L).
It suffices to show that r1 6∈ N ⊗ Q. Since σ(r1) = r2 and σ acts trivial on N , we
obtain that r1 is linearly equivalent to r2. From Lemma 3.1 it follows that r2

1 = −2.
We have that any irreducible effective divisor r 6= r1 linear equivalent to r1 satisfies
#r ∩ r1 = r.r1 = −2, hence the only effective irreducible divisor linearly equivalent to r1

is r1 itself. From this it follows that r1 = r2, contradicting our assumption. ¤

Lemma 5.7. Suppose that there exists a permutation τ ∈ S6 such that Pτ(1),τ(2),
Pτ(3),τ(4), Pτ(5),τ(6) are collinear. Then NS(X) has rank at least 17.

Proof. Using Lemma 5.3 the assumption implies that at least one of the µi,j
k,m is

reducible. Hence by Lemma 5.6 we have that rankNS(X) ≥ 17. ¤

Assumption 5.8. For the rest of this article assume that the six lines in P 2

are chosen in such a way that rankNS(X) = 16. (Hence the µi,j
k,m are reduced and

irreducible.)

Remark 5.9. Choosing 6 distinct lines in P 2 gives 4 moduli. Hence the family G

of K3 surfaces that can be obtained as a double cover of six lines in P 2 is 4-dimensional.
From the Torelli theorem for K3 surfaces ([7]) it follows that a generic element X ∈ G

satisfies ρ(X) ≤ 16. By Lemma 5.4 any X ∈ G has Picard number at least 16. Hence a
generic X ∈ G satisfies ρ(X) = 16. Therefore the above assumption makes sense.
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Definition 5.10. Let C be an irreducible curve on X different from the `i’s, with
C2 = −2. Then C is a called an ordinary rational curve. If C is one of the `i’s then C

is called a special rational curve.

A smooth rational curve C satisfies pa(C) = 0. From Lemma 3.1 it follows that
C2 = −2, which explains one of the conditions in the above definition.

Let B = `1 + `2 + · · ·+ `6. Since ψ : X → P̃ is ramified along the strict transforms
of the Li, we obtain that the fixed locus Xσ of σ equals B.

Lemma 5.11. Let D be an ordinary rational curve. Then D ·B = 2.

Proof. Assumption 5.8 and Lemma 5.4 imply that the involution σ maps D to
a linear equivalent divisor. Since D2 = −2 the only effective irreducible divisor linear
equivalent to D, it D itself. Hence σ acts non-trivially on D ∼= P 1, from which it follows
that there are two fixed points. ¤

Lemma 5.12. Let D1 and D2 be two ordinary rational curves. Then D1 · D2 ≡
0 mod 2.

Proof. The proof of [6, Lemma 1.6] carries over in this case. ¤

6. A special result.

Proposition 6.1. Suppose X is a double cover of P 2 ramified along six lines. If
the position of the six lines is sufficiently general then for every elliptic fibration π : X →
P 1 the total number of fibers of π of type II, III or IV is at most rank(MW (π)).

Proof. As explained in Remark 5.9 the general member of the family of all double
covers of P 2 ramified along 6 lines has Picard number 16, hence

20 = h1,1(X) = 4 + ρtr(π) + rankMW (π).

Using [4, Proposition 4.6] we obtain that

4 ≤ dim{[ψ : X → P 1] ∈ M2|C(ψ) = C(π)}
= h1,1 − ρtr(π)−#{fibers of type II, III, IV }
≤ 4 + rankMW (π)−#{fibers of type II, III, IV },

which gives the desired inequality. ¤

Remark 6.2. This proposition can be used to determine the number of fibers of
type I1 and I2 in several cases of Oguiso’s classification [6]. However, Oguiso classified all
Jacobian elliptic fibrations on the Kummer surface of the product of two non-isogenous
elliptic curves, while if one wants to apply Proposition 6.1 one obtains only the classifi-
cation of Jacobian elliptic fibrations on a Kummer surface of a product of two general
elliptic curves.
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7. Possible singular fibers.

In this section we classify all elliptic fibrations on the double cover of P 2 ramified
along six fixed lines `i in general position, where general position means that ρ(X) = 16.

Definition 7.1. By a simple component D of a fiber F we mean an irreducible
component D of F such that D occurs with multiplicity one in F .

Proposition 7.2. Let X be as before. Let π : X → P 1 be an elliptic fibration with
a section. Then the Kodaira type of the singular fiber is contained in the following list.
For each Kodaira type we list the number of components which are special rational curves,
the number of simple components which are special rational curves, and the number of
simple components which are ordinary rational curves, are contained in the following list :

Type #Cmp. special #Simple cmp. special #Simple cmp. ordinary
rational curves rational curves rational curves

I1 0 0 0
I2 0 or 1 0 or 1 2 or 1
I4 2 2 2
I6 3 3 3
I8 4 4 4
I10 5 5 5
I∗0 1 0 4
I∗2 2 0 4
I∗4 3 0 4
I∗6 4 0 4
II 0 0 0
III 0 0 2
IV ∗ 4 3 0
III∗ 3 0 2
II∗ 4 0 1.

Sketch of proof. First of all we prove that no fiber F of type I2k+1, k > 0
exists. Such a fiber F is a 2k + 1-gon of rational curves. Since two special rational
curves do not intersect, and two ordinary rational curves have even intersection number
(Lemma 5.12), it follows that every ordinary rational curve intersects two special rational
curves, and each special rational curve intersects two ordinary rational curves. This forces
the number of components in an n-gon to be even. Hence I2k+1 does not occur. For the
same reasons no fiber of type IV or type I∗2k+1 occurs.

Since there at most 6 special nodal curves, no fiber of type I2k, k > 6 or of type I∗2k,
k > 5 occurs.

We prove now that no fiber F of type I12 exists. If it would exist, then this fiber
would contain all special rational curves. Hence the zero section is an ordinary rational
curve Z. From Lemma 5.11 it follows that then 1 = Z · F ≥ Z ·B = 2, a contradiction.
The non-existence of I∗10 follows similarly. A fiber of type I∗8 has four ordinary rational
curves Ri with the property that Ri intersects only one other fiber component. Moreover,
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the Ri are the only simple components. Hence the zero-section Z intersects one of the
Ri, say R1, and Z has to be a special rational curve, by Lemma 5.12. The curve Ri, i 6= 1
intersect a special rational curve not contained in the fiber and different from Z, hence
there are at most 4 special rational curves contained in F . Using Lemma 5.12 one obtains
easily that F contains at least 5 special nodal curves, a contradiction.

Let D be a rational curve intersecting three other disjoint rational curves Di, i =
1, . . . , 3. If D were ordinary, then by Lemma 5.12 the curves Di would be special. This
would imply that D · B ≥ 3, contradicting Lemma 5.11. Hence D is a special rational
curve. This observation is the key ingredient for determining the number of special
components in a singular fiber of ∗-type.

We prove that a fiber F of type III does not contain special rational curves. Suppose
D would be a component of F , which is a special rational curve. Let R be other compo-
nent of F . Then R is an ordinary rational curve. Since C.D = 2 and C.B = 2, we have
that SuppC ∩B is the unique intersection point of C and D. This would imply that the
fixed locus of the involution σ is one point, this contradicts the fact that this number is
two, hence D is not a special rational curve. ¤

8. Possible configurations I.

In this section we study all Jacobian elliptic fibrations π : X → P 1 having the
property that all special rational curves are fiber components. This section yields the
proofs of Theorem 1.1 and Corollary 1.2.

Proposition 8.1. Let X be as before, in particular rankNS(X) = 16. Let π :
X → P 1 be a Jacobian elliptic fibration. Suppose all special rational curves are contained
in the fibers of π. Then one of the following occurs:

Singular fibers Mordell-Weil rank
I10 I2 aII bI1 2a + b = 12 4
I8 I4 aII bI1 2a + b = 12 4
2I6 aII bI1 2a + b = 12 4
IV ∗ I4 aII bI1 2a + b = 12 5

Conversely, for each case there exist a, b such that these fibration do occur.

Proof. Since the zero section is a rational curve and all special rational curves are
contained in some fibers, we have that the zero section Z is an ordinary rational curve.
From Lemma 5.12 it follows that if Z intersects a reducible fiber, then it intersects in
a simple component, which is a special rational curve. From Lemma 5.11 and the fact
that special rational curves are smooth, it follows that there are precisely two reducible
fibers. Using Proposition 7.2 we obtain that the possible reducible fibers are IV ∗ and
I2k, with 1 ≤ k ≤ 5.

Since there are six special rational curves, the above possibilities are the only ones.
The quantity 2a + b can be determined using Noether’s formula (Theorem 4.3), the

Mordell-Weil rank can be obtained using the Shioda-Tate formula (Theorem 2.2).
It remains to prove the existence of the remaining four cases.
Let k ∈ {3, 4, 5}. To prove the existence of I2kI12−2kaIIbI1, take D = `1 + `1,2 +
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`2 + `2,3 + · · · + `k + `1,k. If k = 3, 4 then D1 = `k+1 + `k+1,k+2 + · · · + `6 + `k+1,6 is
an effective divisor with D2

1 = 0 and D.D1 = 0. From Lemma 3.2 it follows that the
fibration associated to |D| has D and D1 as fibers. They are of type I2k and I12−2k.

If k = 5, then from Lemma 3.2 it follows that |D| defines a fibration with a I10 fiber,
which proves the existence of the first case.

To prove the existence of the fibration with the IV ∗ and I4 fiber, take D = `1 +
2`1,2 + 3`2 + 2`2,3 + `3 + 2`2,4 + `4. Then the fibration associated to |D| has a fiber of
type IV ∗, yielding the final case.

It remains to prove that the above fibrations are Jacobian. In all cases one easily
shows that D.`1,6 = 1, hence `1,6 is a section. ¤

The following result is a consequence of Theorem 1.1.

Corollary 8.2. The notion of special curves does not depend on the morphism
X → P 2.

Proof. We will use our classification of Jacobian elliptic fibrations to identify the
six special rational curves.

By Theorem 1.1 there is a fibration on X having a fiber F of type IV ∗. By a
reasoning as in the proof of Proposition 7.2 the three “end-components” Ei have to be
special rational curves (see also Figure 1). There exists a unique component E4 of F

not intersecting the Ei and by Proposition 7.2 and Lemma 5.12 this component is also a
special rational curve.

There is a section, which image S is not a special rational curve. By Lemma 5.12
this curve S intersects the fiber F ′ of type I4 in a special rational curve E5. There is
a unique component E6 of F ′ not intersecting E5. Using Lemma 5.12 again we obtain
that E6 is a special rational curve. ¤

This enables to prove Corollary 1.2:

Proof of Corollary 1.2. Corollary 8.2 implies that the morphism from X to
P̃ , the blow-up of P 2 in 15 points, is unique up to a geometric automorphism. Combining
this with the fact that any two choices of blow-down morphism P̃ → P 2 differ by a
birational automorphism of P 2, yields the proof. ¤

9. Possible configurations II.

In this section we consider fibrations on X such that at least one of the special
rational curves is not a component of a singular fiber. This section yields the proof of
Theorem 1.3.

Let π : X → P 1 be a Jacobian elliptic fibration, such that at least one of the special
rational curves is not contained in a fiber.

Lemma 9.1. The group MW (π) is finite.

Proof. The proof of [6, Lemma 2.4] carries over. ¤

Lemma 9.2. Suppose one of the singular fibers of π is of type I∗2k, III∗ or II∗.
Then all sections are special rational curves.



Classification of fibrations 677

Proof. A section intersects a reducible fiber in a simple component with multiplic-
ity one. By Proposition 7.2 we know that all simple components in the above mentioned
singular fibers are ordinary rational curves. From Lemma 5.12 we know that two or-
dinary rational curves intersect with even multiplicity, hence every section is a special
rational curve. ¤

Lemma 9.3. Let π : X → P 1 be as above. Then the only fibers of type Iν are of
type I1 and I2. Moreover no fiber of type I2 or type III contains a special rational curve
as a component.

Proof. From Proposition 7.2 we know that every fiber of type Iν , with ν > 1, is
of type I2k, k ≥ 1.

Without loss of generality, we may assume that `1 is not contained in a fiber of π,
hence `1 intersects every fiber. Let F be a singular fiber of type I2k, k ≥ 1 or of type
III, containing a special rational curve. We know that `1 intersects a reducible fiber
in an ordinary rational curve, say D. If F is of type I2k, k > 1 then D intersects two
other components, and by Lemma 5.12 these components are special rational curves. Let
B =

∑
`i. Then D · B ≥ 3, contradicting Lemma 5.11. Hence it is not possible to have

a fiber of type I2k, k > 1 containing a special rational curve. By Proposition 7.2 every
singular fiber of type I2k, k > 1 contains a special nodal curve, hence such a fiber does
not occur.

If k = 1 or the fiber is of type III, then D intersects the other component twice, and,
by assumption, this component is special. Hence D ·B ≥ 3, contradicting Lemma 5.11.

¤

From now on we study the possibilities for the fibration π. We distinguish eight
cases. In each case we suppose that π has a fiber F of a certain given Kodaira type. In
each case we study which other singular fibers can occur. Then we prove the existence of
the configuration by giving a divisor D such that the linear system |D| gives the desired
fibration. First, we determine all the types of fiber containing a special rational curve.
Observe that by Proposition 7.2 all singular fibers, not containing special rational curves,
are of type III, I2, II or I1. Using the Shioda-Tate formula (Theorem 2.2) and Noether’s
formula (Theorem 4.3) we can determine the quantities iii + i2 and 3iii + 2i2 + 2ii + i1.

For existence proofs we use Proposition 7.2.

Definition 9.4. An end-component C of a fiber F is a component C intersecting
the support of F \ C transversally in one point.

In the sequel we use that if an end-component of a fiber is a ordinary rational curve,
then this component has to intersect a special rational curve, not contained in the fiber.
This follows immediately from Lemma 5.11.

In order to determine the Mordell-Weil group, we use Lemma 9.2.

9.1. II∗. In this case four special rational curves are contained in F . Using
Proposition 7.2 it follows that there are three end-components E1, E2, E3, of which E1

and E2 are ordinary rational curves, and E1 is a simple component. This means that the
zero-section is a special nodal curve, say D1, and E2 intersects a special nodal curve, not
contained in F and different from D1, say D2. This yields that F ·D1 = 1, F ·D2 = 3.
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All other fibers are of type II, III, I1, I2, yielding case 2.1. For example take D =
`1,5 + 2`1 + 3`1,2 + 4`2 + 5`2,3 + 6`3 + 4`3,4 + 2`4 + 3`3,6. Then `5 is a section and `6 is a
trisection.

9.2. III∗. In this case three special rational curves are contained in F . At least
two special rational curves have positive intersection number with F .

Suppose that two special rational curves are sections, then the third special rational
curve is a multisection and all other fibers are of type II, III, I1, I2. For example, take
D = `3,4 + 2`3 + 3`1,3 + 4`1 + 2`1,5 + 3`1,2 + 2`2 + `2,6. Then `4 and `6 are sections and
`5 is a two-section. This gives the case 2.2.

If precisely one special rational curve is a section, then there is a special rational
which is a multisection, and one special rational curve which is contained in some singular
fiber. Since the multisection and the section intersect the fiber four times, this fiber
cannot be of type III or I2, so it is of type I∗0 . All other fibers are of type II, III, I1, I2.
For example take D = `3,4 + 2`3 + 3`1,3 + 4`1 + 2`1,5 + 3`1,2 + 2`2 + `2,5. This gives case
2.3. In this case `4 is a section and `5 is a tri-section.

9.3. IV ∗. In this case F contains four special rational curves. The other two
special rational curves do not intersect this fiber, so they are components of other singular
fibers, hence all special rational curves are components, contradicting our assumptions.

9.4. I∗6 . In this case F has four special rational curves as components. One
special rational curve is a section and one a multisection. All other fibers are of type
III, I2, II and I1. For example take D = `1,5 + `1,6 + 2`1 + 2`1,2 + 2`2 + 2`2,3 + 2`3 +
2`3,4 +2`4 + `4,5 +µ1,3

2,6. The curve `6 is a section, the curve `5 is a tri-section. This gives
case 2.4.

9.5. I∗4 . In this case F has three special rational curves as components. Either
three or two of the other special curves intersect any fiber.

If all three special curves intersect any fiber then all other singular fibers are of type
III, I2, II, I1. For example take D = `1,5+`1,4+2`1+2`1,2+2`2+2`2,3+2`3+`3,5+`3,6.
In this case `4 and `6 are sections and `5 is a two-section. This gives case 2.5.

If two special curves intersect any fiber, then one of the special curves is again a
component of a singular fiber. Since the two other special rational curves intersect any
fiber four times, this fiber cannot be of type I2 or III, so it is a fiber of type I∗0 . For
example take D = `1,5 + `1,4 + 2`1 + 2`1,2 + 2`2 + 2`2,3 + 2`3 + `3,5 + µ1,6

2,4. In this case,
`4 is a section and `5 is a trisection. The curve `6 is a component of the I∗0 -fiber. This
gives case 2.6.

9.6. I∗2 . In this case F has 2 special curves as components.
If 4 special curves intersect any fiber then all other singular fibers are of type III,

I2, II, I1. For example take

D = `1,3 + `1,4 + 2`1 + 2`1,2 + 2`2 + `2,5 + `2,6.

Then `i, i = 3, . . . , 6 are sections. From [5, Corollary VII.3.3] it follows that MW (π) 6∼=
Z/4Z. This gives case 2.7.

If 3 special curves intersect any fiber then there is one special rational curve D1



Classification of fibrations 679

not intersecting the fiber and not contained in the F . From this it follows that D1 is a
component of a fiber of type I∗0 . All other fibers are of type II, III, I1, I2. For example
take D = `1,3 + `1,4 + 2`1 + 2`1,2 + 2`2 + `2,4 + `2,5. Then `3 and `5 are sections. The
curve `4 is a two-section and `6 is a component of the I∗0 -fiber. This gives case 2.8.

If 2 special curves intersect any fiber then there are two remaining special rational
curves D1, D2, with F ·D1 = F ·D2 = 0. If D1 and D2 are components of the same fiber,
then this fiber is of type I∗2 . For example take D = `1,3+`1,4+2`1+2`1,2+2`2+`2,4+µ1,5

3,6.
Then `5, `6 and `5,6 are components of another singular fiber, which has to be of type
I∗2 . Then `3 is a section and `4 is a tri-section. This gives case 2.9.

If D1 and D2 are in different fibers then they are both components of fibers of
type I∗0 . For example take D = `1,3 + `1,4 + 2`1 + 2`1,2 + 2`2 + `2,4 + C ′, with C ′

the strict transform of ϕ′−1(C), with C the conic through P1,3P1,5P2,3P4,6P5,6. The
curves `3,5, `3,6, `5, `6 are components of some singular fibers. Since F · `3 = 1, they are
components of two distinct fibers. The curve `3 is a section, the curve `4 is a tri-section.
This gives case 2.10.

9.7. I∗0 . In this case F contains only one special rational curve. Each ordinary
component intersects only one special rational curve not contained in F . Hence there
are at most 4 special curves intersecting F .

If there are four special rational curves Di, with F · Di > 0, then the remaining
special rational curve is a component of a fiber, which has to be of type I∗0 . There are
still six components of fibers left. The only way to arrange them is with 6 I2 fibers. For
example take D = 2`1 +

∑5
k=2 `1,k, then D′ = 2`6 +

∑5
k=2 `k,6 is another singular fiber.

The rational curves `k, k = 2, . . . , 5 are sections. From [5, Corollary VII.3.3] it follows
that MW (π) 6∼= Z/4Z. This gives case 2.11.

If there are three special rational curves Di, with F · Di > 0, then the two other
special rational curves are components of some singular fiber. If both components are
in the same fiber then that fiber is of type I∗2 (which is handled above), otherwise the
fibers containing the special rational curves are of type I∗0 . So we have in total 3 fibers
of type I∗0 . All other fibers are of type II, III, I1, I2. For example take D = µ2,3

5,6 + `1,4 +
`1,5 + `1,6 + 2`1. Then none of `2, `2,4, `2,5, `2,6, `3, `3,4, `3,5, `3,6 intersect a fiber. Hence
they are components of two I∗0 fibers. The curves `5 and `6 are sections. The curve `4 is
a two-section. This gives case 2.12.

If there are two special rational curves Di, with F · Di > 0, then the three other
special curves D′

i are components of some singular fibers.
If all D′

i’s are contained in the same fiber, then that fiber is either of type III∗

(which we already handled) or of type I∗4 (which we also handled above).
If all D′

i’s are contained in two singular fibers then we obtain one fiber of type I∗2
and one of I∗0 . This case we handled above.

If all D′
i’s are contained in three singular fibers then all three fibers are of type I∗0 ,

which is impossible, since then the Picard number of X would be at least 18.

9.8. Only I2 and III. From the Shioda-Tate formula (Theorem 2.2) it follows
that there are ρ(X) − 2 − rankMW (π) = 14 singular fibers of type I2 or III. From
Noether’s formula 4.3 it follows that then 24 = 12pg(X) + 12 =

∑
vp(∆p) ≥ 2 · 14 = 28.

A contradiction. Hence this does not occur.
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