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Abstract. In this paper, we prove that the holomorphic automorphism groups
of the spaces Ck × (C∗)n−k and (Ck −{0})× (C∗)n−k are not isomorphic as topo-
logical groups. By making use of this fact, we establish the following characterization
of the space Ck × (C∗)n−k: Let M be a connected complex manifold of dimension
n that is holomorphically separable and admits a smooth envelope of holomorphy.
Assume that the holomorphic automorphism group of M is isomorphic to the holo-
morphic automorphism group of Ck× (C∗)n−k as topological groups. Then M itself
is biholomorphically equivalent to Ck × (C∗)n−k. This was first proved by us in [5]
under the stronger assumption that M is a Stein manifold.

Introduction.

This is a continuation of our previous paper [5], and discusses a characterization
of Ck × (C∗)` by its holomorphic automorphism group. The problems related to the
structure of the holomorphic automorphism group Aut(Ck× (C∗)`) of Ck× (C∗)` are in
general very difficult to study. One reason is that Aut(Ck × (C∗)`) is terribly big when
k + ` ≥ 2, and can not have the structure of a Lie group with respect to the compact-
open topology. But, by looking at topological subgroups with Lie group structures of
the topological group Aut(Ck × (C∗)`) equipped with the compact-open topology, we
can find a lead to apply the Lie group theory to the investigation of such problems.
Besides Ck × (C∗)` admits a natural (k + `)-dimensional compact torus action given
as the rotations along each coordinate axis. This fact enables us to use the machinery
associated with torus actions, for example, the theory of Reinhardt domains [7], [8], as
was shown in [5]. Under these points of view, we first prove the following theorem on
the topological group structure of Aut(Ck × (C∗)n−k) as our main result:

Theorem 1. Let k be an arbitrary integer with 1 ≤ k ≤ n. Then Aut(Ck ×
(C∗)n−k) is not isomorphic to Aut((Ck − {0})× (C∗)n−k) as topological groups.

In the case of k = 1, this was already verified in the proof of our Main Theorem in
[5]. On the other hand, when k = n, this fact is a special case of a result of Isaev and
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Kruzhilin (Theorem 5.1 in [4]). Therefore, taking these into account, we will carry out
the proof of this theorem in the case where 1 < k < n.

Our Theorem 1 has an interesting application. In fact, making use of the fact
obtained in Theorem 1 and employing the same technique as in our previous paper [5],
we can establish the following characterization of the space Ck × (C∗)n−k:

Theorem 2. Let M be a connected complex manifold of dimension n that is holo-
morphically separable and admits a smooth envelope of holomorphy. Assume that Aut(M)
is isomorphic to Aut(Ck×(C∗)n−k) as topological groups, where the groups Aut(M) and
Aut(Ck × (C∗)n−k) are equipped with the compact-open topology. Then M itself is bi-
holomorphically equivalent to Ck × (C∗)n−k.

This is a natural generalization of our previous result [5, Main Theorem]. Indeed,
exactly the same conclusion in Theorem 2 was shown there under the stronger assumption
that M is a Stein manifold. When k = n, that is, for the case of a characterization of
Cn, our theorem is an immediate consequence of Isaev and Kruzhilin [4, Theorem 5.1].
Moreover, it should be remarked that, if M is a domain in Cn, then it admits a smooth
envelope of holomorphy (cf. [6, Chapter 6]). Hence, our Theorem 2 can always be applied
when M is a domain in Cn.

This paper is organized as follows. In Section 1, we collect some preliminary facts.
In particular, two main tools for our study are given. One is a tool to obtain the normal
form of some compact group action on a Reinhardt domain studied in Shimizu [8], and
the other is a tool for the standardization of torus actions on complex manifolds due
to Barrett, Bedford and Dadok [2]. Also, a group-theoretic characterization of some
subgroups of the holomorphic automorphism group of a Reinhardt domain is given,
which plays a key role in our study. Sections 2 and 3 are devoted to the proofs of our
Thorems 1 and 2, respectively.

1. Reinhardt domains and torus actions.

We begin by recalling a basic fact on Lie group actions on complex manifolds (cf. [1]).
Let M be a complex manifold. An automorphism of M means a biholomorphic mapping
of M onto itself. We denote by Aut(M) the topological group of all automorphisms of
M equipped with the compact-open topology. Let G be a Lie group. When a continuous
group homomorphism ρ : G → Aut(M) of G into Aut(M) is given, the mapping

G×M 3 (g, p) 7−→ (ρ(g))(p) ∈ M

is of class Cω, and we say that G acts on M as a Lie transformation group through ρ.
Also, the action of G on M is called effective if ρ is injective.

We now recall basic concepts and results on Reinhardt domains (cf. [7], [8]). For an
element α = (α1, · · · , αn) of (C∗)n, we denote by πα an element of Aut(Cn) given by

Cn 3 (z1, · · · , zn) 7−→ (α1z1, · · · , αnzn) ∈ Cn.

Let D be a Reinhardt domain in Cn. Then, by just the definition of a Reinhardt domain,
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πα maps D onto itself and induces a holomorphic automorphism of D for every element α

of the n-dimensional compact torus Tn = (U(1))n given as the direct product of n copies
of U(1), where U(1) denotes the multiplicative group of complex numbers with absolute
value 1. The mapping ρD sending α to πα is an injective continuous group homomorphism
of the torus Tn into the topological group Aut(D). The subgroup ρD(Tn) of Aut(D) is
denoted by T (D). Furthermore, we denote by Π(D) the topological subgroup of Aut(D)
consisting of all elements ϕ of Aut(D) such that ϕ has the form ϕ = πγ , where γ is
an element of (C∗)n. And we denote by Autalg(D) the topological subgroup of Aut(D)
consisting of all elements ϕ of Aut(D) such that each component of ϕ is given by a
Laurent monomial, that is, ϕ has the form

ϕ : (z1, · · · , zn) 7−→ (w1, · · · , wn),

wi = αiz
ai1
1 · · · zain

n , i = 1, · · · , n,

where (aij) ∈ GL(n, Z) and (αi) ∈ (C∗)n.
The groups Π(D) and Autalg(D) have an important meaning, because they are

characterized group-theoretically as follows:

Lemma 1.1. The centralizer of the torus T (D) in the group Aut(D) is given by
Π(D), while the normalizer of T (D) in Aut(D) is given by Autalg(D).

Proof. The first statement is [5, Lemma 1.2]. The second statement is a conse-
quence of [8, Section 2, Proposition 1]. ¤

Note that T (D) is contained in Π(D), and Π(D) is contained in Autalg(D). More-
over, Autalg(D) is a Lie group whose identity component is Π(D).

The following proposition and corollary play a crucial role in our study.

Proposition 1.1 (see [5, Section 1]). Let D be a bounded Reinhardt domain in
Cn and suppose that

D ∩ {zi = 0} 6=∅, 1 ≤ i ≤ m,

D ∩ {zi = 0} =∅, m + 1 ≤ i ≤ n.

If G is a connected compact subgroup of Aut(D) containing T (D), then there exists a
transformation

ϕ : Cm × (C∗)n−m 3 (z1, · · · , zn) 7−→ (w1, · · · , wn) ∈ Cm × (C∗)n−m,
{

wi = rizσ′(i)(z′′)ν′′i , 1 ≤ i ≤ m,

wi = rizσ′′(i), m + 1 ≤ i ≤ n,

such that, for D̃ := ϕ(D) and G̃ := ϕGϕ−1 ⊂ Aut(D̃), one has

G̃ = U(k1)× · · · × U(ks)× U(ks+1)× · · · × U(kt),

k1 + · · ·+ ks + ks+1 + · · ·+ kt = n,
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k1 + · · ·+ ks = m,

ks+1 = · · · = kt = 1,

where r1, · · · , rn are positive constants, σ′ and σ′′ are permutations of {1, · · · ,m} and
{m + 1, · · · , n}, respectively, z′′ denotes the coordinates (zm+1, · · · , zn), and ν′′1 , · · · , ν′′m
are elements of Zn−m.

Corollary (see [5, Section 1]). In the above proposition, if G is isomorphic to
U(k)× (U(1))n−k as topological groups and if k ≥ 2, then m ≥ k.

Roughly speaking, the corollary above implies that if a bounded Reinhardt domain
D admits an effective U(k)-action, then it has the non-empty intersection with at least
k coordinate hyperplanes.

Finally, we recall the fundamental result on torus actions on complex manifolds.

Standardization Theorem (see [2, Theorem 1]). Let M be a connected complex
manifold of dimension n that is holomorphically separable and admits a smooth envelope
of holomorphy. Assume that Tn acts effectively on M as a Lie transformation group
through ρ. Then there exist a biholomorphic mapping F of M into Cn and a continuous
group automorphism θ of the torus Tn such that

F ((ρ(α))(p)) = θ(α) · F (p) for all α ∈ Tn and all p ∈ M .

Consequently, D := F (M) is a Reinhardt domain in Cn, and one has Fρ(Tn)F−1 =
T (D).

2. Proof of Theorem 1.

Throughout this section, we use the following notation: For the given integer k with
1 ≤ k ≤ n and a point (z1, · · · , zn) ∈ Cn, we set

` = n− k, Ωk = Ck × (C∗)`, Ω0
k = (Ck − {0})× (C∗)`,

z = (z1, z2, · · · , zk), z′ = (z2, · · · , zk) and (w1, · · · , w`) = (zk+1, · · · , zn).

We shall often use the natural identifications given by

SU(k) = SU(k)× {(1, · · · , 1)} ⊂ U(k)× (U(1))`,

SU(k − 1) =
{(

1 O

O A

)∣∣∣∣A ∈ SU(k − 1)
}
⊂ U(k),

where SU(m) stands for the special unitary group of degree m. Note that Ω0
k is a

Reinhardt domain in Cn invariant under the standard action of U(k)× (U(1))` on Cn;
and accordingly, one may regard the group U(k) × (U(1))` as a subgroup of Aut(Ω0

k).
And, the group T (Ω0

k) can be identified with the n-dimensional torus Tn = (U(1))n.
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Let us start the proof. As mentioned in the introduction, we have only to prove the
theorem in the case where k ≥ 2 and ` ≥ 1. Since k ≥ 2, we may assume that Aut(Ω0

k)
is the group of all elements f ∈ Aut(Ωk) satisfying f({0} × (C∗)`) = {0} × (C∗)`.

Now, assume contrarily that there exists a topological group isomorphism Ψ :
Aut(Ω0

k) → Aut(Ωk). First of all, without loss of generality we may assume here that Ψ

satisfies the following two conditions:

Ψ(Tn) = Tn and Ψ(U(k)× (U(1))`) = U(k)× (U(1))`; (2.1)

consequently, it follows that Ψ(SU(k)) = SU(k). Indeed, these can be seen as follows.
Since Ω0

k is a Reinhardt domain in Cn, we have the injective continuous group homomor-
phism ρΩ0

k
: Tn → Aut(Ω0

k). Considering the composition of ρΩ0
k

and Ψ , we now obtain
an injective continuous group homomorphism Ψ ◦ ρΩ0

k
: Tn → Aut(Ωk). Thus, by the

Standardization Theorem, there exists a biholomorphic mapping F of Ωk into Cn such
that D := F (Ωk) is a Reinhardt domain in Cn and F (Ψ ◦ ρΩ0

k
)(Tn)F−1 = T (D). More-

over, we know that the image domain D = F (Ωk) is literally equal to Ωk by [5, Lemma
1.3]. Therefore, considering F ◦ Ψ ◦ F−1 instead of Ψ if necessary, we may assume that
Ψ(T (Ω0

k)) = T (Ωk), which is the first one of (2.1). Next, recalling that Aut(Ω0
k) contains

U(k) × (U(1))` as its subgroup, we set G = Ψ(U(k) × (U(1))`). Then G is a connected
compact subgroup of Aut(Ωk) containing T (Ωk), because U(k) × (U(1))` ⊃ T (Ω0

k) and
Ψ(T (Ω0

k)) = T (Ωk). Take a bounded domain U in Cn whose closure U is contained in
Ωk and put

D0 = {g(z) ∈ Ωk | g ∈ G, z ∈ U} =
⋃

g∈G

g(U) =
⋃

z∈U

G · z.

Then it is easily seen that D0 is a bounded Reinhardt domain in Cn contained in Ωk

and G can be regarded as a connected compact subgroup of the Lie group Aut(D0)
containing T (D0). Recalling that G is isomorphic to U(k)× (U(1))` and k ≥ 2, we can
apply Proposition 1.1 and its corollary to D0 and G. As a consequence, the intersection of
D0 and the coordinate hyperplane given by {zi = 0} is not empty for all i with 1 ≤ i ≤ k.
Indeed, otherwise, such an intersection is empty for some i with 1 ≤ i ≤ k. This implies
that the number s of coordinate hyperplanes having the nonempty intersection with D0

is less than k, because D0 ⊂ Ωk and hence D0∩{zj = 0} =∅ for all j with k+1 ≤ j ≤ n.
But, since D0 admits an effective U(k)-action, by the corollary to Proposition 1.1, D0

must have the non-empty intersection with at least k coordinate hyperplanes, which
implies that s ≥ k. This is a contradiction, because we have seen that s < k. We see
that the integer m in Proposition 1.1 is given by k in the case now as well. By applying
Proposition 1.1 as m = k, after a change of coordinates by some element of Autalg(Ωk),
we have that G = U(k)× (U(1))` as sets in Aut(D0), and hence in Aut(Ωk) by analytic
continuation. This is nothing but the second equality of (2.1), as desired.

From now on, let us denote by Φ : Aut(Ωk) → Aut(Ω0
k) the inverse isomorphism of

Ψ : Aut(Ω0
k) → Aut(Ωk). It follows then from (2.1) that Φ gives rise to a continuous

group isomorphism of U(k) × (U(1))` onto itself with Φ(Tn) = Tn. Hence there exists
an element (aij) of GL(n, Z) such that
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Φ
((

exp 2π
√−1θ1, · · · , exp 2π

√−1θn

))

=
(

exp 2π
√−1

( n∑

j=1

a1jθj

)
, · · · , exp 2π

√−1
( n∑

j=1

anjθj

))

for all θ1, · · · , θn ∈ R. Here consider an arbitrary element ρ ∈ (U(1))n having the form

ρ =
(
exp 2π

√−1θ, · · · , exp 2π
√−1θ, exp 2π

√−1θ1, · · · , exp 2π
√−1θ`

)
.

Then, for any A ∈ SU(k), we have ρ ◦ A = A ◦ ρ as automorphisms of Ωk; so that
Φ(ρ) ◦A = A ◦ Φ(ρ) for all A ∈ SU(k). This gives us that

k∑

j=1

a1j = · · · =
k∑

j=1

akj ,

a1(k+i) = · · · = ak(k+i), 1 ≤ i ≤ `.

Therefore, putting

a =
k∑

j=1

a1j , bi = a1(k+i), ci =
k∑

j=1

a(k+i)j , 1 ≤ i ≤ `,

(dij)1≤i,j≤` =
(
a(k+i)(k+j)

)
1≤i,j≤`

and writing Φ(ρ) = (ρ̃1, · · · , ρ̃n), we obtain that

ρ̃i = exp 2π
√−1

(
aθ +

∑̀

j=1

bjθj

)
, 1 ≤ i ≤ k,

ρ̃k+i = exp 2π
√−1

(
ciθ +

∑̀

j=1

dijθj

)
, 1 ≤ i ≤ `.

Accordingly, for an arbitrary element

g =
((

exp 2π
√−1θ

)
A, exp 2π

√−1θ1, · · · , exp 2π
√−1θ`

) ∈ U(k)× (U(1))` (2.2)

with A ∈ SU(k) and θ, θi ∈ R, 1 ≤ i ≤ `, our isomorphism Φ of U(k) × (U(1))` onto
itself is given by

Φ(g) =
((

exp 2π
√−1

(
aθ +

∑̀

j=1

bjθj

))
Φs(A),

exp 2π
√−1

(
c1θ +

∑̀

j=1

d1jθj

)
, · · · , exp 2π

√−1
(

c`θ +
∑̀

j=1

d`jθj

))
, (2.3)
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where Φs is the automorphism of SU(k) given by the restriction of Φ to SU(k).
It should be made a few remarks here. Firstly, the existence of the inverse isomor-

phism Ψ of Φ guarantees that




a b1 · · · b`

c1 d11 · · · d1`

...
...

. . .
...

c` d`1 · · · d``




∈ GL(` + 1,Z). (2.4)

Secondly, we may assume that

Φs(A) = A or Φs(A) = Ā for all A ∈ SU(k), (2.5)

where Ā denotes the complex conjugate of A. Indeed, it is known that there exists an
element σ ∈ SU(k) such that

Φs(A) = σ−1Aσ or Φs(A) = σ−1Āσ for every A ∈ SU(k).

By using this σ, we define a biholomorphic mapping ϕ : Ω0
k → Ω0

k by

(z̃, w̃) := ϕ(z, w) = (σz, w), (z, w) ∈ Ω0
k

(think of z as column vectors). Then, considering the new coordinates (z̃, w̃) instead of
(z, w) if necessary, we may assume that Φ satisfies the condition (2.5).

Here we claim that

det (dij) 6= 0. (2.6)

Indeed, taking a special element go :=
(
exp 2π

√−1
k

)
Ek, which is clearly contained in the

centers of both U(k) and SU(k), we have

(
exp

2π
√−1a

k

)
Ek = Φs(go) and exp

2π
√−1ci

k
= 1, 1 ≤ i ≤ `.

So the integers a and ci may be written in the form

ci = c̃ik, 1 ≤ i ≤ `, and

a = 1 + kok or a = −1 + kok (2.7)

according as Φs(A) = A or Φs(A) = Ā in (2.5), where c̃i and ko are integers. Therefore,
expanding the determinant of the matrix in (2.4) according to the first column, we obtain

±1 = adet(dij) + kk̃ for some k̃ ∈ Z.
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Since k ≥ 2, this means (2.6).
Finally, note that the expression in the form (2.2) of a given element g ∈ U(k) ×

(U(1))` is not unique. Indeed, the same element g can be also represented in the form

g =
((

exp 2π
√−1

(
θ + p− q

k

))((
exp

2π
√−1q

k

)
A

)
,

exp 2π
√−1(θ1 + p1), · · · , exp 2π

√−1(θ` + p`)
)

(2.8)

with p, pi, q ∈ Z and 0 ≤ q ≤ k − 1. However, by using the fact (2.7), one can check
easily that the right hand side of (2.3) does not depend on the choice of representation
of g as in (2.8). Thus it should be emphasized that, in computing the image Φ(G) of a
given subgroup G of U(k)× (U(1))`, we are not worried about the representation of an
element g ∈ G as in (2.2).

We now have two cases to consider.

Case 1. (b1, · · · , b`) = (0, · · · , 0).

In this case, a = ±1 and (dij) ∈ GL(`,Z) in (2.4). Hence, after a change of
coordinates by some element of Autalg(Ω0

k) if necessary, we may assume that (dij) = E`.
The proof will be divided into two cases as follows:

Case (1-1). k ≥ 3: In this case, by (2.3) and (2.5) we obtain

Φ(SU(k − 1)× (U(1))`) = SU(k − 1)× (U(1))`.

Therefore, since Φ : Aut(Ωk) → Aut(Ω0
k) is a group isomorphism, we see that Φ maps

the centralizer C of SU(k − 1)× (U(1))` in Aut(Ωk) onto the centralizer C0 of SU(k −
1) × (U(1))` in Aut(Ω0

k); and consequently, their commutator groups Z = [C, C] and
Z0 = [C0, C0] have to be isomorphic.

In order to derive a contradiction, we claim that Z0 is abelian, while Z is not. To
prove our claim, take an arbitrary element f belonging to C or to C0, and represent
f = (f1, · · · , fn) by coordinates. Then one has

f1

(
z1, Az′,

(
exp 2π

√−1θ1

)
w1, · · · ,

(
exp 2π

√−1θ`

)
w`

)
= f1(z, w) on Ωk

for all A ∈ SU(k − 1) and all θi ∈ R (think of z′ as column vectors). Since k − 1 ≥ 2,
this implies that f1 does not depend on the variables z′ and w (cf. [3, p. 142]); so f1 has
the form f1(z, w) = f1(z1) and it induces a holomorphic automorphism of C. Note that
f1(0) = 0 in the case when f ∈ C0.

Next, by using the Laurent series of fk+j , one can find that it has the form

fk+j(z, w) = γj(z1)wj , 1 ≤ j ≤ `,

where γj(z1) is a nowhere vanishing holomorphic function on C.
Finally we assert that (f2, · · · , fk) can be written in the form
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(f2(z, w), · · · , fk(z, w)) = b(z1)z′, (2.9)

where b(z1) is a nowhere vanishing holomorphic function on C. Indeed, it is easily
checked that each function fj , 2 ≤ j ≤ k, is independent on w; and hence, it has the
form fj(z, w) = fj(z1, z

′). Take now a point zo
1 ∈ C arbitrarily and define a mapping

L : Ck−1 → Ck−1 by setting

L(z′) = t
(
f2(zo

1 , z′), · · · , fk(zo
1 , z′)

)
, z′ ∈ Ck−1,

where ta denotes the transpose of a given element a ∈ M(1, k − 1,C). Then L is a
holomorphic automorphism of Ck−1 satisfying the condition

L(Az′) = A · L(z′) for every A ∈ SU(k − 1). (2.10)

Thus L(z′) = 0 if and only if z′ = 0. For an arbitrary given point z′o 6= 0 of Ck−1, let
us put ro = ‖z′o‖ and Ro = ‖L(z′o)‖, and consider a biholomorphic mapping L̃ : Ck−1 →
Ck−1 defined by

L̃(z′) = (ro/Ro)L(z′), z′ ∈ Ck−1.

It then follows from (2.10) that L̃ gives rise to a holomorphic automorphism of the open
ball B(0, ro) in Ck−1 of radius ro with center 0, and L̃(0) = 0. Hence L̃ has to be a
unitary transformation of Ck−1; and so there exists an element U ∈ U(k − 1) such that
L(z′) = (Ro/ro)Uz′ on Ck−1. Moreover, the relation (2.10) tells us that U is a scalar
matrix (depending only on zo

1), from which we obtain the assertion (2.9).
As a result, we have seen that C, C0 are the groups of all elements f ∈ Aut(Ωk),

f0 ∈ Aut(Ω0
k) having the forms

f(z1, z
′, w1, · · · , w`) = (αz1 + β, b(z1)z′, γ1(z1)w1, · · · , γ`(z1)w`),

f0(z1, z
′, w1, · · · , w`) = (αz1, b(z1)z′, γ1(z1)w1, · · · , γ`(z1)w`) (2.11)

respectively, where α ∈ C∗, β ∈ C and b(z1), γj(z1) are all nowhere vanishing holomor-
phic functions on C. Therefore, in exactly the same way as in the proof of [5, Main
Theorem], it can be shown that Z0 is an abelian group, while Z is not; completing the
proof in the case of k ≥ 3.

Case (1-2). k = 2: Since every automorphism of SU(2) is inner, one has Φs(A) = A

for all A ∈ SU(2) in (2.5). Now let us consider a subgroup G of U(2)× (U(1))` defined
by

G =
{((

1 0
0 exp 4π

√−1θ

)
, exp 2π

√−1θ1, · · · , exp 2π
√−1θ`

)∣∣∣∣ θ, θ1, · · · , θ` ∈ R

}
.

(2.12)
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Note that

g(θ) :=
(

exp(−2π
√−1θ) 0

0 exp 2π
√−1θ

)
∈ SU(2) (2.13)

and

(
1 0
0 exp 4π

√−1θ

)
=

(
exp 2π

√−1θ
)
g(θ).

Then, considering the new coordinates (z̃1, z̃2) := (z2, z1) and replacing (c1, · · · , c`) by
(−c1, · · · ,−c`) if necessary, we may assume by (2.3) that

Φ(G) =
{((

1 0
0 exp 4π

√−1θ

)
, exp 2π

√−1(c1θ + θ1), · · ·

· · · , exp 2π
√−1(c`θ + θ`)

)∣∣∣∣ θ, θ1, · · · , θ` ∈ R

}
.

Let C and C0 be the centralizers of G and Φ(G) in Aut(Ωk) and in Aut(Ω0
k) respectively,

and let Z = [C, C] and Z0 = [C0, C0] be their commutator groups. Then, the proof is
now reduced to showing that Z0 is abelian and Z is not abelian. But this can be shown
with exactly the same argument as in Case (1-1). Indeed, straightforward computations
give us that arbitrary elements f ∈ C and f0 ∈ C0 have the same descriptions as in
(2.11). Therefore, we conclude that Z0 is an abelian group, while Z is not an abelian
group, as desired.

Case 2. (b1, · · · , b`) 6= (0, · · · , 0).

First of all, by (2.4) there exist integers λ, λ1, · · · , λ` such that

(1, 0, · · · , 0) = λ(a, b1, · · · , b`)−
∑̀

i=1

λi(ci, di1, · · · , di`)

or equivalently

λa−
∑̀

i=1

λici = 1 and
∑̀

i=1

λi(di1, · · · , di`) = λ(b1, · · · , b`). (2.14)

Since det(dij) 6= 0 by (2.6), we see that λ 6= 0 and λi 6= 0 for some i. Now, each integer
λi can be written uniquely in the form

λi = qiλ + ri with qi, ri ∈ Z, 0 ≤ |ri| < |λ| and λri ≤ 0.

It then follows from (2.14) that
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λ

(
a−

∑̀

i=1

qici

)
= 1 +

∑̀

i=1

rici. (2.15)

Using these integers qi, we now define a transformation ϕ of Ω0
k by

ϕ : (z1, · · · , zk, w1, · · · , w`) 7−→ (z̃1, · · · , z̃k, w̃1, · · · , w̃`)
{

z̃i = ziw
−q1
1 · · ·w−q`

` , 1 ≤ i ≤ k,

w̃j = wj , 1 ≤ j ≤ `,

and take an arbitrary element g of U(k) × (U(1))` written in the form (2.2). Then,
replacing (z, w) by the new coordinates (z̃, w̃) if necessary, one can see by (2.14) and (2.15)
that the transformation Φ(g) of Ω0

k in (2.3) is given by the following correspondence:

Φ(g) :





z 7−→
(

exp
2π
√−1
λ

{(
1 +

∑̀

i=1

rici

)
θ +

∑̀

i,j=1

dijriθj

})
Φs(A)z,

wi 7−→
(

exp 2π
√−1

(
ciθ +

∑̀

j=1

dijθj

))
wi, 1 ≤ i ≤ `

(2.16)

(think of z as column vectors).
Since gcd(λ, λ1, · · · , λ`) = 1 by (2.14), we see that |λ| = 1 if and only if ri = 0 for

all i; and, in such a case, the proof can be reduced to Case 1. Therefore, in the following,
we assume that

|λ| ≥ 2 or equivalently (r1, · · · , r`) 6= (0, · · · , 0).

Thus, renaming the indices if necessary, we may further assume that

r1 · · · rs 6= 0, while rs+1 = · · · = r` = 0

for some integer s with 1 ≤ s ≤ ` (where it is understood that every ri 6= 0 if s = `).
Again we divide the proof into two cases.

Case (2-1). k ≥ 3: In this case, it follows from (2.5), (2.6) and (2.16) that

Φ
(
SU(k − 1)× (U(1))`

)
=

{((
exp 2π

√−1
( s∑

i=1

riθi

λ

))(
1 0
0 A

)
, exp 2π

√−1θ1, · · ·

· · · , exp 2π
√−1θ`

)∣∣∣∣A ∈ SU(k − 1), θ1, · · · , θ` ∈ R

}
.

Let C0 be the centralizer of Φ(SU(k − 1) × (U(1))`) in Aut(Ω0
k) and let Z0 be the

commutator group of C0. Once it is shown that Z0 is an abelian group, we arrive at the
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same contradiction as in Case (1-1). Therefore we have only to show that Z0 is abelian.
To this end, take an arbitrary element f = (f1, · · · , fn) ∈ C0. To simplify the notation,
we put Θ =

∑s
i=1

riθi

λ and write

Xz,w,A,θ1,··· ,θ`
=

((
exp 2π

√−1Θ
)
z1,

(
exp 2π

√−1Θ
)
Az′,

(
exp 2π

√−1θ1

)
w1, · · · ,

(
exp 2π

√−1θ`

)
w`

)
.

Then we obtain

f1

(
Xz,w,A,θ1,··· ,θ`

)
=

(
exp 2π

√−1Θ
)
f1(z, w) on Ωk

for all A ∈ SU(k − 1) and all θ1, · · · , θ` ∈ R. Thus it follows that f1 is independent on
z′; and hence it has the form f1(z, w) = f1(z1, w). Let f1(z1, w) =

∑
Aµνzµ

1 wν be the
Laurent expansion of f1 on C × (C∗)`, where 0 ≤ µ ∈ Z and wν = wν1

1 · · ·wν`

` for the
coordinate w = (w1, · · · , w`) of C` and ν = (ν1, · · · , ν`) ∈ Z`. Substituting this into the
preceding identity and comparing the coefficient of zµ

1 wν , we have the following by the
uniqueness of expansion:

( s∑

i=1

riθi

λ

)
(µ− 1) +

∑̀

i=1

θiνi = 0

for all θ1, · · · , θ` ∈ R, provided that Aµν 6= 0. This is equivalent to

(ν1, · · · , νs, νs+1, · · · , ν`) = (µ− 1)
(
− r1

λ
, · · · ,−rs

λ
, 0, · · · , 0

)
.

Thus, putting

n1 = min
{

n ∈ N

∣∣∣∣−
ri

λ
n ∈ Z, 1 ≤ i ≤ s

}
,

mi = −ri

λ
n1, 1 ≤ i ≤ s, (2.17)

we obtain that n1 ≥ 2, mi ≥ 1 and

(µ− 1, ν1, · · · , νs, νs+1, · · · , ν`) = m(n1,m1, · · · ,ms, 0, · · · , 0)

for m = 0, 1, 2, · · · . This assures us that f1 has the form

f1(z, w) = α
(
zn1
1 wm1

1 · · ·wms
s

)
z1,

where α(u) is a holomorphic function on C.
Next consider the functions fk+j , 1 ≤ j ≤ `. We have now the identity

fk+j

(
Xz,w,A,θ1,··· ,θ`

)
=

(
exp 2π

√−1θj

)
fk+j(z, w) on Ωk
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for all A ∈ SU(k− 1) and all θ1, · · · , θ` ∈ R. Therefore, by the same reasoning as above,
fk+j has to be of the form fk+j(z, w) = fk+j(z1, w). So, denoting by fk+j(z1, w) =∑

Cµνzµ
1 wν the Laurent series of fk+j , we obtain this time

s∑

i=1

(
ri

λ
µ + νi

)
θi +

∑̀

i=s+1

θiνi = θj

for all θ1, · · · , θ` ∈ R whenever Cµν 6= 0. Thus





νj − 1 = −rj

λ
µ,

νi = −ri

λ
µ, 1 ≤ i ≤ s, i 6= j,

νi = 0, s + 1 ≤ i ≤ `

or





νj = 1,

νi = −ri

λ
µ, 1 ≤ i ≤ s,

νi = 0, s + 1 ≤ i ≤ `, i 6= j

according as 1 ≤ j ≤ s or s + 1 ≤ j ≤ `. Hence, these relations together yield that each
function fk+j has the form

fk+j(z, w) = γj

(
zn1
1 wm1

1 · · ·wms
s

)
wj , 1 ≤ j ≤ `,

where γj(u) is a holomorphic function on C and n1,mi are the same positive integers ap-
pearing in (2.17). At this point, notice that all the functions α(u) and γj(u) are nowhere
vanishing on C, because f has the inverse mapping contained also in C0. Moreover, it
should be noted that f1 and fk+j extend to holomorphic functions on the whole space
Cn, since n1 and mi are all positive integers.

Our next task is to determine the form of (f2, · · · , fk). For this purpose, choose a
point (zo

1 , wo) ∈ C × (C∗)` arbitrarily and define a mapping L : Ck−1 → Ck−1 by

L(z′) = t
(
f2(zo

1 , z′, wo), · · · , fk(zo
1 , z′, wo)

)
, z′ ∈ Ck−1.

Then L is a holomorphic automorphism of Ck−1 such that L(Az′) = A · L(z′) for all
A ∈ SU(k − 1); accordingly, we may conclude by the same reasoning as in Case (1-1)
that (f2, · · · , fk) can be written in the form

(f2(z, w), · · · , fk(z, w)) = b(z1, w)z′.

Accordingly b(z1, w) has to satisfy the condition:

b
((

exp 2π
√−1Θ

)
z1,

(
exp 2π

√−1θ1

)
w1, · · · ,

(
exp 2π

√−1θ`

)
w`

)
= b(z1, w)

for all θ1, · · · , θ` ∈ R. Now, by the Laurent series argument as above, one can see that
b(z1, w) is expressed as

b(z1, w) = β
(
zn1
1 wm1

1 · · ·wms
s

)



656 A. Kodama and S. Shimizu

and hence

(f2(z, w), · · · , fk(z, w)) = β
(
zn1
1 wm1

1 · · ·wms
s

)
z′,

where β(u) is a holomorphic function on C and n1, mi are the same positive integers as
in (2.17).

Summarizing our result obtained so far, we have shown that every element f of C0

has the form

f(z, w) =
(
α(u)z1, β(u)z′, γ1(u)w1, · · · , γ`(u)w`

)
, u = zn1

1 wm1
1 · · ·wms

s , (2.18)

where α(u), β(u) and γj(u) are nowhere vanishing holomorphic functions on C, and n1

and mi are positive integers depending only on C0. In particular, every element f ∈ C0

can be regarded as a holomorphic automorphism of Cn.
Finally we would like to show that the commutator group Z0 of C0 is abelian. We

verify this only in the case when ` = 1, since the verification in the general case is almost
identical. To simplify discussion, we change the notations and write (n1,m1) = (s, t) and
w1 = w. Now, take an arbitrary element F ∈ C0. Then, by (2.18) F can be expressed in
the form

F (z, w) =
(
α(zs

1w
t)z1, β(zs

1w
t)z′, γ(zs

1w
t)w

)
,

where α(u), β(u) and γ(u) are nowhere vanishing holomorphic functions on C; and more-
over, we know that F can be regarded as a holomorphic automorphism of C×Ck−1×C =
Ck+1. Here we first assert that

α(u)sγ(u)t = α(0)sγ(0)t for every u ∈ C. (2.19)

Indeed, define a holomorphic function f on C by

f(u) = α(u)sγ(u)tu, u ∈ C

and consider the set

Mc =
{
(z1, 0, w) ∈ C ×Ck−1 ×C

∣∣zs
1w

t = c
}
, c ∈ C.

Then it is easy to see that F (Mc) ⊂ Mf(c) for all c ∈ C. This, combined with the fact that
the inverse F−1 of F is also contained in C0, yields at once that f is an automorphism of
C with f(0) = 0. Consequently, there exists a non-zero constant A such that f(u) = Au

on C. Clearly this implies our assertion (2.19), as desired. Thanks to (2.19), if we set
A = α(0)sγ(0)t, then F−1 may be given by

F−1(z, w) =
(
α(A−1zs

1w
t)−1z1, β(A−1zs

1w
t)−1z′, γ(A−1zs

1w
t)−1w

)
.

Let us take another element G ∈ C0 having the form
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G(z, w) =
(
λ(zs

1w
t)z1, µ(zs

1w
t)z′, ν(zs

1w
t)w

)

and set B = λ(0)sν(0)t. Then we can compute explicitly the commutator [G,F ] :=
G−1 ◦ F−1 ◦G ◦ F of G and F as follows:

[G,F ](z, w) =
(

λ(Au)α(u)
λ(u)α(Bu)

z1,
µ(Au)β(u)
µ(u)β(Bu)

z′,
ν(Au)γ(u)
ν(u)γ(Bu)

w

)
, u = zs

1w
t.

Let us choose another pair F̃ , G̃ of elements belonging to C0, where we denote the objects
relative to F̃ , G̃ by the corresponding symbols of F, G with tilde. Then, by routine
computations it follows that

[G̃, F̃ ] ◦ [G,F ](z, w) =
(

λ̃(Ãu)α̃(u)λ(Au)α(u)
λ̃(u)α̃(B̃u)λ(u)α(Bu)

z1,
µ̃(Ãu)β̃(u)µ(Au)β(u)
µ̃(u)β̃(B̃u)µ(u)β(Bu)

z′,

ν̃(Ãu)γ̃(u)ν(Au)γ(u)
ν̃(u)γ̃(B̃u)ν(u)γ(Bu)

w

)
, u = zs

1w
t,

from which we may conclude that Z0 is, in fact, abelian. Therefore the proof is completed
in the case when k ≥ 3.

Case (2-2). k = 2: In order to derive a contradiction, we again consider the
subgroup G of U(2) × (U(1))` defined in (2.12). Since Φs(A) = A for all A ∈ SU(2)
in (2.5), we obtain by (2.6) and (2.16) that

Φ(G) =
{(

exp
2π
√−1
λ

{(
1 +

s∑

i=1

rici

)
θ +

s∑

i=1

riθi

})
g(θ),

exp 2π
√−1(c1θ + θ1), · · · , exp 2π

√−1(c`θ + θ`)
)∣∣∣∣θ, θ1, · · · , θ` ∈ R

}
,

where g(θ) is the element of SU(2) appearing in (2.13). Let C, C0 and Z, Z0 be the same
groups introduced in Case (1-2). Then we know already that Z and Z0 are isomorphic,
and Z is a non-abelian group. Therefore, the only thing which has to be proved now is
that Z0 is abelian. But this can be achieved by the same technique used in Case (2-1).
Indeed, define the positive integers n1, n2 and mi by

n1 = min
{

n ∈ N

∣∣∣∣
λ− 1
λ + 1

n ∈ Z, − 2ri

λ + 1
n ∈ Z, 1 ≤ i ≤ s

}
,

n2 =
λ− 1
λ + 1

n1 and mi = − 2ri

λ + 1
n1, 1 ≤ i ≤ s.

Then, in exactly the same way as in Case (2-1), one can show that every element f ∈ C0

has the form

f(z, w) = (α(u)z1, β(u)z2, γ1(u)w1, · · · , γ`(u)w`), u = zn1
1 zn2

2 wm1
1 · · ·wms

s ,
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where all the functions α(u), β(u) and γj(u) are nowhere vanishing holomorphic functions
on C. In particular, every f ∈ C0 can be regarded as a holomorphic automorphism of
Cn. Thus, repeating the same computations as in Case (2-1), we conclude eventually
that Z0 is an abelian group, as desired. This completes the proof of Theorem 1.

3. Proof of Theorem 2.

We retain the notation in the previous section.
Now, as in Theorem 2 stated in the introduction, let M be a connected complex

manifold of dimension n that is holomorphically separable and admits a smooth envelope
of holomorphy, and assume that there exists an isomorphism Φ : Aut(Ωk) → Aut(M)
between the topological groups Aut(Ωk) and Aut(M). Since Ωk is a Reinhardt domain
in Cn, we have the injective continuous group homomorphism ρΩk

: Tn → Aut(Ωk).
Considering the composition of ρΩk

and Φ, we obtain an injective continuous group
homomorphism Φ ◦ ρΩk

: Tn → Aut(M). Thus, by the same reasoning as in the proof of
the first equality of (2.1), we may assume that M is a Reinhardt domain D in Cn and
we have a topological group isomorphism Φ : Aut(Ωk) → Aut(D) such that Φ(T (Ωk)) =
T (D).

In the following, we will show our Theorem 2 in three steps. Firstly, we will show
that D has the form D = Ωk′ −

⋃
λ Vλ for some k′ with 0 ≤ k′ ≤ n by looking at the

centralizers of the standard tori T (Ωk) and T (D), where
⋃

λ Vλ is the union of some of
coordinate vector subspaces Vλ of codimension greater than or equal to two. Precisely
speaking, Vλ is a vector subspace of Cn of codimension greater than or equal to two
defined by the condition that some of the coordinate components of Cn are equal to 0.
Secondly, we will show k′ = k by looking at the normalizers of the standard tori T (Ωk)
and T (D). Finally, we will show that

⋃
λ Vλ must be empty, and hence D coincides with

Ωk by our Theorem 1.

3.1. First step. Since the group isomorphism Φ maps T (Ωk) onto T (D), it maps
the centralizer of T (Ωk) in Aut(Ωk) onto the centralizer of T (D) in Aut(D). By Lemma
1.1, the centralizers of T (Ωk) and T (D) are given by Π(Ωk) and Π(D), respectively.
Therefore Π(Ωk) and Π(D) are isomorphic as Lie groups. Since Π(Ωk) is isomorphic to
(C∗)n, and hence has real dimension 2n, Π(D) also has real dimension 2n. This implies
that πα maps D onto D for all elements α of (C∗)n, and consequently, πα maps the
complement Dc of D in Cn onto itself for all α in (C∗)n. In particular, for a point z0

of Cn, the set Π · z0 consisting of all elements πα(z0), α running through all of (C∗)n,
is contained in either D or Dc. We can take as z0 a point of D belonging to (C∗)n.
Then D contains Π · z0, which is (C∗)n. Therefore Dc is a closed subset contained in
the union of all coordinate hyperplanes of Cn. Take any point z0 of Dc. Then some of
the coordinate components of z0 are 0, and the closure of Π · z0 is a coordinate vector
subspace of Cn, which is contained in Dc. This shows that Dc is the union of some of
coordinate vector subspaces. By a permutation of coordinates, we may assume that Dc

is the union of the n − k′ coordinate hyperplanes {zi = 0}, i = k′ + 1, · · · , n, and some
of coordinate vector subspaces of codimension greater than or equal to two. Then D has
the form D = Ωk′ −

⋃
λ Vλ, as required.

3.2. Second step. We need the following lemma.



A group-theoretic characterization of the space 659

Lemma 3.1. Let Ω]
p and Ω]

p′ be Reinhardt domains in Cn of the form

Ω]
p = Ωp −

⋃

λ

Vλ and Ω]
p′ = Ωp′ −

⋃

λ′
V ′

λ′ ,

where
⋃

λ Vλ and
⋃

λ′ V
′
λ′ are the unions of some of coordinate vector subspaces of

codimension greater than or equal to two, respectively. If the groups Autalg(Ω]
p) and

Autalg(Ω
]
p′) are isomorphic as topological groups, then p = p′.

This lemma is applied as follows. Since the group isomorphism Φ maps T (Ωk) onto
T (D), it maps the normalizer of T (Ωk) in Aut(Ωk) onto the normalizer of T (D) in
Aut(D). By Lemma 1.1, the normalizers of T (Ωk) and T (D) are given by Autalg(Ωk)
and Autalg(D), respectively. Therefore Autalg(Ωk) and Autalg(D) are isomorphic as
topological groups. Since D = Ω]

k′ by the first step, it follows from Lemma 3.1 that
k = k′, and the second step is shown.

We now prove Lemma 3.1. We begin with some preliminary observations. For an
element z = (zi) of Cn and an element N = (νij) of GL(n, Z), we denote by zN the
element of Cn whose i-th component is given by zνi1

1 · · · zνin
n (when it is well-defined).

For elements z = (zi) and w = (wi) of Cn, we denote by z · w the element of Cn whose
i-th component is given by ziwi. When z, w ∈ Cn and M,N ∈ GL(n, Z), it holds that

(zN)M = zMN, (z · w)N = zN · wN. (3.1)

Let D be a Reinhardt domain in Cn and let ϕ be an element of Aut(D). Then it follows
from the proof of [8, Section 2, Proposition 1] that ϕ has the form ϕ(z) = γ · zN if and
only if ϕT (D)ϕ−1 = T (D) and we have

ϕ ◦ πα ◦ ϕ−1 = παN for α ∈ Tn = (U(1))n,

where γ ∈ (C∗)n, N ∈ GL(n, Z).
Under the assumption of Lemma 3.1, suppose that p 6= p′, and we will derive a con-

tradiction. We may assume without loss of generality that p < p′. By assumption, there
exists an isomorphism Φ : Autalg(Ω]

p) → Autalg(Ω
]
p′) between the topological groups

Autalg(Ω]
p) and Autalg(Ω

]
p′). Since Π(Ω]

p) and Π(Ω]
p′) are the identity components of

Autalg(Ω]
p) and Autalg(Ω

]
p′), respectively, and since T (Ω]

p) and T (Ω]
p′) are the unique

maximal compact subgroups of Π(Ω]
p) and Π(Ω]

p′), respectively, we have

Φ
(
Π

(
Ω]

p

))
= Π

(
Ω]

p′
)
, (3.2)

Φ
(
T (Ω]

p

))
= T

(
Ω]

p′
)
. (3.3)

By (3.2), Φ : Autalg(Ω]
p) → Autalg(Ω

]
p′) induces a group isomorphism between the quo-

tient groups Autalg(Ω]
p)/Π(Ω]

p) and Autalg(Ω
]
p′)/Π(Ω]

p′), which we denote also by Φ.
Here consider the group homomorphism $ : Autalg(Ω]

p) → GL(n, Z) that sends an ele-
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ment ϕ of Autalg(Ω]
p) written in the form ϕ(z) = γ · zN to the element N of GL(n, Z),

where γ ∈ (C∗)n, N ∈ GL(n, Z). Then we have ker$ = Π(Ω]
p) and Autalg(Ω]

p)/Π(Ω]
p)

is isomorphic to the subgroup G := $(Autalg(Ω]
p)) of GL(n, Z). It is readily verified

that G consists of all matrices N in GL(n, Z) of the form

N =
(

A B

O C

)
, A ∈ G, B ∈ M(p, n− p, Z), C ∈ GL(n− p, Z), (3.4)

where G is a subgroup of the linear symmetric group Sp of degree p and M(p, n−p, Z) is
the set of all p by (n− p) integral matrices. Similarly, Autalg(Ω

]
p′)/Π(Ω]

p′) is isomorphic
to the subgroup G ′ of GL(n, Z) consisting of all matrices N′ of the form

N′ =
(

A′ B′

O C ′

)
, A′ ∈ G′, B′ ∈ M(p′, n− p′,Z), C ′ ∈ GL(n− p′,Z), (3.5)

where G′ is a subgroup of the linear symmetric group Sp′ of degree p′ and M(p′, n−p′,Z)
is the set of all p′ by (n− p′) integral matrices.

Sublemma. Under the isomorphisms above of Autalg(Ω]
p)/Π(Ω]

p) onto G and of
Autalg(Ω

]
p′)/Π(Ω]

p′) onto G ′, the group isomorphism Φ̃ : G → G ′ induced from Φ :
Autalg(Ω]

p)/Π(Ω]
p) → Autalg(Ω

]
p′)/Π(Ω]

p′) has the form Φ̃(N) = LNL−1 for N ∈ G ,
where L is some element of GL(n, Z).

Proof. By (3.3), Φ gives a continuous group isomorphism between the tori T (Ω]
p)

and T (Ω]
p′). Therefore we have

Φ(πα) = παL for α ∈ Tn = (U(1))n, (3.6)

where L is some element of GL(n, Z). Let N be any element of G and let ϕ be an element
of Autalg(Ω]

p) such that the coset belonging to ϕ corresponds to N under the isomorphism
between Autalg(Ω]

p)/Π(Ω]
p) and G . Then ϕ satisfies the condition that

ϕ ◦ πα ◦ ϕ−1 = παN for α ∈ Tn = (U(1))n. (3.7)

Applying Φ to the both sides of (3.7) and using (3.6) and (3.1), we obtain

Φ(ϕ) ◦ παL ◦ Φ(ϕ)−1 = Φ(ϕ) ◦ Φ(πα) ◦ Φ(ϕ)−1

= Φ(παN) = π(αN)L = παLN

for α ∈ Tn = (U(1))n. By putting β = αL, this implies that

Φ(ϕ) ◦ πβ ◦ Φ(ϕ)−1 = π(βL−1)LN = πβLNL−1
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for β ∈ Tn = (U(1))n, and the coset belonging to Φ(ϕ) corresponds to LNL−1 under
the isomorphism between Autalg(Ω

]
p′)/Π(Ω]

p′) and G ′. We thus conclude that Φ̃(N) =
LNL−1. ¤

When p = 0, we have G = GL(n, Z) by (3.4). It follows from Sublemma that

G ′ = Φ̃(G ) = LGL(n, Z)L−1 = GL(n, Z).

But, since p′ > p = 0, this contradicts (3.5). So let us consider the case of p > 0. For
i = 1, · · · , p, j = 1, · · · , n − p, and ` ∈ Z, we denote by Nij(`) the matrix in G of the
form

(
Ep `Bij

O En−p

)

where Bij is the p by (n− p) integral matrix whose (i, j) entry is equal to 1 and whose
entries except for (i, j) are all equal to 0, and the notation Ek denotes the identity matrix
of degree k for an integer k ≥ 1. Also, we denote by τ the group homomorphism of G ′

into GL(p′,C) that sends N′ written in the form (3.5) to A′. Note that Nij(`) = Nij(1)`.
Write

A′0 = τ(Φ̃(Nij(1))). (3.8)

Since A′0 is an element of the linear symmetric group Sp′ , there exists an element P ′ of
GL(p′,C) such that

P ′A′0
`
P ′−1 =




λ`
1 O

. . .
O λ`

p′


 for every ` ∈ Z, (3.9)

where λi, i = 1, · · · , p′, are complex constants of absolute value 1. On the other hand,
by (3.8) and Sublemma, we have

A′0
` = τ

(
LNij(`)L−1

)
. (3.10)

From the equation



λ`
1 O

. . .
O λ`

p′


 = P ′−1

τ
(
LNij(`)L−1

)
P ′

obtained by combining (3.9) with (3.10), it follows that

λ`
i = ai` + bi, i = 1, · · · , p′, (3.11)
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where ai, bi, i = 1, · · · , p′, are complex constants independent on `. If ai 6= 0 in (3.11),
then, letting ` → +∞, we see that the left hand side of (3.11) is bounded, while the right
hand side of (3.11) is unbounded, which is a contradiction. Hence we have ai = 0, or λ`

i

is equal to the constant bi for every ` ∈ Z. This imples that λi must be 1, so that A′0 is
the identity matrix. We have thus shown that

τ
(
LNij(`)L−1

)
= Ep′ for every ` ∈ Z. (3.12)

Write

L =
(

P Q

R S

)
and L−1 =

(
P ∗ Q∗

R∗ S∗

)

where P, P ∗ are p by p integral matrices, Q,Q∗ are p by (n− p) integral matrices, R, R∗

are (n − p) by p integral matrices, and S, S∗ are (n − p) by (n − p) integral matrices.
Note that we have

RP ∗ + SR∗ = O. (3.13)

The equation (3.12) above yields that, for every B ∈ M(p, n− p, Z), the matrix

(
P Q

R S

)(
Ep B

O En−p

)(
P ∗ Q∗

R∗ S∗

)

has the form

(
Ep′ B′

O C ′

)
,

where B′ ∈ M(p′, n − p′,Z) and C ′ ∈ GL(n − p′,Z). Since p′ > p, it follows from this
fact and (3.13) that

RBR∗ = O for every B ∈ M(p, n− p, Z),

which implies that R = R∗ = O. Therefore, by noting (3.4), we see that Φ̃(G ) = LG L−1

consists of all matrices M in GL(n, Z) of the form

M =
(

A B

O C

)
, A ∈ PGP−1, B ∈ M(p, n− p, Z), C ∈ GL(n− p, Z).

On the other hand, Φ̃(G ) must coincide with G ′ as sets. It is easily seen that, when
p′ > p, this is impossible, and the proof of Lemma 3.1 is completed.

3.3. Third and final step. To begin with, when k is 0 or 1, the set
⋃

λ Vλ

is clearly empty and hence D = Ωk, because (C∗)n or C × (C∗)n−1 can not contain
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a coordinate vector subspace of codimension greater than or equal to two. So, let us
consider the case of k ≥ 2. Noting that Aut(Ωk) contains the subgroup U(k)× (U(1))`,
we set G = Φ(U(k) × (U(1))`). Then G is a connected compact subgroup of Aut(D)
containing T (D). Thus, repeating exactly the same argument as in the proof of the
second equality of (2.1), we can assume that G coincides with just U(k) × (U(1))` as
sets; consequently, Aut(D) contains U(k)× (U(1))`. By considering the U(k)× (U(1))`-
orbits on D, we now obtain that D ⊃ Ω0

k. Since {0}×(C∗)` ⊂ D if ({0}×(C∗)`)∩D 6=∅,
we have the following two cases: D = Ωk and D = Ω0

k. If D = Ω0
k, then our Theorem 1

tells us that Aut(D) is not isomorphic to Aut(Ωk) as topological groups. Therefore we
conclude that D = Ωk; completing the proof of Theorem 2.
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