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Abstract. We show that any saturated generic graph satisfying some property
(*) is strictly stable or ω-stable. As a corollary, we obtain that any saturated generic
pseudoplane is strictly stable or ω-stable.

In 1988, Hrushovski [6] constructed a stable ω-categorical pseudoplane to refute
Lachlan’s conjecture: A Hrushovski class Kα is derived from a dimension function δα.
He constructed a K-generic graph G = (G,R) for some subclass K of Kα such that G

is ω-categorical and stable, and moreover satisfies the following property:

(†) For each a ∈ G there are infinitely many b ∈ G with R(a, b), and for each distinct
a, b ∈ G there are finitely many c ∈ G with R(a, c) and R(b, c).

Then the structure (G,G, R) is naturally regarded as a pseudoplane. (A pseudoplane is a
structure with two sorts, points and lines, thogether with an incidence relation satisfying
(i) on any line there are infinitely many points, and through any point there are infinitely
many lines; (ii) any two lines intersect in finitely many points, and through any two points
there are finitely many lines.) Applying Hrushovski’s method, Baldwin [2] obtained an
almost strongly minimal non-Desarguesian projective plane from a saturated K-generic
graph H for some subclass K of K 1

2
. In particular, this H satisfies the above property (†)

with “finitely many” replaced by “exactly one”. Hrushovski’s example is strictly stable,
and Baldwin’s is ω-stable. In [1], Baldwin asked whether there is a ‘generic’ structure
that is superstable but not ω-stable. In this paper, we study his question for the ab initio
case, however we do not know whether the question holds or not, even if the structure is
assumed to be saturated. For each K ⊂ Kα we consider the following property:

(*) Any finite graph with no cycles belongs to K.

It is seen that the above two examples satisfy (*), and moreover that if a K-generic graph
satisfies (†) then K satisfies (*) (see 3.2). Our objective is to show that for any subclass
K of Kα with (*) a saturated K-generic graph is strictly stable or ω-stable. This give a
partial solution for Baldwin’s question. As a corollary, we obtain that a saturated generic
pseudoplane is strictly stable or ω-stable.
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1. Generic graphs.

Many papers [3], [4], [5], [9] have laid out the basics of generic structures. So we do
not explain all of those detail here.

Let R(∗, ∗) be a binary relation of an undirected graph: It satisfies |= ∀x(¬R(x, x))
and |= ∀x∀y(R(x, y) → R(y, x)). Let α be a positive real number. For a finite graph A,
we write a dimension function δα(A) = |A| − α|RA|, where RA = {{a, b} : A |= R(a, b)}.
We denote Kα = {A : A is a finite graph, δα(B) ≥ 0 for any B ⊂ A}.

For finite A ⊂ G, A is said to be closed in G (in symbol, A ≤ G), if δα(XA) ≥ δα(A)
for any finite X ⊂ G − A. The closure of A in G is defined by clG(A) =

⋂{B : A ⊂
B ≤ G, |B| < ω}. Let K = (K,≤) be a subclass of Kα = (Kα,≤) that is closed under
substructures.

Definition 1.1. A countable graph G is said to be K-generic, if it satisfies the
following: (i) for finite A ⊂ G, A ∈ K; (ii) if A ≤ B ∈ K and A ≤ G, then there exists a
copy B′ of B over A with B′ ≤ G.

K is said to have finite closures, if there are no chains A0 ⊂ A1 ⊂ · · · of elements of
K with δα(Ai+1) < δα(Ai) for each i < ω. If K has finite closures, then we can see that
there exists a unique K-generic graph G, and moreover that any finite set of G has finite
closures. Note that if α is rational then K always has finite closures. We summarize our
situation.

Assumption. K = (K,≤) is derived from a dimension function δα for a positive
real number α such that K is closed under substructures and has finite closures.

Our assumption is sufficiently natural: Indeed, for suitable irrational α, Hrushovski
[6] defined a subclass K of Kα satisfying our assumption, and constructed a K-generic
graph, which is stable and ω-categorical. Applying Hrushovski’s construction, Baldwin
[2] construct an almost strongly minimal K-generic projective plane for some subclass
K of K 1

2
under our assumption, which gave a counter example of Zilber’s conjecture.

For finite A ⊂ G, we define dG(A) = δ(clG(A)). For finite A,B, we write dG(A/B) =
dG(AB) − dG(B). For possibly infinite B ⊂ G, we define dG(A/B) = inf{dG(A/B′) :
B′ ⊂ B,B′ is finite}. The following result can be found, for instance, in [8].

Fact 1.2. Suppose that G is a saturated K-generic graph. Then

(i) G is stable, and G is ω-stable if α is rational.
(ii) For any A ≤ B ≤ G and ā ∈ G, tp(ā/B) does not fork over A if and only if

dG(ā/B) = dG(ā/A) and clG(āA) ∩B = A.

2. Construction of graphs.

The following remark may be elementary, but is necessary to construct an infinite
graph such as in Lemma 2.3.

Remark 2.1. Let α > 0 be irrational. It is known that for any ε > 0 there are
a, b ∈ Z such that |a− bα| < ε. From this it follows that {a− bα : a, b ∈ N} is dense in
R.
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To simplify our notation, we write δ(∗) in place of δα(∗). For finite A,B, we write
δ(A/B) = δ(AB)− δ(B).

For a finite graph AB with A∩B =∅, we say that a pair (B,A) is biminimal, if it
satisfies the following: (i) δ(B/A) < 0; (ii) δ(X/A) ≥ 0 for any nonempty proper subset
X of B; (iii) δ(B/Y ) ≥ 0 for any nonempty proper subset X of A.

A graph A is said to have no cycles, if for each n > 2 there do not exist distinct
a1, a2, . . . , an ∈ A with R(a1, a2), R(a2, a3), . . . , R(an−1, an) and R(an, a1). A graph A

is said to be connected, if for any distinct a, b ∈ A there exist b1, b2, . . . , bn(= b) ∈ A with
R(a, b1), R(b1, b2), . . . , R(bn−1, bn).

Lemma 2.2. If α is irrational with 0 < α < 1, then for any ε with 0 < ε < α there
is a finite graph eBC such that

(1) (C, eB) is biminimal ;
(2) δ(C/eB) > −ε;
(3) eBC has no cycles;
(4) eB has no relations.

Proof. Take any ε > 0. By Remark 2.1, there exists p = min{a ∈ N : 0 >

a − bα > −ε}. Let qp ∈ N be such that 0 > p − qpα > −ε. For each n ∈ N with
1 ≤ n < p, define qn = max{k ∈ N : n − kα > 0}. Then we denote dn = n − qnα for
each n with 1 ≤ n ≤ p. We can see that 0 < dn < α− ε for any n < p. Hence {dn}1≤n≤p

satisfies the following:

(a) 0 > dp > −ε;
(b) If 1 ≤ n < p then dn > 0;
(c) If 1 ≤ n < m ≤ p then dn − dm < α.

For the convenience, let q0 = −1. Note that qi − qi−1 − 1 ≥ 0 for each i with
1 ≤ i ≤ p. (In fact, since 0 < α < 1, we have qi − qi−1 > ( i

α − 1) − i−1
α = 1−α

α > 0.)
Then let {ci : 1 ≤ i ≤ p} ∪ {bj

i : 1 ≤ i ≤ p, 1 ≤ j ≤ qi − qi−1 − 1} be a graph with the
relations:

(i) R(c1, c2), . . . , R(cp−1, cp);
(ii) R(ci, b

j
i ) for each i, j with 1 ≤ i ≤ p and 1 ≤ j ≤ qi − qi−1 − 1.

Let e = b1
1, C = {ci : 1 ≤ i ≤ p} and B = {bj

i : 1 ≤ i ≤ p, 1 ≤ j ≤ qi−qi−1−1}−{b1
1}.

Clearly eBC satisfies (3) and (4). By the definition of eBC, we have

δ(C/eB) = p−
{

(p− 1) +
p∑

i=1

(qi − qi−1 − 1)
}

α = p− qpα = dp.

By (a), we have 0 > δ(C/eB) > −ε, so (2) holds.

Claim. If X(⊂ C) is connected with X 6= C, then δ(X/eB) > 0.

Proof. By connectedness, we can denote X = {ci}n<i≤m for some n,m. If
n = 0, then δ(X/eB) = m − qmα = dm > 0 by (b). If n > 0, then δ(X/eB) =
(m− n)− (qm − qn − 1)α = dm − dn + α > 0 by (c). (End of Proof of Claim)
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We show (1). First take any X ⊂ C with X 6= C. Let X =
⋃

Xi where each Xi

is connected component of X. Then δ(X/eB) =
∑

δ(Xi/eB) > 0 by the claim. Next
take any Y ⊂ eB with Y 6= eB. Then δ(C/Y ) ≥ δ(C/eB) + α > −ε + α > 0. Hence (1)
holds. ¤

Lemma 2.3. If α is irrational with 0 < α < 1, then there is a set {eBiCi}i<ω of
finite graphs such that

(1) D has no cycles;
(2) B∗

n ≤ eB∗
nC∗n ≤ D for each n < ω;

(3) (Cn, eBn) is biminimal for each n < ω;
(4) eB∗ has no relations;
(5) For each i, j < ω there are no relations between BiCi and BjCj,

where B∗
n =

⋃
i≤n Bi, C

∗
n =

⋃
i≤n Ci, B

∗ =
⋃

i<ω Bi, C
∗ =

⋃
i<ω Ci and D = eB∗C∗.

Proof. Take i0 < ω with 1
2i0 < α. By Lemma 2.2, for each i < ω, there is eCiBi

that satisfies (1)–(4) of Lemma 2.2 and moreover that satisfies δ(Ci/eBi) > − 1
2i+i0 .

Clearly (3) holds. Denote B∗
n =

⋃
i≤n Bi, C

∗
n =

⋃
i≤n Ci, B

∗ =
⋃

i<ω Bi, C
∗ =

⋃
i<ω Ci

and D = eB∗C∗. Then we can assume that (1), (4) and (5) hold. So it is enough to see
(2). Let XE denote X ∩ E for each X and E.

Claim 1. eB∗
nC∗n ≤ D.

Proof. Take any finite X ⊂ D− eB∗
nC∗n. We divide into two cases. First suppose

XB∗ 6=∅. Then δ(X/eB∗
nC∗n) = δ(X/e) = δ(XC∗/eXB∗)+ δ(XB∗/e) = δ(XC∗/eXB∗)+

|XB∗ | ≥ δ(XC∗/eXB∗)+1 =
∑

i δ(XCi
/eXBi

)+1 ≥ ∑
i δ(Ci/eBi)+1 ≥ −∑

i
1

2i+i0 +1 >

0. Next suppose XB∗ = ∅. Then δ(X/eB∗
nC∗n) = δ(XC∗/e) ≥ |XC∗ | − |XC∗ |α =

|XC∗ |(1− α) > 0. In any case, claim 1 holds. ¤

Claim 2. B∗
n ≤ eB∗

nC∗n.

Proof. Take any X ⊂ eC∗n. We divide into two cases. First suppose e ∈ X.
Then δ(X/B∗

n) = δ(X/B∗
ne) + δ(e/B∗

n) =
∑

i δ(XCi
/Bie) + 1 ≥ ∑

i δ(Ci/Bie) + 1 =
−∑

i
1

2i+i0 +1 ≥ 0. Next suppose e 6∈ X. Note that δ(Y/Bi) > 0 for any Y ⊂ Ci. (Proof:
If Y = Ci then δ(Y/Bi) = δ(Ci/Bi) > 0. If Y 6= Ci then δ(Y/Bi) ≥ δ(Y/Bie) > 0.) So
δ(X/B∗

n) =
∑

i δ(XCi
/Bi) > 0. In any case, claim 2 holds. ¤

3. Proof of Theorem.

Theorem 3.1. For a positive real number α let K = (K,≤) be a subclass of Kα

that is closed under substructures, and satisfy the following property:

(*) Any finite graph with no cycles belongs to K.

Then a saturated K-generic graph G is ω-stable if α is rational and G is strictly stable
if α is irrational.

Proof. By Fact 1.2(i), G is stable, and G is ω-stable if α is rational. So it is
enough to show that, if α is irrational then G is not superstable.
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Claim 1. α < 1.

Proof. Otherwise, we have α > 1. Take some m < ω with m(1 − α) + 1 < 0.
Let E = ab1 . . . bm be a graph with the relations R(a, bi) for each i ≤ m. Since E has
no cycles, by (*) we have E ∈ K. On the other hand, δ(E) = (m + 1) −mα < 0. This
contradicts K ⊂ Kα. (End of Proof of Claim 1) ¤

By claim 1 we can take {eBiCi}i<ω as in Lemma 2.3. Let Dj =
⋃

i≤j eBiCi for each
j < ω, and D =

⋃
i<ω eBiCi. Note that D1 ≤ D2 ≤ · · · ≤ D. Since the Dj have no

cycles, by (*) we have Dj ∈ K. So we can assume that D ≤ G.

Claim 2. dG(e/B∗
n) =

∑
i≤n δ(Ci/eBi) + 1 for each n < ω.

Proof. By (2)–(5) of Lemma 2.3, we have dG(e/B∗
n) = dG(eB∗

n) − dG(B∗
n) =

δ(eC∗nB∗
n)− δ(B∗

n) = δ(eC∗n/B∗
n) = δ(C∗n/eB∗

n)+1 =
∑

i≤n δ(Ci/eBi)+1. (End of Proof
of Claim 2) ¤

By claim 2, we have dG(e/B∗
n+1) =

∑
i≤n+1 δ(Ci/eBi) + 1 = dG(e/B∗

n) +
δ(Cn+1/eBn+1) < dG(e/B∗

n). By Fact 1.2, we obtain that tp(e/B∗
n+1) is a forking exten-

sion of tp(e/B∗
n) for each n < ω. Hence G is not superstable.

Remark 3.2. Each of Hrushovski’s and Baldwin’s examples satisfies the property
(*) in our theorem. In general, if a K-generic graph G satisfies (†), then K satisfies (*).
It can be shown as follows: Let A be a finite graph with no cycles. Take any a0 ∈ A. Let
C0 be a connected component of a0 in A. As A has no cycles, C0 can be regarded as a
tree so that height of a0 is 0. Since G satisfies (†), we can inductively construct C∗0 ⊂ G

with C∗0 ∼= C0. Take any a1 ∈ A − C0. Let C1 be a connected component of a1. In the
same way, we have C∗1 ⊂ G with C∗0C∗1 ∼= C0C1. Iterating this process, we have A∗ ⊂ G

with A∗ ∼= A. Hence A ∈ K.

Remark 3.3. A K-generic graph G is said to have amalgamation over closed
sets, if for any models G1, G2 of Th(G), any set A ∈ K, and any strong embeddings
f1 : A → G1 and f2 : A → G2, there exist a model G3 of Th(G) and elementary
embeddings g1 : G1 → G3 and g2 : G2 → G3 with g1f1 = g2f2. It is seen that if G is
saturated, then G has amalgamation over closed sets and K has finite closures. However,
in our argument, we do not use the fact that K has finite closures. Note that, in [8],
Fact 1.2 was proven under the conditon that G has amalgamation over closed sets. It
follows that, in our theorem, the condition that G is saturated can be replaced by the
weaker condition, amalgamation over closed sets.

When a structure M = (G,G, R) is a pseudoplane (or projective plane) for some
K-generic graph G, we call M a generic pseudoplane (or generic projective plane).
Hrushovski proved that there exists an ω-categorical generic pseudoplane [6]. On the
other hand, it was shown that there are no ω-categorical generic projective planes [7].
As a corollary of Theorem 3.1, we obtain the following:

Corollary 3.4. Any saturated generic pseudoplane is strictly stable or ω-stable.

Question 3.5. Is any saturated K-generic graph strictly stable or ω-stable?
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