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Distribution of units of a cubic abelian field

modulo prime numbers
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Abstract. We studied the distribution of units of an algebraic number field
modulo prime ideals. Here we study the distribution of units of a cubic abelian field
modulo rational prime numbers. For a decomposable prime number p, 2(p − 1)2

is an upper bound of the order of the unit group modulo p, and we show that the
conjectural density of primes which attain it is really positive.

Introduction.

We are interested in the distribution of units modulo ideals of an algebraic number
field. Let F be an algebraic number field and oF , o×F the maximal order of F and the
group of units of F , respectively. For an integral ideal n of F , we set

E(n) =
{
u mod n|u ∈ o×F

} ( ⊂ (oF /n)×
)
,

I(n) =
[
(oF /n)× : E(n)

]
.

We note that the extension degree of the ray class field F (n) of conductor n of F over F

is the product of I(n) and the class number of F by the class field theory.
We studied cases where n’s are prime ideals. Indeed, for the set of prime ideals p

for which the Frobenius automorphism is a prescribed one, we showed that there is a
polynomial h with rational coefficients such that I(p) is divisible by h(p) for a prime
number p lying below p and conjectured that prime ideals satisfying h(p) = I(p) has a
positive (modified natural) density [K2]. The conjectural density is really positive, and
the conjecture is true for several cases under G.R.H. [CKY], [K1], [K2], [K4], [L], [M],
[R]. As a next step, we proceed to the case of ideals n = poF with a rational prime
number. In this case, finding out the polynomial h above is difficult, because we have to
manage the obstruction group

M(n) =
{
(a0, · · · , am) ∈ Zm+1

∣∣ζa0εa1
1 · · · εam

m ≡ 1 mod n
}

where {ε1, · · · , εm} is a set of fundamental units of F and ζ is a generator of the group
of roots of unity in F . If n is a prime ideal, then (oF /n)× is cyclic, and if the rank of the
unit group o×F is one, E(n) is almost cyclic. In such cases, we have only to consider the

2000 Mathematics Subject Classification. 11R27.

Key Words and Phrases. Distribution of units, cubic abelian field.

Partially supported by Grant-in-Aid for Scientific Research (C), Ministry of Education, Culture,

Sports, Science and Technology of Japan.



564 Y. Kitaoka

order of each unit modulo n, and so such cases are relatively easy. The former case is in
[K2]. In the latter case, we announced the polynomial h explicitly in some cases of the
rank of o×F being one, and the positivity of the conjectural density [K3]. Contrary to it,
in case of m ≥ 2, we must study the obstruction group seriously.

As the simplest case, we take up a cubic abelian field F , whose rank of o×F is two. Let
p be a prime number. The case where p runs over the set of rational primes which remain
prime in F is contained in [K2]. The polynomial h, then is (x−1)/2 and we showed that
the expected density is positive. We know that the ray class field of conductor being a
prime number p contains the composite field of the Hilbert class field and Q(ζp + ζ−1

p )
for a primitive pth root ζp of unity, and so, if the conjecture above is true, then they
coincide for infinitely many primes.

In this paper, we confine ourselves to decomposable primes. Before explaining the
content, we should remark: Let K be a Galois extension of the rational number field Q,
and let w, r be the order of the group of the roots of unity in K and the rank of the
unit group. If a prime p decomposes fully in K, then #E((p)) divides w(p−1)r/cK with
cK = 1. cK > 1 can happen, for example cK = 2 holds for a real quadratic field with
the norm of the fundamental unit being 1 [K3]. Note that cK > 1 means that there are
relations among units modulo p besides εp−1 ≡ 1 mod (p).

Now, F denotes a cubic abelian field as before. In the first section, we evaluate
the number of prime numbers p for which #E((p)) = 2(p − 1)2 holds. We involve
Frobenius automorphisms, and conjecture the density, taking account of Chebotarev’s
density theorem. The key is the proposition 2, which describes the obstruction group
{ε ∈ o×F |ε ≡ 1 mod (p)} explicitly, and makes the evaluation of the number of primes
with #E((p)) = 2(p−1)2 possible, using Frobenius automorphisms. We do not have any
extension, i.e. any algebraic frame to express the condition #E((p)) = w(p− 1)r/cK in
terms of Frobenius automorphism for a general Galois extension yet.

In the second section, we write down the conjectural density explicitly. Making use
of details on fields F ( m

√
o×F ), we see that it is really positive, and so cF = 1 is expected.

The numerical data support the conjecture. Like Artin’s conjecture on primitive roots,
the proof of our conjecture shall involve the estimate of the infinitely many accumulation
of error terms of analytic version of Chebotarev’s density theorem.

Hereafter F is a cubic abelian field with Galois group 〈σ〉, and E(n), I(n) are those
defined above. Here 〈g1, · · · , gn〉 stands for the group generated by g1, · · · , gn. dF stands
for the discriminant of F . Moreover the letter p denotes an odd prime number which
decomposes in F , and ` denotes a prime number. Let m be a natural number. ζm

denotes a primitive mth root of unity. Fm stands for F ( m
√

o×F ), which is a finite Galois
extension over Q. For a prime ideal p of Fm lying above p, σFm/Q(p) denotes the
Frobenius automorphism corresponding to p, and σFm/Q(p) denotes the conjugacy class
of Gal(Fm/Q) containing σFm/Q(p).

§1.

In this section, we show that #E((p)) divides 2(p− 1)2 and describe the number of
prime numbers p satisfying p < x and #E((p)) = 2(p − 1)2, i.e. I((p)) = (p − 1)/2 in
terms of Frobenius automorphisms.
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Proposition 1. We can choose a set {ε1, ε2} of fundamental units of F such that

εσ
1 = ε2, εσ

2 = (ε1ε2)−1,

and we have 〈ε1, ε2〉 = {ε ∈ o×F |NF/Q(ε) = 1}.
Proof. The unit group o×F is the direct product of {±1} and {ε ∈ o×F |NF/Q(ε)

= 1}. By considering {ε ∈ o×F |NF/Q(ε) = 1} as a free Z-module of rank two and
by applying the theory of integral representation of a cyclic group 〈σ〉 of order three
operating on it [CR], there is a system {ε1, ε2} of fundamental units such that

εσ
1 = ε2, εσ

2 = (ε1ε2)−1.

This completes the proof. ¤

Hereafter ε1, ε2 are those in the proposition 1. By virtue of the proposition, ε ≡
−1 mod (p) does not happen for ε ∈ 〈ε1, ε2〉, since it implies 1 = NF/Q(ε) ≡ −1 mod (p)
holds, which contradicts our assumption that p is odd. Hence we redefine the obstruction
group M = Mp by

Mp :=
{
(a1, a2) ∈ (Z/(p− 1)Z)2

∣∣εa1
1 εa2

2 ≡ 1 mod (p)
}
,

which is different from the definition in the introduction. Here we note εp−1 ≡ 1 mod (p)
for every ε ∈ o×F since p is supposed to decompose in F .

Proposition 2. There are natural numbers D1 = D1(p), D2 = D2(p), b = b(p)
which satisfy

(i) D1D2|p− 1,
(ii) d1 := (p− 1)/D1 is the order of εi mod (p) (i = 1, 2),
(iii) Mp = 〈(d1, 0), (0, d1)〉+ 〈(d2, bd2)〉 where d2 = (p− 1)/D1D2.

Moreover, b satisfies b2 − b + 1 ≡ 0 mod D2 and it is uniquely determined modulo D2.

Proof. By ε2 = εσ
1 , the order d1 of ε2 mod (p) is equal to that of ε1 mod (p). Put

d1 = (p− 1)/D1; then M contains clearly

S : =
{
(a1, a2) ∈ (Z/(p− 1)Z)2

∣∣εai
i ≡ 1 mod (p)(i = 1, 2)

}

= 〈(d1, 0), (0, d1)〉.

If M = S holds, then we have only to put D2 = 1 and b = 0.
Suppose M 6= S and choose (a1, a2) ∈ M \ S so that a1 is the minimal natural

number satisfying (a1, a2) ∈ M \ S. It is easy to see 0 < a1 ≤ d1. If a1 = d1, then
we have εa2

2 ≡ 1 mod (p) and then a2 ≡ 0 mod d1. It contradicts (a1, a2) /∈ S. Hence
a1 6= d1 holds. Thus we have 0 < a1 < d1 and a1 is minimal in the set of natural numbers
a such that (a, ∗) ∈ M . Put
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A1 = gcd(a1, d1)

and write A1 = xa1+yd1 (x, y ∈ Z). Then M 3 x(a1, a2) = (A1−yd1, xa2) = (A1, xa2)−
(yd1, 0) implies (A1, xa2) ∈ M . The inequality 0 < A1 ≤ a1 and the minimality of a1

yield A1 = a1. By virtue of A1|d1,

a1 = A1 = d1/D2

holds for some integer D2, where 1 < D2|d1. Let us see

M = S + 〈(a1, a2)〉.

Suppose (c1, c2) ∈ M and c1 = qa1+r, 0 ≤ r < a1. By virtue of M 3 (c1, c2)−q(a1, a2) =
(r, c2−qa2) and 0 ≤ r < a1, we have r = 0 by the minimality of a1, and then (0, c2−qa2) ∈
M yields c2 − qa2 ≡ 0 mod d1 and so (c1, c2) − q(a1, a2) = (0, c2 − qa2) ∈ S. Thus we
have M = S + 〈(a1, a2)〉. By virtue of (εa1

1 εa2
2 )σ = ε−a2

1 εa1−a2
2 , (−a2, a1− a2) ∈ M holds.

Hence we have (−a2, a1 − a2) + b(a1, a2) ∈ S for some integer b and so a2 ≡ ba1 mod d1

and hence (a1, ba1) = (a1, a2) − (0, a2 − ba1) ∈ M and (a1, a2) − (a1, ba1) ∈ S follow.
Thus we may assume

a2 = ba1

without loss of generality. Then M 3 (−a2, a1−a2)+ b(a1, a2) = (0, a1(1− b+ b2)) holds
and so we get a1(1− b + b2) ≡ 0 mod d1. Since we put a1 = d1/D2, the desired equation
1− b + b2 ≡ 0 mod D2 follows.

To show the uniqueness of b mod D2, suppose (a1, bia1) ∈ M (i = 1, 2); then M 3
(a1, b2a1)−(a1, b1a1) = (0, (b2−b1)a1) implies (b2−b1)a1 ≡ 0 mod d1, and hence b2−b1 ≡
0 mod D2. Thus we have completed the proof. ¤

Proposition 3. #E((p)) divides 2(p− 1)2, and I((p)) is divisible by (p− 1)/2.

Proof. The natural mapping ϕ from 〈−1 mod (p)〉 × 〈ε1 mod (p)〉 × 〈ε2 mod (p)〉
to E((p)) (= {u mod (p)|u ∈ o×F }) is surjective. Therefore #E((p)) = 2#〈ε1 mod (p)〉
#̇〈ε2 mod (p)〉/#ker ϕ holds. By assumption on p, (p) decomposes in F and so #〈ε1 mod
(p)〉 = #〈ε2 mod (p)〉 divides (p − 1). Thus #E((p)) divides 2(p − 1)2. Hence I((p)) =
[(oF /(p))× : E((p))] = (p− 1)3/#E((p)) is divisible by (p− 1)/2. ¤

The following follows from the proposition 2, 3.

Corollary 1. I((p)) = (p − 1)/2 and hence #E((p)) = 2(p − 1)2 holds if and
only if Mp is trivial, i.e. D1(p) = D2(p) = 1 holds.

Remark. The proposition 2 and the proof of the proposition 3 imply #E((p)) =
2(p−1)2/#Mp = 2(p−1)2/D2

1D2 (∈ Z), and hence I((p)) = (p−1)/2 ·D2
1D2. Moreover

the equation x2 − x + 1 ≡ 0 mod D2 has to have a solution and so a prime divisor ` of
D2 is 3 or congruent to 1 modulo 3.
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Proposition 4. Let ε be a unit of F and r = (p − 1)/D the order of ε mod (p),
and let m be an integer relatively prime to p. Then m divides D if and only if ζρ−1

m =
m
√

ε
ρ−1 = 1 for every ρ ∈ σFm/Q(p).

Proof. Since p is supposed to decompose in F , we have εp−1 ≡ 1 mod (p). There-
fore the order r of ε mod (p) divides p− 1 and D = (p− 1)/r is an integer. Then

m|D = (p− 1)/r ⇔ m|p− 1 and r|(p− 1)/m

⇔ m|p− 1 and ε(p−1)/m ≡ 1 mod (p)

⇔ m|p− 1 and ε(p−1)/m ≡ 1 mod p for ∀p|p
where p is a prime ideal in Fm

⇔ ζρ−1
m = 1 and m

√
ε
ρ−1 = 1 for ρ = σFm/Q(p), ∀p|p.

Let us explain the last equivalence. Since p decomposes in F , ρ is the identity on F and
then m

√
ε
ρ−1 is an mth root of unity. Suppose that ζ is an mth root of unity. We have

only to show ζ ≡ 1 mod p implies ζ = 1. If ζ 6= 1, then there is a prime ` (|m) such that
ζ` ≡ 1 mod p. Therefore p = `|m holds, which contradicts (m, p) = 1. ¤

Proposition 5. Let D1(p), D2(p), b(p) be those in the proposition 2, and suppose
that a natural number n divides (p− 1)/D1(p). Then n|D2(p) holds if and only if

D1(p)n
√

ε1ε
b
2

ρ−1

= 1 for ∀ρ ∈ σFD1(p)n/Q(p) (1)

holds for some integer b. Then b is uniquely determined modulo n so that b ≡ b(p) mod n.

Proof. For simplicity, we write Di(p) = Di. If n divide D2, then putting D2 = nr,
we have

Mp 3 r
(
(p− 1)/D1D2, b(p)(p− 1)/D1D2

)
=

(
(p− 1)/D1n, b(p)(p− 1)/D1n

)
,

and hence ε
(p−1)/D1n
1 ε

b(p)(p−1)/D1n
2 ≡ 1 mod (p). Hence the order of ε = ε1ε

b(p)
2 mod (p)

is (p − 1)/D1na for a natural number a. Applying the previous proposition to ε,m =
D1n (6≡ 0 mod p), we have

D1n

√
ε1ε

b(p)
2

ρ−1

= 1 for ∀ρ ∈ σFD1n/Q(p).

Conversely, the equation (1) yields Mp 3 ((p− 1)/D1n, b · (p− 1)/D1n), and then n|D2

by virtue of the proposition 2.
To show the uniqueness of b, suppose that n|D2 and D1n

√
ε1εb

2

ρ−1
= 1 for ∀ρ ∈

σFD1n/Q(p) holds for some integer b. Then we have both Mp 3 ((p − 1)/D1n, b · (p −
1)/D1n) and Mp 3 ((p−1)/D1n, b(p)(p−1)/D1n), and so the difference (0, (b−b(p))(p−
1)/D1n) ∈ Mp. The proposition 2 implies n|(b(p)− b), which completes the proof. ¤
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Proposition 6. For natural numbers b, n, suppose

ζρ−1
n =

n
√

ε1ε
b
2

ρ−1

= 1 for ∀ρ ∈ σFn/Q(p).

Then n
√

ε2
(b2−b+1)(ρ−1) = 1 holds for ∀ρ ∈ σFn/Q(p).

Proof. Take an automorphism η ∈ Gal(Fn/Q) satisfying η = σ on F . For
ρ ∈ σFn/Q(p), ηρη−1 ∈ σFn/Q(p) implies n

√
ε1εb

2

ηρ
= n

√
ε1εb

2

η
by the assumption.

On the other hand, we have (ε1εb
2)

η = ε−b
1 ε1−b

2 = (ε1εb
2)
−bε b2−b+1

2 , and then n
√

ε1εb
2

η

= ζ n
√

ε1εb
2

−b
n
√

ε2
b2−b+1 for an nth root ζ of unity. Thus n

√
ε1εb

2

ηρ
is equal to

ζ n
√

ε1εb
2

−b
n
√

ε2
(b2−b+1)ρ = n

√
ε1εb

2

η
n
√

ε2
(b2−b+1)(ρ−1). Comparing it with the above, we

have n
√

ε2
(b2−b+1)(ρ−1) = 1. ¤

Proposition 7. For natural numbers m,n, b, we set

H(m,n; b) =

{
ρ ∈ Gal(Fmn/Q)

∣∣∣∣∣
(i) ζρ−1

m = m
√

εi
ρ−1 = 1 for i = 1, 2,

(ii) ζρ−1
n = n

√
ε1εb

2

ρ−1
= n
√

ε2
(b2−b+1)(ρ−1) = 1

}
.

Then it is a union of conjugacy classes of Gal(Fmn/Q).

Proof. Let ρ ∈ H(m,n; b) and η ∈ Gal(Fmn/Q). It is clear that we have only to

see m
√

εi
ηρη−1−1 = n

√
ε1εb

2

ηρη−1−1
= n
√

ε2
(b2−b+1)(ηρη−1−1) = 1.

(i) In case of η = id on F .
Since m

√
εi

η = ζ m
√

εi for an mth root ζ of unity, it is easy to see m
√

εi
ηρ = m

√
εi

η

and so m
√

εi
ηρη−1−1 = 1. The others are similar.

(ii) In case of η = σ on F .
ε η
1 = ε2 and ε η

2 = (ε1ε2)−1 imply m
√

ε1
η = α1

m
√

ε2, m
√

ε2
η = α2

m
√

ε1ε2
−1 for mth

roots α1, α2 of unity and hence m
√

εi
ηρ = m

√
εi

η for i = 1, 2. Because of (ε1εb
2)

η =

(ε1εb
2)
−bεb2−b+1

2 , we have n
√

ε1εb
2

η
= α3

n
√

ε1εb
2

−b
n
√

ε2
b2−b+1 for an nth root α3 of unity

and then n
√

ε1εb
2

ηρ
= n

√
ε1εb

2

η
. By virtue of ε η

2 = (ε1εb
2)
−1εb−1

2 , we obtain n
√

ε
η
2 =

α4
n
√

ε1εb
2

−1
n
√

ε2
b−1 for an nth root of α4 of unity and so n

√
ε2

(b2−b+1)ηρ = n
√

ε2
(b2−b+1)η.

(iii) In case of η = σ2 on F .
ε η
1 = (ε1ε2)−1 and ε η

2 = ε1 yield m
√

εi
ηρ = m

√
εi

η for i = 1, 2. (ε1εb
2)

η =

(ε1εb
2)

b−1ε
−(b2−b+1)
2 implies n

√
ε1εb

2

ηρ
= n

√
ε1εb

2

η
, and εη

2 = (ε1εb
2)ε

−b
2 implies

n
√

ε2
(b2−b+1)ηρ = n

√
ε2

(b2−b+1)η. ¤

For a positive number x, we put

Sx =
{
p ≤ x|p is an odd prime number which decomposes in F

}

Tx =
{
p ∈ Sx|I((p)) = (p− 1)/2

}
=

{
p ∈ Sx|#E((p)) = 2(p− 1)2

}
.

Let us express the number #Tx in terms of Frobenius automorphisms. Since
#E((p)) = 2(p− 1)2 is equivalent to D1(p) = D2(p) = 1, we have
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#Tx =
∑
p∈Sx

D1(p)=D2(p)=1

1

=
∑
p∈Sx

D1(p)=1

∑

n|D2(p)

µ(n) (µ is the Möbius function)

=
∑

n

µ(n)
∑
p∈Sx

D1(p)=1,n|D2(p)

1

=
∑

n

µ(n)
∑

b mod n

∑
p∈Sx

D1(p)=1,n|p−1,

n
√

ε1εb
2

ρ−1
=1 for ∀ρ∈σFn/Q(p)

1

(by the proposition 5, since n|D2(p) implies n|p− 1)

=
∑

n

µ(n)
∑

b mod n

∑
p∈Sx

n|p−1,

n
√

ε1εb
2

ρ−1
=1 for ∀ρ∈σFn/Q(p)

∑

m|D1(p)

µ(m)

=
∑
n,m

µ(n)µ(m)
∑

b mod n

#





p ∈ Sx

∣∣∣∣∣∣∣

(i) m|D1(p)

(ii) p ≡ 1 mod n, n
√

ε1εb
2

ρ−1
= 1

for ∀ρ ∈ σFn/Q(p)





=
∑
n,m

µ(n)µ(m)
∑

b mod n

#





p ∈ Sx

∣∣∣∣∣∣∣∣∣∣∣

(0) p - mn

(i) ζρ−1
m = m

√
ε1

ρ−1 = m
√

ε2
ρ−1 = 1

for ∀ρ ∈ σFm/Q(p)

(ii) ζρ−1
n = 1, n

√
ε1εb

2

ρ−1
= 1

for ∀ρ ∈ σFn/Q(p),





(by the proposition 4)

=
∑
n,m

µ(n)µ(m)
∑

b mod n

#
{
p ∈ Sx|p - mn, σFmn/Q(p) ⊂ H(m,n; b)

}

(by the proposition 6).

Thus we have shown

Theorem 1. The number #Tx is equal to

∑

n,m≥1

µ(n)µ(m)
∑

b mod n

#
{
p ∈ Sx|p - mn, σFmn/Q(p) ⊂ H(m,n; b)

}
.

Taking account of Chebotarev’s density theorem, we propose

Conjecture.

lim
x→∞

#Tx/Li(x) =
∑
n,m

µ(n)µ(m)
∑

b mod n

#H(m,n; b)
[Fmn : Q]

= κ (say)
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In the next section, we will show the expected density κ above is really positive.

§2.

Let us show that the infinite series κ in the conjecture is absolutely convergent to a
positive number. The aim in this section is the following

Theorem 2. We have

κ =
1
4

∏

`-2dF

(
1 +

1
`2
− α(`)

(`− 1)`2

)




∏
`|dF

(
1 +

1
`2
− α(`)

(`− 1)`2

)
if 3|dF ,

∏
`|dF

(
1 +

1− 2`

(`− 1)`2

)
+ 2

∏

`|dF

1− 2`

(`− 1)`2
if 3 - dF ,

where ` denotes prime numbers and

α(`) =





` if ` ≡ 2 mod 3,

3`− 2 if ` ≡ 1 mod 3,

` + 2 if ` = 3,

and κ 6= 0.

Before the proof, let us give numerical examples. Set x = 108 and π(x) is the number
of primes not exceeding x. κ′ denotes the partial product of κ for ` < 450000.
In case of F ⊂ Q(ζ7) : κ′ = 0.17400 · · · and #Tx/π(x) = 0.17410 · · · ,
In case of F ⊂ Q(ζ9) : κ′ = 0.19175 · · · and #Tx/π(x) = 0.19181 · · · .

Since we have

#H(m,n; b)/[Fmn : Q] =
[
Q

(
ζm, m

√
ε1, m

√
ε2, ζn,

n
√

ε1ε
b
2,

n
√

ε2
b2−b+1

)
: Q

]−1

= 3−1
[
F

(
ζm, m

√
ε1, m

√
ε2, ζn,

n
√

ε1ε
b
2,

n
√

ε2
b2−b+1

)
: F

]−1

,

we set

k(m,n; b) =
[
F

(
ζm, m

√
ε1, m

√
ε2, ζn,

n
√

ε1ε
b
2,

n
√

ε2
b2−b+1

)
: F

]

for simplicity, and then

κ =
1
3

∑

n,m≥1

µ(n)µ(m)
∑

b mod n

1/k(m,n; b).

Put m = m1d, n = n1d for d = (m,n). Since we may assume that m,n are square-free,
m1n1d is supposed to be square-free. So we have, replacing m1, n1 by m,n
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3κ =
∑

n,m,d≥1
mnd:square-free

µ(m)µ(n)
∑

b mod nd

1/k(md, nd; b)

=
∑

n,m,d≥1
mnd:square-free

µ(m)µ(n)
∑

b mod nd

1/k(md, n; b)

(because of k(md, nd; b) = k(md, n; b))

=
∑

n,m,d≥1
mnd:square-free

µ(m)µ(n)d
∑

b mod n

1/k(md, n; b)

(since k(md, n; b) is determined by b mod n, and putting M = md)

=
∑

M,n≥1
Mn:square-free

µ(M)µ(n)
( ∑

d|M
µ(d)d

) ∑

b mod n

1/k(M, n; b)

=
∑

m,n≥1
mn:square-free

µ(n)ϕ(m)
∑

b mod n

1/k(m,n; b)

since
∑

d|M µ(d)d =
∏

`|M (1 − `) = µ(M)ϕ(M), where ` stands for primes and ϕ is the
Euler function.

Set

A =
∏

`|2dF

`.

We note that A is even and square-free. For natural numbers a, b with a|A∞, (b, A) = 1,
we know [K2]

[Fab : F ] = [Fa : F ][Fb : F ] = b2ϕ(b)[Fa : F ] and Fa ∩ Fb = F.

In particular, (b1, b2) = 1 and (b1b2, A) = 1 imply that Fb1 and Fb2 are linearly disjoint
over F by [Fb1b2 : F ] = (b1b2)2ϕ(b1b2) and [Fbi : F ] = b2

i ϕ(bi) for i = 1, 2.
Suppose that mn is square-free, and write m = m1m2, n = n1n2 so that (m1n1, A) =

1 and m2n2|A∞. Then we have, noting that mn is square-free

k(m,n; b) = k(m1m2, n1n2; b)

=
[
F

(
ζm1 ,

m1
√

ε1, m1
√

ε2, ζm2 ,
m2
√

ε1, m2
√

ε2,

ζn1 ,
n1
√

ε1ε
b
2,

n1
√

ε2
b2−b+1

, ζn2 ,
n2
√

ε1ε
b
2,

n2
√

ε2
b2−b+1

)
: F

]

=
[
F

(
ζm1n1 ,

m1
√

ε1, m1
√

ε2,
n1
√

ε1ε
b
2,

n1
√

ε2
b2−b+1

)
: F

]

×
[
F

(
ζm2n2 ,

m2
√

ε1, m2
√

ε2,
n2
√

ε1ε
b
2,

n2
√

ε2
b2−b+1

)
: F

]

(by Fm1n1 and Fm2n2 being linearly disjoint over F )

= k(m1, n1; b)k(m2, n2; b).
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Since mn is square-free, (m,n) = 1 holds and (m1n1, 2) = 1, we have

k(m1, n1; b) =
[
F

(
ζm1n1 ,

m1
√

ε1, m1
√

ε2,
n1
√

ε1ε
b
2,

n1
√

ε2
b2−b+1

)
: F

]

= [Fm1 : F ]
[
F

(
ζn1 ,

n1
√

ε1ε
b
2,

n1
√

ε2
b2−b+1

)
: F

]

= ϕ(m1)m2
1

∏

`|n1

[
F

(
ζ`,

√̀
ε1ε

b
2,
√̀

ε2
b2−b+1

)
: F

]
.

By virtue of [F` : F ] = ϕ(`)`2 for `|n1, we see

[
F

(
ζ`,

√̀
ε1ε

b
2,
√̀

ε2
b2−b+1

)
: F

]
=

{
ϕ(`)` if b2 − b + 1 ≡ 0 mod `,

ϕ(`)`2 if b2 − b + 1 6≡ 0 mod `

= ϕ(`)`2−α(b,`),

where we put

α(b, `) =

{
1 if b2 − b + 1 ≡ 0 mod `,

0 if b2 − b + 1 6≡ 0 mod `.

Therefore we have

k(m1, n1; b) = ϕ(m1)m2
1ϕ(n1)n2

1

∏

`|n1

`−α(b,`),

and 3κ is equal to

∑
m1,m2,n1,n2≥1,

m1m2n1n2:square-free
(m1n1,A)=1,m2n2|A

µ(n1n2)ϕ(m1m2)
∑

b mod n1n2

∏
`|n1

`α(b,`)

ϕ(m1)m2
1ϕ(n1)n2

1

· 1
k(m2, n2; b)

.

Writing b = b1n2 + b2n1, we see easily

α(b, `) = α(b1n2, `) for `|n1 and k(m2, n2; b) = k(m2, n2; b2n1),

and then, replacing b1n2, b2n1 by b1, b2 respectively

3κ =
∑

m1,n1≥1,
m1n1:square-free

(m1n1,A)=1

∑

b1 mod n1

µ(n1)
∏

`|n1
`α(b1,`)

m2
1ϕ(n1)n2

1

×
∑

m2,n2≥1,

m2n2|A

µ(n2)ϕ(m2)
∑

b2 mod n2

1/k(m2, n2; b2)

= EI × EII (say).
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We see

EI =
∑

m,n≥1,
mn:square-free

(mn,A)=1

∑

b mod n

µ(n)
∏

`|n `α(b,`)

m2ϕ(n)n2

=
∑

n≥1,(n,A)=1

µ(n)
ϕ(n)n2

∑

b mod n

∏

`|n
`α(b,`)

∑
m≥1,(m,nA)=1,

m:square-free

1
m2

=
∑

n≥1,(n,A)=1

µ(n)
ϕ(n)n2

∑

b mod n

∏

`|n
`α(b,`)

∏

`-nA

(
1 +

1
`2

)

=
∏

`-A

(
1 +

1
`2

) ∑

n≥1,(n,A)=1

µ(n)
ϕ(n)n2

( ∑

b mod n

∏

`|n
`α(b,`)

) ∏

`|n

(
1 +

1
`2

)−1

.

Writing n = n1n2 and b = b1n2 + b2n1, we see

∑

b mod n

∏

`|n
`α(b,`) =

∑
b1 mod n1
b2 mod n2

∏

`|n1

`α(b1n2,`)
∏

`|n2

`α(b2n1,`)

=
( ∑

b1 mod n1

∏

`|n1

`α(b1,`)

)( ∑

b2 mod n2

∏

`|n2

`α(b2,`)

)
,

and hence inductively

∑

b mod n

∏

`|n
`α(b,`) =

∏

`|n

( ∑

b mod `

`α(b,`)

)
.

Therefore EI turns out to be

∏

`-A

(
1 +

1
`2

)
·
∏

`-A

(
1− 1

ϕ(`)`2
∑

b mod `

`α(b,`) ×
(

1 +
1
`2

)−1)

=
∏

`-A

(
1 +

1
`2
− 1

(`− 1)`2
∑

b mod `

`α(b,`)

)
.

It is easy to see

α(`) :=
∑

b mod `

`α(b,`) =





` if ` ≡ 2 mod 3,

3`− 2 if ` ≡ 1 mod 3,

` + 2 if ` = 3.

Finally we have
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EI =
∏

`-A

(
1 +

1
`2
− α(`)

(`− 1)`2

)
.

Because of α(`) ≤ 3`− 2 = 2(`− 1) + `, we have

α(`)
(`− 1)`2

≤ 2
`2

+
1

(`− 1)`
=

1
`2

+
(

1
`2

+
1

(`− 1)`

)
<

1
`2

+ 1

by ` ≥ 2, and hence we have EI 6= 0.
To study the term EII , we need several algebraic preparations.
Let f be the conductor of F , that is, f is the minimal natural number such that

F ⊂ Q(ζf ). By virtue of [F : Q] = 3, we see that f or f/9 is a product of prime numbers
which are congruent to one modulo 3.

Lemma 1. Let m,n be natural numbers such that (m,n) = 1, F 6⊂ Q(ζm) and
F 6⊂ Q(ζn). Then we have

[F (ζm) ∩ F (ζn) : F ] =

{
1 if F 6⊂ Q(ζmn),

3 if F ⊂ Q(ζmn).

Proof. The assumption implies [F (ζm) : F ] = [Q(ζm) : Q] = ϕ(m) and [F (ζn) :
F ] = ϕ(n). Then the assertion follows from

[F (ζm) ∩ F (ζn) : F ] =
[F (ζm) : F ]

[F (ζm) : F (ζm) ∩ F (ζn)]

=
ϕ(m)[F (ζn) : F ]

[F (ζmn) : F ]
(by F (ζm)(ζn) = F (ζmn))

=
ϕ(m)ϕ(n)

[Q(ζmn) : Q(ζmn) ∩ F ]
. ¤

Lemma 2. If (n,m) = 1, then Fm ∩ Fn ⊂ F (ζmn) holds.

Proof. The extension degree of Fm(ζmn) = F (ζmn)( m
√

o×F ) over F (ζmn) divides
m∞ by theory of Kummer extension. Similarly that of Fn(ζmn) divides n∞, and then
F (ζmn)( m

√
o×F )∩F (ζmn)( n

√
o×F ) = F (ζmn). Thus we have Fm∩Fn ⊂ Fm(ζmn)∩Fn(ζmn) =

F (ζmn). ¤

Lemma 3. If m is square-free and F 6⊂ Q(ζm), then xm − ε is irreducible over
F (ζm), where ±ε ∈ o×F are supposed not to be a power of a unit in F .

Proof. Since m is square-free, we have only to show ε /∈ F (ζm)` for any prime
`|m. Suppose ε ∈ F (ζm)` for a prime divisor ` of m. By virtue of F ⊂ F (

√̀
ε) ⊂ F (ζm),

F (
√̀

ε)/F is a Galois extension, and then the assumption
√̀

ε /∈ F implies F (
√̀

ε) 6= F

and then ζ`
√̀

ε ∈ F (
√̀

ε), and so ζ` ∈ F (
√̀

ε). If F ∩Q(ζ`) 6= Q, then F ⊂ Q(ζ`) holds
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because of [F : Q] = 3. This contradicts F 6⊂ Q(ζm). Thus we have F ∩Q(ζ`) = Q and
hence [F (ζ`) : F ] = [Q(ζ`) : Q] = `− 1. Suppose ` 6= 2; then ` ≥ [F (

√̀
ε) : F ] = [F (

√̀
ε) :

F (ζ`)](` − 1) holds. Thus ` > 2 implies [F (
√̀

ε) : F (ζ`)] = 1, i.e. F (
√̀

ε) = F (ζ`). This
is a contradiction since F (

√̀
ε) has a real conjugate field and F (ζ`) is totally imaginary.

Next, suppose ` = 2; then we have F ( F (
√

ε) ⊂ F (ζm). Therefore there is a quadratic
field Q(

√
D) in Q(ζm) satisfying F (

√
ε) = F (

√
D) by virtue of F ∩Q(ζm) = Q, where

D is a square-free integer. It implies
√

ε/
√

D ∈ F and then ε = Da2 for some a ∈ F . If
D 6= −1, then prime divisors q of D have an even ramification index at F . It contradicts
[F : Q] = 3. Thus we have ε = −a2, which also contradicts the assumption. ¤

Lemma 4. If m is odd and square-free, and if F 6⊂ Q(ζm), then we have [Fm :
F (ζm)] = m2 and [Fm : F ] = m2ϕ(m).

Proof. Since m is odd, we obtain Fm = F (ζm, m
√

ε1, m
√

ε2) and

[Fm : F (ζm)] = [F (ζm, m
√

ε1, m
√

ε2) : F (ζm)]

= [F (ζm, m
√

ε1, m
√

ε2) : F (ζm, m
√

ε1)][F (ζm, m
√

ε1) : F (ζm)]

= m[F (ζm, m
√

ε1, m
√

ε2) : F (ζm, m
√

ε1)]

by the lemma 3.
Suppose [Fm : F (ζm)] < m2; then xm − ε2 is reducible over F (ζm, m

√
ε1) by the

above. Hence there is a prime `|m such that
√̀

ε2 ∈ F (ζm, m
√

ε1). Let us consider the
sequence

F (ζm) ⊂ F (ζm,
√̀

ε1) ⊂ F (ζm,
√̀

ε1,
√̀

ε2) ⊂ F (ζm, m
√

ε1).

Since [F (ζm,
√̀

ε1) : F (ζm)] = ` holds by the lemma 3, we see that [F (ζm, m
√

ε1) :
F (ζm,

√̀
ε1)] = m/` is relatively prime to `. Since F (ζm,

√̀
ε1) 3 ζ` by `|m, [F (ζm,√̀

ε1,
√̀

ε2) : F (ζm,
√̀

ε1)] = 1 or ` holds, and then it yields F (ζm,
√̀

ε1) = F (ζm,
√̀

ε1,
√̀

ε2)
and so

√̀
ε2 ∈ F (ζm,

√̀
ε1). Then there is a natural number r such that

√̀
ε1/
√̀

ε2
r ∈

F (ζm). It is a contradiction, applying the lemma 3 for ε = ε1ε
−r
2 . Thus we have proved

[Fm : F (ζm)] = m2 and then the second equation follows easily from F ∩Q(ζm) = Q. ¤

The isomorphism in the following lemma is a special case of the theorem 2.1 in [K4] or
a refinement of the lemma 4.

Lemma 5. Let q be an odd prime number. Then we have

Gal
(
F

(
q
√

o×F
)
/F (ζq)

) ∼= (Z/qZ)2,
[
F

(
ζq,

q
√

ε1ε
b
2,

q
√

ε2
b2−b+1

)
: F

]
= (q − 1)q2−α(b,q)/[F ∩Q(ζq) : Q].

Proof. The second follows from the first and the definition of α. ¤

Lemma 6. Let m be odd and square-free, and assume F 6⊂ Q(ζm). Then an abelian
subfield K of Fm is contained in F (ζm).
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Proof. Let K be an abelian subfield of Fm and suppose K 6⊂ F (ζm). Since
Fm = F (ζm)( m

√
ε1, m

√
ε2) is a Kummer extension of F (ζm), and Fm ⊃ K ·F (ζm) ) F (ζm),

there are integers a, b, m′ such that K · F (ζm) 3 m′
√

εa
1εb

2 with (a, b) = 1, 1 6= m′|m. Set
ε = εa

1εb
2 and take η ∈ Gal(Fm/Q) so that η = id on F (ζm) and m′√ε

η = ζm′ m′√ε, using
the lemma 4. Let ρ0 ∈ Gal(F (ζm′)/Q) such that ρ0 = id on F and ζρ0

m′ 6= ζm′ . This is
possible since m′ is odd. We extend ρ0 to an element of Gal(F (ζm)/Q). By virtue of the
lemma 4, we can extend ρ0 to ρ ∈ Gal(Fm/Q) so that m′√ε

ρ = m′√ε holds by multiplying
an element of Gal(Fm/F (ζm)), if necessary. Then we have

m′√ε
ηρ

=
(
ζm′ m′√ε

)ρ = ζρ0
m′

m′√ε,

m′√ε
ρη

= m′√ε
η

= ζm′ m′√ε 6= ζρ0
m′

m′√ε.

Hence m′√ε is not abelian over Q. However the assumption implies that K ·F (ζm) (3 m′√ε)
is abelian over Q. This is a contradiction. ¤

Lemma 7. Suppose that m,n are relatively prime square-free odd integers and
suppose F 6⊂ Q(ζm) and F 6⊂ Q(ζn). Then Fm ∩Fn = F (ζm)∩F (ζn) holds and we have

[Fm ∩ Fn : F ] =

{
1 if F 6⊂ Q(ζmn),

3 if F ⊂ Q(ζmn).

Proof. Put K = Fm ∩ Fn (⊃ F (ζm) ∩ F (ζn)); then K ⊂ F (ζmn) holds by the
lemma 2, and hence K is abelian over Q. Then the lemma 6 implies K ⊂ F (ζm)∩F (ζn)
and hence K = F (ζm) ∩ F (ζn), and then the lemma 1 implies the desired equation. ¤

Lemma 8. [F2 : F ] = 8 and the maximal abelian subfield of F2 is F (
√−1).

Proof. F2 = F (
√−1,

√
ε1,
√

ε2) and F(

√−1) 6= F are clear. If we have
F (
√−1,

√
ε1) = F (

√−1), then
√

ε1 ∈ F (
√−1) and so

√
ε1/
√−1 ∈ F hold. It im-

plies a contradiction ε1 = −a2 for an element a ∈ F . Therefore we have F (
√−1,

√
ε1) 6=

F (
√−1). Next, suppose F (

√−1,
√

ε1,
√

ε2) = F (
√−1,

√
ε1); then

√
ε2 ∈ F (

√−1,
√

ε1)
and so

√
ε2/
√−1,

√
ε2/
√

ε1 or
√

ε2/
√−ε1 ∈ F holds since quadratic subfields over

F in F (
√−1,

√
ε1) are F (

√−1), F (
√

ε1) or F (
√−ε1). They are contradictions simi-

larly to the above. Thus we obtain [F2 : F ] = 8. The maximal abelian subfield
K of F2 contains F (

√−1) clearly. Suppose K 6= F (
√−1); then K must contain

F (
√−1)(

√
ε1), F (

√−1)(
√

ε2) or F (
√−1)(

√
ε1ε2). Therefore one of the three fields is

abelian. However they are conjugate by virtue of εσ
1 = ε2, ε

σ
2 = (ε1ε2)−1, and so they

coincide. This is a contradiction. ¤

Lemma 9. For an odd square-free integer m, F2 ∩ Fm = F holds.

Proof. It is easy to see that [F2(ζ4m) : F (ζ4m)] = [F (ζ4m)(
√

ε1,
√

ε2) : F (ζ4m)]
divides 4, and [Fm(ζ4m) : F (ζ4m)] = [F (ζ4m)( m

√
ε1, m

√
ε2) : F (ζ4m)] is odd. Therefore

we have F (ζ4m) = F2(ζ4m) ∩ Fm(ζ4m) ⊃ F2 ∩ Fm, and then K := F2 ∩ Fm is an
abelian subfield of F2. By the previous lemma, K is equal to F or F (

√−1). Suppose
K = F (

√−1). Since [Fm : F ] = [Fm : F (ζm)][F (ζm) : F ] and [Fm : F (ζm)] is odd, we
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see that
√−1 (∈ K ⊂ Fm) is contained in F (ζm), i.e.

√−1 ∈ F (ζm).
On the other hand, dF and m are odd and hence the discriminant of F (ζm) is odd.

Thus the prime 2 is unramified, which contradicts
√−1 ∈ F (ζm). ¤

Under preparations above, let us evaluate the term

EII =
∑

m,n≥1
mn|A

ϕ(m)µ(n)
∑

b mod n

1/k(m,n; b).

Dividing terms according to parities of m,n, we have

EII =
∑

mn|A/2

ϕ(m)µ(n)
∑

b mod n

1/k(m,n; b) +
∑

mn|A/2

ϕ(m)µ(n)
∑

b mod n

1/k(2m,n; b)

−
∑

mn|A/2

ϕ(m)µ(n)
∑

b mod 2n

1/k(m, 2n; b),

recalling A is even and square-free. By virtue of the lemma 9, we see, for mn|A/2

k(2m,n; b) =
[
F

(
ζ2m, 2m

√
ε1, 2m

√
ε2, ζn,

n
√

ε1ε
b
2,

n
√

ε2
b2−b+1

)
: F

]

= [F (
√

ε1,
√

ε2) : F ]
[
F

(
ζm, m

√
ε1, m

√
ε2, ζn,

n
√

ε1ε
b
2,

n
√

ε2
b2−b+1

)
: F

]

= 4k(m,n; b).

Writing b = 2b1 + b2n (n : odd), we have

k(m, 2n; b) =
[
F

(
ζm, m

√
ε1, m

√
ε2, ζn,

√
ε1ε

b2n
2 ,

n
√

ε1ε
2b1
2 ,

√
ε2

(b2n)2−b2n+1
, n
√

ε2
(2b1)

2−2b1+1
)

: F
]

=
[
F

(√
ε1ε

b2n
2 ,

√
ε2

(b2n)2−b2n+1
)

: F
]
k(m,n; 2b1)

= 4k(m,n; 2b1),

by virtue of (b2n)2 − b2n + 1 ≡ 1 mod 2. Therefore EII is equal to

∑

mn|A/2

ϕ(m)µ(n)
∑

b mod n

1/k(m,n; b) +
1
4

∑

mn|A/2

ϕ(m)µ(n)
∑

b mod n

1/k(m,n; b)

−
∑

mn|A/2

ϕ(m)µ(n)
∑

b1 mod n
b2 mod 2

1/(4k(m,n; 2b1))

=
3
4

∑

mn|A/2

ϕ(m)µ(n)
∑

b mod n

1/k(m,n; b).
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Set, for an integer a,

V (a) =
∑

mn|a
ϕ(m)µ(n)

∑

b mod n

1/k(m,n; b).

Then EII = 3
4V (A/2) has been shown above.

Proposition 8. Let q be a prime number such that q = 3 or q ≡ 1 mod 3. We
have

V (q) =





5
6

if q = 3,

1 +
1− 2q

q2(q − 1)
if q 6= 3 and F 6⊂ Q(ζq),

1 +
3(1− 2q)
q2(q − 1)

if F ⊂ Q(ζq).

Proof. It is easy to see

V (q) = 1 + ϕ(q)/k(q, 1; 0)−
∑

b mod q

1/k(1, q; b),

noting k(1, 1; 0) = 1. The lemma 5 implies

k(q, 1; 0) = [F (ζq, q
√

ε1, q
√

ε2) : F ] = q2[F (ζq) : F ]

and

k(1, q; b) =
[
F

(
ζq,

q
√

ε1ε
b
2,

q
√

ε2
b2−b+1

)
: F

]

=

{
[F (ζq,

q
√

ε1εb
2) : F ] if b2 − b + 1 ≡ 0 mod q,

[F (ζq, q
√

ε1, q
√

ε2) : F ] if b2 − b + 1 6≡ 0 mod q

=

{
q[F (ζq) : F ] if b2 − b + 1 ≡ 0 mod q,

q2[F (ζq) : F ] if b2 − b + 1 6≡ 0 mod q.

Therefore we have

V (q) = 1 +
ϕ(q)

q2[F (ζq) : F ]
−

∑
b mod q

b2−b+1≡0 mod q

1
q[F (ζq) : F ]

−
∑

b mod q

b2−b+16≡0 mod q

1
q2[F (ζq) : F ]

.

V (3) = 5/6 is easy. If q 6= 3, then we have
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V (q) = 1 +
1− 2q

q2[F (ζq) : F ]
,

which gives the assertion. V (q) 6= 0 is easy to see. ¤

Suppose that q = A/2 is a prime number.
If F ⊂ Q(ζ9), then EII = 3

4V (3) = 15
24 and then

κ =
5
24

EI (6= 0),

which completes the proof of the theorem 2 when F ⊂ Q(ζ9).
If F ⊂ Q(ζq), then we have EII = 3

4V (q) = 3
4 (1 + 3(1−2q)

q2(q−1) ) and so

κ =
1
4

(
1 +

3(1− 2q)
q2(q − 1)

)
EI (6= 0),

which completes the proof of the theorem 2 when F ⊂ Q(ζq). Thus we have completed
the proof of the case where A/2 is prime.

Lemma 10. Let m,n be odd natural numbers and q an odd prime number. Suppose
that mnq is square-free, F 6⊂ Q(ζq) and F 6⊂ Q(ζmn). Then we have

k(mq, n; b) = q2(q − 1)k(m,n; b)

{
1 if F 6⊂ Q(ζmnq),

1/3 if F ⊂ Q(ζmnq),

∑

b mod nq

1/k(m,nq; b) =
α(q)

q2(q − 1)

∑

b mod n

1/k(m,n; b)

{
1 if F 6⊂ Q(ζmnq),

3 if F ⊂ Q(ζmnq).

Proof. By definition, it is easy to see

k(mq, n; b) =
[
F

(
mq
√

o×F , ζn,
n
√

ε1ε
b
2,

n
√

ε2
b2−b+1

)
: F

]

=
[
Fq · F

(
m
√

o×F , ζn,
n
√

ε1ε
b
2,

n
√

ε2
b2−b+1

)
: F

]

=
[Fq : F ]

[
F

(
m
√

o×F , ζn,
n
√

ε1ε
b
2, n
√

ε2
b2−b+1

)
: F

]
[
Fq ∩ F

(
m
√

o×F , ζn,
n
√

ε1ε
b
2, n
√

ε2
b2−b+1

)
: F

] .

We have [Fq : F ] = [F (ζq, q
√

ε1, q
√

ε2) : F (ζq)][F (ζq) : F ] = q2(q − 1) by the lemma 5 and
F 6⊂ Q(ζq), and then the numerator is q2(q − 1)k(m,n; b). By the lemma 7, we see

Fq ∩ Fmn = F (ζq) ∩ F (ζmn) ⊂ Fq ∩ F
(

m
√

o×F , ζn,
n
√

ε1ε
b
2,

n
√

ε2
b2−b+1

)

⊂ Fq ∩ Fmn
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and hence Fq ∩ F ( m
√

o×F , ζn, n
√

ε1εb
2,

n
√

ε2
b2−b+1) = Fq ∩ Fmn. Then the lemma 7 gives

the first equation.
For the second, we set s = {ζq,

q
√

ε1ε
b2n
2 , q

√
ε2

(b2n)2−b2n+1} for simplicity, and then
we have

k(m,nq; b1q + b2n)

=
[
F

(
m
√

o×F , ζn,
n
√

ε1ε
b1q
2 , n

√
ε2

(b1q)2−b1q+1
, s

)
: F

]

= k(m,n; b1q)[F (s) : F ]/
[
F

(
m
√

o×F , ζn,
n
√

ε1ε
b1q
2 , n

√
ε2

(b1q)2−b1q+1
)
∩ F (s) : F

]
.

Here [F (s) : F ] is equal to ϕ(q)q2−α(b2n,q) by the lemma 5 and

F (ζmn) ∩ F (ζq) ⊂ F
(

m
√

o×F , ζn,
n
√

ε1ε
b1q
2 , n

√
ε2

(b1q)2−b1q+1
)
∩ F (s)

⊂ Fmn ∩ Fq = F (ζmn) ∩ F (ζq)

by the lemma 7, and so the denominator is equal to [F (ζmn) ∩ F (ζq) : F ] and then

k(m,nq; b1q + b2n) = k(m,n; b1q)(q − 1)q2−α(b2n,q)

{
1 if F 6⊂ Q(ζmnq),

1/3 if F ⊂ Q(ζmnq).

Thus we have

∑

b mod nq

1/k(m,nq; b)

=
∑

b1 mod n

1/k(m,n; b1q)
∑

b2 mod q

(q − 1)−1q−2+α(b2n,q)

{
1 if F 6⊂ Q(ζmnq),

3 if F ⊂ Q(ζmnq)

= α(q)(q − 1)−1q−2
∑

b mod n

1/k(m,n; b)

{
1 if F 6⊂ Q(ζmnq),

3 if F ⊂ Q(ζmnq),

where
∑

b mod q qα(b,q) is α(q) by definition as before. ¤

Proposition 9. Suppose that r|A/2 and F 6⊂ Q(ζr); then we have

V (r) =
∏

`|r

(
1 + `−2 − α(`)

`2(`− 1)

)
.

Proof. If r is a prime, then r 6≡ 2 mod 3 holds and so the assertion follows from
the proposition 8. Suppose r = aq, where q is a prime number and a > 1. It is easy to
see
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V (aq) =
∑

mn|a
ϕ(m)µ(n)

∑

b mod n

1/k(m,n; b) +
∑

mn|a
ϕ(mq)µ(n)

∑

b mod n

1/k(mq, n; b)

−
∑

mn|a
ϕ(m)µ(n)

∑

b mod nq

1/k(m,nq; b).

The first partial sum is equal to V (a). The lemma 10 yields k(mq, n; b) = q2(q −
1)k(m,n; b) by the assumption F 6⊂ Q(ζaq) if mn|a. Therefore the second partial sum is
equal to q−2V (a). Similarly, the third partial sum is equal to

α(q)
q2(q − 1)

V (a).

Therefore we have

V (aq) =
(

1 + q−2 − α(q)
q2(q − 1)

)
V (a),

and inductively

V (r) =
∏

`|r

(
1 + `−2 − α(`)

`2(`− 1)

)
. ¤

Now suppose 3|dF ; then F 6⊂ Q(ζA) holds since the conductor of F is divisible by 9
and A is square-free. Thus in case of 3|dF we have by the proposition 9

V (A/2) =
∏

q|A/2

(
1 + q−2 − α(q)

q2(q − 1)

)
6= 0,

which completes the proof in case of 3|dF .
Lastly, we assume 3 - dF . It implies that any prime divisor of A/2 is congruent to 1

modulo 3. Put A/2 = aq, where a > 1 and q is prime. Similarly as above, we have

V (A/2) = V (a) +
∑

mn|a
ϕ(mq)µ(n)

∑

b mod n

1/k(mq, n; b)

−
∑

mn|a
ϕ(m)µ(n)

∑

b mod nq

1/k(m,nq; b).

Here we see, by the lemma 10

k(mq, n; b) = q2(q − 1)k(m,n; b)

{
1 if mn < a,

1/3 if mn = a.
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Therefore the second partial sum is equal to

q−2
∑
mn|a
mn6=a

ϕ(m)µ(n)
∑

b mod n

1/k(m,n; b) + 3q−2
∑

mn=a

ϕ(m)µ(n)
∑

b mod n

1/k(m,n; b)

= q−2V (a) + 2q−2
∑

mn=a

ϕ(m)µ(n)
∑

b mod n

1/k(m,n; b).

Similarly, the third sum is equal to

∑
mn|a
mn 6=a

ϕ(m)µ(n)
∑

b mod n

1/k(m,n; b) · α(q)
(q − 1)q2

+
∑

mn=a

ϕ(m)µ(n)
∑

b mod n

1/k(m,n; b) · 3α(q)
(q − 1)q2

=
α(q)

(q − 1)q2
V (a) +

2α(q)
(q − 1)q2

∑
mn=a

ϕ(m)µ(n)
∑

b mod n

1/k(m,n; b).

Here we note α(q) = 3q − 2 by virtue of q ≡ 1 mod 3. Thus we obtain

V (A/2) =
(

1 +
1− 2q

(q − 1)q2

)
V (a) +

2(1− 2q)
(q − 1)q2

∑
mn=a

ϕ(m)µ(n)
∑

b mod n

1/k(m,n; b).

By the proposition 9, V (a) =
∏

q|a(1 + q−2− α(q)
(q−1)q2 ) =

∏
q|a(1 + 1−2q

(q−1)q2 ) holds because
of F 6⊂ Q(ζa). If mn = a (< A/2), then the lemma 7 yields that Fm and Fn are linearly
disjoint over F and then we have

k(m,n; b) = [Fm : F ]
[
F

(
ζn,

n
√

ε1ε
b
2,

n
√

ε2
b2−b+1

)
: F

]

= [Fm : F ]
∏

`|n

[
F

(
ζ`,

√̀
ε1ε

b
2,
√̀

ε2
b2−b+1

)
: F

]

= [Fm : F ]
∏

`|n
(`− 1)`2−α(b,`),

and then by the lemma 4

∑

b mod n

1/k(m,n; b) =
1

[Fm : F ]

∑

b mod n

( ∏

`|n
(`− 1)`2−α(b,`)

)−1

=
1

ϕ(m)m2
·
∏

`|n α(`)

ϕ(n)n2
.

Thus we have
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V (A/2) =
∏

`|A/2

(
1 +

1− 2`

(`− 1)`2

)
+

2(1− 2q)
(q − 1)q2

∑
mn=a

ϕ(m)µ(n)

∏
`|n α(`)

ϕ(m)m2ϕ(n)n2

=
∏

`|A/2

(
1 +

1− 2`

(`− 1)`2

)
+

2(1− 2q)
(q − 1)q2a2

∑
mn=a

µ(n)

∏
`|n(3`− 2)

ϕ(n)

=
∏

`|A/2

(
1 +

1− 2`

(`− 1)`2

)
+

2
(A/2)2

∏

`|A/2

1− 2`

`− 1
,

which gives the formula in the theorem in case of 3 - dF .
To see V (A/2) > 0, we have only to show

1 +
1− 2`

(`− 1)`2
≥ 2(2`− 1)

(`− 1)`2
,

which is equivalent to (`−1)`2 ≥ 3(2`−1), which follows from 3(2`−1) = 6(`−1)+3 ≤
9(` − 1) ≤ `2(` − 1) by ` ≡ 1 mod 3. Thus we have completed the positivity of the
expected density and so the proof of the theorem 2.

Remark. Let p be an odd prime and F an abelian extension of Q with [F : Q] = p

and Galois group 〈σ〉. Then the rank of o×F is p − 1 and σ operates on oF
×
+ = {ε ∈

o×F |NF/Q(ε) = 1}. Hence it is isomorphic to an ideal of Q(ζp) [CR]. If the ideal is
principal, there are units ε1, · · · , εp−1 such that εσ

k = εk+1 for 1 ≤ k ≤ p− 2 and εσ
p−1 =

(ε1 . . . εp−2)−1 and they are basis of oF
×
+, and then our argument may be generalized to

it.
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