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Abstract. We study a factorization of bounded linear maps from an operator
space A to its dual space A∗. It is shown that T : A −→ A∗ factors through a pair
of column Hilbert space Hc and its dual space if and only if T is a bounded linear
form on A⊗A by the canonical identification equipped with a numerical radius type
Haagerup norm. As a consequence, we characterize a bounded linear map from a
Banach space to its dual space, which factors through a pair of Hilbert spaces.

1. Introduction.

Factorization through a Hilbert space of a linear map plays one of the central roles in
the Banach space theory (c.f. [17]). Also in the C∗-algebra and the operator space theory,
many important factorization theorems have been proved related to the Grothendieck
type inequality in several situations [8], [5], [18], [21].

Let α be a bounded linear map from `1 to `∞, {ei}∞i=1 the canonical basis of `1,
and B(`2) the bounded operators on `2. We regard α as the infinite matrix [αij ] where
αij = 〈ei, α(ej)〉. The Schur multiplier Sα on B(`2) is defined by Sα(x) = α ◦ x for
x = [xij ] ∈ B(`2) where α ◦ x is the Schur product [αijxij ]. Let w(·) be the numerical
radius norm on B(`2). In [12], it was shown that

‖Sα‖w = sup
x6=0

w(α ◦ x)
w(x)

≤ 1

if and only if α has the following factorization with ‖a‖2‖b‖ ≤ 1:

`1
α //

a

²²

`∞

`2
b

// `2
∗

at

OO

where at is the transposed map of a.
Motivated by the above result, we will show a square factorization theorem of a

bounded linear map through a pair of column Hilbert spaces Hc between an operator
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space and its dual space. More precisely, let us suppose that A is an operator space
in B(H ) and A ⊗ A is the algebraic tensor product. We define the numerical radius
Haagerup norm of an element u ∈ A⊗A by

‖u‖wh = inf
{

1
2

∥∥[
x1, . . . , xn, y∗1 , . . . , y∗n

]∥∥2 | u =
n∑

i=1

xi ⊗ yi

}
.

Let T : A −→ A∗ be a bounded linear map. We show that T : A −→ A∗ has an extension
T ′ which factors through a pair of column Hilbert spaces Hc so that

C∗(A) T ′ //

a

²²

C∗(A)∗

Hc
b

// Hc

a∗

OO

with inf{‖a‖2cb‖b‖cb | T ′ = a∗ba} ≤ 1 if and only if T ∈ (A⊗wh A)∗ with ‖T‖wh∗ ≤ 1 by
the natural identification 〈x, T (y)〉 = T (x⊗ y) for x, y ∈ A.

We also study a variant of the numerical radius Haagerup norm in order to get the
factorization without using the ∗ structure.

As a consequence, the above result and/or the variant read a square factorization
of a bounded linear map through a pair of Hilbert spaces from a Banach space X to its
dual space X∗. The norm on X ⊗ X corresponding to the numerical radius Haagerup
norm is as follows:

‖u‖wH = inf
{

sup
{( n∑

i=1

|f(xi)|2
)1

2
( n∑

i=1

|f(yi)|2
)1

2
}}

,

where the supremum is taken over all f ∈ X∗ with ‖f‖ ≤ 1 and the infimum is taken
over all representations u =

∑n
i=1 xi ⊗ yi ∈ X ⊗X.

The norm ‖ ‖wH is equivalent to the norm ‖ ‖H (see Remark 4.4) introduced by
Grothendieck in [7]. However, ‖ ‖wH will give us a different view to factorization problems
of bounded linear operators through Hilbert spaces. Let π2(a) be the 2-summing norm
(c.f. [17] or see section 4) of a linear map a from X to H . We show that T : X −→ X∗

has the factorization

X
T //

a

²²

X∗

H
b

// H ∗

at

OO

with inf{π2(a)2‖b‖ | T = atba} ≤ 1 if and only if T ∈ (X ⊗wH X)∗ with ‖T‖wH∗ ≤ 1.
Moreover we characterize a linear map X −→ X∗ which has a square factorization by a
Lindenstrauss and Pelczynski type condition (c.f. [14] or see Remark 4.4).
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We refer to [6], [15], [20] for background on operator spaces, [17], [19] for factor-
ization through a Hilbert space, and [16], [22], [23], [24] for completely bounded maps
related to the numerical radius norm.

2. Factorization on operator spaces.

Let B(H ) be the space of all bounded operators on a Hilbert space H . Throughout
this paper, let us suppose that A and B are operator spaces in B(H ). We denote by
C∗(A) the C∗-algebra in B(H ) generated by the operator space A. We define the
numerical radius Haagerup norm of an element u ∈ A⊗B by

‖u‖wh = inf
{

1
2

∥∥[
x1, . . . , xn, y∗1 , . . . , y∗n

]∥∥2 | u =
n∑

i=1

xi ⊗ yi

}
,

where [x1, . . . , xn, y∗1 , . . . , y∗n] ∈ M1,2n(C∗(A+B)), and denote by A⊗whB the completion
of A⊗B with the norm ‖ ‖wh.

Recall that the Haagerup norm on A⊗B is

‖u‖h = inf
{∥∥[

x1, . . . , xn

]∥∥ ∥∥[
y1, . . . , yn

]t∥∥ | u =
n∑

i=1

xi ⊗ yi

}
,

where [x1, . . . , xn] ∈ M1,n(A) and [y1, . . . , yn]t ∈ Mn,1(B).
By the identity

inf
λ>0

λα + λ−1β

2
=

√
αβ (?)

for positive real numbers α, β ≥ 0, the Haagerup norm can be rewritten as

‖u‖h = inf
{

1
2
(∥∥[

x1, . . . , xn

]∥∥2 +
∥∥[

y∗1 , . . . , y∗n
]∥∥2) | u =

n∑

i=1

xi ⊗ yi

}
.

Then it is easy to check that

1
2
‖u‖h ≤ ‖u‖wh ≤ ‖u‖h

and ‖u‖wh is a norm. We use the notation xα ¯ yt for
∑n

i=1

∑m
j=1 xiαij ⊗ yj , where

x = [x1, . . . , xn] ∈ M1,n(A), α = [αij ] ∈ Mn,m(C) and yt = [y1, . . . , ym]t ∈ Mm,1(B).
We note the identity xα¯ yt = x¯ αyt.

First we show that the numerical radius Haagerup norm has the injectivity.

Proposition 2.1. Let A1 ⊂ A2 and B1 ⊂ B2 be operator spaces in B(H ). Then
the canonical inclusion Φ of A1 ⊗wh B1 into A2 ⊗wh B2 is isometric.
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Proof. The inequality ‖Φ(u)‖wh ≤ ‖u‖wh is trivial. To get the reverse inequal-
ity, let u =

∑n
i=1 xi ⊗ yi ∈ A1 ⊗ B1. We may assume that {y1, . . . , yk} ⊂ B2 is lin-

early independent and there exists an n × k matrix of scalars L ∈ Mnk(C) such that
[y1, . . . , yn]t = L[y1, . . . , yk]t. We put zt = [y1, . . . yk]t. Then we have

u = x¯ yt = x¯ Lzt

= xL(L∗L)−1/2 ¯ (L∗L)1/2zt

and

∥∥[
xL(L∗L)−1/2, ((L∗L)1/2zt)∗

]∥∥ ≤ ∥∥[
x, (yt)∗

]∥∥.

So we can get a representation u = [x′1, . . . , x
′
k]¯ [y′1, . . . , y

′
k]t with

∥∥[
x′1, . . . , x

′
k, y′1

∗
, . . . , y′k

∗]∥∥ ≤ ∥∥[
x, (yt)∗

]∥∥

and {y′1, . . . , y′k} is linearly independent. This implies that x′1, . . . , x
′
k ∈ A1.

Applying the same argument for {x′1, . . . , x′k} instead of {y1, . . . , yn}, we can get a
representation u = [x′′1, . . . , x′′l]¯ [y′′1, . . . , y′′l]t with

∥∥[
x′′1, . . . , x′′l, y′′∗1, . . . , y

′′∗
l

]∥∥ ≤
∥∥[

x, (yt)∗
]∥∥

and x′′i ∈ A1 and y′′i ∈ B1. It follows that ‖Φ(u)‖wh ≥ ‖u‖wh. ¤

We also define a norm of an element u ∈ C∗(A)⊗ C∗(A) by

‖u‖Wh = inf
{∥∥[x1, . . . , xn]t

∥∥2
w(α) | u =

∑
x∗i αij ⊗ xj

}
,

where w(α) is the numerical radius norm of α = [αij ] in Mn(C).
A⊗Wh A is defined as the closure of A⊗A in C∗(A)⊗Wh C∗(A).

Theorem 2.2. Let A be an operator space in B(H ). Then A⊗wh A = A⊗Wh A.

Proof. By Proposition 2.1 and the definition of A⊗Wh A, it is sufficient to show
that C∗(A)⊗wh C∗(A) = C∗(A)⊗Wh C∗(A).

Given u =
∑n

i=1 xi ⊗ yi ∈ C∗(A)⊗ C∗(A), we have

u =
[
x1, . . . , xn, y∗1 , . . . , y∗n

]
[
0n 1n

0n 0n

]
¯ [

x∗1, . . . , x
∗
n, y1, . . . , yn

]t
.

Since w
([

0n 1n
0n 0n

])
= 1

2 , ‖u‖wh ≥ ‖u‖Wh.
To establish the reverse inequality, suppose that u =

∑n
i,j=1 x∗i αij ⊗ xj ∈ C∗(A) ⊗

C∗(A) with w(α) = 1 and ‖[x1, . . . , xn]t‖2 = 1. It is enough to see that there exist ci, di ∈
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C∗(A)(i = 1, . . . , m) such that u =
∑m

i=1 ci ⊗ di with ‖[c1, . . . , cm, d∗1, . . . , d
∗
m]‖2 ≤ 2. By

the assumption w(α) = 1 and Ando’s Theorem [1], we can find a self-adjoint matrix
β ∈ Mn(C) for which P =

[ 1+β α
α∗ 1−β

]
is positive definite in M2n(C).

Set [c1, . . . , c2n] = [x∗1, . . . , x
∗
n, 0, . . . , 0]P

1
2 and [d1, . . . d2n]t = P

1
2 [0, . . . , 0,

x1, . . . , xn]t. We note that u = [c1, . . . , c2n]¯ [d1, . . . , d2n]t. Then we have

∥∥[
c1, . . . , c2n, d∗1, . . . , d

∗
2n

]∥∥2 =
∥∥[

x∗1, . . . , x
∗
n, 0, . . . , 0

]
P [x1, . . . , xn, 0, . . . , 0]t

+
[
0, . . . , 0, x∗1, . . . , x

∗
n

]
P [0, . . . , 0, x1, . . . , xn]t

∥∥

=
∥∥[

x∗1, . . . , x
∗
n

]
(1 + β)[x1, . . . , xn]t

+
[
x∗1, . . . , x

∗
n

]
(1− β)[x1, . . . , xn]t

∥∥

= 2
∥∥[x1, . . . , xn]t

∥∥2 = 2. ¤

We recall the column (resp. row) Hilbert space Hc(resp. Hr) for a Hilbert space
H . For ξ = [ξij ] ∈ Mn(H ), we define a map Cn(ξ) by

Cn(ξ) : Cn 3 [λ1, . . . , λn] 7−→
[ n∑

j=1

λjξij

]

i

∈ H n

and denote the column matrix norm by ‖ξ‖c = ‖Cn(ξ)‖. This operator space structure
on H is called the column Hilbert space and denoted by Hc.

To consider the row Hilbert space, let H be the conjugate Hilbert space for H . We
define a map Rn(ξ) by

Rn(ξ) : H
n 3 [η1, . . . , ηn] 7−→

[ n∑

j=1

(ξij |ηj)
]

i

∈ Cn

and the row matrix norm by ‖ξ‖r = ‖Rn(ξ)‖. This operator space structure on H is
called the row Hilbert space and denoted by Hr.

Let a : C∗(A) −→ Hc be a completely bounded map. We define a map d : C∗(A) −→
H by d(x) = a(x∗). It is not hard to check that d : C∗(A) −→ H r is completely
bounded and ‖a‖cb = ‖d‖cb when we introduce the row Hilbert space structure to H .
In this paper, we define the adjoint map a∗ of a by the transposed map of d, that is,
dt : ((H )r)∗ = ((H ∗)r)∗ = (H ∗∗)c = Hc −→ C∗(A)∗ (c.f. [5]). More precisely, we
define

〈a∗(η), x〉 = 〈η, d(x)〉 = (η|a(x∗)) for η ∈ H , x ∈ C∗(A).

A linear map T : A −→ A∗ can be identified with the bilinear form A×A 3 (x, y) 7−→
〈x, T (y)〉 ∈ C and also the linear form A ⊗ A −→ C. We also use T to denote both of
the bilinear form and the linear form, and use ‖T‖β∗ to denote the norm when A⊗A is
equipped with a norm ‖ ‖β .
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We are going to prove the main theorem. The main result below can be shown by
modifying arguments for the original Haagerup norm in [4].

Theorem 2.3. Suppose that A is an operator space in B(H ), and that T : A ×
A −→ C is bilinear. Then the following are equivalent :

(1) ‖T‖wh∗ ≤ 1.
(2) There exists a state p0 on C∗(A) such

|T (x, y)| ≤ p0(xx∗)
1
2 p0(y∗y)

1
2 for x, y ∈ A.

(3) There exist a ∗-representation π : C∗(A) −→ B(K ), a unit vector ξ ∈ K and a
contraction b ∈ B(K ) such that

T (x, y) = (π(x)bπ(y)ξ | ξ) for x, y ∈ A.

(4) There exist an extension T ′ : C∗(A) −→ C∗(A)∗ of T and completely bounded
maps a : C∗(A) −→ Kc, b : Kc −→ Kc such that

C∗(A) T ′ //

a

²²

C∗(A)∗

Kc
b

// Kc

a∗

OO

i.e., T ′ = a∗ba with ‖a‖2cb‖b‖cb ≤ 1.

Proof. (1)⇒(2) By Proposition 2.1, we can extend T on C∗(A)⊗wh C∗(A) and
also denote it by T . We may assume ‖T‖wh∗ ≤ 1. By the identity (?), it is sufficient to
show the existence of a state p0 ∈ S(C∗(A)) such that

|T (x, y)| ≤ 1
2
p0(xx∗ + y∗y) for x, y ∈ C∗(A).

Moreover it is enough to find p0 ∈ S(C∗(A)) such that

Re T (x, y) ≤ 1
2
p0(xx∗ + y∗y) for x, y ∈ C∗(A).

Define a real valued function T{x1,...,xn,y1,...,yn}( · ) on S(C∗(A)) by

T{x1,...,xn,y1,...,yn}(p) =
n∑

i=1

1
2
p
(
xix

∗
i + y∗i yi

)− Re T (xi, yi),

for xi, yi ∈ C∗(A). Set
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4 =
{
T{x1,...,xn,y1,...,yn} | xi, yi ∈ C∗(A), n ∈ N

}
.

It is easy to see that 4 is a cone in the set of all real functions on S(C∗(A)). Let 5 be the
open cone of all strictly negative functions on S(C∗(A)). For any x1, . . . , xn, y1, . . . , yn ∈
C∗(A), there exists p1 ∈ S(C∗(A)) such that p1(

∑
xix

∗
i + y∗i yi) = ‖∑

xix
∗
i + y∗i yi‖.

Since

T{x1,...,xn,y1,...,yn}(p1) =
1
2
p1

( ∑
xix

∗
i + y∗i yi

)
− Re

∑
T (xi, yi)

=
1
2

∥∥∥
∑

xix
∗
i + y∗i yi

∥∥∥− Re
∑

T (xi, yi)

≥ 1
2

∥∥∥
∑

xix
∗
i + y∗i yi

∥∥∥−
∣∣∣
∑

T (xi, yi)
∣∣∣

≥ 0,

we have 4∩5 =∅.
By the Hahn-Banach Theorem, there exists a measure µ on S(C∗(A)) such that

µ(4) ≥ 0 and µ(5) < 0. So we may assume that µ is a probability measure. Now put
p0 =

∫
pdµ(p). Since T{x,y} ∈ 4,

1
2
p0(xx∗ + y∗y)− Re T (x, y) =

∫
T{x,y}(p)dµ(p) ≥ 0.

(2)⇒(1) Since
∣∣∣
∑

T (xi, yi)
∣∣∣ ≤

∑
p0

(
xix

∗
i

) 1
2 p0

(
y∗i yi

) 1
2

≤ 1
2

∑
p0

(
xix

∗
i + y∗i yi

)

≤ 1
2

∥∥[
x1, . . . , xn, y∗1 , . . . , y∗n

]∥∥2

for x, y ∈ A, we have that T ∈ (A⊗wh A)∗ with ‖T‖wh∗ ≤ 1.
(1)⇒(3) As in the proof of the implication (1)⇒(2), we can find a state p ∈ S(C∗(A))

such that |T (x, y)| ≤ p(xx∗)
1
2 p(y∗y)

1
2 for x, y ∈ C∗(A). By the GNS construction, we let

π : C∗(A) −→ B(K ) be the cyclic representation with the cyclic vector ξ and p(x) =
(π(x)ξ | ξ) for x ∈ C∗(A). Define a sesquilinear form on K ×K by 〈π(y)ξ, π(x)ξ〉 =
T (x∗, y). This is well-defined and bounded since

|〈π(y)ξ, π(x)ξ〉| ≤ p(x∗x)
1
2 p(y∗y)

1
2 = ‖π(x)ξ‖ ‖π(y)ξ‖.

Thus there exists a contraction b ∈ B(K ) such that T (x∗, y) = (bπ(y)ξ|π(x)ξ).
(3)⇒(4) Set a(x) = π(x)ξ for x ∈ C∗(A) and consider the column Hilbert structure

for K . Then it is easy to see that a : C∗(A) −→ Kc is a complete contraction. The
composition T ′ = a∗ba is an extension of T and ‖a‖2cb‖b‖cb ≤ 1.
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(4)⇒(1) Since T ′(x, y) = (ba(y)|a(x∗)) for x, y ∈ C∗(A), we have

∣∣∣∣
n∑

i,j=1

T ′
(
x∗i αij , xj

)∣∣∣∣ =
∣∣∣∣

n∑

i,j=1

(bαija(xj) | a(xi))
∣∣∣∣

=

∣∣∣∣∣∣







b 0
. . .

0 b




[
αij

] 


a(x1)...
a(xn)




∣∣∣∣∣




a(x1)...
a(xn)







∣∣∣∣∣∣

≤ w







b 0
. . .

0 b




[
αij

]


∥∥∥∥∥∥




a(x1)...
a(xn)




∥∥∥∥∥∥

2

≤ ‖b‖cbw(α)‖a‖2cb

∥∥∥∥∥∥




x1...
xn




∥∥∥∥∥∥

2

for
∑n

i,,j=1 x∗i αij ⊗ xj ∈ C∗(A)⊗C∗(A). At the last inequality, we use w(cd) ≤ ‖c‖w(d)
for double commuting operators c, d as well as the fact that B(K ,K ) is completely
isometric onto CB(Kc,Kc). Hence we obtain that ‖T‖wh∗ ≤ ‖T ′‖wh∗ ≤ 1. ¤

Remark 2.4. (i) If we replace the linear map 〈T (x), y〉 = T (x, y) with 〈x, T (y)〉 =
T (x, y) in Theorem 2.3, then we have a factorization of T through a pair of the row Hilbert
spaces Hr. More precisely, the following condition (4)′ is equivalent to the conditions in
Theorem 2.3.

(4)′ There exist an extension T ′ : C∗(A) −→ C∗(A)∗ of T and completely bounded
maps a : C∗(A) −→ Kr, b : Kr −→ Kr such that

C∗(A) T ′ //

a

²²

C∗(A)∗

Kr
b

// Kr

a∗

OO

i.e., T ′ = a∗ba with ‖a‖2cb‖b‖cb ≤ 1.

(ii) Let `2n be an n-dimensional Hilbert space with the canonical basis {e1, . . . , en}.
Given α : `2n −→ `2n with α(ej) =

∑
i αijei, we set the map α̇ : `2n −→ `2n

∗ by α̇(ej) =∑
i αij ēi where {ēi} is the dual basis. For notational convenience, we shall also denote α̇

by α. For
∑n

i=1 xi⊗ei ∈ C∗(A)⊗`2n, we define a norm by ‖∑n
i=1 xi⊗ei‖ = ‖[x1, . . . , xn]t‖.

Let T : C∗(A) −→ C∗(A)∗ be a bounded linear map. Consider T ⊗ α : C∗(A) ⊗ `2n −→
C∗(A)∗ ⊗ `2n

∗ with a numerical radius type norm w(·) given by

w(T ⊗ α) = sup
{∣∣∣

〈 ∑
x∗i ⊗ ei, T ⊗ α

( ∑
xi ⊗ ei

)〉∣∣∣
∣∣∣
∥∥∥

∑
xi ⊗ ei

∥∥∥ ≤ 1
}

.
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Then we have

sup
{

w(T ⊗ α)
w(α)

∣∣∣∣ α : `2n −→ `2n, n ∈ N

}
= ‖T‖wh∗ ,

since T (
∑

x∗i αij ⊗ xj) = 〈∑x∗i ⊗ ei, T ⊗ α(
∑

xi ⊗ ei)〉.
(iii) Let u =

∑
xi ⊗ yi ∈ C∗(A) ⊗ C∗(A). It is straightforward from Theorem 2.3

that

‖u‖wh = sup w
( ∑

ϕ(xi)bϕ(yi)
)

where the supremum is taken over all ∗- preserving complete contractions ϕ and contrac-
tions b.

3. A variant of the numerical radius Haagerup norm.

In this section, we study a factorizaion of T : A −→ A∗ through a column Hilbert
space Kc and its dual operator space Kc

∗. Arguments required in this section are
very similar to those in section 2, and instead of repeating them we will just emphasize
differences.

We define a variant of the numerical radius Haagerup norm of an element u ∈ A⊗B

by

‖u‖wh′ = inf
{

1
2

∥∥[x1, . . . , xn, y1, . . . , yn]t
∥∥2 | u =

n∑

i=1

xi ⊗ yi

}
,

where [x1, . . . , xn, y1, . . . , yn]t ∈ M2n,1(A + B), and denote by A⊗wh′ B the completion
of A⊗B with the norm ‖ ‖wh′ .

We remark that ‖ ‖wh and ‖ ‖wh′ are inequivalent, since ‖ ‖′h (resp. ‖ ‖h) in [10]
is equivalent to ‖ ‖wh′ (resp. ‖ ‖wh) while ‖ ‖h and ‖ ‖′h are inequivalent [10], [13].

Proposition 3.1. Let A1 ⊂ A2 and B1 ⊂ B2 be operator spaces in B(H ). Then
the canonical inclusion Φ of A1 ⊗wh′ B1 into A2 ⊗wh′ B2 is isometric.

Proof. The proof is almost the same as that given in Proposition 2.1. ¤

In the next theorem, we use the transposed map at : (Kc)∗ −→ C∗(A)∗ of a :
C∗(A)∗ −→ Kc instead of a∗ : Kc −→ C∗(A)∗. We note that (Kc)∗ = (K )r and a, at

are related by

〈at(η̄), x〉 = 〈η̄, a(x)〉 = (η̄|a(x))K for η̄ ∈ K , x ∈ C∗(A).

It seems that the fourth condition in the next theorem is simpler than the fourth one in
Theorem 2.3, since we do not use ∗-structure.

Theorem 3.2. Suppose that A is an operator space in B(H ), and that T : A ×
A −→ C is bilinear. Then the following are quivalent :
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(1) ‖T‖wh′∗ ≤ 1.
(2) There exists a state p0 on C∗(A) such that

|T (x, y)| ≤ p0(x∗x)
1
2 p0(y∗y)

1
2 for x, y ∈ A.

(3) There exist a ∗-representation π : C∗(A) −→ B(K ), a unit vector ξ ∈ K and a
contraction b : K −→ K such that

T (x, y) = (bπ(y)ξ | π(x)ξ)K for x, y ∈ A.

(4) There exist a completely bounded map a : A −→ Kc and a bounded map b : Kc −→
(Kc)∗ such that

A
T //

a

²²

A∗

Kc
b

// (Kc)∗
at

OO

i.e., T = atba with ‖a‖2cb‖b‖ ≤ 1.

Proof. (1)⇒(2)⇒(3) We can prove these implications by the similar way as in
the proof of Theorem 2.3.

(3)⇒(4) We note that we use the norm ‖ ‖ for b instead of the completely bounded
norm ‖ ‖cb.

(4)⇒(1) For xi, yi ∈ A, we have

∣∣∣∣
n∑

i=1

T (xi, yi)
∣∣∣∣ =

∣∣∣∣
n∑

i=1

(ba(yi) | a(xi))K

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣







0 b
. . . . . .

0 b

0 0
. . . . . .

0 0







a(x1)...
a(xn)
a(y1)...
a(yn)




∣∣∣∣∣∣∣∣∣∣∣∣∣




a(x1)...
a(xn)
a(y1)...
a(yn)







∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ w







0 b
. . . . . .

0 b

0 0
. . . . . .

0 0







∥∥∥∥∥∥∥∥∥∥∥∥∥




a(x1)...
a(xn)
a(y1)...
a(yn)




∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=
1
2
‖b‖‖a‖2cb

∥∥[x1, . . . , xn, y1, . . . , yn]t
∥∥2 ≤ 1

2

∥∥[x1, . . . , xn, y1, . . . , yn]t
∥∥2

. ¤

4. Factorization on Banach spaces.

Let X be a Banach space. Recall that the minimal quantization Min(X) of X. Let
ΩX be the unit ball of X∗, that is, ΩX = {f ∈ X∗| ‖f‖ ≤ 1}. For [xij ] ∈ Mn(X),
‖[xij ]‖min is defined by
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‖[xij ]‖min = sup{‖[f(xij)]‖ | f ∈ ΩX}.

Then Min(X) can be regarded as a subspace in the C∗-algebra C(ΩX) of all continuous
functions on the compact Hausdorff space ΩX . Here we define a norm of an element
u ∈ X ⊗X by

‖u‖wH = inf
{

sup
{( n∑

i=1

|f(xi)|2
)1

2
( n∑

i=1

|f(yi)|2
)1

2
}}

,

where the supremum is taken over all f ∈ X∗ with ‖f‖ ≤ 1 and the infimum is taken
over all representations u =

∑n
i=1 xi ⊗ yi.

Proposition 4.1. Let X be a Banach space. Then

Min(X)⊗wh Min(X) = Min(X)⊗wh′ Min(X) = X ⊗wH X.

Proof. Let u =
∑n

i=1 xi ⊗ yi ∈ Min(X). Then, using the identity (?), we have

‖u‖wh = inf
{

1
2

∥∥[
x1, . . . , xn, y∗1 , . . . , y∗n

]∥∥2 | u =
n∑

i=1

xi ⊗ yi

}

= inf
{

sup
{

1
2

∥∥[
f(x1), . . . , f(xn), f(y1), . . . , f(yn)]

∥∥2 | f ∈ ΩX

}
| u =

n∑

i=1

xi ⊗ yi

}

= inf
{

sup
{

1
2

( n∑

i=1

|f(xi)|2 + |f(yi)|2
)
| f ∈ ΩX

}
| u =

n∑

i=1

xi ⊗ yi

}

= inf
{

sup
{( n∑

i=1

|f(xi)|2
)1

2
( n∑

i=1

|f(yi)|2
)1

2

| f ∈ ΩX

}
| u =

n∑

i=1

xi ⊗ yi

}

= ‖u‖wH .

The equality ‖u‖wh′ = ‖u‖wH is obtained by the same way as above. ¤

Let T : X −→ X∗ be a bounded linear map. As in Remark 2.4(ii), we consider the
map T ⊗ α : X ⊗ `2n −→ X∗ ⊗ `2n

∗ and define a norm for
∑

xi ⊗ ei ∈ X ⊗ `2n by

∥∥∥
∑

xi ⊗ ei

∥∥∥ = sup
{(∑

|f(xi)|2
) 1

2 | f ∈ ΩX

}
.

We note that, given x ∈ X, x∗ is regarded as 〈x∗, f〉 = f(x) for f ∈ X∗ in the definition
of w(T ⊗ α), that is,

w(T ⊗ α) = sup
{∣∣∣

〈 ∑
x∗i ⊗ ei, T ⊗ α

( ∑
xi ⊗ ei

)〉∣∣∣
∣∣∣
∥∥∥

∑
xi ⊗ ei

∥∥∥ ≤ 1
}

.
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Let a : X −→ Y be a linear map between Banach spaces. a is called a 2-summing
operator if there is a constant C which satisfies the inequality

( ∑
‖a(xi)‖2

) 1
2 ≤ C sup

{( ∑
|f(xi)|2

) 1
2 | f ∈ ΩX

}

for any finite subset {xi} ⊂ X. The smallest such constant C is defined as π2(a), the
2-summing norm of a. The following might be well known.

Proposition 4.2. Let X be a Banach space. If a is a linear map from X to H ,
then the following are equivalent :

(1) ‖a : Min(X) −→ Hc‖cb ≤ 1.

(2) ‖a : Min(X) −→ Hr‖cb ≤ 1.

(3) π2(a : X −→ H ) ≤ 1.

Proof. (1)⇒(3) For any x1, . . . , xn ∈ X, we have

n∑

i=1

‖a(xi)‖2 =
∥∥[a(x1), · · · , a(xn)]t

∥∥2

≤ ‖a‖2cb

∥∥[x1, · · · , xn]t
∥∥2

Min

≤
∥∥∥∥

n∑

i=1

x∗i xi

∥∥∥∥
Min

= sup
{ n∑

i=1

|f(xi)|2 | f ∈ ΩX

}
.

(3)⇒(1) For any [xij ] ∈ Mn(Min(X)), we have

‖[a(xij)]‖2Mn(Hc)
= sup

{ ∑

i

∥∥∥∥
∑

j

λja(xij)
∥∥∥∥

2 ∣∣ ∑
|λj |2 = 1

}

≤ sup
{

π2(a)2 sup
{ ∑

i

∣∣∣∣f
( ∑

j

λjxij

)∣∣∣∣
2

| f ∈ ΩX

} ∣∣ ∑
|λj |2 = 1

}

≤ sup{‖[f(xij)]‖2 | f ∈ ΩX}
≤ ‖[xij ]‖2Mn(Min(X)).

(2)⇔(3) It follows by the same way as above. ¤

Corollary 4.3. Suppose that X is a Banach space, and that T : X −→ X∗ is a
bounded linear map. Then the following are equivalent :

(1) w(T ⊗ α) ≤ w(α) for all α : `2n −→ `2n and n ∈ N .
(2) ‖T‖wH∗ ≤ 1.
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(3) T factors through a Hilbert space K and its dual space K ∗ by a 2-summing oper-
ator a : X −→ K and a bounded operator b : K −→ K ∗ as follows:

X
T //

a

²²

X∗

K
b

// K ∗

at

OO

i.e., T = atba with π2(a)2‖b‖ ≤ 1.

(4) T has an extension T ′ : C(ΩX) −→ C(ΩX)∗ which factors through a pair of
Hilbert spaces K by a 2-summing operator a : C(ΩX) −→ K and a bounded
operator b : K −→ K as follows:

C(ΩX) T ′ //

a

²²

C(ΩX)∗

K
b

// K

a∗

OO

i.e., T ′ = a∗ba with π2(a)2‖b‖ ≤ 1.

Proof. (1)⇒(2) Suppose that

∣∣∣∣
〈 m∑

i=1

z∗i ⊗ ei, T ⊗ α

( m∑

i=1

zi ⊗ ei

)〉∣∣∣∣ ≤ 1

for any
∑m

i=1 zi ⊗ ei ∈ X ⊗ `2m with ‖∑m
i=1 zi ⊗ ei‖ ≤ 1 and α ∈ Mn(C) with w(α) ≤ 1.

It is easy to see that |∑m
i,j=1〈z∗i , T (zj)〉αij | ≤ 1, equivalently |∑m

i,j=1〈zi, T (zj)〉αij | ≤ 1.
Given ‖∑n

i=1 xi ⊗ yi‖wH < 1, we may assume that

1
2

∥∥[x1, . . . , xn, y1, . . . , yn]t
∥∥2 ≤ 1.

Set

zi =





1√
2
xi i = 1, . . . , n

1√
2
yi−n i = n + 1, . . . , 2n

and α =

[
0n 2 · 1n

0n 0n

]
.

It turns out ‖∑2n
i=1 zi ⊗ ei‖ ≤ 1 and w(α) = 1. Then we have |T (

∑n
i=1 xi ⊗ yi)| =

|∑2n
i,j=1〈zi, T (zj)〉αij | ≤ 1. Hence ‖T‖wH∗ ≤ 1.
(2)⇒(1) Suppose that ‖T‖wH∗ ≤ 1. Then T has an extension T ′ ∈ (C(ΩX) ⊗wh

C(ΩX))∗ with ‖T ′‖wh∗ ≤ 1. Given ε > 0 and α ∈ Mn(C), there exist x1, . . . , xn ∈
C(ΩX) such that ‖∑n

i=1 xi⊗ ei‖ ≤ 1 (equivalently ‖[x1, . . . , xn]t‖ ≤ 1) and w(T ′⊗α)−
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ε < |∑n
i,j=1〈x∗i , T ′(xj)〉αij |. Hence we have

w(T ⊗ α) ≤ w(T ′ ⊗ α) <

∣∣∣∣T ′
( n∑

i,j=1

x∗i αij ⊗ xj

)∣∣∣∣ + ε

≤ ∥∥[x1, . . . , xn]t
∥∥2

w(α) + ε ≤ w(α) + ε.

(2)⇔(3) It is straightforward from Theorem 3.2 and Propositions 4.1, 4.2.
(2)⇔(4) It is straightforward from Theorem 2.3 and Propositions 4.1, 4.2. ¤

Remark 4.4. Here we compare the above corollary with the classical factorization
theorems through a Hilbert space. Let X and Y be Banach spaces. Grothendieck
introduced the norm ‖ ‖H on X ⊗ Y in [7] by

‖u‖H = inf
{

sup
{( n∑

i=1

|f(xi)|2
)1

2
( n∑

i=1

|g(yi)|2
) 1

2
}}

where the supremum is taken over all f ∈ X∗, g ∈ Y ∗ with ‖f‖, ‖g‖ ≤ 1 and the infimum
is taken over all representations u =

∑n
i=1 xi ⊗ yi ∈ X ⊗ Y . In [14], Lindenstrauss

and Pelczynski characterized the factorization by using T ⊗ α : X ⊗ `2n −→ Y ⊗ `2n for
T : X −→ Y , however the norm on X ⊗ `2 is slightly different from the one in this
paper. Their theorems with a modification are summarized for a bounded linear map
T : X −→ Y ∗ as follows:

The following are equivalent:

(1) ‖T ⊗ α‖ ≤ ‖α‖ for all α : `2n −→ `2n and n ∈ N .
(2) ‖T‖H∗ ≤ 1.
(3) T factors through a Hilbert space K by a 2-summing operator a : X −→ K and

b : K −→ Y ∗ whose transposed bt is 2-summing as follows:

X
T //

a
ÃÃB

BB
BB

BB
B Y ∗

K

b

=={{{{{{{{

i.e., T = ba with π2(a)π2(bt) ≤ 1.
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