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Abstract. A Functional equation
∑m

i=1 ai(z)u(φi(z)) = f(z) is consid-
ered. First we show the existence of solutions of formal power series. Second
we study the homogeneous equation (f(z) ≡ 0) and construct formal solutions

containing exponential factors. Finally it is shown that there exists a genuine
solution in a sector whose asymptotic expansion is a formal solution, by using
the theory of Borel summability of formal power series. The equation has
similar properties to those of irregular singular type in the theory of ordinary

differential equations.

1. Introduction.

In this paper we study a functional equation

m∑
i=1

ai(z)u(φi(z)) = f(z), (1.1)

where {ai(z)}mi=1 (m ≥ 2) and f(z) are holomorphic in a sector with vertex z = 0 or

formal power series of z, and {φi(z)}mi=1 are holomorphic in a neighborhood of z = 0

with φi(0) = 0 and φ′
1(0) = φ′

2(0) = · · · = φ′
m(0) ̸= 0. We study the existence of a

solution of formal power series ũ(z) =
∑∞
n=0 c

0
nz
n. In case {ai(z)}mi=1 are constants, it

is studied in Ōuchi [5]. Next we study the homogeneous case f(z) ≡ 0. We obtain

the existence of a formal solution in the form of ṽ(z) = eψ(1/z)zαw̃(z), where ψ(t) is

a polynomial of t and w̃(z) =
∑∞
n=0 c

1
nz
n with w̃(0) = 1, which is not studied in [5].

We also show under certain conditions of {ai(z)}mi=1, {φi(z)}mi=1 and f(z) that there

exists a Borel summable function u(z) (w(z)) in some sector such that u(z) ∼ ũ(z) (resp.

w(z) ∼ w̃(z)) asymptotically and u(z) (resp. v(z) = eψ(1/z)zαw(z)) satisfies (1.1).

We give notations and definitions. The set of all holomorphic functions on a region

U ⊂ C is denoted by O(U). The set of all integers is denoted by Z and Z≥0 = {n ∈ Z;n ≥
0}. Let θ ∈ R and R, δ > 0. Define S(θ, δ, R) = {z; 0 < |z| < R; | arg z − θ| < δ} and

S(θ, δ) = {z; | arg z−θ| < δ}. We also define S{0}(θ, δ) = {z ∈ S(θ, δ); 0 < |z| < ρ(arg z)},
where ρ(·) is some positive continuous function on (θ − δ, θ + δ), which is a domain of

sector type with vertex z = 0. The set of all formal power series of z is denoted by C[[z]].
We define a subspace of C[[z]].

2010 Mathematics Subject Classification. Primary 30D05; Secondary 39B32, 44A10.
Key Words and Phrases. Borel summable, irregular singular, functional equation.

https://doi.org/10.2969/jmsj/07027491


712(290)

712 S. Ōuchi

Definition 1.1. Let s ≥ 0. A formal power series f(z) =
∑∞
n=0 fnz

n is said to

be of Gevrey order s, if there exist constants A,C ≥ 0 such that

|fn| ≤ ACnΓ(sn+ 1) for n ∈ Z≥0. (1.2)

We denote by C{s}[[z]] the set of all formal power series of z of Gevrey order s.

If s = 0, f(z) converges in a neighborhood of z = 0 and the set of all convergent

power series of z is denoted by C{z}.

2. Formal solutions.

Let

L(z, u(z)) =
m∑
i=1

ai(z)u(φi(z)), (2.1)

where {φi(z)}1≤i≤m (m ≥ 2) are different holomorphic functions in a neighborhood of

z = 0 such that φi(0) = 0 and

φ′
1(0) = φ′

2(0) = · · · = φ′
m(0) ̸= 0. (2.2)

We may assume φ′
i(0) = 1 and φ1(z) = z. In this section we assume ai(z) ∈ C[[z]]

(1 ≤ i ≤ m). Let

φi(z) = z

(
1 +

∞∑
j=p

bi,jz
j

)
, i ≥ 2, (2.3)

where bi,p ̸= 0 for some i ≥ 2.

2.1. Solutions of formal power series.

Let f(z) =
∑∞
n=0 fnz

n ∈ C[[z]] and consider

L(z, u(z)) = f(z). (2.4)

First we have the existence of a solution of formal power series of (2.4). Let

A (z) =
m∑
i=1

ai(z). (2.5)

Theorem 2.1. There exists a unique solution u(z) ∈ C[[z]] of (2.4), if the following

(1) or (2) holds.

(1) There exists q ∈ Z≥0 with 0 ≤ q < p such that A (0) = · · · = A (q−1)(0) = 0,

A (q)(0) ̸= 0 and f0 = f1 = · · · = fq−1 = 0.

(2) A (0) = · · · = A (p−1)(0) = 0, (A (p)(0)/p!) + n(
∑m
i=1 ai(0)bi,p) ̸= 0 for n ∈ Z≥0

and f0 = f1 = · · · = fp−1 = 0.
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Theorem 2.2. Suppose A (0) = · · · = A (p)(0) = 0,
∑m
i=1 ai(0)bi,p ̸= 0 and

f0 = f1 = · · · = fp = 0. Then for given c0 there is a unique solution u(z) ∈ C[[z]]
of (2.4) with u(0) = c0.

Let u(z) =
∑∞
n=0 cnz

n be a formal solution of (2.4). Before proofs of Theorems 2.1

and 2.2 let us get relations of {cn}n∈Z≥0
. Let ai(z) =

∑∞
j=0 ai,jz

j and define constants

{Bik,ℓ; k, ℓ ∈ Z≥0, 1 ≤ i ≤ m} by

(φi(z))
k = zk

(
1 +

∞∑
j=p

bi,jz
j

)k
= zk

( ∞∑
ℓ=0

Bik,ℓz
ℓ

)
, (2.6)

where

Bik,0 = 1, Bik,ℓ = 0 (1 ≤ ℓ < p), Bik,p = kbi,p. (2.7)

We have

ai(z)u(φi(z)) =

( ∞∑
j=0

ai,jz
j

)( ∞∑
k=0

ckz
k

( ∞∑
ℓ=0

Bik,ℓz
ℓ

))

=

∞∑
n=0

( ∑
j+k+ℓ=n

ai,jckB
i
k,ℓ

)
zn.

(2.8)

Let us consider the set

Nn = {(j, k, ℓ) ∈ Z3
≥0; j + k + ℓ = n, ℓ = 0, p, p+ 1, · · · · · · }. (2.9)

More concretely

Nn = {(0, n, 0)} ∪ {(1, n− 1, 0)} ∪ · · · ∪ {(p, n− p, 0)} ∪ {(0, n− p, p)}
∪ {(j, k, ℓ) ∈ Nn; k < n− p}.

(2.10)

From (2.8) and (2.10)( m∑
i=1

ai,0

)
cn +

( m∑
i=1

ai,1

)
cn−1 + · · ·+

( m∑
i=1

ai,q

)
cn−q + · · ·

+

( m∑
i=1

ai,p−1

)
cn−p+1 +

( m∑
i=1

ai,p +
m∑
i=1

ai,0B
i
n−p,p

)
cn−p +

( ∑
1≤i≤m
j+k+ℓ=n
k<n−p

ai,jckB
i
k,ℓ

)

=

p−1∑
s=0

A (s)(0)

s!
cn−s +

(
A (p)(0)

p!
+ (n− p)

( m∑
i=1

ai,0bi,p

))
cn−p

+

( ∑
1≤i≤m
j+k+ℓ=n
k<n−p

ai,jckB
i
k,ℓ

)
= fn.

(2.11)
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Proof of Theorem 2.1. We have for case (1)

A (q)(0)

q!
cn−q +

( ∑
1≤i≤m
j+k+ℓ=n
k<n−q

ai,jckB
i
k,ℓ

)
= fn (2.12)

and for case (2)(
A (p)(0)

p!
+ (n− p)

( m∑
i=1

ai,0bi,p

))
cn−p +

( ∑
1≤i≤m
j+k+ℓ=n
k<n−p

ai,jckB
i
k,ℓ

)
= fn. (2.13)

The coefficients {cn}n≥0 are uniquely determined. □

Proof of Theorem 2.2. We have

(n− p)

( m∑
i=1

ai,0bi,p

)
cn−p +

( ∑
1≤i≤m
j+k+ℓ=n
k<n−p

ai,jckB
i
k,ℓ

)
= fn. (2.14)

c0 is arbitrary and cn−p(n ≥ p+ 1) are determined by (2.14). □

As for the estimate of the coefficients of formal solutions in C[[z]] we have

Theorem 2.3. Let u(z) ∈ C[[z]] be a formal solution of (2.4). Suppose that

ai(z) ∈ C{1/p}[[z]](1 ≤ i ≤ m) and f(z) ∈ C{1/p}[[z]], and the following (1) or (2) holds.

(1) A (0) ̸= 0.

(2) A (0) = · · · = A (p−1)(0) = 0 and
∑m
i=1 ai(0)bi,p ̸= 0.

Then u(z) ∈ C[[z]] belongs to C{1/p}[[z]].

We give a proof of Theorem 2.3 in the Section 5.

Remark 2.4. Let u(z) ∈ C[[z]] be a formal solution of (2.4). We may assume that

u(z) satisfies u(0) = 0, by considering u(z)− c0 as an unknown function. More generally,

for a given N let v(z) = u(z) −
∑N−1
n=0 cnz

n. Then we may assume that u(z) satisfies

u(z) = O(zN ), by considering v(z) as an unknown function.

Suppose that (2) in Theorem 2.3 holds. Then there exists n0 ∈ Z≥0 such that

(A (p)(0)/p!) + n(
∑m
i=1 ai(0)bi,p) ̸= 0 for n ≥ n0. If u(z) ∈ C[[z]] with u(z) = O(zn0)

satisfies L(z, u(z)) = 0, then u(z) ≡ 0.

2.2. Formal solutions of a homogeneous equation.

In this subsection we construct solutions of a homogeneous equation

m∑
i=1

ai(z)u(φi(z)) = 0. (2.15)
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Theorem 2.5. Suppose that A (i)(0) = 0 for 0 ≤ i ≤ p−1 and
∑m
i=1 ai(0)bi,p ̸= 0.

Then there exist a constant α and a formal solution u(z) = zαw(z) of (2.15), where

w(z) ∈ C[[z]] with w(0) = 1.

Proof. Set u(z) = zαw(z) and let us find α. From

u(φi(z)) = (φi(z))
αw(φi(z))

= zα
(
1 + bi,pz

p +O(zp+1
)
)αw(φi(z))

= zα
(
1 + αbi,pz

p +O(zp+1)
)
w(φi(z))

we have

m∑
i=1

ai(z)u(φi(z)) = zα
m∑
i=1

gi(z)w(φi(z)),

where gi(z) = ai(z)
(
1 + αbi,pz

p +O(zp+1)
)
. Put G(z) =

∑m
i=1 gi(z). Then

G(s)(z) =

m∑
i=1

(
s∑
ℓ=0

(
s

ℓ

)
dℓ

dzℓ
ai(z)

ds−ℓ

dzs−ℓ
(
1 + αbi,pz

p +O(zp+1)
))
,

G(s)(0) = 0 for 0 ≤ s < p and

G(p)(0) = αp!

( m∑
i=1

ai(0)bi,p

)
+

m∑
i=1

a
(p)
i (0).

Take α such that G(p)(0) = 0. Thus we get an equation
∑m
i=1 gi(z)w(φi(z)) = 0 with

G(s)(0) = 0 for 0 ≤ s ≤ p and
∑m
i=1 gi(0)bi,p =

∑m
i=1 ai(0)bi,p ̸= 0. It follows from Theo-

rem 2.2 that there exists w(z) ∈ C[[z]] with w(0) = 1 such that
∑m
i=1 gi(z)w(φi(z)) = 0

and u(z) = zαw(z) is a desired formal solution of (2.15). □

Theorem 2.6. Suppose that there exists ξ0 such that
∑m
i=1 ai(0)e

−pbi,pξ0 = 0 and∑m
i=1 ai(0)bi,pe

−pbi,pξ0 ̸= 0. Then there exists a formal solution of (2.15) in the form

u(z) = exp

(
Cp
zp

+
Cp−1

zp−1
+ · · ·+ C1

z

)
zαw(z), (2.16)

where Cp = ξ0 and w(z) ∈ C[[z]] with w(0) = 1.

Proof. Put

u(z) = exp

(
Cp
zp

+
Cp−1

zp−1
+ · · ·+ C1

z

)
v(z) (2.17)

and let us determine constants {Ci}pi=1. It follows from

φi(z) = z(1 + bi,pz
p +O(zp+1)) =

z

1− bi,pzp +O(zp+1)
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and

1

φi(z)k
=

1

zk
(
1− bi,pz

p +O(zp+1)
)k

=
1

zk
− kbi,pz

p−k +O(zp−k+1)

that 

u(φi(z)) = exp

( p∑
k=1

Ck
zk

+ ψi(z)

)
v(φi(z)),

ψi(z) = −
p∑
k=1

Ck
(
kbi,pz

p−k +O(zp−k+1)
)
,

ψi(0) = −Cppbi,p.

(2.18)

Hence we have

m∑
i=1

ai(z)u(φi(z)) =
m∑
i=1

ai(z) exp

( p∑
k=1

Ck
zk

+ ψi(z)

)
v(φi(z)).

Thus we get the following functional equation

m∑
i=1

Ai(z)v(φi(z)) = 0, Ai(z) = ai(z)e
ψi(z). (2.19)

Set G(z) =
∑m
i=1Ai(z). We determine {Ck}pk=1 such that G(s)(0) = 0 for 0 ≤ s ≤ p− 1.

By G(0) = 0 we have

m∑
i=1

ai(0)e
−pbi,pCp = 0, (2.20)

which has a simple solution Cp = ξ0. Then ψi(0) = −pbi,pξ0 and we have

G′(z) =
m∑
i=1

(a′i(z)e
ψi(z) + ai(z)e

ψi(z)ψ′
i(z)),

G′(0) =
m∑
i=1

(a′i(0)e
ψi(0) + ai(0)e

ψi(0)ψ′
i(0)),

ψ′
i(0) =− Cp−1(p− 1)bi,p + Ci(p),

where Ci(p) is a constant determined by Cp. Hence

Cp−1 =

∑m
i=1(a

′
i(0) + ai(0)Ci(p))e

−pbi,pξ0

(p− 1)(
∑m
i=1 ai(0)bi,pe

−pbi,pξ0)
. (2.21)

Assume that {Ck}p−s+1≤k≤p are determined. Then
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ψi(z) = −
p∑
k=1

Ck
(
kbi,pz

p−k +O(zp−k+1)
)

= −
p−s∑
k=1

Ck
(
kbi,pz

p−k +O(zp−k+1)
)

+a function determined by {Ck}p−s+1≤k≤p.

(2.22)

If ℓ ≤ s− 1, ψ
(ℓ)
i (0) is a constant determined by {Ck}p−s+1≤k≤p. We have

G(s)(z) =
m∑
i=1

s∑
ℓ=0

(
s

ℓ

)
(ai(z))

(s−ℓ)(eψi(z))(ℓ)

=
m∑
i=1

ai(z)(e
ψi(z))(s) +

m∑
i=1

s−1∑
ℓ=0

(
s

ℓ

)
(ai(z))

(s−ℓ)(eψi(z))(ℓ)

and

G(s)(0) =

m∑
i=1

ai(0)e
ψi(0)ψ

(s)
i (0)

+ a constant determined by {Ck}pk=p−s+1.

= −(p− s)s!

( m∑
i=1

ai(0)bi,pe
−pbi,pξ0

)
Cp−s

+a constant determined by {Ck}pk=p−s+1.

We can take Cp−s such that G(s)(0) = 0 and {Ck}pk=1 are successively determined. Thus

we get

m∑
i=1

Ai(z)v(φi(z)) = 0, (2.23)

where G(z) =
∑m
i=1Ai(z) satisfies

G(s)(0) = 0 0 ≤ s ≤ p− 1,
m∑
i=1

Ai(0)bi,p =
m∑
i=1

ai(0)bi,pe
−pbi,pξ0 ̸= 0.

(2.24)

It follows from Theorem 2.5 that there exists a formal solution v(z) = zαw(z) of (2.23)

with w(z) ∈ C[[z]] and w(0) = 1. Hence u(z) = exp(
∑p
s=1 Csz

−s)zαw(z) is a desired

formal solution of (2.15). □

2.3. The similarity between solutions of the functional equations and

irregular singular solutions of ordinary differential equations.

The existence of solutions of formal power series are shown in Theorems 2.1, 2.2

and 2.3. Theorem 2.6 is the existence of formal solutions of the homogeneous equation,
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which are represented with exponential factors. These facts are similar to the properties

of solutions of ordinary differential equations with an irregular singularity at z = 0. Let

P = zk
d

dz
−A(z) (2.25)

be a system of ordinary differential operators, where A(z) is an n × n matrix whose

entries are holomorphic in {|z| < r}. Assume that z = 0 is an irregular singular point of

(2.25), necessarily k ≥ 2. The following (a) and (b) are known.

(a) If u ∈ (C[[z]])n satisfies Pu ∈ (C{z})n, then there exists γ > 0 determined by P

such that u ∈ (C{1/γ}[[z]])
n.

(b) The homogeneous equation PY = 0 possesses a formal fundamental matrix solution

Y (z) = Ŷ (z)zLeQ(z). (2.26)

Here Q(z) is a diagonal matrix whose entries are polynomials in z−1/σ and not a

constant matrix, L is a constant matrix and the entries of Ŷ belong to C[[z1/σ]],
where σ is a positive integer.

For the theory of ordinary differential equations about these topics we refer to Balser,

Braaksma, Ramis and Sibuya [3] andWasow [6]. We notice that Theorem 2.3 corresponds

to (a) and Theorem 2.6 corresponds to (b).

3. Borel summability.

In this section we give fundamental properties of Borel summability, Laplace trans-

form and Borel transform. For the details of the topics in this section we refer to Balser

[1], [2]. First we define a subset of C[[z]].

Definition 3.1. Let γ > 0. We denote by Cγ,θ{z} the set of all w(z) =∑∞
n=0 cnz

n ∈ C[[z]] such that there exist a sector S(θ, δ, r) with δ > π/2γ and a holo-

morphic function W (z) on S(θ, δ, r) which satisfies

|W (z)−
N−1∑
n=0

cnz
n| ≤ ACNΓ

(
N

γ
+ 1

)
|z|N (3.1)

in S(θ, δ, r) for all N = 1, 2, · · · . We say that w(z) is γ-Borel summable in a direction θ.

From estimate (3.1) Cγ,θ{z} ⊂ C{1/γ}[[z]] holds. It follows from δ > π/2γ and (3.1)

that W (z) is uniquely determined for w(z). So W (z) is called the γ-Borel sum of w(z)

and we may identify W (z) with w(z). We denote (3.1) by

W (z) ∼
γ

∞∑
n=0

cnz
n. (3.2)

For our purposes we give notations of sectors in ξ-space. Put S∗(θ, δ,R) = {ξ; 0 < |ξ| <
R, | arg ξ − θ| < δ}, S∗(θ, δ) = {ξ; | arg ξ − θ| < δ} and S∗

{0}(θ, δ) = {ξ; | arg ξ − θ| <
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ρ(arg ξ)}, where ρ(·) is some positive continuous function on (θ − δ, θ + δ).

Definition 3.2. Let γ > 0 and S∗ = S∗(θ, δ). The set of all ϕ(ξ) ∈ O(S∗) with

|ϕ(ξ)| ≤ A exp(c|ξ|γ) for ξ ∈ S∗ ∩ {|ξ| ≥ 1} (3.3)

for some c > 0 is denoted by Exp(γ, S∗).

We define Laplace transform, Borel transform and convolution. Let ϕ(ξ) ∈
Exp(γ, S∗), S∗ = S∗(θ, δ), and there exist A, ϵ > 0 such that

|ϕ(ξ)| ≤ A|ξ|ϵ−γ for ξ ∈ S∗ ∩ {|ξ| ≤ 1}. (3.4)

Then the γ-Laplace transform Lγ,θϕ is defined by

(Lγ,θϕ)(z) =
∫ ∞eiθ

0

exp

(
−
(
ξ

z

)γ)
ϕ(ξ)dξγ dξγ = γξγ−1dξ, (3.5)

which is holomorphic in a region S{0}(θ, π/2γ + δ). Let ψ(z) be holomorphic in

S{0}(θ, π/2γ+δ) (0 < δ < π/2γ) with |ψ(z)| ≤ C|z|c(c > 0). Then the γ-Borel transform

Bγ,θψ is defined by

(Bγ,θψ)(ξ) =
1

2πi

∫
C
exp

(
ξ

z

)γ
ψ(z)dz−γ , (3.6)

where C is a path in S{0}(θ, π/2γ+δ) from 0 exp(i(θ+π/2γ+δ′)) to 0 exp(i(θ−π/2γ−δ′))
(0 < δ′ < δ). We denote (Bγ,θψ)(ξ) simply by ψ̂(ξ) which belongs to Exp(γ, S∗(θ, δ0))

for any δ0 with 0 < δ0 < δ′.

Let w0(ξ) be a holomorphic function on Ω = {0 < |ξ| < R} ∪ S∗, S∗ = S∗(θ, δ),

such that w0(ξ) =
∞∑
n=1

ĉnξ
n−γ in {0 < |ξ| < R},

|w0(ξ)| ≤ A exp(c|ξ|γ) in S∗ ∩ {|ξ| ≥ 1}.
(3.7)

Then

W0(z) =

∫ ∞eiθ

0

exp

(
−
(
ξ

z

)γ)
w0(ξ)dξ

γ (3.8)

is γ-Borel summable in a direction θ such that w0(ξ) = Ŵ0(ξ) and

W0(z) ∼
γ

∞∑
n=1

ĉnΓ(n/γ)z
n. (3.9)

Let ϕi(ξ) ∈ O(S∗
{0}(θ, δ))(i = 1, 2) with |ϕi(ξ)| ≤ C|ξ|ϵ−γ . We define the γ-

convolution of ϕ1(ξ) and ϕ2(ξ) by
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(ϕ1 ∗
γ
ϕ2)(ξ) =

∫ ξ

0

ϕ1((ξ
γ − ηγ)1/γ)ϕ2(η)dη

γ ξ ∈ S∗
{0}(θ, δ). (3.10)

The followings hold.

Proposition 3.3. Let S∗ = S∗(θ, δ) and ϕi(ξ) ∈ Exp(γ, S∗) with |ϕi(ξ)| ≤
C|ξ|ϵ−γ(ϵ > 0) (i = 0, 1, 2) on {ξ ∈ S∗; 0 < |ξ| ≤ 1}. Then

Bγ,θLγ,θϕ0 = ϕ0,

(Lγ,θϕ1)(Lγ,θϕ2) = Lγ,θ(ϕ1 ∗
γ
ϕ2).

(3.11)

The following Lemma is given in Ōuchi [4], [5].

Lemma 3.4. Let 0 < γ ≤ κ. Let ϕi(ξ) ∈ O(S{0}(θ, δ)) (i = 1, 2) with

|ϕi(ξ)| ≤
Ci|ξ|si−γec|ξ|

κ

Γ(si/γ)
, (3.12)

where s1, s2 > 0, c ≥ 0. Then (ϕ1 ∗
γ
ϕ2)(ξ) ∈ O(S{0}(θ, δ)) and

|(ϕ1 ∗
γ
ϕ2)(ξ)| ≤

C1C2|ξ|s1+s2−γec|ξ|
κ

Γ((s1 + s2)/γ)
. (3.13)

4. Integral representation of solutions.

The aim of this section is to show that formal solutions are Borel summable. For

our aim we introduce a condition. Let b1,p = 0 and B = {bi,p; 1 ≤ i ≤ m} ⊂ C.

Condition B. a1(0) ̸= 0, bi,p ̸= 0 for 2 ≤ i ≤ m and {0} is a vertex of the convex

hull B̂ of B.

First we give a lemma that follows from Condition B.

Lemma 4.1. Assume Condition B. Let

h(ξ) =
m∑
i=1

ai,0e
pbi,pξ

p

, ai,0 = ai(0). (4.1)

Then there exist a sector S∗(θ0, ε0) and positive constants r0, d and M such that

(1) |epbi,pξp | ≤ e−d|ξ|
p

(i ≥ 2) on S∗(θ0, ε0),

(2) h(ξ) ̸= 0 on S∗(θ0, ε0) ∪ {0 < |ξ| < r0}, and if h(0) ̸= 0, |h(ξ)|−1 ≤ M holds on

S∗(θ0, ε0) ∪ {|ξ| < r0}.

We refer the proof of Lemma 4.1 to [5]. In the following of this section we assume

Condition B. Let θ0 and S∗ = S∗(θ0, ε0) be those in Lemma 4.1 and ε0 > 0 be so small,

if necessary. Let us recall A (z) =
∑m
i=1 ai(z).

Theorem 4.2. Assume Condition B and suppose the following (1) or (2) holds.
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(1) A (0) ̸= 0,

(2) A (0) = · · · = A (p−1)(0) = 0,
∑m
i=1 ai(0)bi,p ̸= 0.

Then any formal solution u(z) ∈ C[[z]] of (2.4) is p-Borel summable in the direction θ0,

provided ai(z) (1 ≤ i ≤ m) and f(z) are p-Borel summable in the direction θ0

Corollary 4.3. Assume Condition B. Let w(z) ∈ C[[z]] be that in Theorem 2.5

or Theorem 2.6. Then w(z) is p-Borel summable in the direction θ0, provided ai(z) (1 ≤
i ≤ m) are p-Borel summable in the direction θ0.

Since the equation that determines w(z) ∈ C[[z]] in Theorem 2.5 or Theorem 2.6

satisfies the condition (2) in Theorem 4.2, Corollary 4.3 follows from Theorem 4.2.

In the following of this section we assume {ai(z)}mi=1 and f(z) are p-Borel summable

in the direction θ0. We may assume f(0) = 0 and a formal solution u(z) of (2.4) satisfies

u(0) = 0. In order to show Theorem 4.2 we try to represent u(z) in the form

u(z) =

∫ ∞eiθ0

0

exp

(
−
(
ξ

z

)p)
û(ξ)dξp, dξp = pξp−1dξ. (4.2)

Let us proceed to obtain an equation that û(ξ) satisfies. The following procedure is

similar to that in [5]. By φi(z) = z(1 + bi,pz
p +O(zp+1)), ψi(z) is determined by

φi(z)
−p =

1− pbi,pz
p − zpψi(z)

zp
, ψi(z) = O(z). (4.3)

We have

u(φi(z)) =

∫ ∞eiθ0

0

exp

(
− ξp

zp
+ pbi,pξ

p + ψi(z)ξ
p

)
û(ξ)dξp

=
∞∑
ℓ=0

ψi(z)
ℓ

∫ ∞eiθ0

0

exp

(
− ξp

zp
+ pbi,pξ

p

)
ξpℓ

ℓ!
û(ξ)dξp

and

m∑
i=1

ai(z)u(φi(z))

=

m∑
i=1

∞∑
ℓ=0

ai(z)ψi(z)
ℓ

∫ ∞eiθ0

0

exp

(
− ξp

zp

)(
ξpℓepbi,pξ

p

ℓ!
û(ξ)

)
dξp.

Let ai(z) = ai,0 + a′i(z), where ai,0 = ai(0) and a′i(z) = O(z). By using the p-Borel

transforms of a′i(z) and ψi(z),
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m∑
i=1

ai(z)u(φi(z))

=

m∑
i=1

∞∑
ℓ=0

ai,0

∫ ∞eiθ0

0

exp

(
− ξp

zp

)( ℓ︷ ︸︸ ︷
ψ̂i ∗

p
· · · ∗

p
ψ̂i ∗

p

(
ξpℓepbi,pξ

p

ℓ!
û(ξ)

))
dξp

+
m∑
i=1

∞∑
ℓ=0

∫ ∞eiθ0

0

exp

(
− ξp

zp

)(
â′i ∗

p

ℓ︷ ︸︸ ︷
ψ̂i ∗

p
· · · ∗

p
ψ̂i ∗

p

(
ξpℓepbi,pξ

p

ℓ!
û(ξ)

))
dξp.

Put

Ψi,0,ℓ(ξ) = ai,0

ℓ︷ ︸︸ ︷
ψ̂i ∗

p
· · · ∗

p
ψ̂i, Ψi,1,ℓ(ξ) = â′i ∗

p
(

ℓ︷ ︸︸ ︷
ψ̂i ∗

p
· · · ∗

p
ψ̂i). (4.4)

Lemma 4.4. There exist a punctured disk {0 < |ξ| < r} and a sector S∗(θ0, δ) such

that in Ω = {0 < |ξ| < r} ∪ S∗(θ0, δ)
|ai,0

ℓ︷ ︸︸ ︷
ψ̂i ∗

p
· · · ∗

p
ψ̂i| ≤ Cℓ|ξ|ℓ−pec|ξ|

p

/Γ(ℓ/p) (ℓ ≥ 1),

|â′i ∗
p

ℓ︷ ︸︸ ︷
ψ̂i ∗

p
· · · ∗

p
ψ̂i| ≤ Cℓ+1|ξ|ℓ+1−pec|ξ|

p

/Γ((ℓ+ 1)/p) (ℓ ≥ 0)

(4.5)

holds for some positive constants C and c.

Proof. Since ψi(z) and a′i(z) are p-Borel summable in the direction θ0 and

ψi(0) = a′i(0) = 0, there exist a domain Ω and positive constants C1 and c such that

|ψ̂i(ξ)|, |â′i(ξ)| ≤ C1|ξ|1−pec|ξ|
p

in Ω. The estimate (4.5) follows from Lemma 3.4. □

Define operators Pℓ and Qℓ by
Pℓv =

m∑
i=1

Ψi,0,ℓ ∗
p

(
ξpℓepb

i
pξ

p

ℓ!
v(ξ)

)
,

Qℓv =
m∑
i=1

Ψi,1,ℓ ∗
p

(
ξpℓepb

i
pξ

p

ℓ!
v(ξ)

)
.

(4.6)

Then we have formally

m∑
i=1

ai(z)u(φi(z))

=

∫ ∞eiθ0

0

exp

(
−
(
ξ

z

)p)(
h(ξ) +

∞∑
ℓ=1

Pℓ +

∞∑
ℓ=0

Qℓ

)
û(ξ)dξp.

(4.7)

Since f(z) is p-Borel summable in the direction θ0,
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f(z) =

∫ ∞eiθ0

0

exp

(
−
(
ξ

z

)p)
f̂(ξ)dξp. (4.8)

Thus from
∑m
i=1 ai(z)u(φi(z)) = f(z) we obtain a convolution equation that û satisfies,

by denoting û by v,

h(ξ)v +
∞∑
ℓ=1

Pℓv +
∞∑
ℓ=0

Qℓv = f̂ . (4.9)

In case {ai(z)}1≤i≤m are constants, the terms Qℓv (ℓ = 0, 1, · · · ) do not appear in [5].

Let us construct a solution of (4.9). There are 2 cases. The first one is A (0) ̸= 0,

that is, h(0) ̸= 0. We can construct a solution in the almost same way as the case∑m
i=1 ai ̸= 0 in [5]. A solution v(ξ) =

∑∞
n=0 vn(ξ) is constructed as follows.

h(ξ)v0(ξ) = f̂(ξ),

h(ξ)vn(ξ) +

n∑
ℓ=1

Pℓvn−ℓ +

n−1∑
ℓ=0

Qℓvn−ℓ−1 = 0.
(4.10)

Dividing by h(ξ), we obtain vn(ξ). By using Lemmas 4.1 and 4.4 and applying the

method used for the case
∑m
i=1 ai ̸= 0 in [5] to this case, we obtain an estimate of vn(ξ),

a representation in a punctured disk and the convergence of v(ξ) =
∑∞
n=0 vn(ξ), which

is a solution of (4.9). Hence we have the following Proposition and Theorem.

Proposition 4.5. Assume A (0) ̸= 0 and Condition B. Then there exist a sector

S∗(θ0, ε0), a punctured disk {0 < |ξ| < r0} and a unique solution vn(ξ) ∈ O(Ω), Ω =

S∗(θ0, ε0) ∪ {0 < |ξ| < r0}, of (4.10) such that

|vn(ξ)| ≤ ACn|ξ|n+1−pec|ξ|
p

/Γ((n+ 1)/p) (4.11)

for some positive constants A,C and c, and

vn(ξ) =

∞∑
j=n+1

v∗n,jξ
j−p (4.12)

in {0 < |ξ| < r0}.

Theorem 4.6. Assume A (0) ̸= 0 and Condition B. Then there exist a sector

S∗(θ0, ε0), a punctured disk {0 < |ξ| < r0} and a unique solution v(ξ) ∈ O(Ω) of (4.9),

Ω = S∗(θ0, ε0) ∪ {0 < |ξ| < r0}), such that

|v(ξ)| ≤ A|ξ|1−pec0|ξ|
p

ξ ∈ Ω (4.13)

and

v(ξ) =
∞∑
j=1

v∗j ξ
j−p {0 < |ξ| < r0}. (4.14)
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By Theorem 4.6 there exists a solution v(ξ) of (4.9) with (4.13) and (4.14). Define

U(z) =

∫ ∞eiθ0

0

exp(−(ξ/z)p)v(ξ)dξp. (4.15)

Then it is a solution of (2.4) that is p-Borel summable in the direction θ0 and its as-

ymptotic expansion coincides with the unique formal power series solution. Hence The-

orem 4.2 holds under the condition (1).

Next we study another case

A (0) = A ′(0) = · · · = A (p−1)(0) = 0,
m∑
i=1

ai(0)bi,p ̸= 0. (4.16)

The condition
∑m
i=1 ai(0)bi,p ̸= 0 means that ξ = 0 is a zero of h(ξ) with order p and

there exists n0 ∈ Z≥0 such that

n+ ℜA (p)(0)/(p!

m∑
i=1

ai(0)bi,p) > 0 for n ≥ n0. (4.17)

In this case we construct a solution of (4.9) locally and show that it is holomorphically

extensible to a sector S∗(θ0.ε0). The method of construction of a local solution of (4.9)

is different from that in [5]. We note

ai(z) =

p∑
j=0

ai,jz
j + a′′i (z), a

′′
i (z) = O(zp+1),

∑m
i=1 ai,j = 0 for 0 ≤ j ≤ p− 1 and

h(ξ) = pξp

(( m∑
i=1

ai,0bi,p

)
+ h1(ξ)

)
, h1(ξ) = O(ξp). (4.18)

We have

h(ξ)w + Q0w

= pξp

(( m∑
i=1

ai,0bi,p

)
+ h1(ξ)

)
w(ξ) +

p∑
j=1

m∑
i=1

ai,j
ξj−p

Γ(j/p)
∗
p
(epbi,pξ

p

w(ξ))

+
m∑
i=1

â′′i ∗
p
(epb

i
pξ

p

w(ξ))

= pξp

(( m∑
i=1

ai,0bi,p

)
+ h1(ξ)

)
w(ξ) +

( m∑
i=1

ai,p

)
∗
p
w(ξ)

+

p∑
j=1

m∑
i=1

ai,j
ξj−p

Γ(j/p)
∗
p

(
(epbi,pξ

p

− 1)w(ξ)
)
+

m∑
i=1

â′′i ∗
p
(epbi,pξ

p

w(ξ)).

Put
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Q∗w = pξp

(( m∑
i=1

ai,0bi,p

)
+ h1(ξ)

)
w(ξ) +

( m∑
i=1

ai,p

)
∗
p
w(ξ),

Q′
0w =

p∑
j=1

m∑
i=1

ai,j
ξj−p

Γ(j/p)
∗
p

(
(epbi,pξ

p

− 1)w
)
+

m∑
i=1

â′′i ∗
p
(epbi,pξ

p

w).

(4.19)

Then

h(ξ) +
∞∑
ℓ=1

Pℓ +
∞∑
ℓ=0

Qℓ = Q∗ + Q′
0 +

∞∑
ℓ=1

Pℓ +
∞∑
ℓ=1

Qℓ. (4.20)

Lemma 4.7. Let w(ξ) ∈ O{0 < |ξ| < r} with |w(ξ)| ≤ A|ξ|s−p/Γ(s/p) (s > 0).

Then there is a constant C independent of w(ξ) such that

|Q′
0w| ≤ AC|ξ|s+1/Γ((s+ 1)/p). (4.21)

Proof. We have estimates |ξ|j−p/Γ(j/p) ≤ C1|ξ|1−p/Γ(1/p) for j ≥ 1, |(epb
i
pξ

p

−
1)w(ξ)| ≤ AC1s|ξ|s/Γ(s/p+ 1) and |â′′i (ξ)| ≤ AC2|ξ|/Γ(1/p+ 1) in {0 < |ξ| ≤ r}. Hence∣∣∣∣ ξj−pΓ(j/p)

∗
p

(
(epb

i
pξ

p

− 1)w(ξ)
)∣∣∣∣ ≤ AC3s|ξ|s+1

Γ((s+ 1)/p+ 1)
≤ AC4|ξ|s+1

Γ((s+ 1)/p)
,

|â′′i ∗
p
(epb

i
pξ

p

w(ξ))| ≤ AC5|ξ|s+1

Γ((s+ 1)/p+ 1)
≤ AC4|ξ|s+1

Γ((s+ 1)/p)

and we have (4.21). □

Lemma 4.8. Consider

pξp
( m∑
i=1

ai,0bi,p + h1(ξ)

)
w +

( m∑
i=1

ai,p ∗
p
w

)
= g(ξ), (4.22)

where
∑m
i=1 ai,0bi,p+h1(ξ) ̸= 0 in {|ξ| < R}. Suppose g(ξ) =

∑∞
j=n1

gjξ
j is holomorphic

in {|ξ| < r} (r < R) with |g(ξ)| ≤ A|ξ|n1 , where n1 ≥ n0. Then there exist a unique

holomorphic solution w(ξ) =
∑∞
j=n1

cjξ
j−p in {0 < |ξ| < r} and a constant C > 0

independent of w(ξ) such that |w(ξ)| ≤ AC|ξ|n1−p.

Proof. Let v(ξ) = (1 ∗
p
w)(ξ). Then (d/dξ)v(ξ) = pξp−1w(ξ) and by

∑m
i=1 ai,p =

A p(0)/p! the equation (4.22) becomes

ξv′(ξ) +A(ξ)v(ξ) = G(ξ), (4.23)

where
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A(ξ) = A (p)(0)/p!

( m∑
i=1

ai,0bi,p + h1(ξ)

)

= A0 + ξB(ξ), A0 = A (p)(0)/p!

( m∑
i=1

ai,0bi,p

)
,

G(ξ) = g(ξ)/

( m∑
i=1

ai,0bi,p + h1(ξ)

)
.

(4.24)

There exists a holomorphic solution of (4.23) such that v(ξ) =
∑∞
n=n1

v′nξ
n and

v(ξ) = ξ−A0

∫ ξ

0

exp

(
−
∫ ξ

τ

B(s)ds

)
τA0−1G(τ)dτ. (4.25)

For α < arg ξ < β, by putting A∗
0 = ℜA0,

|v(ξ)| ≤ AC0|ξ|−A
∗
0

∫ |ξ|

0

rn1+A
∗
0−1dr ≤ AC0|ξ|n1

n1 +A∗
0

(4.26)

and there is a constant C1 such that

|ξv′(ξ)| ≤ |A(ξ)v(ξ)|+ |G(ξ)| ≤ AC1|ξ|n1 . (4.27)

Since w(ξ) is single valued holomorphic in {0 < |ξ| < r}, there is a constant C > 0

independent of w(ξ) such that

|w(ξ)| ≤ |ξ1−pv′(ξ)/p| ≤ AC|ξ|n1−p. (4.28)

□

We construct a solution v(ξ) =
∑∞
n=0 vn(ξ) of (4.9) in {0 < |ξ| < r} under the

condition (4.16) as follows.

Q∗v0 = f̂(ξ),

Q∗v1 + Q′
0v0 + P1v0 = 0,

Q∗vn + Q′
0vn−1 +

n∑
ℓ=1

Pℓvn−ℓ +

n−1∑
ℓ=1

Qℓvn−ℓ−1 = 0, n ≥ 2.

(4.29)

Proposition 4.9. Suppose (4.16) holds. Let f̂(ξ) ∈ O({|ξ| < R}) with f̂(ξ) =∑∞
j=n0+p+1 fjξ

j−p. Then there exist r > 0 and vn(ξ) ∈ O({0 < |ξ| < r}) (n ∈ Z≥0)

satisfying (4.29) such that the following (1) and (2) hold.

(1) There exist positive constants A and C such that

|vn(ξ)| ≤
ACn|ξ|n+n0+1−p

Γ((n+ n0 + 1)/p)
(4.30)

and
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vn(ξ) =
∞∑

j=n+n0+1

vn,jξ
j−p. (4.31)

(2) v(ξ) =
∑∞
n=0 vn(ξ) converges in {0 < |ξ| < r}. It takes the form of v(ξ) =∑∞

j=n0+1 v
∗
j ξ
j−p and is a solution of (4.9) in {0 < |ξ| < r}.

Proof. Since Q∗v0(ξ) = f̂(ξ) and |f̂(ξ)| ≤ C1|ξ|n0+1, (4.30) and (4.31) hold for

n = 0 by Lemma 4.8. We assume (4.30) and (4.31) hold for 0 ≤ n ≤ N − 1. Then by

Lemma 4.7

|Q′
0vN−1| ≤

AC1C
N−1|ξ|N+n0+1

Γ((N + n0 + 1)/p)
. (4.32)

We have

∣∣epbi,pξpℓ
ℓ!

vN−ℓ
∣∣ ≤ ACN−ℓCℓ0|ξ|N−ℓ+n0+1

Γ((N − ℓ+ n0 + 1)/p)ℓ!

for ℓ ≥ 1 and 
|PℓvN−ℓ| ≤

ACℓ1C
N−ℓ|ξ|N+n0+1

Γ((N + n0 + 1)/p)ℓ!
,

|QℓvN−ℓ−1| ≤
ACℓ+1

1 CN−ℓ−1|ξ|N+n0+1

Γ((N + n0 + 1)/p)ℓ!
,

(4.33)

by using Lemmas 3.4 and 4.4. Hence for a large C > 0

|Q∗vN | ≤ AC2C
N−1|ξ|N+n0+1

Γ((N + n0 + 1)/p)
. (4.34)

From Lemma 4.8 |vN (ξ)| ≤ ACN |ξ|N+n0+1−p

Γ((N+n0+1)/p) with

vN (ξ) =
∞∑

j=N+n0+1

vn,jξ
j−p (4.35)

in {0 < |ξ| < r}. It follows from (4.30) and (4.31) that v(ξ) =
∑∞
n=0 vn(ξ) converges and

v(ξ) =
∑∞
j=n0+1 v

∗
j ξ
j−p, which is a solution of (4.9). □

We have constructed a solution v(ξ) of (4.9) in {0 < |ξ| < r} under the condition

(4.16). As for the holomorphic extension of v(ξ) we have

Theorem 4.10. Assume Condition B. Let v(ξ) be that in Proposition 4.9. Then

v(ξ) can be holomorphically extensible to Ω = {0 < |ξ| < r} ∪ S∗(θ0, δ0) such that

|v(ξ)| ≤ A|ξ|1−pec|ξ|p .

We can show the holomorphic extension of v(ξ) to an infinete sector S∗(θ0, δ0) and

v(ξ) ∈ Exp(p, S∗) in the same way as the case
∑m
i=1 ai = 0 in [5]. Hence we refer to [5]
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for the details.

Theorem 4.2 for case (2) follows from Theorem 4.10. By Remark 2.4 we may assume

f (n)(0) = 0 for 0 ≤ n ≤ p + n0 and u(z) =
∑∞
n=n0+1 cnz

n ∈ C[[z]] for a large n0. Let

v(ξ) ∈ O({0 < |ξ| < r} ∪ S∗(θ0, δ0)) be the solution of (4.9) in Theorem 4.10. Then we

can define as case A (0) ̸= 0

U(z) =

∫ ∞eiθ0

0

exp

(
−
(
ξ

z

)p)
v(ξ)dξp,

which is a solution of (2.4) and p-Borel summable in the direction θ0, and U(z) ∼
p
u(z).

Finally we give a simple example. Let

u(z) + u

(
z

p
√
1− zp

)
=

z

1− z
,

f̂(ξ) =
∞∑
n=1

ξn−p

Γ(n/p)
.

(4.36)

Then p-Borel transform of z/(1− z) is f̂(ξ) and

u(z) =

∫ ∞eiθ

0

e−(ξ/z)p f̂(ξ)

1 + eξp
dξp

(
π

2
< pθ <

3π

2

)
(4.37)

and exp (2n+ 1)πi/zp (n ∈ Z) are homogeneous solutions.

5. Estimates of coefficients of solutions of formal power series.

In this section we give a proof of Theorem 2.3. The following lemma is given in [5].

Lemma 5.1. Let ψ(z) be holomorphic in a neighborhood of z = 0 such that ψ(z) =

1+
∑∞
j=p bjz

j for p ≥ 1. Define constants {Bk,ℓ} by ψ(z)k =
∑∞
ℓ=0Bk,ℓz

ℓ for each k ≥ 1.

Then there exists a positive constant B0 such that

|Bk,ℓ| ≤ Bℓ0
(k + ℓ)(k+ℓ)/p

kk/p ℓℓ/p
. (5.1)

Since Bk,0 = 1, the notation ℓℓ/p means 1 for ℓ = 0. We have

Proposition 5.2. Assume A (0) ̸= 0. Let u(z) =
∑∞
n=1 cnz

n ∈ C[[z]] be a formal

solution of (2.4). If ai(z) (1 ≤ i ≤ m), f(z) ∈ C{1/p}[[z]], then there exist positive

constants M and C such that

|cn| ≤MCnnn/p. (5.2)

Proof. The coefficients {cn}n≥1 are determined by

A (0)cn +
m∑
i=1

( ∑
j+k+ℓ=n
k<n

ai,jckB
i
k,ℓ

)
= fn. (5.3)
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Since ai(z) =
∑∞
j=0 ai,jz

j , f(z) =
∑∞
j=1 fjz

j ∈ C{1/p}[[z]], there exist constants A,C0

and F such that |ai,j | ≤ ACj0Γ(j/p + 1) and |fn| ≤ Cn0 Γ(n/p + 1). We may assume

|fn| ≤ C ′
0
n
nn/p (n ≥ 1). We show (5.2) by induction. Since c1 = f1/A (0), by taking

M ≥ 2/|A (0)| and C > C ′
0, we have (5.2) for n = 1. Assume that (5.2) holds for

1 ≤ k ≤ n− 1. It follows from Lemma 5.1 and Stirling’s formula that there exists C1 > 0

such that for j + k + ℓ = n

|ai,jckBik,ℓ| ≤ ACj0Γ

(
j

p
+ 1

)
MCkkk/pBℓ0

(ℓ+ k)(k+ℓ)/p

kk/pℓℓ/p

≤MACkBℓ0C
j
1

(j + k + ℓ)(j+k+ℓ)/p

ℓℓ/p

=MACn
(
B0

C

)ℓ(
C1

C

)j
nn/p

ℓℓ/p
.

Take C > B0, C1 so large that Am
∑
ℓ+j≥1(B0/C)

ℓ(C1/C)
j 1
ℓℓ/p

≤ |A (0)|/2 holds. Then

m∑
i=1

∑
j+k+ℓ=n
1≤k<n

|ai,jckBik,ℓ| ≤MAmCnnn/p
∑
ℓ+j≥1

(
B0

C

)ℓ(
C1

C

)j
1

ℓℓ/p

≤ M |A (0)|
2

Cnnn/p.

Hence

|cn| ≤
M

2
Cnnn/p +

C ′
0
n
nn/p

|A (0)|
≤ M

2
(Cn + C ′

0
n
)nn/p ≤MCnnn/p. □

Proposition 5.3. Assume A (0) = · · · = A (p−1)(0) = 0 and
∑m
i=1 ai(0)bi,p ̸=

0. Let u(z) =
∑∞
n=1 cnz

n ∈ C[[z]] be a formal solution of (2.4). If ai(z) (1 ≤ i ≤ m),

f(z) ∈ C{1/p}[[z]], then there exist positive constants M and C such that

|cn| ≤MCnnn/p. (5.4)

Proof. From the assumption A (p)(0)/p!+n(
∑m
i=1 ai(0)bi,p) ̸= 0 for n ≥ n0 (n0 ∈

Z≥0), we may assume by Remark 2.4 that f(z) =
∑∞
n=n0+p+1 fnz

n ∈ C{1/p}[[z]] with

|fp+n| ≤ C ′
0
n
nn/p+1 and u(z) =

∑∞
n=n0+1 cnz

n. The coefficients are determined by(
A (p)(0)

p!
+ n

( m∑
i=1

ai,0bi,p

))
cn +

m∑
i=1

( ∑
j+k+ℓ=n+p
k<n

ai,jckB
i
k,ℓ

)
= fn+p. (5.5)

We show (5.4) by induction. Put A0(n) = A (p)(0)/p! + n(
∑m
i=1 ai,0bi,p). Then there

exists A′ > 0 such that |A0(n)| ≥ A′n for n ≥ n0+1. Since cn0+1 = fn0+p+1/A0(n0+1),

|cn0+1| ≤
F0

A′|n0 + 1|
, F0 = C ′

0
n0+1

(n0 + 1)(n0+1)/p+1.



730(308)

730 S. Ōuchi

By taking M ≥ 2/A′ and C ≥ C ′
0, we have (5.4) for n = n0 + 1. Assume that (5.4)

holds for n0 + 1 ≤ k ≤ n − 1. Then there are constants A,C0, C1 > 0 such that for

j + k + ℓ = n+ p

|ai,jckBik,ℓ| ≤ ACj0Γ

(
j

p
+ 1

)
MCkkk/pBℓ0

(k + ℓ)(k+ℓ)/p

kk/pℓℓ/p

≤MACkBℓ0C
j
1

(j + k + ℓ)(j+k+ℓ)/p

ℓℓ/p

≤MACnnn/p+1

(
B0

C

)ℓ−p(
C1

C

)j
Bp0
ℓℓ/p

(
n+ p

n

)n/p+1

≤MAA1C
nnn/p+1Bp0

(
B0

C

)ℓ−p(
C1

C

)j
1

ℓℓ/p

(
A1 = sup

n

(
1 +

p

n

)1+n/p
)
.

By taking C so large that

AA1mB
p
0

∑
{ℓ+j>p}

(
B0

C

)ℓ−p(
C1

C

)j
1

ℓℓ/p
≤ A′

2
,

we have

m∑
i=1

∑
{
(j,k,ℓ);
j+k+ℓ=n+p,
ℓ+j>p

} |aijckBik,ℓ| ≤MAA1mC
nn1+n/pBp0

∑
{ℓ+j>p}

(
B0

C

)ℓ−p(
C1

C

)j
1

ℓℓ/p

≤ A′MCn
n1+n/p

2
.

Thus we have by |(A (p)(0)/p!) + n
∑m
i=1 ai,0bi,p| ≥ A′n

|cn| ≤
M

2
Cnnn/p +

C ′
0
n
nn/p

A′ ≤ M

2
(Cn + C ′

0
n
)nn/p ≤MCnnn/p. □

Theorem 2.3 follows from Propositions 5.2 and 5.3.
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