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Abstract. A Functional equation > ", a;(2)u(p;(2)) = f(z) is consid-
ered. First we show the existence of solutions of formal power series. Second
we study the homogeneous equation (f(z) = 0) and construct formal solutions
containing exponential factors. Finally it is shown that there exists a genuine
solution in a sector whose asymptotic expansion is a formal solution, by using
the theory of Borel summability of formal power series. The equation has
similar properties to those of irregular singular type in the theory of ordinary
differential equations.

1. Introduction.

In this paper we study a functional equation
Y aiz)ulpi(2) = f(2), (L.1)
i=1

where {a;(2)}2, (m > 2) and f(z) are holomorphic in a sector with vertex z = 0 or
formal power series of z, and {g;(z)}!™, are holomorphic in a neighborhood of z = 0
with ;(0) = 0 and ¢} (0) = @5(0) = --- = ¢!,(0) # 0. We study the existence of a
solution of formal power series u(z) = > - 2" In case {a;(2)}I", are constants, it
is studied in Ouchi [5]. Next we study the homogeneous case f(z) = 0. We obtain
the existence of a formal solution in the form of ¥(z) = e¥(1/#)2%w(z), where 9)(t) is
a polynomial of ¢ and w(z) = > .2 2™ with @(0) = 1, which is not studied in [5].
We also show under certain conditions of {a;(z)}™,, {p:i(2)}, and f(z) that there
exists a Borel summable function u(z) (w(z)) in some sector such that u(z) ~ u(z) (resp.
w(z) ~ w(z)) asymptotically and u(z) (resp. v(z) = e¥(1/2) 2%w(2)) satisfies (1.1).

We give notations and definitions. The set of all holomorphic functions on a region
U c Cis denoted by O(U). The set of all integers is denoted by Z and Z>o = {n € Z;n >
0}. Let 0 € R and R,0 > 0. Define S(0,6,R) = {#;0 < |z|] < R;|argz — 0] < 0} and
5(0,6) = {z;| arg z—0| < d}. We also define Sfpy(0,0) = {z € S(0,6);0 < |z] < p(arg 2)},
where p(-) is some positive continuous function on (6 — §,60 + d), which is a domain of
sector type with vertex z = 0. The set of all formal power series of z is denoted by C[[z]].

We define a subspace of C[[z]].
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DEFINITION 1.1.  Let s > 0. A formal power series f(z) = > " fn2™ is said to
be of Gevrey order s, if there exist constants A, C > 0 such that

[ful <AC"T(sn+1) for n € Zso. (1.2)
We denote by Cy,y[[2]] the set of all formal power series of z of Gevrey order s.

If s = 0, f(z) converges in a neighborhood of z = 0 and the set of all convergent
power series of z is denoted by C{z}.

2. Formal solutions.

Let
L(z,u(2) = Y ai(2)u(pi(2)), (2.1)
i=1

where {¢;(2)}1<i<m (m > 2) are different holomorphic functions in a neighborhood of
z = 0 such that ¢;(0) = 0 and

£1(0) = ¢5(0) = -+ = ¢, (0) # 0. (2.2)

We may assume ¢;(0) = 1 and ¢1(z) = z. In this section we assume a;(z) € C[[z]]
(1 <i<m). Let

0i(z) = z<1 + Zbi,jzj), i>2, (2.3)
Jj=p

where b; , # 0 for some i > 2.

2.1. Solutions of formal power series.
Let f(z) = Yo fnz™ € C[[2]] and consider

L(z,u(z)) = f(2). (2.4)

First we have the existence of a solution of formal power series of (2.4). Let

A(2) = ai(2). (2.5)
i=1

THEOREM 2.1.  There ezists a unique solution u(z) € C[[z]] of (2.4), if the following
(1) or (2) holds.

(1) There exists ¢ € Z>o with 0 < q < p such that @/(0) = --- = @1 (0) = 0,
A D(0)#0 and fo=fr == fg-1=0.
(2) #(0) = =P D(0) =0, (P(0)/p!) + 13, ai(0)biy) # 0 for n € Lo

and fo=fi=---= fp_1=0.
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THEOREM 2.2.  Suppose o/ (0) = = P 0) =0, 3", a0, # 0 and
fo=fi == fp = 0. Then for given ¢y there is a unique solution u(z) € C[[z]]
of (2.4) with u(()) = cp.

Let u(z) = >°,° ,cnz™ be a formal solution of (2.4). Before proofs of Theorems 2.1
and 2.2 let us get relations of {c,}nez.,. Let ai(z) = 377 a;;2’ and define constants
{Bkb k.l €Z>0,1<i<m}by

oo k %)
(or(2))* =zk(1+zbi,jzj) =z’“(ZBz,ezf), (2.6
Jj=p £=0
where

B,i,o =1, B}M =0 (1<t<p), B,Q,p = kb; . (2.7)

o) = (L a

We have

7=0 k=0

- (2.8)
= Z < ai,jckB,i7g)z”.
n=0 \j+k+l=n
Let us consider the set
N, =10, k, E)€Z>0,j+k+€:n,€:0,p,p+l, ------ }. (2.9)
More concretely
No ={(0,n,0)} U{(1,n = 1,00} U---U{(p,n — p,0)} U{(0,n —p,p)} (2.10)

U{(jvk7€) E-/\[n;k < n—p}.

From (2.8) and (2.10)
(Sa)en (S Jens b (S Jeuato
i=1 i=1 i=1
+ <Za¢7p_1)cn_p+1 + (Zaw + ZaivoB;—p,p) Cn—p + ( Z ai,jckBli@,Z)
i=1 i=1 i=1

1<i<m
Jj+k+i=n

k<n—p
p—1 . .
) (0) o/ ®)(0)
= ; Tcnfs + p' + (n - p) ( ; ai,Obi,p> Cn—p

+ ( Z ai,jckB,i}f) = fn
1<i<m

jHk4l=n
k<n—p

(2.11)
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PROOF OF THEOREM 2.1. We have for case (1)

o7(9(0) ;
q!(cnq + ( Z ai,jckBk’Z) = fn (2.12)

1<i<m
jtk+el=n
k<n—q

and for case (2)

(@%(p)(()) +(n —p)(i::ai,obi,p>>cn—p + ( Z ai7jckB/i€,Z) = fo. (2.13)

|
p: 1<i<m
jt+k+l=n
k<n—p
The coefficients {cy, },>0 are uniquely determined. d

PROOF OF THEOREM 2.2. We have

(n p)<2ai7obi,p) Cnp + < Z am-ckB,i’e) = fn. (2.14)
i=1

1<i<m
j+k+l=n
k<n—p

¢o is arbitrary and ¢,—p(n > p+ 1) are determined by (2.14). O
As for the estimate of the coefficients of formal solutions in C[[z]] we have

THEOREM 2.3. Let u(z) € C[[z]] be a formal solution of (2.4). Suppose that
a;i(z) € Cyypyll2]](1 <@ <m) and f(2) € Cyiypy[[2]], and the following (1) or (2) holds.

(1) (0) #0.
(2) Z(0)=--=PD(0)=0 and 3", a;(0)b;, # 0.
Then u(z) € C[[2]] belongs to Cy1/py[[2]]-
We give a proof of Theorem 2.3 in the Section 5.

REMARK 2.4. Let u(z) € C[[z]] be a formal solution of (2.4). We may assume that
u(z) satisfies u(0) = 0, by considering u(z) — ¢y as an unknown function. More generally,
for a given N let v(z) = u(z) — Zg;ol cnz". Then we may assume that u(z) satisfies
u(z) = O(zN), by considering v(z) as an unknown function.

Suppose that (2) in Theorem 2.3 holds. Then there exists ng € Z>¢ such that
(2@ (0)/p!) + n(>0, ai(0)b; ) # 0 for n > ng. If u(z) € C[[z]] with u(z) = O(z™)
satisfies L(z,u(z)) = 0, then u(z) = 0.

2.2. Formal solutions of a homogeneous equation.
In this subsection we construct solutions of a homogeneous equation

> ai(z)u(pi(z)) = 0. (2.15)
i=1
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THEOREM 2.5.  Suppose that «/(V(0) =0 for 0 <i<p—1and > 1", a;(0)b;, # 0.
Then there exist a constant o and a formal solution u(z) = z%w(z) of (2.15), where
w(z) € C[[z]] with w(0) = 1.

PROOF.  Set u(z) = z*w(z) and let us find «. From

u(pi(2)) = (¢i(2)) " wlepi(2))
21+ biy? + O 1)u(in(2))
2%(14 ab; pz? + O(2P1) ) w(p;(2))

we have

m

Z ai(2)u(pi(2)) = 2* Z gi(2)w(pi(2)),

i=1

where g;(2) = a;(2)(1 + ab; 2P + O(zPT1)). Put G(z) = 3 gi(2). Then

m i S 4 s—{
G(S) (Z) = Z (Z (Z) %az(z)%(l + Olbimzp + O(Zp+1))> ,

=1 =0

G#)(0)=0for 0 < s < pand

m

GP(0) = ap! < Z ai(O)bim) + i al(_P)(o).

Take « such that G®)(0) = 0. Thus we get an equation > i g;(2)w(pi(z)) = 0 with
G®(0)=0for0<s<pand > ", gi(0)b;p=> 1", a;(0)b;, # 0. It follows from Theo-
rem 2.2 that there exists w(z) € C[[z]] with w(0) = 1 such that >\, g;(z)w(pi(2)) =0
and u(z) = z%w(z) is a desired formal solution of (2.15). O

THEOREM 2.6.  Suppose that there exists & such that > ;- a;(0)e Pbirso =0 and
S ai(0)b; pe Phirto £ 0. Then there exists a formal solution of (2.15) in the form

C, Cpy

u(z) = exp (zp + o1

—|—---+CZ’1>ZQ'UJ(Z), (216)

where Cp, = & and w(z) € Cl[z]] with w(0) = 1.

PROOF. Put

Cp . Cpe c
u(z) = exp (Z;’ + 2t ;)v(Z) (217)

zP
and let us determine constants {C;}’_,. It follows from

z
@i(2) = 2(1+ bip2P + O(z"*1)) = 1 —b; 2P + O(2Pt1)
i,p
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and
1 1 k
o = (b £ 0G)
= Zik — kb p2P7F + O(2P7FFL)
that
Ler
i) = o0 (3 % 402 ol
k=1
P 2.18
wz(z) = —ch(/ﬂbi,pzp_k —l—O(zp_k‘H)), ( )
k=1
’lbl(O) = —Cppbi’p.
Hence we have
m m p
C
> aluled) = Y astz)esn ( 305+ 6(a) o),
i=1 i=1 k=1
Thus we get the following functional equation
ST Ai)ulpi() =0, Ai(z) = ai(2)e" ). (2.19)
i=1

Set G(2) = 3" | Ai(2). We determine {Cx}7_, such that G(*)(0) =0 for 0 < s < p— 1.
By G(0) = 0 we have

m

> ai(0)e P =0, (2.20)

i=1

which has a simple solution C),, = &. Then v,;(0) = —pb; ,& and we have

G'(2) =Y (@)D 4 ai(2)e" (),
G'(0) = fj(a;w)ew +a;(0)e? V9(0)),

s
I
-

$;(0) = = Cp—1(p — Dbip + Ci(p),
where C;(p) is a constant determined by C,. Hence

2121(612 (O) + ai(O)CZ- (p))e—Pbi,,pEo
(p = 1)(X2i%, ai(0)bs pe=Phimto) -

Assume that {Ck}p—s11<k<p are determined. Then

Cpy =

(2.21)
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P
Z Cy (kby 2P % + O(zP7F 1))
k=1

_ (2.22)
j{:<7k (kbi 2P ™% + O(2P~F 1))
k=1

+ a function determined by {Cj}p—s+1<k<p-
Ife<s—1, wy)(O) is a constant determined by {Cj}p—s+1<k<p. We have
Z (Z) (ai(2)) =9 (¥ (=))©

S

m s—1
ai(2) n<s+§:§:(? )0 (82O

i=1 i=1 £=0

G (z) =

and

0= Yo (e u )
:—_; constant determined by {Cr}j_, .-
=—(p—9)s! ( i ai(O)biypepbi’Pg‘)) Cp—s
+a constantzczljatermined by {Ck}oep st

We can take C,_ such that G(*)(0) = 0 and {Cj,};_, are successively determined. Thus
we get

Z Ai(z)v(pi(2)) =0, (2.23)

where G(z) = > A;(2) satisfies

GH0)=0 0<s<p-—1,
D Ai(0)bip = ai(0)bipePPrE £ 0.
=1 i=1

It follows from Theorem 2.5 that there exists a formal solution v(z) = z®w(z) of (2.23)
with w(z) € C[[z]] and w(0) = 1. Hence u(z) = exp(D_F_, Csz%)2%w(z) is a desired
formal solution of (2.15). O

(2.24)

2.3. The similarity between solutions of the functional equations and
irregular singular solutions of ordinary differential equations.

The existence of solutions of formal power series are shown in Theorems 2.1, 2.2

and 2.3. Theorem 2.6 is the existence of formal solutions of the homogeneous equation,
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which are represented with exponential factors. These facts are similar to the properties
of solutions of ordinary differential equations with an irregular singularity at z = 0. Let

d
P=z—_A 2.25
H - A() (2.25)
be a system of ordinary differential operators, where A(z) is an n x n matrix whose
entries are holomorphic in {|z| < r}. Assume that z = 0 is an irregular singular point of
(2.25), necessarily k > 2. The following (a) and (b) are known.

(a) If u € (C[[z]])" satisfies Pu € (C{z})", then there exists v > 0 determined by P
such that u € (Cyy /4y [[2]])"

(b) The homogeneous equation PY = 0 possesses a formal fundamental matrix solution

Y(2) = Y(2)zFe@®). (2.26)

=1/ and not a

Here Q(z) is a diagonal matrix whose entries are polynomials in z
constant matrix, I is a constant matrix and the entries of ¥ belong to C[[z/7]],

where o is a positive integer.

For the theory of ordinary differential equations about these topics we refer to Balser,
Braaksma, Ramis and Sibuya [3] and Wasow [6]. We notice that Theorem 2.3 corresponds
to (a) and Theorem 2.6 corresponds to (b).

3. Borel summability.

In this section we give fundamental properties of Borel summability, Laplace trans-
form and Borel transform. For the details of the topics in this section we refer to Balser
[1], [2]. First we define a subset of C[[#]].

DEFINITION 3.1. Let v > 0. We denote by C,g{z} the set of all w(z) =
Yoo o cnz™ € C[[2]] such that there exist a sector S(6,d,r) with 6 > 7/2v and a holo-
morphic function W(z) on S(6, §,r) which satisfies

N-1 N
W(2) = > enz"| < Ach<7 + 1) ||V (3.1)

n=0
in S(0,6,r) for all N =1,2,---. We say that w(z) is y-Borel summable in a direction 6.

From estimate (3.1) C, g{z} C Cyy/43[[2]] holds. It follows from § > 7/2v and (3.1)
that W(z) is uniquely determined for w(z). So W (z) is called the y-Borel sum of w(z)
and we may identify W(z) with w(z). We denote (3.1) by

W(z) ~ chz". (3.2)
n=0

For our purposes we give notations of sectors in &-space. Put S*(6,6, R) = {£;0 < |¢| <
R,|arg€ — 0] < 6}, 57(0,0) = {&]argg — 0] < &} and 57, (0,0) = {&|argg — 0] <
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plarg &)}, where p(-) is some positive continuous function on (6 — 4,6 + ).

DEFINITION 3.2. Let v > 0 and S* = S§*(6,9). The set of all ¢p(§) € O(S*) with
[6(§)| < Aexp(cl¢]”) for &€ 5" N{[{| =1} (3-3)
for some ¢ > 0 is denoted by Exp(~, S*).

We define Laplace transform, Borel transform and convolution. Let ¢(§) €
Ezp(vy,S*), S* = 5%(0,6), and there exist A, e > 0 such that

()] < Alg]™ for £ 5™ N{l¢] <1} (3.4)

Then the ~-Laplace transform £ g¢ is defined by

7 c>oei9eX B § v , . -
(C00)) = [ p< (£) )é(&)dﬁ d=a e, (35)

which is holomorphic in a region Syoy(0,7/2y + 6). Let ¢(z) be holomorphic in
Stoy(0,7/27+6) (0 < 0 < m/2v) with [1(z)] < Clz|°(c > 0). Then the y-Borel transform
B, .7 is defined by

B0 = 5 [ (£) vl (36)

where C is a path in Sgy (6, 7/27+0) from 0 exp(i(6-+7/2v+40")) to 0 exp(i(6—7/2y—0d"))
(0 < ¢ < 6). We denote (B,,97)(§) simply by $(€) which belongs to Exp(7, S*(6,))
for any 0g with 0 < dg < ¢'.

Let wo(&) be a holomorphic function on Q = {0 < |§| < R} U S*, §* = S*(0, ),
such that

=Y @& in{0< ¢ <R},

n=1

(3.7)
lwo(§)] < Aexp(cl¢|”) in S*N{|¢] > 1}

Then

W) = [ e ( - (5)> wo(E)de” (33)

is 7-Borel summable in a direction 6 such that wgy(£) = W (€) and

Z L(n/y)2" (3.9)

Let ¢i(§) € O(57;(0,0))(i = 1,2) with |¢;(§)] < C[¢]*77. We define the 7-
convolution of ¢ (&) and ¢2(€) by
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3
(612020 = [ al€ =) ol €€ Sipy(0.5). (310)
The followings hold.

PROPOSITION 3.3.  Let S* = §*%(0,9) and ¢;(§) € Exp(v,S*) with |¢;(§)| <
ClE|“7(e>0) (:=0,1,2) on {£ € 5*0< ¢ <1}. Then

By gL 600 = do,
(£4,001)(Ly,002) = L0(61 % 62). (3.11)

The following Lemma is given in Ouchi [4], [5].
LEMMA 3.4.  Let 0 <y < k. Let ¢;(§) € O(St0y(0,9)) (i = 1,2) with

Ci‘ﬂsi—*/edél”

|¢:(E)] < TG (3.12)
where 1,82 > 0,¢ > 0. Then (¢, il;qi)g)(g) € O(S103(0,9)) and
CLCfefortos el

|(é1 * $2)(§)] < (51 7 52)/7) (3.13)

4. Integral representation of solutions.

The aim of this section is to show that formal solutions are Borel summable. For
our aim we introduce a condition. Let by, =0 and B = {b; ,;1 <i <m} C C.

Condition B. a1(0) #0, b;, # 0 for 2 <i <m and {0} is a vertex of the convex
hull B of B.
First we give a lemma that follows from Condition B.

LEMMA 4.1. Assume Condition B. Let
h(§) = Zai,oepbi’pgp, aio = a;(0). (4.1)
i=1

Then there exist a sector S*(0o,£0) and positive constants ro,d and M such that
(1) |ePbirs”| < e (i > 2) on S*(0y,e0),
(2) h(&) # 0 on S*(0o,c0) U {0 < |€| < 1o}, and if h(0) # 0, |h(€)|~! < M holds on
S* (0o, e0) U{|E| < ro}-

We refer the proof of Lemma 4.1 to [5]. In the following of this section we assume
Condition B. Let 6y and S* = 5*(6p,e0) be those in Lemma 4.1 and g9 > 0 be so small,
if necessary. Let us recall &7 (z) = > 1", a;(2).

THEOREM 4.2.  Assume Condition B and suppose the following (1) or (2) holds.
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(1) «(0) #0,
(2) F(0)=---=FPV(0)=0, 3, a;(0)b, # 0.

Then any formal solution u(z) € C[[z]] of (2.4) is p-Borel summable in the direction 6y,
provided a;(z) (1 <i<m) and f(z) are p-Borel summable in the direction 0y

COROLLARY 4.3.  Assume Condition B. Let w(z) € C[[z]] be that in Theorem 2.5
or Theorem 2.6. Then w(z) is p-Borel summable in the direction 0y, provided a;(z) (1 <
i < m) are p-Borel summable in the direction 0.

Since the equation that determines w(z) € C[[z]] in Theorem 2.5 or Theorem 2.6
satisfies the condition (2) in Theorem 4.2, Corollary 4.3 follows from Theorem 4.2.

In the following of this section we assume {a;(z)}7, and f(z) are p-Borel summable
in the direction 6y. We may assume f(0) = 0 and a formal solution u(z) of (2.4) satisfies
1(0) = 0. In order to show Theorem 4.2 we try to represent u(z) in the form

u(z) = /Oooei

Let us proceed to obtain an equation that u(§) satisfies. The following procedure is
similar to that in [5]. By ¢;(2) = 2(1 + b; ,2P + O(2PT1)), 9;(2) is determined by

1 —pb; 2P — 2P (2)

exp <— <§)> Q(E)de",  de” = pet e, (4.2)

oil) - ()= 06), (4.3
We have
wo@) = [ e (= S b+ e alae
e coe’%0 P 124
= [T e (=5 e Gaew
and

m oo coetfo 0 pbi &P
SO WEHEHEEEEEINES e

Let a;(z) = a;0 + al(z), where a;0 = a;(0) and a}(z) = O(z). By using the p-Borel
transforms of a}(z) and ¢;(2),
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*

N [T [ eplepbint”
o () (T (£ )

l
—~ i,pE7
2P p p p p Vil

=1 ¢=0
Put
¢ ¢
T T
U, 0,0(8) = a0t o Vi, U108 =7 * (i o ¥i). (4.4)

LEMMA 4.4.  There exist a punctured disk {0 < |§] < r} and a sector S* (0o, d) such
that in Q = {0 < [¢] < r} U S*(0,9)

Y4
~—" »
|as 0ty - x| < CHE[ TP (e p) (0> 1),
P p

)4
—~

(@ 5 by x - x| < O Pl (04 1) /p) (£ 0)
P p P

(4.5)

holds for some positive constants C and c.

PRrROOF. Since ¢;(z) and a}(z) are p-Borel summable in the direction 6y and
1;(0) = a(0) = 0, there exist a domain  and positive constants C; and ¢ such that
[ (€)1, a4 (€)] < 1€ Pe€l” in Q. The estimate (4.5) follows from Lemma 3.4. O

Define operators &y and 2, by

m Pl PYLE
P = Z; ;0.0 * (56'1} ) )5
. fpeepbggp (4.6)
Qv = Z W) ; <£|v(§)>.
i=1 )
Then we have formally
> ai(z)ulpi(2))
=t (4.7)

= /Oooei"o exp ( _ (§>p> (h(g) + i P+ ige)ﬁ(g)dgp_

Since f(z) is p-Borel summable in the direction 6y,
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)= [ " o ( - (ﬁ)p> f(eyder. (1.9

Thus from >, a;(2)u(pi(z)) = f(z) we obtain a convolution equation that u satisfies,
by denoting u by v,

h(&)v + Z Pov + Z Q= J. (4.9)
=1 =0

In case {a;(2)}1<i<m are constants, the terms 2,v (¢ =0,1,---) do not appear in [5].

Let us construct a solution of (4.9). There are 2 cases. The first one is 2/(0) # 0,
that is, h(0) # 0. We can construct a solution in the almost same way as the case
St a; #0in [5]. A solution v(€) = Y07 v, (&) is constructed as follows.

h(€)vo(€) = F(€),

= — 4.10
BEn(€) + 3 Prvn i+ 3 Do i1 =0, (410
=1 £=0

Dividing by h(£), we obtain v,(£). By using Lemmas 4.1 and 4.4 and applying the

method used for the case >, a; # 0 in [5] to this case, we obtain an estimate of v,,(§),

a representation in a punctured disk and the convergence of v(§) = Y07 v, (§), which

is a solution of (4.9). Hence we have the following Proposition and Theorem.

PROPOSITION 4.5.  Assume <7 (0) # 0 and Condition B. Then there exist a sector
S*(6o,¢€0), a punctured disk {0 < || < ro} and a unique solution v,(§) € O(Q), Q =
S*(6o,e0) U{0 < €] <70}, of (4.10) such that

[oa(€)] < AC™ [P (0 + 1) /) (4.11)

for some positive constants A,C and ¢, and

o0

(@)= Y i (412)

j=n+1
in {0 <[] < ro}.

THEOREM 4.6. Assume </(0) # 0 and Condition B. Then there exist a sector
S*(6o,€0), a punctured disk {0 < |§] < ro} and a unique solution v(§) € O(R) of (4.9),
Q = 5*(0p,e0) U{0 < |€| < ro}), such that

w(€)] < Al¢]P Pkl e (4.13)

and

v(€) = v {0 <[¢] <ro}. (4.14)

=1
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By Theorem 4.6 there exists a solution v(&) of (4.9) with (4.13) and (4.14). Define

60

U(z) = / T exp(— (/)P )ulE)der. (4.15)

Then it is a solution of (2.4) that is p-Borel summable in the direction 6y and its as-
ymptotic expansion coincides with the unique formal power series solution. Hence The-
orem 4.2 holds under the condition (1).

Next we study another case

(0)='(0)=---=PV0) =0, > ai(0)b, #0. (4.16)

The condition Y., a;(0)b;, # 0 means that & = 0 is a zero of h(&) with order p and
there exists ng € Z>( such that

m
n+ Rz ® (0 p'Zal bip) >0 for n>ng. (4.17)
i=1

In this case we construct a solution of (4.9) locally and show that it is holomorphically
extensible to a sector S*(6y.g¢). The method of construction of a local solution of (4.9)
is different from that in [5]. We note

ZQHZJJFGH al/(z) = O(z"+),

>itiai;=0for0<j<p-1and

pﬁ”((Zaz obi, ) + fn(é)), hi() = O"). (4.18)

We have
h(§w + Zow
= p&¥ ((Z ai,Obi,p> +hi(§ ) )+ ai;j I‘ (ePPir p(€))
i=1 Jj=11i=1
Yl (@ ()
=1
=p€p((2ai,obz~,p) " m(&))w(&) (L) £ue
i=1 o1

Put
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Qw—p§p<(2alob2p>+h1 ) (Zaw); )

i—p
. ) bi p&F L, e
s J;l i=1 i F(J/p) ; ((ep 1)w) T ;ai z (e? w
Then
ML Pt ) 2= 2k Dok ) Tk ) D (4.20)
“ =0 =1 (=1

LEMMA 4.7.  Let w(§) € O{0 < [¢| < r} with |w(&)| < A|E]*7P/T'(s/p) (s > 0).
Then there is a constant C independent of w(&) such that

| 2pw| < ACIE]*™/T((s + 1) /p).- (4.21)

PROOF.  We have estimates [£[17/T'(j/p) < Cy|¢|*=7/T(1/p) for j > 1, |(e?*" —
Duw (&) < ACys[€]*/T'(s/p + 1) and [a} (§)| < AC2[¢]/T(1/p +1) in {0 <[] <r}. Hence

gjip * epb;EP —1Nw A035|£‘s+1 AO4|§|S+1
G 3 De@)| S Fr 0/p D) S TG+ D)
S (pbLEP ACs €[> AC,J¢]* !
@ O S [ 5D S TG+ D7)
and we have (4.21). O

LEMMA 4.8. Consider
p€¥ ( Z ai,obip + hl(f))w + (Z Gip w) =9(), (4.22)
=1 i=1

where 331" | aiobip+hi(§) # 0 in {[§] < R}. Suppose g(§) = 3°72,, 9;& is holomorphic
in {|€] < r} (r < R) with |g(&)| < A|¢|™, where ny > ng. Then there exist a unique
holomorphic solution w(§) = Z] n1 c;&97P in {0 < |¢] < r} and a constant C > 0
independent of w(§) such that |w(&)| < AC|E|™~P.

Proor. Let v(¢) = (1 xw)(€). Then (d/d€)v(€) = p&?~'w(€) and by > 1" | a;p, =
P
2/P(0)/p! the equation (4.22) becomes

§'(€) + A(§)v(§) = G(&), (4.23)

where
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() = W(O)/p!(fj wsabin + n(©))

i=1

= Ao + £B(6), =P (0 /p'<2a7 obi 7p>, (4.24)

)/ ( g ai,0bip + hl(i)) :

There exists a holomorphic solution of (4.23) such that v(¢) = Y07 v/ £™ and

3 3
v(€) :g_AU/ exp (—/ B(s)ds)7’A°_1G(7)dT. (4.25)
0 T
For a < arg& < (3, by putting Af = RA,,
.l . ACy|€|™
< ACole|™4 mAA =gy < 2200 4.2
)] < Ay~ [ it < SCUEL (1.26)
and there is a constant C such that
0" (&)] < [A©)v(&)] + |G (&I < ACL[E™. (4.27)

Since w(§) is single valued holomorphic in {0 < |¢| < r}, there is a constant C' > 0
independent of w(§) such that

[w(€)| < [€7PV'(€) /p] < ACIE[™ P (4.28)
O

We construct a solution v(§) = Y7 (v, (§) of (4.9) in {0 < |§] < r} under the
condition (4.16) as follows.

Q*UO = f(§)7
2.v1 + 36’00 + A9 = 0,
1 (4.29)
Qvn-i-e@(]vn1+Z<@evne+zgﬂ}ne1—0 n > 2.
/=1 =1

PROPOSITION 4.9.  Suppose (4.16) holds. Let f(¢) € O({|¢| < R}) with f(£) =
> e tpt 156777, Then there exist r > 0 and v,(§) € O{0 < |¢] < 1}) (n € Z>o)
satisfying (4.29) such that the following (1) and (2) hold.

(1) There ezist positive constants A and C such that

Aon|§|n+no+1 p

a1 S Tt ne ¥ D)

(4.30)

and



A functional equation with Borel summable solutions and irregular singular solutions 727

oo

(@)= > v &N (4.31)

j=n+no+1

(2) v(&) = X0 gvn(§) converges in {0 < |§| < r}. It takes the form of v(§) =
Z;‘;nO_H viEI7P and is a solution of (4.9) in {0 < [¢] <r}.

PROOF.  Since 2%v(&) = f(£) and |f(£)] < Cyl¢[™0+?, (4.30) and (4.31) hold for
n = 0 by Lemma 4.8. We assume (4.30) and (4.31) hold for 0 < n < N — 1. Then by
Lemma 4.7

AclcN—l |§|N+n0+1

Dlon_1| < . 4.32
260Nl < TN T, + 1) (432)
We have
. pt _ —04n,
|6Pbl,p£ vN72| - ACN éCg|£|N {+no+1
Al “T(N—={4+nog+1)/p)e
for £ > 1 and
AcécNfé N4no+1
| Pron_e| < 4 ] ;
T((N 4+ no+1)/p)0! 433
AC’Z+1CN—Z—1|£‘N+7L0+1 ( ' )
|Qpon_p—1]| < —2 ;
T((N +ng +1)/p)0!
by using Lemmas 3.4 and 4.4. Hence for a large C > 0
A020N71‘£|N+no+1
2*un| < . 4.34
2N S (N o+ D7) .
ACN |g|N+no+1-p .
From Lemma 4.8 |un(§)] < Wﬁi)/p) with
(@)= > v (4.35)
j=N+no+1

in {0 < |¢] < r}. Tt follows from (4.30) and (4.31) that v(§) = D7~ v, (£) converges and
v(&) = 3252, 11 viE TP, which is a solution of (4.9). O

We have constructed a solution v(§) of (4.9) in {0 < |£| < r} under the condition
(4.16). As for the holomorphic extension of v(§) we have

THEOREM 4.10.  Assume Condition B. Let v(€) be that in Proposition 4.9. Then
v(&) can be holomorphically extensible to Q@ = {0 < [£] < r} U S*(0p,00) such that
[0(&)] < Al¢|'Peclel”.

We can show the holomorphic extension of v(§) to an infinete sector S*(6y, do) and
v(€) € Exp(p, S*) in the same way as the case Y .- a; = 0 in [5]. Hence we refer to [5]
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for the details.
Theorem 4.2 for case (2) follows from Theorem 4.10. By Remark 2.4 we may assume
fO(0) =0 for 0 <n < p+mng and u(z) = Y omengg1 Cn2™ € CJ[[2]] for a large ng. Let

v(€) € O{0 < |€] < r}US*(bp,d0)) be the solution of (4.9) in Theorem 4.10. Then we
can define as case &7 (0) # 0

v - | e (— (j)p>v<§>d§p7

which is a solution of (2.4) and p-Borel summable in the direction 0y, and U(z) ~ u(z).
P

Finally we give a simple example. Let

u(z) +u : ==
Yi—zr) 1-2’

e e (4.36)
Then p-Borel transform of z/(1 — z) is f(f) and
ooe'? —(&/2)P 7y 3
u(2) =/0 eTeg;(g)dgp (g <ph < 2”) (4.37)

and exp (2n + 1)7wi/zP (n € Z) are homogeneous solutions.

5. Estimates of coefficients of solutions of formal power series.

In this section we give a proof of Theorem 2.3. The following lemma is given in [5].

LEMMA 5.1.  Let 9(2z) be holomorphic in a neighborhood of z = 0 such that (z) =
143272 b;27 for p > 1. Define constants { By} by 1(2)" = 372 By ¢z for each k > 1.
Then there exists a positive constant By such that

(k + ¢)(k+0/p

4
|Brel < Bo™—7, 7w

(5.1)

Since By g = 1, the notation 2/ means 1 for £ = 0. We have

PROPOSITION 5.2.  Assume o7 (0) #0. Let u(z) = >.°2, c,2™ € C|[2]] be a formal

n=1
solution of (2.4). If a;(z) (1 < i < m), f(z) € Cpipyl[2]], then there exist positive
constants M and C such that

|en| < MCn"P, (5-2)
PrROOF. The coefficients {cy },>1 are determined by

o (0)en, +zm:< > ai,jckB,ge) = fn. (5.3)

i=1 jt+k+l=n
k<n
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Since a;i(z) = Y[ gai 2, f(2) = 2252, fj7) € Cyaypyl[2]], there exist constants A, Cy
and F such that |a; ;| < ACIT(j/p + 1) and |f,| < CFT(n/p + 1). We may assume
|ful < CE"n™P (n > 1). We show (5.2) by induction. Since ¢; = f1/47(0), by taking
M > 2/|47(0)| and C > C{, we have (5.2) for n = 1. Assume that (5.2) holds for
1 <k <n-—1.1It follows from Lemma 5.1 and Stirling’s formula that there exists C; > 0
such that for j+k+{=n

(04 E)kt0/p
kk/ppt/p

(j + k + 0)GtEt0O/p
ﬂ/p

. C1\? nn/?
“wie(3) (@)

Take C' > By, C; so large that Am EZHZI(BO/C)Z(CH/CV o

|aijer Bi.ol < ACJT (p + 1) MC* kP B

< MAC*B§c]

< |7(0)|/2 holds. Then

S i n, n ‘BO ‘ CH g 1
Z Z |G/i,jckBk7g| SMA’ITLC n /p Z (C) (C) m

i=1 j+k+b=n +5>1
1<k<n
2
Hence

C n/'r M "

len| < C" n/pgp 20 < —(C™ + )n”/ngC"n”/p. O
1O 2 0

PROPOSITION 5.3.  Assume «/(0) = --- = /P~ (0) =0 and Y7, a;(0)b;,, #

0. Let u(z) = Y .2, cpz™ € C[[2]] be a formal solution of (2.4). If a;(z) (1 <1i < m),
f(z) € Cpaypyl[2]], then there exist positive constants M and C such that

len| < MCm™/P, (5.4)

PROOF.  From the assumption o7 ®)(0) /p!4+n (31" | a;(0)b; ) # 0 for n > ng (ng €
Z>¢), we may assume by Remark 2.4 that f(z) = 2272, . .1 fuz" € Cryypy[[2] with
| fpn] < CG"n™PH and u(z) =207 . cnz™. The coefficients are determined by

(d@) (Z“z b ’p>>cn +§m:< 3 ai’jckB;;,,J = fntp- (5.5)

=1 Jjt+k+e=n+p
k<n

We show (5.4) by induction. Put Ag(n) = &P (0)/p! + n(>.1", aiobip). Then there
exists A" > 0 such that |Ag(n)| > A'n for n > ng+1. Since ¢po11 = frg+p+1/A0(no+1),

Fy

no+1 n
|eng+1] < Alng + 1] = 0" (ng + 1)motD/pHL
0
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By taking M > 2/A’ and C' > C{, we have (5.4) for n = ng + 1. Assume that (5.4)
holds for ng +1 < k < n — 1. Then there are constants A, Cy,C; > 0 such that for
j+k+l=n+p

(k + 0)+0/p
kk/ppt/p

(] T+ ka4 g)(j+k+l)/p
ﬂ/p

/—
< Al (Bo) T (G
- C ﬂ/f’
J

ern(2) 6

|la; jexBi | < ACé’F(J - 1) MCk kP B
’ p

< MAC*B§c]

>n/P+1

1 D 14+n/p
i (= (1+7)

By taking C' so large that

B\“"P/ci\' 1 A
P Do Sy L o4
AAmB{ E <C) <C> ﬂ/pg 5

{t+ji>p}
we have
m L—p J
. B C 1
Z Z |laijck By ] SMAAlmC”nH"/”Bg Z (;) (C’l) 77
i=1 ((§,k,0); 0+j
{;J-&-k-&-)@:n-i-p,} {ers=r)
l+j>p
1+n/p
<AMmen = 5

Thus we have by |(«7®)(0)/p!) +n 31" | aiobip| > A'n

C nn/p

len| < *C" Pt —a

M n
<5+ CyMynP < MC . O
Theorem 2.3 follows from Propositions 5.2 and 5.3.
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