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Abstract. We establish an edge of the wedge theorem for the sheaf
of holomorphic functions with exponential growth at infinity and construct
the sheaf of Laplace hyperfunctions in several variables. We also study the
fundamental properties of the sheaf of Laplace hyperfunctions.

1. Introduction.

In the 1980’s, Komatsu ([5]-[10]) introduced a new class of hyperfunctions in one
variable called Laplace hyperfunctions in order to consider the Laplace transform of a
hyperfunction. By the theory of Laplace hyperfunctions, he gave a new foundation of
Heaviside’s theory on a wider class of functions. A Laplace hyperfunction in one variable
is defined by a difference of boundary values of holomorphic functions of exponential type
along the real axis. Recently, in the paper [1], the authors established a vanishing theorem
of cohomology groups on a Stein open subset with values in the sheaf of holomorphic
functions of exponential type. As a consequence, we had succeeded in localizing the
notion of one dimensional Laplace hyperfunctions, that is, we constructed the sheaf of
Laplace hyperfunctions in one variable (see [1]).

The aim of our paper is to construct the sheaf of Laplace hyperfunctions in several
variables and study its fundamental properties. For that purpose, we establish an edge
of the wedge type theorem for holomorphic functions of exponential type. Namely, we
show pure n-codimensionality of the partial radial compactification R” x C™ of R™ x C™
relative to the sheaf O?p of holomorphic functions of exponential type, and it is the most
crucial step for construction of the sheaf B%p of Laplace hyperfunctions. This kind of a
theorem, i.e., an edge of the wedge theorem for holomorphic functions with bounds, was
first established by Kawai in [4], where he had shown pure n-codimensionality of some
compactification of R™ for the sheaf of holomorphic functions with infra-exponential
growth and then constructed the sheaf of Fourier hyperfunctions. He had effectively
used, in his proof, a duality theorem between complexes of locally convex topological
vector spaces. After his success, the method employed there becomes very common and
develops in showing pure codimensionality relative to several sheaves of holomorphic
functions with bounds, see Saburi ([12]).
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The space of holomorphic functions of exponential type appearing in our study has
also a locally convex topology of a vector space, which is defined by a projective limit
of a sequence of dual Fréchet spaces. The morphisms in the sequence are, however, nei-
ther homomorphisms onto their images nor compact, and hence, the resulting topology
of a vector space becomes very complicated like the one for the space of real analytic
functions on an open subset in R™. Therefore we cannot apply the topological method
mentioned above directly to the case studied in our paper. To overcome this difficulty,
we adopt an algebraic method based on a Martineau type theorem (Theorem 3.1) and
obtain the result after some algebraic computations. At the same time, we also show pure
n-codimensionality of the boundary OR™ x C™ := (R™\ R") x C™ of the radial compact-
ification relative to O;‘p, from which two important properties of B%p follow: Softness
of the sheaf BZP and extendability of a usual hyperfunction to a Laplace hyperfunction.

The plan of the paper is as follows. In Section 2, we shortly review the vanishing
theorem of cohomology groups on a Stein open subset with values in O?p, which was
given in our previous paper [1]. We first recall, for an n-dimensional C-vector space E and
a complex linear space T of holomorphic parameters, the definitions of the partial radial
compactification X = D x T of X = E x T and the sheaf (’)i?p of holomorphic functions

of exponential type on X. Since pseudo-convexity is insufficient to guarantee vanishing
of higher cohomology groups as Example 2.11 shows, to obtain the vanishing theorem,
we introduce the notion of the regularity condition at infinity for an open subset in X.
Then we give the vanishing theorem of cohomology groups and some related results.

The main purpose of Section 3 is to establish an edge of the wedge theorem for O
Before showing the main theorem, we prepare several vanishing theorems of cohomology

eAxp
groups with values in OF. We first show a Martineau type theorem for O;‘p which
is a key of the proof for the edge of the wedge theorem. Then, for an n-dimensional
R-vector space M, we show the edge of the wedge theorem along M x T for O;‘p and
pure n-codimensionality of the boundary OM x T relative to O%P.

In Section 4, we define the sheaf of Laplace hyperfunctions with holomorphic param-
eters and study its fundamental properties, especially, we show that any hyperfunction
can be extended to a Laplace hyperfunction. We also give the canonical embedding from
the sheaf of real analytic functions of exponential type to the one of Laplace hyperfunc-
tions. Softness of the sheaf of Laplace hyperfunctions is shown in the last section.

At the end of the introduction, the authors are grateful to Professor Hikosaburo
Komatsu for the valuable lectures and advises.

2. A vanishing theorem of cohomology groups on a Stein open subset.

The aim of this section is to review the vanishing theorem of cohomology groups on
a Stein open subset with coefficients in holomorphic functions of exponential type. For
the details we refer the reader to [1].

Let n € N and E be an n-dimensional C-vector space with a norm |z| (z € E). We
first introduce the radial compactification Dg of F and the sheaf O?p of holomorphic
functions of exponential type. We denote by E* the set £\ {0} and by Ry the set of
positive real numbers.
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DEFINITION 2.1. The radial compactification Dg of E is defined by the disjoint
union of E and the copy (E*/R;)oo of the quotient space E*/R,. The Dg is equipped
with the topology for which a sequence {xy}ren of points in E converges to a point
x*oo € (E*/Ry)oo if and only if

|zg| — oo and wpx (vg) — z* in E*/R,. (2.1)
Here mpx: E* — E*/Ry is the canonical projection.

Note that it follows from the definition of Dg that any linear mapping on E induces
the one on Dg.

Let S?"~! be the real (2n — 1)-dimensional unit sphere. Then the quotient space
E*/R, can be identified with $?"~! and this fact is often used in subsequent arguments.
Hence the radial compactification Dy of FE is identified with the disjoint union of C"
and the copy S?" 'oo of S?"~! and the topology of Dg is given as follows in this
identification: Let D be a closed unit ball of center the origin in C™ which is considered
as a real 2n-dimensional topological manifold with the boundary S?"~!. We define a
bijection ¢(z) from D to Dg by

z
— e (z € D°),
o(z) = 1l
zo0 € 2" loo (2 € 9D).

Here D° and 0D denote the interior and the boundary of D in C", respectively. Then
Dpg is equipped with the topology so that ¢ gives a topological isomorphism.

Let T be the linear complex space C™ (m > 0) of holomorphic parameters, and
we set X := E x T. We denote by X the partial radial compactification Dg x T of X,
and we also denote by Xo the closed subset X \ X in X. Let (z, t) (resp. (200, t)) be
a system of coordinates of X (resp. X ). A family of fundamental neighborhoods of a
point in X is given by the following sets; for a point (2o, t) € X C X, it is given by

B(z0,t0) :={(2,t) € X; |z — 20| <, [t —to] < €} (2.2)
for € > 0. On the other hand, for a point (2900, tg) € Xoo C X, it is
Gy, t) = ({2 €E;|2| >r, mpx(2) €T} UToo) x {t€T; [t —to| <r~ '}, (2.3)

where r > 0 and T runs through open neighborhoods of 2o in S?"~! = EX/R,.
Let Ox be the sheaf of holomorphic functions on X. We now define the sheaf of
holomorphic functions of exponential type on X.

DEFINITION 2.2.  Let Q be an open subset in X. We define the set O7P(Q) of
holomorphic functions of exponential type on €2 to be the set of all holomorphic functions
f(z, t) on QN X such that, for any compact set K in Q, f(z, t) satisfies the exponential
growth condition

£ (2, t)] < CielxlAl ((z,t) e KNX) (2.4)
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with positive constants Cx and Hy. Let us denote by (’);‘p the associated sheaf on X
of the presheaf {O7"(Q)}q.

Note that the growth condition of f(z, t) is imposed only on the variables z. It is
easily seen that the restriction of the sheaf O??p to X coincides with the sheaf Ox.

We recall the regularity condition at oo for an open subset in X which plays an
essential role in showing our vanishing theorem of cohomology groups on a Stein open
subset for (’);‘p.

DEFINITION 2.3. Let A be a subset in X. A point (z00, t) in X belongs to the
set clos’ (A) C X if and only if there exist points {(zx, tx)}ren in AN X that satisfy
the following two conditions when k — oco.

1. (2, tg) = (200, t) in X.
2. |zk+1|/|zk\ — 1.

Note that the above definition is independent of the choice of a system of coordinates
of X and a norm on E. Define

NL(A):= X \ closl (X \ A). (2.5)
We can confirm that, if U is an open subset in X, then N (U) > U N X, holds.

DEFINITION 2.4.  An open subset U C X satisfying N1 (U) = U N X, is said to
be regular at oco.

Note that this condition is equivalent to saying Xo, \ U = clos’_ (X \ U). It is easily
seen that a finite intersection of open subsets which are regular at oo is again regular at

oo. We also give a sufficient condition for which an open subset becomes regular at oc.
Let A C X be a subset. Set

NE(A) = {(Coo, £) € Xoo; (Coo, t) € (ReC x {E) N A} C X (2.6)

Here R is the real half line 7.} (¢) in E and the closure (R;.¢ x {t}) N A is taken in
X. Namely we have

(Coo, t) & NL(A) <= Fce R, ([¢, +o0)¢, t) N A =. (2.7)
Then we have the following lemma.

LEMMA 2.5 ([1]).  Let U C X be an open subset. If N2 (U) = U N X, holds, then
U is regular at co.

Note that a finite union of open subsets which satisfy the condition given in the
above lemma is also regular at co. We give some examples of open subsets which are
regular at oo: Let D¢ denote the radial compactification of C, and let R be the closure
of R in D¢. Note that R consists of R and two points {400}.
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EXAMPLE 2.6 ([1, Example 3.6]). Let U be the open set G,.(I',0) UU where U
is a bounded open subset in X and the cone G,(I', 0) was defined by (2.3) with r > 0
and I' being an open subset in S?"~! = EX/R,. Then U is regular at co as we have
NL(U) =Un X. In particular, D¢ and D¢ \ [a, +00] (a € [~00,0)) are regular at co.

EXAMPLE 2.7 ([1, Example 3.6]). For the set U := D¢ \ {1,2,3,4,...,+00}, we
have N1 (U) = Sloo \ {+o0}. Hence U is regular at oco. However, for the set U :=
Dc\{1,2,4,8,16,..., 400}, U is not regular at oo because of N (U) = S'co. Note that
we have NL (U) = Sloo for both the cases.

We prepare some notations before stating the theorem. For a subset A C X, we set

) inf — if A#0Q,
dist(p, 4) = {+oq<>6A|p ! it A i 0. (2:8)

Let po: X = E x T — T be the canonical projection. We also set, for ¢ = (2,t) € X,

distg(q, A) == dist(q, ANpy*(p2(q))) = inf |z~ (2.9)
(¢, t)eA

For an open subset Q C X, we define the function

L1 diste(p, X\ 9) _
Y(p) = mln{ 5 T+ 17| for p=(z,t) e X (2.10)
and we put, for € > 0,
Qe = {p = (z,t) € QN X; dist(p, X \ Q) > ¢, [t] < 1}. (2.11)
€

Note that the function ¢ (p) is lower semicontinuous and continuous with respect to the
variables z, however, it is not necessarily continuous with respect to the variables t.

THEOREM 2.8 ([1, Theorem 3.7)). Let Q be an open subset in X. Assume the
following conditions 1. and 2.

1. QN X is pseudo-convex in X and 2 is reqular at co.

2. At a point in QN X sufficiently close to z = oo the ¥(z,t) is continuous and
uniformly continuous with respect to the variables t, that is, for any € > 0, there
exist 6c > 0 and R. > 0 for which 1(z,t) is continuous on Qe g, = QN{|z| > R}
and it satisfies

(2, t) = (2, ) <e  ((21), (2, 1) € Qe r., [t —1] <de).
Then we have

HE(Q, 0FP) =0 (k#0). (2.12)
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REMARK 2.9 ([1, Corollary 3.8]). Let U x V be an open subset of product type in
X = Dg xT. Assume that U satisfies the regularity condition at oo and that (U x V)NX
is a pseudo-convex open subset in X. Then, since an open subset U x V of product type
always satisfies the condition 2. in the theorem, we have

HY (U x V, OFP) =0 (k#0). (2.13)

Furthermore, when n = 1, we can obtain a much stronger result. Remember that
D¢ denotes the radial compactification of C.

THEOREM 2.10 ([1, Theorem 5.2]). Let U be an open subset in D¢, and let W be
a pseudo-conver open subset in T'. Then we have

HY (U x W, 09%) =0 (k#0). (2.14)

However, if n > 1, the theorem does not hold without the regularity condition as
the example below shows.

ExaMPLE 2.11 ([1, Example 3.17]). We consider the case n = 2, m = 0, i.e.,
X =F=C? and X =Dg = D¢2. Set

U= { (o1, ) € X Jarg(e)| < T, J2al < |l s
Q:= (U)°\{(1,0)0} C X.

Here (1,0)c0 is the point in (E*/R.)oo which is the image of the point (1, 0) € C? by
the canonical projection mgx. It is easy to check that 2 N X = U is pseudo-convex in
X and Q is not regular at co. In this case, we have H'(, O;‘p) # 0. Therefore the
vanishing theorem does not hold without the regularity condition.

3. An edge of the wedge theorem for the sheaf O;‘p.
The purpose of this section is to show an edge of the wedge theorem for (’)i?p, which
is done in Subsection 3.2. We first prepare a Martineau type theorem for O;XP.

3.1. A Martineau type theorem for the sheaf OJ".
Let m>0and n > 1. Set T := C™ and

Y =CxC"'xTCVY:=DcxC"!xT,

where D¢ denotes the radial compactification of C. We denote by R the closure of R in
D¢, which is R U {£o0}.

THEOREM 3.1 (A Martineau type theorem for the sheaf OT"). Let § =
[a, +00] (a € RU{+o0}) be a compact subset in R, and let K = Ky x - x K,,_1 C
L =1Ly x---x L,_1 be a pair of closed polydiscs in C"~1. Assume that W C V are
non-empty connected Stein open subsets in T'. Then the restriction morphism
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Sxrxy(De x C*1 x V, O0P) = Hiy pyw (De x C*1 x W, OFF) (3.1)
18 1njective.

PROOF. Let (2, w, t) be the coordinates of Y = C, x C?~! x T;. We first consider
the representation of Hg, . (D¢ X Cr1xV, O;XP) by a relative Leray covering for the
sheaf (’);X P Choose a point b < a and a sufficiently small constant § > 0. Set

%= {z€C; |arg(z — b)| < O} U {e¥V o0 € Sloo; 7] < 6} C De. (3.2)
We also set
U=%xCrtxV,
Upi= (5 8) x €t x V, (3.3)
Up=Sx7 " (Co) \K;) xV  (j=1,....,n—-1),
where 7;: Cl,™ 1 — C., is the j-th projection of Contie, mi(wi, ..., Wy, .., Wy_1) = wj.
Then U ={U, Uy, ..., Up_1} and U’ = {Uy, ..., Up_1} give a relative open covering of

the pair (U, U\ (S x K xV)). On account of Theorem 2.10, these open sets form a Leray
covering of the pair for the sheaf O;X P Therefore we obtain the following representation

of cohomology groups by the relative Cech cohomology of (U, U \ (S x K x V)) with
coefficients in Of;(p.

exp
0,7 (Us,k,v)

D, 0P U )
(3.4)

HE, oy (Do x C* 1 x V OJ%) =H"U mod U', OFF) =

Here Usg, g, v and quj)f(v (j=0,1,...,n—1) are defined by

Uswvi= () Usand U= () U (G=0,...,n—1). (3.5
0<k<n—1 0<k<n—1, k#j
Similarly, we define Ug, 1, w and U éj )L’W by replacing K and V with L and W, respec-
tively. Thus, the theorem follows from injectivity of the following canonical morphism ¢
associated with the restriction map of a holomorphic function.

exp exp
05" (Us,k,v) O, (Us, L,w)

b n—1 ,yexp (4) - n—1 nexp () ’
D0 05" (Us k,v) D;-0 O3 " (Us L, w)

Let us show injectivity of «. We take an arbitrary point (z, w, t) € Ug i,y NY and
a path v; (1 <j <n—1)in C\ K; which encircles K; with clockwise direction such that
the point w; is outside 7; in the C-plane. For an element F(z, w, t) € O;Xp(U& K. V)
we define

(3.6)

Gz, w, 1) = —— e m )

dp.
(2my/=1)n—1 /v1><~»-><v"1 (1 —w1) -+ (ftn—1 — Wp—1)

(3.7)
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It is obvious that G(z, w, t) becomes a holomorphic function of exponential type on
Us, k,v by deformation of the path of the integration. We also take the path ; (1 <
j <n—1)in C\ L; which encircles L; with clockwise direction such that the point w; is
inside ;. By deformation of the path of the integration and Cauchy’s integral formula,
we obtain

n—1
G(z, w, t) = F(z, w, t) + Z Hj(z, w, t),
J=1
Hj(z, w, t)
1 / F(Zv wla"'7wj717p¢j7"',ﬂnflat)
= dpi; - 1.
(27T _1)71—] ’fj XYj4+1 X XYn—-1 (IJ’] - w]) T (IJ’TL—l - wn—l) !
(3.8)

Note that H;(z, w, t) becomes a holomorphic function of exponential type on Ué] )K,V

by deformation of the path of the integration. Hence Z;l;ll H;(z, w, t) belongs to
@;L:_ll (’);’(p(Ué{)K, v). If we could prove that G(z, w, t) can be extended to Ué?)K v asa
holomorphic function of exponential type when the restriction of F' to Ug, 1, w vanishes
in O (Us,1,w)/ @?;01 O;xp(Ug)L’ w), then we get injectivity of the morphism ¢.
Suppose Flyg , v = 0 in (’)?p(US7L7W)/EB?:—& (’)?p(Ué{LW). Then there ex-
ist functions {Fj}; € @?;01 Oegp(Uéj’)L}W) with F'= 3, Fj on Us,,w. For a point
(z, w, t)€Ug, i, v, we take a path I in 3 which is composed of a ray from e~ V-Tagg
(0 < o < 6) to apoint ¢ (b < ¢ < a) and a ray from ¢ to eV~ @00 such that z is outside
the region surrounded by I'. Similarly, we take a path I in ¥ which is composed of a
ray from e~V 1% 00 (o < o < 6) to a point ¢ (b < ¢ < ¢) and a ray from ¢ to eV~ 1% oo
such that z is inside the region surrounded by I as shown in Figure 1. Let 6y > 0 be a

Figure 1. The paths in the C,-plane.
sufficiently small positive real number, and set
Y=Y x {neC; largn| < b} CY x C,.

Define
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/ awwk“
27‘(\/ ¢—
e’ G(¢, w, t)e’”c
Gi(z, w, t; ) == dC.
1( n) 2T Jo = ¢
Then, since G(z, w, t) belongs to (’);’(p(US, K, v ), by modifying the path of the integration,
we can find a real-valued continuous function pg(z, w, t) (resp. pi(z, w, t)) on Ug k., v

GO(Za w, tv 77) :

dg,

(resp. Ué )K v) for which Go(z, w, t; n) (resp. G1(z, w, t; n)) is holomorphic on Us K,V

(resp. Ué) )K’V), where

ijS,K,V = {(Za w, tv 77) € }77 (27 w, t) S US, K,V; ‘77| > pO(Za w, t)}a
~7(0 U 0
ULk v =1z w, tim) €Y (2, w, ) € UL v, Inl > pa(z, w, £)}.

Note that po (resp. p1) is bounded on any compact subset in Ug, v (resp. UéO)KV)
We can also verify that Gy and G; satisfy the following estimates: For any compact
subsets Dy in Ug, g, v and D; in Ué?)KV, there exist constants C'p, and Cp, for which

we have
|Go(z, w, t; )| < Cpye™ ™ (2, w, t, 77) € Us, k,v N (Do x Cy),
|G1(2, w, t; n)| < Cp,eRen? (z, w, t,m) € UéO)K v N (D1 xCy).

Furthermore, by Cauchy’s integral formula, we have
G(zv w, t) = GO(Za w, t? 77) - Gl(zv w, t7 77) (39)

Now, under the assumption of F', we will show that G identically vanishes and G;
does not depend on the variable 7, i.e., 0G1/9n = 0. We will first show dG;/Idn = 0.

Let w*e€(C\ Ly) x -+ x (C\ L,—1) and t*€W. Suppose (w,t) to be suffi-
ciently close to (w*, t*). Then it follows from the assumption Fly, , ,, = >_; Fj that
(0G1/0n)(z, w, t; n) is equal to

— F5(C, p, t)e™ " dpd(
27T\/7 Z///ylx X Yn—1 Ml—wl)...('u/n71 _wnfl). (310)

Here we first modify the path +; such that each +; is in C\ L;, which is possible because we
take (w, t) sufficiently close to (w*, t*), and then, we put F' =3, F; into the definition
of 0G1/dn. Furthermore we assume |n| to be sufficiently large so that each integral
converges absolutely.

Since, for j > 1, each Fj(¢, p, t) is holomorphic on UéJ)LW NY, we have

/ Fj (¢ ps ) dp
ey (B = w1) e (Bp—1 — Wn—1)

Hence (0G1/0n)(z, w, t; n) is equal to

=0 (1<j<n-1). (3.11)
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e dp e
(QF\/jl)n /YIX"'X’Ynl (lul - wl) T (/Jnfl - wnfl) /F’ FO(C? H t)e ! dC (312)

As Fy is holomorphic on U éO)L w NY and we can take |n| large enough so that e "¢ com-
pensates the exponential growth of Fy at infinity, we have fF, Fo(¢, py t)e™ ™ d¢ = 0
by rotating the path I' to the positive real axis in the C¢-plane. This entails
(0G1/0m)(z, w, t; n) = 0 when (w, t) is sufficiently close to (w*, t*) and |n| is large
enough, and thus, it follows from the unique continuation property of a holomorphic
function that dG1/0n identically vanishes on U é0)1< v

Next we will show that Go(z, w, ¢; ) vanishes on ﬁs, k,v. By the same argument
as above, Go(z, w, t; ) is equal to

e’

dﬂ / FO(Cu 1y t)e_né dC (313)
T

(271'\/?1)” /‘/1><~~><%1 (1 —w1) - (fp—1 — Wn—1) ¢—=z

Since z is outside the region surrounded by T, if || is taken to be sufficiently large, we
have

/ FolGo i O™ 4 (3.14)
r C—=z

by rotating the path I' to the positive real axis in the Cs-plane. We can also get Gy =0
on 5'57 k,v by the unique continuation property of Gy, and hence, we have obtained
G(z, w, t) = —G1(z, w, t; n), which implies that G(z, w, t) is a holomorphic function of
exponential type on U éO)K v- This completes the proof. O

We also prepare the lemma below, which is needed to show Propositions 3.4 and 5.4.

LEMMA 3.2.  Let S (resp. U) be a closed (resp. an open) subset in D¢, and let
K=K % xK,_1 CC" ! be aproduct of closed subsets K; in C (j=1,...,n—1).
Assume that W and V are Stein open subsets in C"~! and T, respectively. Then we have

Hisnoy (xrmyxv (U x W x V, OZP) =0 (k>n+1). (3.15)

PROOF. Let us consider the representation of cohomology groups by a relative
Leray covering for the sheaf O;XP. Define the canonical projection m;: C"~! — C by
(wi,...,wj,...,wWp—1) = wj, and set

P=UxWxYV,
Py:=(U\S)xWxV, (3.16)
Pp=Ux(r; (C\K;)nW)xV  (1<j<n-—1).
Then {P, Py, ..., P,—1} and {Py, ..., P,_1} become a relative Leray covering of the
pair (P, P\ (S x (KNW) x V)) for the sheaf O;"p by Theorem 2.10. As the number of

open sets in the covering is n + 1, it is evident that the k-th cohomology group vanishes
for k>n+1. O
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REMARK 3.3. In the proof of the above lemma, if S = [a, +oo] with a € R and
U = D¢, then Theorem 2.8 is sufficient to show the lemma because D¢ \ S is regular at
infinity in this case. For a general closed subset S such as {400}, however, we really
need Theorem 2.10 which is a specific feature in the one dimensional case.

As an immediate consequence of the Martineau type theorem for the sheaf (9;1,’( P we
have the following proposition.

PROPOSITION 3.4. Let S = [a, +o0] (a € RU {+00}) be a compact subset in R,
and let K = Ky x --- x K,,_1 be a closed polydisc in C"~'. Assume that V is a Stein
open subset in T. Then we have

HS, oy (De x C* 1 x V,O8P) =0 (k#n). (3.17)

Proor. For k > n + 1, we obtain the assertion by Lemma 3.2. Hence it remains
to prove that the k-th cohomology group vanishes for k¥ < n — 1. We use the induction
on n. In the case of n = 1, the claim to be proved is

Hg v (D x V, OF) = Tsuy (D x V, OFF) = 0. (3.18)

Obviously, we have (3.18) by the unique continuation property of a holomorphic function.
Suppose that we have, for any cylindrical compact set K’ C C"2 and any Stein open
subset V,

H oy (Do x C"2 XV, 00%) =0 (k<n-—2). (3.19)

Under the assumption, let us show

HE oy @e X CHx V, 00P) =0 (k<n-—1), (3.20)

where K" is an arbitrary compact subset in C. We consider the following long exact
sequence of cohomology groups.

= HY iy (Do X C'7H XV O2P) = HY ooy (De x €72 x € x V, OFF)
= HE ok xy De X €72 x (C\K”) x V, 0F%) —.
(3.21)
It follows from the induction hypothesis that we have
HI;'XK’XCXV(D(C x C"? x C x £ O?’XP) =0, (3.22)
He oy e x CP 2 x (CNK") x V,00%) =0 (k<n-2).

Therefore we obtain (3.20) for £ < n — 2. On account of the Martineau type theorem
for the sheaf O;’(p, the morphism ¢ in (3.21) for k = n — 1 is injective. Since the exact
sequence
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n—1 -1 exp n—1 -2 exp
0= HE 1oy De x C0 x V,OFP) = HY o (De x €72 x C x V, OFF)
L —1 n—2 1" exp
%ngK'x(C\K”)xV(DCXC x (C\K") xV, 057)
(3.23)
implies Hg;i{,xK”XV(DC x C=1 x V, O;j‘p) = 0, the assertion holds for k¥ < n — 1.
Hence the assertion is true for any n > 1 by the induction. O

COROLLARY 3.5. Let S = [a, +0] (a € RU{+0oc}) be a compact subset in R, and
let K=Ky x---xK,_1CL=0L;x--x L,_1 be a pair of closed polydiscs in C*~1.
Assume that V is a Stein open subset in T'. Then we have

Hy (pyiyxv (De X C*H x V, 08P) =0 (k#n). (3.24)
ProOOF. We consider the following long exact sequence of cohomology groups

= Hex gy (De x C 1 x V, O0P) = HE v (De x C*F x V, OFF) (3.25)
— HIE'X(L\K)XV(DC X (Cn_l X ‘/7 O?/Xp) —.

By Proposition 3.4, we have

Heygoxy (De x C*71 x V, OFP) = HE, 1y (De x C"1 x V, OFF) =0 (k #n).
(3.26)
Hence we obtain (3.24) for k # n — 1, n. Moreover, we have the following exact sequence
of cohomology groups by (3.25) and (3.26).

0— Hg;}L\K)XV(DC x C" 1t xV, OF) = Hiy g xv (De % c 1l x v, o)

. . o (3.27)
= Hgy pxy (D x C"7 x V, OZP).
Since the morphism ¢ is injective by Theorem 3.1, we have the corollary. O

Corollary 3.5 can be extended to a pair of two analytic polyhedra K C L. Let us
first recall the definition of an analytic polyhedron.

DEFINITION 3.6. Let U be a domain in C™. A compact subset D in U defined by
D={zeU; |Fi(z)| <1,..., |Fn()| <1} (3.28)
with some finitely many Fi, ..., Fiy € O¢n(U) is called an analytic polyhedron of U.

THEOREM 3.7. Let S = [a, +0] (a € RU {+oc}) be a compact subset in R. Let
K and L be two compact analytic polyhedra in C*~', and let V be a Stein open subset in
T. Then

H, pryxv(De x CHx V,08P) =0 (0<k<n—1) (3.29)
Before entering into the proof of Theorem 3.7, we recall two well-known lemmas.

LEMMA 3.8 ([3, Corollary 5.3.7]). Let X be a topological space, and let S be a
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locally closed subset in X. Let 0 — L, — --- — L1 = Lo — F — 0 be an exact sequence
of sheaves on X. If

HE(X, £;) =0 (r+j<k<N+j, j=0,...,n),

then
HE(X, F)=0 (r<k<N).
LEMMA 3.9 ([13, Proposition B.4.2]). Let M be a module, and let ¢1, ..., ¢p be
a family of commuting endomorphisms of M. Let M be a Koszul complex associated
to the sequence (¢1, ..., ¢p). Assume that, for each 1 < j < p, ¢; is injective as an
endomorphism of the module M/ Zf;ll @i(M). Then we have
0 (J #p),
H/(M) = M (G =p) (3.30)
= j=p).
f:l ¢Z(M)

Proor. Without loss of generality we can assume that K is contained in L. Hence,
two analytic polyhedra L and K can be expressed as

L= {w ceC" L IR (w)|<1,..., |Fy(w)] < 1},
K={weC" Y |F(w)]<1,...,[F(w)| <L|F ()| <1, ... |Fw) <1},
(3.31)
where Fi, ..., F} are entire functions on C"~!. We may assume that L is contained in
the polydisc of the radius r by the boundedness of L. Set
R:= max{l, sup|Fy (w)], ..., sup|F(w)], r}. (3.32)
weL weL

Let Z :=C, x Cn~1 x (Cfb x Ty and 7= D¢, x C*~1 x (Cfb x T;. We consider the closed
embedding ¥: Y — Z defined by

U(z, w, t) == (2, w, Fi(w), ..., Fy(w), ..., Fi(w), t). (3.33)
Also set
B |U}1|SR,-..,|U)”_1|SR,
L:=1 (w,w) e C L x Cl|un| <1, ..., Jop| <1, (3.34)
@y 1| <R,..., w0 <R
and
~ \w1|§R,...,|wn_1\§R,
K=< (w,w) e C" "t x Cl|un| <1, ..., |wy| <1, : (3.35)

[y (| <1, ] <1
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Since W is a closed immersion and ~1(S x (L\ K) x V) = 8 x (L'\ K) x V holds, we
have

ng(L\K)XV(]DC xC"txV, O7P) = HY;

ik xy Do xC < Chx vV, w,00%). (3.36)

Let OCZXP denote the sheaf of holomorphic functions of exponential type on Z. By Corol-
lary 3.5, we have

H, 2yity sy (Pe X CTEX CO XV, 0FP) =0 (k< (n=1) +1). (3.37)
Therefore, if we prove that there exists a resolution of the sheaf \I/*O;Xp by the sheaf
OCZXP of length I, then the assertion follows from Lemma 3.8. Let us show existence of
such a resolution. By using F;, we define a family {¢;} of commuting endomorphisms of
OQZXP given by

¢ (f) = f(z, w, w, t)(w; — Fj(w))  (G=1,....1). (3.38)
Let ey, ..., e; be the canonical basis of Z!. For an ordered subset J := (J1, -+, jx) of
{1, ..., 1}, weset ey :=ej, N---Aej, € /\k(Zl) and
k
M® = oFP ® Nz (k=0,1,...,1). (3.39)

We also define the differential d: M*) — M*+1) by
d(fes) : Zfb; Jej Aey, feye MW, (3.40)

It is easily seen that d od = 0 from the commutativity of the morphisms ¢;’s. Therefore
we get the following Koszul complex M associated to the sequence (¢1, ..., ¢;).

M:0— MO & a0 4 g, (3.41)

Let us see that the complex M is the desired resolution of the sheaf \I/*O;Xp. We prepare
the following lemma in order to apply Lemma 3.9 to the complex M.

LeEmMA 3.10.  For each 1 <k <! and a point p € Z, the morphism ¢y, is injective
as an endomorphism of the module OQXP/Z;C L6 (0 exp) Here OZ" denotes the stalk

of the sheaf OCZXP at a point p.

X . . X k— X
PROOF.  Assume that f € (’)22 satisfies ¢ (f) = 0 in OF 1;/ ijll (@ i’)) Then
there exist g1, ..., gr_1 € (’)BZXI; such that ¢ (f) = Z?;ll ®;(g;j) holds. Hence we obtain

[z, w, W, t) (0 — Fi(w Zgg t)(w; — Fj(w)) (3.42)
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as a relation of germs in O‘SZXZ. By setting wy, = Fj(w) in (3.42), we have

Zgj(za W, W, -y We—1, Fk(w)a wk—i—lv ey g, t)(wj - Fj(w)) =0. (343)

For 1 <j<k-—1, we set

~ L gj(Z, w, w, t) —gj(z, w, ’LZJl, ceey ﬁ)k—17 Fk(w), wk+17 ey le, t)

’ ﬁ)k — Fk(w) ’
(3.44)

Then h; belongs to OQZXI;. By (3.42) and (3.43), we have

k—1 k—1
Z¢j(hj(zv w, W, t)) = Zhj(zv w, W, t)(wj - Fj(w))
J=1 J=1

g;(z, w, W, t)
Z Lls i, - Fw) (349)
= Wk —
f(Z, w, W, t)(wk — Fi.(w)) .
= — = f(z, w, w, ¢
T Fo(w) I )
as relations of germs in OCZXI;. Hence we obtain injectivity of ¢y. O

For each point p € Z, by Lemma 3.9 and Lemma 3.10, we have
0 (k #1),
HF(M,) = oz’ (3.46)
S0 T

Hence, by Lemma 3.8 and the following lemma, we have obtained Theorem 3.7. The
proof has been completed. O

LEMMA 3.11.  The following complex of sheaves on Z is ezact.
0— MO 5 MM . S MO 5w, 00 0. (3.47)

Here the sheaf morphism p is induced from the one \I/_l(’)eZXp — (’);Xp defined by the
substituntion W = (Fy(w), ..., Fj(w)).

PROOF. Let us prove exactness of the complex
d d ex
0= MO 5 MY - 5 MY = (1,057), -0 (3.48)

at each point p € Z. Note that we have
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(\I’*ngp)p =

{o (p ¢ V(). (3.49)

(O )w-1() (p € U(Y)).

For p ¢ W(Y), it is immediate that the sequence (3.48) is exact by (3.46). Let us show
exactness of (3.48) for p € ¥(Y). It is sufficient to see that O}Xz/zzzl gbj(Oer‘I;)) is

isomorphic to (O;/Xp)\p—l(p) by p. The morphism p is clearly surjective because a germ

in (O?{Xp)\p—l(p) can be regarded as the one in OEZXE through the canonical projection
(z, w, W, t) — (z, w, t). Furthermore, by considering a Taylor expansion with respect
to w; — Fj(w) (j =1, ..., 1) at the point p, we find that its kernel consists of the germs

in the form 22:1 9i(z, w, W, t)(W; — Fj(w)) with g; € Oezfq;. Hence we get the exact
sequence

l

0— Y 6;(057) = 05 = (07 g1 = 0. (3.50)
j=1
Therefore we get exactness of (3.48) on Z. O

3.2. [Edge of the wedge theorems for the sheaf (’);‘p.

Using results prepared in previous subsection, we establish two kinds of edge of the
wedge theorems for the sheaf (’);’fp. Let M be an n-dimensional R-vector space (n > 1)
with an inner product ( -, - ), and let E be its complexification C ®g M which is an
n-dimensional C-vector space with the norm induced from the inner product of M. Then,
as in Section 2, we can define the radial compactification Dy of E. We denote by M the
closure of M in Dg and set OM := M \ M. We also set T := C™ (m > 0) and

N=MxTc X:=FExT
N M
N:=MxTcX:=DgxT.

Define ON := N\ N = OM x T. Note that N is nothing but the closure of N in X and
ON can be identified with "~ x T.

THEOREM 3.12.  The closed subset N in X is purely n-codimensional relative to
the sheaf O;‘p, i.e.,

Hg(OFP) =0 (k#n). (3.51)

PROOF. Let po = (1,0, ..., 0)oo x (0) € N C X. As it is well-known that N is
purely n-codimensional relative to the sheaf of holomorphic functions on X, the proof is
completed by showing

(0% ) =0 (k#n). (3.52)

For any € > 0, we set
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1
Ue = {(21,---7%) € E;largzi| <€, |z1| > =, |zi] <e€|z], i= 2n}

€
T.:={teT;|t| < e}, (3.53)
Q. =U. xT.CX.

Here the closure and interior are taken in X. Then the family {Qc}eso forms a funda-
mental system of open neighborhoods of p., in X. Hence, for any k, we obtain

HE(OT)p = li_r%H%mQE(QE, 0LP). (3.54)
€>

We also set

1
V. = {z € C;largz| <€, |z| > },

€
We = {(wi, ..., wo_1) EC" i |wy| <e, i=1,...,n—1}, (3.55)
Oc:=V. XWxT.CDecxC" ' xT=Y

for any € > 0. Then {O,}.>¢ is also a fundamental system of neighborhoods of the point
(oo := (1)00 x (0) x (0) € S'oo x C" ! x T in Y, where ¥ was defined in the previous
subsection.

Let @ be the holomorphic map from (E \ {21 = 0}) x T to (C\ {0}) x C*"t x T
defined by

(21, vy 2n) Xt 21 X (22, R Zn) X t.
Z1 Z1
The map ® gives a biholomorphic map between U, x T, and V., x W, x T.. Let us
regard S?"~! (resp. S') as the boundary of the closed unit ball of center the origin in E
(resp. C). We define the bijection ¢ from (S?"~1\ {21 = 0})oo x T to Stoo x C"~t x T

by the following correspondence;

(21, 22, «+ vy 2n)00 X t —> (Zl>oo><<22, ce Z")xt,

|21 21 21

(3.56)
z zZw
, 00 X t 4— 200 X w X t.
<\/1+|w|2 \/1+w|2>
LEmMA 3.13.  The map

=L (]D)E \ (o1 = o}) x T — D\ {0}) x C"' x T (3.57)

18 a homeomorphism and we have

~

Q) =0, ®(NNQ)=RxR"xT)NO..

Furthermore, for any relatively compact open subset Q in Dg \ {z1 = 0}, the holomorphic
map P gives the sheaf isomorphism on Q x T
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exp o a1 exp
OX |Q><T ~ ¢ (O? ‘@(QxT))' (3'58)
Proor. Tt suffices to show ® and ®! to be continuous as the rest of claims
in the lemma can be easily confirmed. Let w; = (w1, ..., win) (¢ = 1,2, ...) and
Woo = (Woo, 15 - -+ Weo, n) be points in S?~1\ {21 = 0} with w; — wee (i — o0) in S2~L

Let {k;}; be a sequence of positive real numbers satisfying k; — oo (i — 00). Set

Yi = (Zi7 Ifi) S E\{Zl = 0}) xT, z:=kiw; (Z =1, 2, ),

3.59
Yoo ‘= (2007 too) € (S2n71 \ {Zl = O})OO XT, Zoo 1= Wee. ( )

Assume y; — Yoo (i — 00) in X. Then let us show ®(7;) = ¢(70) (i — 00) in V. Note
that we have

() = (kiwi,la w, ce wi’"7 ti) €ECxCIxT,
i, 1 Wi, 1 (3 60)
P(7o0) = ( o0 Lo, 22 Zooun too> € Stoo x C" 1 x T.
|w0071| Woo, 1 Woo, 1
AS Y = Yoo (i — 00) in X, we have
kiwi, j = |zilweo j| < €lzil, [t —toof <& (G=1,...,m) (3.61)
for €; > 0 with ¢; = 0 (i — 00). Hence we obtain |w; j; —wee, j| < € (j =1, ..., n), from
which we have, as i — o0,
kiw; w, Wi s w )
iWi, 1 Woo,1 0, ‘ LI %I ) (32273,,71) (362)
|kiwi 1] |woo, 1] Wil Weol

Therefore we get ®(v;) = ¢(7oo) (i = 00) in Y. Furthermore, let n; (i = 1, 2, ...) and
o be points in St satisfying 1; — 7o (i — 00) in St. Set
pi = (kinia Wy, ti) eCxCtxT (Z =1, 2, ),
. ) (3.63)
Poo = (Moo00, Weo, tog) € ST00 x C"7 x T.

Suppose p; — poo (i — 00) in Y. Then let us show ®~(p;) — ¢~ (poo) (i — 00) in X.
Note that we have

& (pi) = (kimi, kimgw;, t;) € Ex T,
3.64
oo (o ) e, O

VI [weo? V/1T+ [weo]?
Since p; — poo (i = 00) in Y, we have
17— Noo| < €1, Wi —Woo| < €, ti —too] < € (3.65)

for ¢; > 0 with ¢, — 0 (i — 00), from which we have
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(kini, kiniw;) (Noos NooWoo)

|(Kimis Kimiwi)| (/T + Jweo |2

Therefore we obtain ®~1(p;) = ¢~ (pso) (i — 00) in X. O

— — 0. 3.66
VIFwil? 1T+ [wel? (3:66)

:’ (Mis miwi)  (Moos MooWoo)

By the lemma, we have

%ﬁk(oi?p)poo = @H%OQE (QEa OGAXP)

= h_H}HI(CEan*l xT)moé(Oe’ O?fxp) (3.67)

= (02%), .

RxR?—1xT

Therefore, to prove the theorem, it suffices to show

RxR?=1xT

Y (05P)ge =0 (k#n). (3.68)
Let ¢ be the polynomial of w defined by

oe(w) = (5)2—(w$+---+w3,1) (e>0). (3.69)

By using ¢, we set

We = {(wy, ..., wp—1) € We; Re(pc(w)) > 0},

L . (3.70)
O =V, xW.xT.CY.

Obviously, the family {56}6>0 thus defined becomes a fundamental system of neighbor-
hoods of g in Y. Hence, to obtain (3.68), it is enough to prove

k ~ ex
H(ﬁanfl ><T)06€(057 pr) =0 (k #n). (3.71)

Choose two points a, b € R with e < a < b < 400, and set S; := (¢!, b] and
Sy := [a, +00]. By noticing

RxR*" I xT)NO, = (S1USs) x (WeNR™™) x T,

we consider the long exact sequence of cohomology groups

k exp
B H(smsz)x(mmu&nfl)xn(067 OY )
k A exp k A exp
- HSl><(I7V/EO]R"*1)><T€ (OE’ OY ) ® HSQ><(I7I7€OJR"*1)><TE (Oe’ OY ) (3'72)

k A exp
- H(RXRTLfle)ﬂ(i (O, OY )=

Set N := R xR" ! xT C Y. The following lemma is well-known for specialists in

this direction: Let BOp-+ denote the sheaf 23, (Oy) of hyperfunctions with holomorphic

parameters on N’ (here we omit the orientation sheaf for simplicity).
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LEMMA 3.14. We have

k 2~ expy\ _
H(SIOSQ)X(WEOR"*UXTE (Oea O{/ ) =0 (k 7é n)7 (373)

and

H§1><(WEOR"'*1)><TE (O, O?fxp) =0 (k #n). (3.74)

ProoF. We only show (3.73). Since N’ = R™ x T is purely n-codimensional
relative to the sheaf Oy, we have

k ~ exp\ _ ttk—n A /
H(S1ﬂSQ)X(W5ﬁR"*1)XTE (OE; OY ) — H(SlﬁSQ)X(WeﬂRT‘*l)XTE (Oe N N ) BON’) (375)

Hence (3.73) holds for k& < n. By considering a relative Leray covering, we can show
(3.73) for k > n in the same way as that for the proof of Lemma 3.2. O

Then it follows from the above lemma and (3.72) that we get

k ~ Xp\ _ 11k X
H(@anfle)méfoﬂ (’);P) = H&x(WmR"*l)xTe(Oe’ (’);p) (k#n—1,n). (3.76)

We also get the following exact sequence by (3.72).

n—l exp
0= HSQX(WeﬂRTLfl)XTe(OEj OY )
n-l A exp
- H(S1USQ)><(W€QR71—1)XTE (057 OY’ ) (377)

— F(Smsﬂx(mmn,l)xn (O. NN, BOy/)

/ n ex
OEQN,BON/)EBH (06,0?p>.

457
Sox (WeNRm=1)x T,

S1x (W.NR7=1)x T, (
Since the canonical morphism

r (66 ﬂNI, BON/) — T (66 ﬂNI, BON/)

(S1NS2) x (WeNR—1) X T, S1x (W.NR™—1)x T,

is injective, the morphism ¢ in (3.77) is injective. As a result, (3.76) holds for k =n — 1
also. Hence, together with (3.76), it suffices to show

k ~ ex _
HSQX(WSQR"*UXTE (067 O)‘/p) =0 (k 7é 7’L) (378)

By Lemma 3.2, we have (3.78) for kK > n + 1. Let us prove (3.78) to be true for 0 < k <
n —1. Set

L, := {w eC" 1 Juy| <e . Jwny] < e} AR,

K.:=L.N{weC""; Re(pe(w)) <0} (3.79)

Then we have

LA\ K.=W.NR" (3.80)



Laplace hyperfunctions in several variables 131

Since L. and K. are closed analytic polyhedra, it follows from Theorem 3.7 that we

obtain
k A (expy _ k n—1 exp
Hy, . nmn-1yer, (O O07) = Hgp ok xr, De x €70 X T, OFF) (3.81)
=0 (0<k<n-1).
This completes the proof. O

The following theorem plays an important role in proving softness of the sheaf of
Laplace hyperfunctions with respect to the variables of hyperfunction part.

THEOREM 3.15.  The closed subset ON is purely n-codimensional relative to the
sheaf (’);‘p, that is, we have

Hon(OFP) =0 (k#n). (3.82)
Proor. It is sufficient to compute the stalk of %@V(O?p) at Poo =
(1,0,...,0)00 x (0) € N C X. We use the same notations as those in the proof

of Theorem 3.12. By the same reasoning as that in the proof of Theorem 3.12, we have

oo

AN (OF )poe = Aoy srn—1x7(OF)g

= %Hl{:m}x(wemwfl)xﬂ (O, O;Xp)- (3.83)
Let us show
HY, oy (womrn-1yxr, (O OFF) =0 (k #n). (3.84)
We have, by Theorem 3.12,
K nr o (OFF) =0 (k#n), (3.85)

from which we get

k X k—n n X
H{+oo}X(WeﬁR”*1)xTE (O, O; p) = H{+oo}><(WEI’WR”*1)><T€ (O, RxRn—1 XT(O;p))'

(3.86)
Hence (3.84) follows for k < n — 1. We also obtain (3.84) for k > n + 1 by Lemma 3.2.
This completes the proof. O

As a particular case, we have the following corollaries.

COROLLARY 3.16.  The closed subset M in Dg is purely n-codimensional relative
to the sheaf O, i.e.,

HE(OpP) =0 (k#mn). (3.87)

COROLLARY 3.17.  The boundary OM := M \ M of M is purely n-codimensional
relative to the sheaf OF, i.e.,
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A (O =0 (k#n). (3.58)

At the end of this section, we give a lemma for vanishing of higher cohomology groups
of global sections of %T}V(@?p), which can be proved by using the same argument as
that in the proof of Theorem 3.15.

LEMMA 3.18. Let V be a Stein open subset in T, and let Q) be an open subset in
OM C Dg which is properly contained in an open hemisphere of S"~' = OM. Then we
have

HY(Q x V, A5 (0FF) =0 (k#0). (3.89)

PROOF. We may assume that €2 is properly contained in {Rez; > 0} of S"~L.
Then there exists a r~elatively compact open subset 2 C R*~! for which Q x V is homeo-
morphic to {+o00} x 2 xV C Y by the map ® = &LI¢. It follows from Grauert’s theorem
that there exists a Stein open neighborhood W C C"~1! of ) satisfying = W NR"~ 1,
Then we have

HY(Q x V, A5 (0FF)) = H’;I:O}Xﬁxv(mc x W x V, OZF).
Hence the claim follows from Lemma 3.2. O

4. The sheaf of Laplace hyperfunctions in several variables.

In this section we define the sheaf BOZP of Laplace hyperfunctions with holomorphic
parameters. We see that every hyperfunction can be extend to a Laplace hyperfunction,
and we also show that there exists the canonical embedding from real analytic functions
of exponential type to Laplace hyperfunctions as a sheaf morphism.

Let us recall the geometrical situation studied in the previous section: Let M be an
n-dimensional R-vector space (n > 1) with an inner product, and let E be its complexi-
fication C ®g M which is an n-dimensional C-vector space with the norm induced from
the inner product of M. We denote by M the closure of M in the radial compactification
Dg of E and set M := M \ M. We also set T':= C™ (m > 0) and

N=MxTcC X:=ExT
N n
N::MXTCX::]D)EXT.

Define ON := N\ N = OM x T. Let Zz be the constant sheaf on N with stalk Z.

PROPOSITION 4.1.

ST ) = {0 (k;n)_ (4.1)

PROOF. Let us compute the stalk of %Nk(ZX) at p € N. It suffices to check the
stalk at po = (1, 0,..., 0)oo x (0) € ON C N. Let B™ be the closed unit ball in R
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(n > 1). Then we have X = B?" x T and N = B" x T topologically. We denote by
R<o the set of non-positive real numbers. There is a family {Uc}. (resp. {Ve x We})
of fundamental open neighborhoods of the point (1, 0, ..., 0) € B*" (resp. (0) x (0) €
R<p x R?"~1) satisfying B** N U, 2 (R<g x R*"7 )N (Ve x W,) and B" N U, = (R<g ¥
R 1) N (V. x W) topologically. Hence, for a family {T}. of fundamental neighborhoods
of the origin in T', we obtain

%Nk(z)})ﬁm = *%ﬂg"xT(ZBQ"xT)(l,O, .o, 0) % (0)
= «%’i&kgoxwﬂ T (ZR -y xR2n—1%T) (0) % (0) % (0) (4.2)

— 1 k
= Mm Hg_smn1xmynwexw,x1,) (Ve X We X Te, Zp _ xron-1x1)
€

for k € Z. As we may assume that V, and T, are contractible, we obtain

%kSOXRn—l XT(ZRSOXRZn—l XT)(O)X(O)X(O) g %knfl (Z]R2n71)(0). (43)

Here we regard R”~! as a closed linear subspace in R2"~!. Let W, be the open ball
in R?2"~! of center the origin and radius € > 0. We consider the following long exact
sequence of cohomology groups.

— HEo o1y, (We, Zpan—1) — B¥ (W, Zgan-1) = H¥ (W A\ R, Zgan-a) = (4.4)

By noticing

HE (W, Zgon 1) = {f Z D 8 (4.5)
and
H* (W, \ R}, Zgon—1) = HF(S"™L, Zgn1) = {OZ ’;;efvflze” “Lws), e
HE (W, \ {0}, Za) = HF(S°, Zgo) = {022 ; P 8 (n=1), (4.7)
we have
A e (L (43)
Therefore we have obtained the assertion. 0

For simplicity of notation, we write wg instead of 3 (Zg). If Q is a connected
open subset in N, we can regard wxr(Q2) as Z by the above proposition.

DEFINITION 4.2.  We define the sheaf B(’)eﬁ’(p of Laplace hyperfunctions with holo-

morphic parameters on N by
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BOZP .= #2(0F7) R wyr- (4.9)
Iy

As %ﬂﬁk((’)?p) = 0 (k < n) holds by Theorem 3.12, a global section of the sheaf

B(’)%p can be written in terms of cohomology groups. For an open subset 2 in N, by
taking an open subset V in X with Q=Nn V', we have

BOSP(Q) = Hy(V, 027) Q) wy(Q). (4.10)
L ()

Note that the above representation does not depend on the choices of V in X. The
restriction to N of the sheaf BOQNXP is evidently just the sheaf BOy of hyperfunctions
with holomorphic parameters.

As a particular case, we have the following definition.

DEFINITION 4.3.  The sheaf of Laplace hyperfunctions on M is defined by

B2P = A2(05F) Q) wir- (4.11)

Zar

The following theorem states that every hyperfunction can be extended to a Laplace
hyperfunction. Let j: N < N be the natural embedding.

THEOREM 4.4. The canonical sheaf morphism BO%‘D — 7.BON is surjective.

PRrROOF. Let us consider the following distinguished triangle.
X X P X +1
RIon (RT(0%7)) — RU(0%P) = Rjuj ' RIg(0%7) 1. (4.12)
Then the assertion follows from Theorem 3.15 and Rj*jflRFN(O;‘p) = j.BON[-n]. O

Let i: N < X be the natural embedding.

DEFINITION 4.5. The sheaf of real analytic functions of exponential type on N
with holomorphic parameters is defined by

AOTP =i 10T = 0P| (4.13)

Let us see that real analytic functions of exponential type with holomorphic param-
eters are regarded as Laplace hyperfunctions with holomorphic parameters. We consider
the following morphism.

1O Q) uyl—n] = ' OFP ~ i RI'(OFP). (4.14)
I

Applying the shift functor [n] and the functor ( - ) ® wy to the above morphism, we

obtain the sheaf morphism a: Ao%p — BOCWXP. Let AOpN be the sheaf of real analytic

functions with holomorphic parameters on N, and let 5: AOn — BOx be the canonical
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embedding of sheaves. Now we consider the commutative diagram of sheaf morphisms.
exp a exp
AOW — BOW
l l (4.15)
A0y —L2 jBOY.

Since the morphisms Ao%p — j«AOpN and j,[ in the above diagram are injective, we
have the following theorem.

THEOREM 4.6. The canonical sheaf morphism Ao%p — BO%D is injective.

5. Several properties of the sheaf BO%“’.

In this section, we prove softness of the sheaf B(’)%p with respect to the variables of
hyperfunction part, and we also show surjectivity of the restriction morphism

BOZP(Q x V) = j.BON(Q x V) = BON((2 x V) N N)

for any open subset 2 in M and a Stein open subset V in 7. Here j: N < N denotes
the canonical embedding.

PROPOSITION 5.1.  Let V' be a Stein open subset in T, and let my:Dg x V — Dg
denote the canonical projection. Then we have

Ry, An (0FF) = mvu gy (OFP).
Further, the flabby dimension of ﬂv*%’}v((’);‘p) is less than or equal to 1.

ProoF. Let {Q;}; be a finite family of open subsets €2; in OM satisfying that
U; Qi = OM and each ; is properly contained in some hemisphere of Sn=l = M.
Then it follows from Lemma 3.18 that, for any open subset 2 C €2;, we have

HE(Q, Ry, A5 (OF7)) = HHQ X V, A5 (0FP) =0 (k#0).  (5.1)
Hence the complex RWV*%”N(O?P) is concentrated in degree 0, and we have
HY(Q, w6 (0SP) =0 (k #0)

for any open subset Q C £2;. This concludes that, for each i, the flabby dimension of
the sheaf WV*L%%’}V(O?I’)‘&
consequence of the following easy lemma. a

on {; is less than or equal to 1. Then the last claim is a

LEMMA 5.2. Let F be a sheaf on a topological space X, and let {Q2;} be an open
covering of X. Assume that, for each i, the flabby dimension of the sheaf .7-'|Q on € is
less than or equal to £ € NU{0}. Then, that of F on X is also less than or equal to .

PROOF. It is easy to see that, if ]-"Q is a flabby sheaf on €2; for each 4, then F
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itself is flabby on X. Now let us take a flabby resolution L of F on X:
L0 Fo08prdyp2d

By the assumption, for each 4, the restriction Ker dg| o. of the kernel sheaf Ker d is flabby.
Hence Ker dy is flabby on X, which entails that F has a flabby resolution of length ¢. O

We prepare some notations which are needed in the subsequent arguments. Let
(21,...,2n) be a system of coordinates of E. Let ®: E'\ {23 =0} — (C\ {0}) x C"~! be
the holomorphic map given by

B(z1, ..., 2) = <21, 20, Z") (5.2)

21 21

and let A be a C-linear isomorphism on E. Then we define ® 4 := ® o A and the linear
hypersurface Ha := A71({z1 = 0}) in E. As in Subsection 3.2, the ®4 extends to a
homeomorphism between Dy \ Ha and (D¢ \ {0}) x C"~! which is denoted by the same
symbol ® 4 hereafter.

DEFINITION 5.3. Let K be a compact subset in M. We say that K is of product
type in M if there exists a linear isomorphism A on E such that K and S x L; x --- X
L,,_1 are homeomorphic by ®4 for a compact subset S C R\ {0} and compact subsets
Ll, ey Ln—l in R.

Then we establish the following vanishing theorem for a closed subset which is a
union of compact subsets of product type in M.

PROPOSITION 5.4.  Let V be a Stein open subset in T, and let K be a finite union
of closed subsets K; in OM (i = 1,2,...,f). Assume that each K; C OM is of product
type in M. Then we have

Hicxy(De x V, OFF) =0 (k#n). (5.3)

PROOF. Let my:Dg x V — Dg be the canonical projection. On account of Theo-
rem 3.15 and Proposition 5.1, we have

Hicy (D x V, OFF) = By " (D, 7y (O57)) = 0 (5.4)

ifk <nork>n+1. Let us show H}’(*XIV(ID)E xV, (’);‘p) = 0. Since each Kj; is of product
type in M, it follows from Lemma 3.2 that we have

Hie oy (Dp x V, OFF) =0 (k>n) (5.5)
for each i. Let us first show H?;('llqu)Xv(ID)E xV, OFP) = 0 from HH DXV, 07") =

0 and H;Lgiv(DE x V, O?p) = (. Consider the following long exact sequence of coho-
mology groups
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= Hi oy (D x V. 03) & Hi Ly (De x V. OF7)

5.6)
n+1 X n+2 X (
— H(;1UK2)XV(DE x V, OFP) — H(ngz)XV(DE x V, OFP) .
Then, by Proposition 5.1, we have
H?;me2)xv(DE xV, O?p) = H%{sz (Dg, WV*%@V(O?p)) =0.
Hence H?gllu K2)><V(]D)E x V, O;‘p) = 0 follows from the above long exact sequence. By
repeatedly applying the same argument to the sets K3, Ky, ..., Ky, we finally obtain
Hiy (D x V, OFF) = B (D x V, OFF) = 0. (5.7)
This completes the proof. O
As a corollary, we can obtain a global version of Theorem 3.15.
COROLLARY 5.5. Let V be a Stein open subset in T'. Then we have
k expy __
Hiy(Dp x V, 05%) =0 (k #n). (5.8)

We also obtain the following proposition as a consequence of Proposition 5.4.

PROPOSITION 5.6. Let V' be a Stein open subset in T, and let my:Dg x V — Dg
denote the canonical projection. Then, for any closed subset K C OM, the restriction
morphism

L (OM, 7y, A5 (OFP)) = T (K, mv. A (0F7)

is surjective. That is, the sheaf Wv*%'}v((’)??p) is soft.

PROOF. Since M is a paracompact Hausdorff topological space, we have

DK, v A (057)) = lim T(R, mo A (OFF)), (59)
QDK

where the limit is taken with respect to all open subsets in M containing K. Therefore
every element of I'(K, Wv*%%((/);(p)) can be first extended to an open neighborhood
Q of K in OM. We may assume that L := OM \  is a finite union of closed subsets
K; C OM where each K; C OM is of product type in M. Consider the exact sequence of
cohomology groups

I'(oM, Wv*%%((?z‘p)) — I(Q, Wv*%%(O;‘p)) — Hi(0M, wv*%%((’);‘p)). (5.10)
Then, by Proposition 5.1 and Proposition 5.4, we have
HL (OM, mv. Ay (0FF)) = Hi Ly (D x V, OFF) =0,

from which surjectivity follows. This completes the proof. O
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Recall that j: N < N denotes the natural embedding.

THEOREM 5.7.  Let V' be a Stein open subset in T, and let my:Dgp x V — Dg
denote the canonical projection. We have

Ry, BOSP =y, BOSP
and, for any closed subset K C M, the restriction morphism
F(M, WV*BO%“)> — F(K, WV*BO%P’) (5.11)
is surjective, that is, the sheaf ﬂ'V*BO%p is soft.
ProOF. We have the distinguished triangle
Ry, Ay (0F) = Rav.BOZY — Ry, Rj.BON 5. (5.12)

It follows from Proposition 5.1 and RayRj.BON = (ny © j).BOy that the complex
RWV*BO%F) is concentrated in degree 0 and we have the exact sequence:

0— WV*%?V(O??I)) — WV*BO?V—XP — (7TV Oj)*BON — 0. (513)

Then, since 7y, (OF") and (v 0j)..BOy are soft, the my,. BOT" becomes soft. This
completes the proof. O

REMARK 5.8.  Surjectivity of (5.11) is equivalent to that of the restriction mor-
phism

r(ﬁ xV, BO%‘J) — S%{F(Q xV, BO%"”),

where 2 ranges through open subsets in Dy containing K.
COROLLARY 5.9.  The sheaf B%pof Laplace hyperfunctions on M is soft.

By (5.13) and softness of the sheaf 7,2y (O"), we also have the following the-
orem.

THEOREM 5.10.  For any open subset Q C M and a Stein open subset V in T, the
restriction morphism BOZP(Q x V) — BON((Q2 x V) N N) is surjective.

COROLLARY 5.11.  For any open subset QQC M, the restriction morphism
BZP(Q) — By (N M) is surjective.
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