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Abstract. A new symbol theory for pseudodifferential operators in the
complex analytic category is given. Here the pseudodifferential operators mean
integral operators with real holomorphic microfunction kernels. The notion of
real holomorphic microfunctions had been introduced by Sato, Kawai and
Kashiwara by using sheaf cohomology theory. Symbol theory for those opera-
tors was partly developed by Kataoka and by the first author and it has been
effectively used in the analysis of operators of infinite order. However, there
was a missing part that links the symbol theory and the cohomological defini-
tion of operators, that is, the consistency of the Leibniz—H6rmander rule and
the cohomological definition of composition for operators. This link has not
been established completely in the existing symbol theory. This paper supplies
the link and provides a cohomological foundation of the symbolic calculus of
pseudodifferential operators.

Introduction.

The aim of this series of papers is to establish a complete symbol theory for the sheaf
é”;l? of pseudodifferential operators in the complex analytic category. Here we distinguish
a little difference between the usage of hyphenation in the words “pseudodifferential”
and “pseudo-differential.” The latter might be more familiar than the former for most of
readers. To clarify this distinction, we have to mention some of history.

The notion of the pseudo-differential operators in the analytic category was intro-
duced by Boutet de Monvel and Kreé [10] and by Boutet de Monvel [9] for the real
domain and by Sato, Kawai and Kashiwara [24] for the complex domain about forty
years ago. Note that [10] introduced the notion in the category of ultradifferentiable
functions of Gevrey class which contains the analytic category for a special case and
treated operators of finite order. On the other hand, [9] and [24] considered operators
of infinite order and these operators play an essential role in [24] and in Kashiwara and
Kawai [16].

The definition of the pseudo-differential operators given in [9] used oscillatory in-
tegrals and analytic symbols, while [24] employed the cohomology theory. One of the
advantages of the latter theory is invariance which comes from the cohomology theory.
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Symbol theory for pseudo-differential operators was also developed in [24], where the
sheaf of them was denoted by &,. This sheaf is recently denoted by &5 after the work
of Kashiwara and Schapira [17] and called the sheaf of microdifferential operators (of
finite or infinite order). Note that it is a subsheaf of é”f?. The notion of symbols de-
fined in [24] is different from that of [9]. A symbol of a microdifferential operator (or a
pseudo-differential operator in the sense of [24]) is a formal sum

ZPi(x,ﬁ)

i€

of holomorphic functions satisfying some conditions. On the other hand, a pseudo-
differential operator in the sense of [9] is defined by a total symbol p(z, ) which is real
analytic in (z, ) satisfying a growth condition in £ variables. The relation between those
two theories was clarified by Kataoka [20]. He defined symbols of operators in 5’5 by
using the Radon transform and through his theory, we knew that pseudo-differential
operators of [9] is obtained by restriction of &5 to the real domain.

The essential idea of the definition of &5 was given in [24] but the definition itself
was not given there explicitly. The definition first appeared in the work of Kashiwara
and Kawai [15], where the notation 9§ was used, although the name of the sections of
the sheaf was not given. As well as the case of &y, we use the notation é”;l? instead of
% after [17] and we call the sections of &5 pseudodifferential operators after [2].

Since the symbol theory developed in [20] was not published, some parts of it were
supplied by the first author [2] and the theory played a role in the analysis of operators of
infinite order (cf. Aoki [1], [3], Aoki, Kawai, Koike and Takei [7], Aoki, Kawai and Takei
[8], Kajitani and Wakabayashi [12], Kataoka [21], Uchikoshi [25]). Some systematic
description of the theory has been included in the book of Aoki, Kataoka and Yamazaki
[6]. The foundation of the symbol theory of éajl? at the present stage is, however, quite
unsatisfactory. There are two issues: first one is that, as Kamimoto and Kataoka have
pointed out in their work [13, Example 1.1], the space of the kernel functions which comes
from standard Cech representation of cohomology groups is not closed under composition
of kernel functions defined by naive integration employed in [2], [6]. Regarding this issue,
[13] gives a possible solution by introducing the notion of formal kernels. Second issue
is that the consistency of the action of operators by integration of kernel functions and
canonical action through cohomological definition was not proved. We note that the
notion of formal kernels given in [13] has not yet given a solution to this issue. Thus we
think we have to provide a complete symbol theory of é";lﬁ which solves these issues.

We mention that some modifications of the symbol theory are given by Uchikoshi
[26] and by Ishimura [11] for microlocal operators and non-local operators in the analytic
category, respectively. But there are analogous issues in these theories.

In this series of papers, we establish a new symbol theory of 5’5 which completely
fits in the cohomological definition of the sheaf. In the first part, we present a foundation
of symbol theory for é"}? Our main idea is to introduce a redundant parameter, which we
call an apparent parameter, in the definitions of (real) holomorphic microfunctions and
symbols. By introducing this parameter, cohomological definition of operation such as
composition, formal adjoint, coordinate transformation, etc. are directly related to those
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of symbols (see Kashiwara—Schapira [18], [19]). To clarify the relation between Cech
cohomology classes and symbols, we fully use the theory of the action of microdifferential
operators on microfunctions established by Kashiwara and Kawai ([15], [16]). We also
develop a theory of formal symbols which was firstly introduced for operators of infinite
order by [9] and generalized by [1], [2] and by Laurent [22]. The formal symbol theory
established in this article is exactly based on the cohomological definition of é‘);l?. To
develop this theory, we employ an idea introduced by [22]. Our forthcoming second
paper will be devoted to the symbol theory for operators with Gevrey growth and the
cohomology theory for Whitney holomorphic functions. It will be useful for applications.

The plan of this paper, the first part, is as follows. In Section 1, we prepare a
proposition of the local cohomology group theory on a vector space which we shall use
in this article. Section 2 gives a new formulation of the sheaf of (real) holomorphic
microfunctions utilizing an apparent parameter. Applying this formulation, we give a
cohomological representation of pseudodifferential operators in Section 3. In Section 4,
we define symbol spaces with an apparent parameter. The relation between symbols
and cohomological representation of pseudodifferential operators is clarified in Section 5.
Sections 6 and 7 are devoted to establishing a theory of formal symbols with an apparent
parameter for pseudodifferential operators. We can express basic operations of pseudo-
differential operators such as composition and coordinate transformation algebraically in
terms of the formal symbols with cohomology theoretical foundation in these sections.

In Appendix A, we confirm the compatibility of actions of pseudodifferential opera-
tors on the sheaf of holomorphic microfunctions. Appendix B gives a general construction
of the sheaf of microfunctions which can manage the symbol mapping on the space of
kernel functions with respect to arbitrary coverings.

This work, especially, the idea of introducing redundant parameter, is inspired by
[13]. The authors would like to express their sincere thanks to Professor K. Kataoka
and Dr. S. Kamimoto. They also thank Professor T. Kawai and Professor Y. Okada for
encouragement to them. In addition, they appreciate the constructive comments and
suggestions from the reviewers.

1. Local cohomology groups on a vector space.

We denote by Z, R and C the sets of integers, of real numbers and of complex
numbers respectively. Further, set N:= {m € Z; m > 0}, N, := NU{0} and C* :={c €
C; ¢ #0}.

Let X be a finite dimensional R-vector space, and define an open proper sector
S c C by

S:={neCa<argn<b,0<|n <r}

for some 0 < b—a < 7 and 7 > 0. We set X := X x C, with coordinates (z,7), and

let 7, : X> (x,n) — x € X be the canonical projection. Let G C X be a closed subset
(not necessarily convex) and U C X an open neighborhood of the origin. In this section
we give another representation of local cohomology groups H, éﬁU(U ; F) for a sheaf F
on X. For this purpose, we need some preparations. Let Z be a closed subset in X
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and ¢: X x [0,1] = X a continuous deformation mapping which satisfies the following
conditions:

(i) p(x,1) =z for any z € X and ¢(z,s) = z for any z € Z.
(ii) ¢(o(z,s),0) = p(z,0) for any s € [0,1] and = € X.
(iii) We set
p(p(x7 S) = |$0(.’L', S) - QD(.T, O)|

Then p@(m, s) is a strictly increasing function of s outside Z, i.e. if s; < s,, we have
P (T, 81) < py(x,8,) for any z € X N Z.

Note that ¢(z,0) € Z for any = € X follows from the above conditions. Further, we set,
for short

P, (@) = p(x,1) = |p(x,1) = @(x,0)| = |z — ¢(x,0)|.

Here we remark

p@(QO({E7 S)) = |<,D({177 S) - 80(90(1"7 8)7 O)| = ‘4,0("137 S) - (,0((E,0)| = P¢($, 8)
Let us see a typical example of such a deformation mapping.

EXAMPLE 1.1. Let ¢ be a unit vector in X := C" and Z = {z € X; (z,{) = 0}
with (z, () := > i~ 2,¢;. Define the deformation mapping ¢: X x [0,1] — X by

pla,s) ==z + (s = 1){z, ()¢

Here ¢ denotes the complex conjugate of (. Note that ¢(z,1) = 2 and ¢(z,0) gives

the orthogonal projection to the complex hyperplane Z with respect to the standard

Hermitian metric |z| = (z,7)/2.

Let 0 > 0 a positive constant. We define the subsets in X by
G = {(p(z,5),n) € X; pgp(x) <on[,0<s<1,zeG}
U:={(z,n) €U xS p,(x) < olnl}.
Then we have the following fundamental lemma for these subsets:
LEMMA 1.2.  Under the above situation, we have the followings.

~

(1) U is an open subset in X and ﬂ'n(ﬁ) = U holds if U satisfies the condition
SUp, P, () < or.

(2) GNU is a closed subset in U.

ProOF. The claim (1) clearly holds. Let us show the claim (2). Let
{(wy, My 51,) rey be a sequence in the subset
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T:={(w, n, s) € X x[0,1]; p,(w) < o|nl|, w € G}

such that the sequence {(p(wy,s,), n;,) }rey in G converges to some point (T Ny) in U.

o~

We will see (z,, 1,,) € G, which comes from boundness of {w; };7 ;. Since {p(w;)}Z,
is bounded because of (w,,n,,s,) € T and 1, — 1., and since we have

(p(wk’ 0) = (p((p(wkv Sk)v O) — @(xoov 0) (k — OO),

the boundness of {w, };2, follows from p_(w;) = |w;, — ¢(wy, 0)|. This completes the
proof. O

We have the following proposition.

ProrosiTION 1.3.  Let F be a complex of Abelian sheaves on X. Assume that U
satisfies

sup p,,(z) < or. (1.2)
zeU

Then there exists the following isomorphism:
RI (Ui F) ~ RI5 5(Usm, 'F).

PROOF.  Since w;l(G) NU is closed in GNU and U is open in 71'771((]), we obtain

-1 !
Leng — Zw;l(c)mﬁ - ngl(c)nﬂ;I(U) =Ty Leny = ﬂ—nZGﬂU[_z]’

and this induces the canonical morphism
Rﬂn!Zéme = Zgryl—2]- (1.3)
Hence, we have

RIGny (U F) = RHomy, (Zgny, F) — RHomy (Rm, Zg g, F)[—2]
!

~ RHomy,_(Zgng,m,F)[—2] ~ RF@HU(UW;U:),

and to show Proposition 1.3, it suffices to prove that (1.3) is an isomorphism. We first
give some properties of ¢ and P

(1) It QD(:C"S) - QO(I/,S/) holds, we have QD(:C,O) = QD(C,O(I,S),O) = (p(gﬁ(l‘/,sl),()) =
p(2',0). In particular, p,(z,s) = p,(z',5").

(2) For any z* € X we set
G(z") :={(g,t) € G x [0,1]; p(g,t) = z}.
If G(z") # 0, there exists (z,s) € G(2") such that p_(z) attains the value

a(z”) = inf{p,(9); (9,t) € G(z")}.
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Let us compute Rm, Zg g . If 2" ¢ U, clearly we have (Rm, Zg.5),- = 0. Hence in
what follows, we assume z* € U, in particular, W;l($*> nU # () holds thanks to the
assumption. Now we can calculate the stalk (Rm,Zg.5),. for 2* € U as follows. If
" € G, we get

(@) NG = {n€C; p,(a") < alnl}
because of (z*,1) € G(z*) and

P (%) = py(z",1) = p,(x,5) < p,(z,1) = p,(2)
for any (z,s) € G(z*). Hence we have

@) NGNT = {n €8 p,(a") < olnl},
which implies
(R, Zeg) = RI,(r, ' (z") NG N Ui Zg) = Z[-2).

On the other hand, if " ¢ G, we obtain

(Rm, Z

Gni)er = RO(m ' (a*)NGNU;Zg) = 0.

As a matter of fact, if 7, Y(z*) NG = 0, the claim clearly holds. Otherwise, we have
p,(z") < a(z") which can be shown by the following argument. Let (z,s) be a point in
G(z") with p(z) = a(z"). Since 2" ¢ G, x € G and 2" = ¢(z, s), we have z ¢ Z and
s < 1. From these facts, it follows that

p (%) = py(z",1) = p,(z,5) < p,(z,1) = p,(x) = a(z").
Hence we have

T @) NGNU = {neS; p,(x") < olnl, alz™) < olnl} = {n € S; a(z*) < olnl},

which implies the claim.
Summing up, we have obtained

Z|-2] (a* € GNU),

Rr 25 7). . =
( Tt GmU)m {0 (otherwise),

and hence (1.3) is an isomorphism. This completes the proof. O

REMARK 1.4.  Without (1.2), we have the following claim by the same argument as
that in the proof above: Set U’ := {x € U; p,(x) < or}. Then there exists the canonical
isomorphism

R, (U F) Rrémﬁ(ﬁ;m;lf).
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2. Holomorphic microfunctions with an apparent parameter.

Let X be an n-dimensional C-vector space with the coordinates z = (2,...,2,),
and Y the closed complex submanifold of X defined by {z’ = 0} where z = (2, 2”) with
2= (2y,...,2,) for some 1 < d < n. Set X = X x C, and let T, X 5 (z,n) =
z € X be the canonical projection as in Section 1. In what follows, we denote an
object defined on the space X by a symbol with ~ like ﬁm etc. For any z € C", we set
l|lz]| := max, ;. {|%;|}. Let O be the sheaf of holomorphic functions on X, and (g{l}IX
the sheaf of real holomorphic microfunctions along Y on the conormal bundle 7y X to

Y. Let z, = (0,25) € Y and z; = (2; () € Ty X with |[¢)| = 1. Set
fiz) =, Q), fl(2) =2 — ()G -

REMARK 2.1. The subsequent arguments can be applied to a general family of a
function f,(z) and a mapping f’(z), which enables us to develop the theory not only on
a vector space but also on a complex manifold. It is, however, rather technical. Hence
we put such a generalization in Appendix B.

By the definition of %}DE“ > we have

R : d )
ngx,zg; = lim HGQ’LOU(U’ Ox)-
o, L,U

Here U C X ranges through open neighborhoods of z;, and G, ; denotes the closed set

G, =1{2€ X; ') < |fi(2)], f,(2) € L},

where L C C ranges through closed convex cones with L C {r € C; ReT > 0} U {0}.
Now we apply the result in the previous section to the case above. We take the open
sector S,. , defined by

S0 = {neC;largn| <0,0<|n| <r}
for 0 < @ <7/2and r > 0 as an S in the previous section. Set
¢:=(0,¢)eCxC

We adopt the deformation mapping given in Example 1.1 and assume that U is sufficiently
small so that the assumption of Proportion 1.3 is satisfied. Therefore there exists the
canonical isomorphism
. T -1
RI;  w(U;iO0x) = RF@gyLmﬁw,B(Ug,r,av T, Ox);

where @Q’L and ﬁg,rﬁ are defined by (1.1) with respect to G = G, and U. By easy
computations, these sets are given by
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G, =1{(z.n) € X; olf (2)] < Inl, fi(2) € L},
Uyro=1{(zm) €U X S, 4 |£1(2)] < alnl},

respectively. Thus, from the exact sequence

(2.1)

B
-1
07, Ox = Oz~ 0% —0,

we obtain the following distinguished triangle:

U 0 07 +1
RFGQVLOU(U§ Ox) = RFagyLﬂﬁgw’e(UQ,rﬁ; Og) -5 RF@Q,Lﬁﬁg,,.,e(Ug,r,G? o) 1L
We will see later the fact
@Hg nO (ﬁg,rﬁ?ﬁA):O (k #d). (2.2)

er0.LU O et

Hence we have reached the following definition and theorem.

DEFINITION 2.2. We define

(U

o @0

0%),

LU

(=)
Q
™

where U C X and L C C range through open neighborhoods of z, and closed convex
cones in C with L C {7 € C; ReT > 0} U {0} respectively, and the subsets U, , , and

G, are given in (2.1). Further we define
C§|X,za‘ = Ker(@n: 61]1}\)(728 — 6}}‘&8).
Therefore, we obtain:
THEOREM 2.3.  There exists the following canonical isomorphism
(K}D}\X,za‘ = C§|X,z§'

Let us show (2.2). We may assume z; = (z,;¢)) = (0;1,0,...,0). Let k :=
(r,7',0,0) € R? be a 4-tuple of positive constants with

0<9<%7 O<o<1, 0<r<or. (2.3)

Then we set

0
S, = T76/4:{ne(c;0<n|<r, |arg77|<4} (2.4)

and define the open subset
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n

O, = ({(zn) € X x S5 || < olnl, ] < '}
=2

We also define the closed cone

d
~ = ™
Goi={(zm € X largzy| < T~ 0, alz| < Inl}-

=2
By using these subsets, we introduce objects corresponding to G,H}I X8 and C’glf‘ X,z; At
2y, which are easily manipulated by Cech cohomology groups.
DEFINITION 2.4.  We define
Cyix(k) = HE 5 (U, 0%),

CF x (k) == Ker(d,: O (k) = O (K)).

Clearly we have
611]5\2(728 = hﬂa}%x(”) and O$|X,zg = hﬂch(”)’
K K
since families of closed cones and open subsets appearing in inductive limits of the both
sides are equivalent with respect to inclusion of sets.
PRrOPOSITION 2.5. If k # d, then

k ~
Hémﬁﬁm(Un; ﬁ)?) = O

In particular, (2.2) holds.
Proor. We set
17,51) = {(z,n) € ﬁn; o< argz; < s +0},
2 2 (2.5)
VO ={(zmelgolzl >} @<i<a.

Since each V) is pseudoconvex and U, ~ G, = J*, V(! we have Hg nf U,;05)=0

for k > d. Let us show the assertion for £ < d. As o < 1 and r < or’ hold, we have

RF@mﬁﬁm(U"; ﬁ;{) ~ RF@nﬂﬁ(D; ﬁf(),

where

D= {(z.m) € X x 8,3 |2y| < el |z,] < '}
i=d+1
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Let us consider the holomorphic mapping on X defined by

o(z,m) = (21,029, .-, 024, 2" ).
Since ¢ is bi-holomorphic on X x C*, we have

RF@ﬁﬂﬁ(‘D; ﬁf() ~ Rfkﬂﬁ(D; ﬁf()

Here we set K := IA(l N IA(2 with
d
~ ~ T ~ ~
K, = {(z,n) € X; |largz | < 5 —0}, K, = n{(z,n) € X; oz <1}
i=2

Then we have the distinguished triangle

RIGp(D;O%) = Rl (p(D;0%) = REg & )np(

D~ K 1:0%) RENy
Hence the claim of the proposition follows from the following well-known lemma. O

LEMMA 2.6 ([14, Theorem 4.1.6]). Let D be a closed disk with positive radius in C
and U a pseudoconvex open subset in C™. Then

]]S""XU((Ck x U; ﬁck+m,) =0 (v #k).

Furthermore, for any pseudoconvex open subsets U, C U, in C™ which are non-empty
and connected, the following canonical morphism is injective:

HS"’XUQ((CIC X UQ, ﬁ([:"'+7") — HH’;kXU1<Ck X Ul’ ﬁc"’+’")'

Next, we set

n

U, = ﬂ{z € X; |z | <or |z <r'},
=2
d

T
G, = rl{z € X; larg 2| < > -0, 0|z < |Zl|}
i

COROLLARY 2.7. Ifk # d, then
HéKﬁUK(Un; Ox) =0,
and there exists the following eract sequence:
d AR % AR
0— HGNQUN(UN; Ox) = Cy x (k) = Cyx (k) = 0. (2.6)

Proor. We set
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7T
Vél) = {Z (S Un; ?

3
—0<argz < ;—i—@},
Vi i={z €U, dlz| > 1z}  (2<i<d).

(2.7)

Since each V,i(i) is pseudoconvex and U, \ G, = Ulevp, we have Hf, . (U,;05) =0
for £k > d. By Proposition 1.3 and Remark 1.4, we have the following distinguished
triangle

1
Rl oy (Ui Ox) = RIG OU(UR;ﬁA)—>RFG mU(U Og)

By Definition 2.4 and Proposition 2.5, we have (2.6) and Hf, -, (U,; Oy) = 0for k < d.
t

Note that, since
U, cr'(U,), =Y (G.)nU,cG.nU,,

the morphism Hé v U O0y) — 6§|X(n) is defined by a natural way associated with
inclusion of sets. By Proposition 2.5 and (2.6), we obtain the following corollary.

COROLLARY 2.8.  Let z; = (0;1,0,...,0). Then there exist isomorphisms

HgnnUn(Umﬁx) %C&X("é) (2.8)

! |

ngﬂﬁx,zgg — hﬂ C§|X(K’)'

We now consider a Cech representation of C’& (k). Recall ‘71{(1) C X of (2.5) and
VD c X of (2.7) for 1 < i < d. Let P, be the set of all the subsets of {1,...,d} and
’P; C P, consisting of o € P, with #a = d — 1 (#« denotes the number of elements in
a). For a € P, we define

v =NvY, v =Nv. (2.9)
i€Ex Ca
In what follows, the symbol * denotes the set {1,...,d} by convention, for example,
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C$|X( )—{UECYU(( 9,u = 0},

HE oy (U 0x) = T(V5 04 /ZF (Vi) 6.).

a€ePy

Since ‘7,50‘) cm, 1(V("‘)) holds, we can regard a holomorphic function ¢ on V as that

on Véo‘), and thus, we have the natural morphism I'(V®); &) — I'( no‘)7 ﬁX). This
induces the canonical morphism between the Cech cohomology groups

F(VFS*)? Ox)

S aepy TV 04)
INUARIZY)

S ey TV 0%)

Héi;mmUm(U.@; Ox) =

—“Qqu€E ; O,u=0 =C§|X(R).

Clearly this morphism coincides with (2.8), and hence it gives an isomorphism by Corol-
lary 2.8.

3. Cohomological representation of éa;l% with an apparent parameter.

We inherit the same notation from the previous section. Set X2 := X x X with the
coordinates (z,w), and let (z,w,n) be coordinates of X? := X? x C. Let A C X? be the
diagonal set. We identify X with A, and

X ={(%0}={(z,2¢-0}= TZXQ.

Let c§’§ denote the sheaf of pseudodifferential operators on the cotangent bundle 7% X of
X, and 2z = (24;¢,) € T"X with |¢,| = 1. Set

fai(zw) = (z —w, (), falzow) =2z —w— (2 —w, ),

See also Appendix B for a generalization of the mappings above and the following argu-
ments on a complex manifold. For a closed convex cone L C C, set

Ga,p = {(zw) € X% P fA(z,w)| <|fay(z0)], fay(z,w) € L},
Then it follows from the definition of éa;l? that we have

6 —lm U0
o, L,U AYQ’

Here ﬁg-)z)n) is the sheaf of holomorphic n-forms with respect to dw,,...,dw,, U C X 2
and L C C range through open neighborhoods of (z, z,) and closed convex cones in C
with L C {7 € C; Re7 > 0} U {0} respectively.

Now we introduce the corresponding cohomology group with an apparent parameter.

Set, for an open subset U € X? and a closed convex cone L C C,
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UA,Q,T,G = {(Z,’LU,’I]) eUx ST,Q; |fA,1(Z7w)‘ < Q|n‘}a
G g = 1(z,w,m) € X2 ol fA(2,w) < Inl, fa,(2,w) € L}.

DEFINITION 3.1.  We set

~ . = 0,n,0)
ER . =lmHY - (Ua .. 00",
X.zg g,rﬁ,UGA’Q'LOUA’W*"( A0m0 7 X )
0,n,0) . . .
Here ﬁ%z’n’ ) is the sheaf of holomorphic n-forms with respect to dw,,...,dw,, U C X?

and L C C range through open neighborhoods of (%, z,) and closed convex cones in C
with L € {7 € C; ReT > 0} U {0} respectively. Further we define

R . DR DR
Ex .= Ker(9, Ex .. — EszS)‘

From the consequence of the previous section, the following theorem immediately
follows.

THEOREM 3.2.  There exists the canonical isomorphism
R R
Exoe = Ex e
We assume z5 = (2,;¢,) = (0;1,0,...,0) in what follows and consider a Cech

representation of E§23. Let k = (1,77, 0,0) € R* be parameters satisfying the conditions
(2.3). Then we define

n
Upp = (zwm) € X2 |2l < v, n €S, |2 —wy| <ol |2 — w;] < '},

i=2
~ n ~ T
Gap = m {(2>wa77) € X? larg(z; —wy)| < 9 0, olz; —w;| < |77|} ‘
i=2

We also set

n
Upp = ﬂ{(z,w) € X% ||zl < 2 —wy| < ory |z —w;| <7}

=2
I Y
Gap = m {(z,w) € Xx* larg(z; — w;)| < 5 0, 92|Zi —w,;| < |z — w1|} .
i=2
DEFINITION 3.3. We define
R N n 7 . (0,n,0)
EX(K’> = HéA,nmﬁA,n(UA’R7 ﬁf{’z )s

E% (k) :=Ker(d,: E% (k) — E% (k).

Note that

~Rr . R R . R
EY .= h%EX(n) and Ey . = h%nEX(ls:)



1728 T. Aoki, N. Honda and S. Yamazaki

hold. Then by employing the coordinates transformation (z,w) — (z,z — w), it follows
from Proposition 2.5, Corollaries 2.7 and 2.8 that the both complexes

(O n,0)
RIg, o, Uani O3,

(On 5 . (Ovnvo)
RIG, v, WawiOxi ") =Rl oo, UaxiRAomg (D3:/P5:0, 0% "))

Ak Ak A,nm A

are concentrated in degree n, and we have the canonical isomorphism

HE oo (Uy, 035Y) 5 B (k).

Ak Ak

Furthermore we have

R T n
(g)X,zg = lim H,

By these facts, we get

Now we give the Cech representations of these cohomology groups. Recall that the open
subset U Py X? is defined by

n
n{<szvn) € X2 X Sn; ”Z” < Tlv |Zl —’LU1| < Q|77|7 |Zz _wi| < T/}'
=2

Here the open sector S, was given by (2.4). Set

3
V(l), {(zwn)GUA g@<arg(zlw1)<;+9},
‘74(?,@ ={(z,w,n) € (74,,1; olz; —w;| >|n|} (2<i<n).

We also set

VA(l’L :

2 2
V= {2, w) € Uy s Plz; —wy] > |2y —w |} (2<i <n).

K

{(z,w)EUAVH, i — 0 < arg(z; —w,) <37r+0},

For any a € P, the subset ‘A/A(a,l, VA(?‘,,)C

Then, using these coverings, we have

etc. are defined in the same way as those in (2.9).

=~ * 0,n 0) « (0,m,0)
B30 = 1750 08"") | S @4 o)
aEPY

E% (k) = {K € E%(k); 0,K = 0},
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n 0,n On On

He, v, K(UA mﬁ( )) VA g ( ) / ( ))~
' ' a€PY

Let us take any K(z,w)dw = [¢(z,w,7n) dw} € Ex(k) and f(2) = [u(z,1)] € C’glﬁlx(n)

with representatives ¢ (z,w,n) dw € F(VA ﬁ(o 0 ) and u(z,n) € F(Vé*); 0% ) respec-
tively, which were introduced in the previous sectlon. We will define the action p, on
C§| « (k) associated with the kernel K(z,w) dw. For that purpose, we first introduce the

paths of the integration related to . Let (z,71) € X. Set By = (0/2) e~ VEI(H0)/2 and
B, = (0/2) eV T(mH0/2 and we define, for a sufficiently small € > 0, the path v, (2,m; 0,0)
in (Cwl by

€
{w, =z, +tBym; 127525}\/{11}1 :zl+%e_ﬁ(”+9)t/2; -1<t< 1}
VA{w, =z +tpm; e <t <1}

Note that 7, (z,n; 0,6) joins the two points z; + 5,1 and z; + 8,7, which depend on the
variables z; and 7 holomorphically. We introduce another path 7, (z,n; 0,6) in (Cw1 by

the straight segment from z, + 5,1 to 2z, + ;1. We also define the path v,(z,n; 0) in (Cwi
(1 =2,...,n) by the circle with center at z;, and radius |n|/o + ¢, i.e.

Vi(zm5 0) = {wi =z + (M+ ) VI )<t < 1}
0
Define the real n-dimensional chain in X made from these paths by

Y(z,m;0,0) =

(z,m50,0) X vy (z,m50) X -+ X, (2,m50) C X, (3.1)
(z,m;0,0) := X.

7y
F1(2,m50,0) X vy (2,m50) X - x 7, (2,m;0) C

Let 7y: X% 5 (zy,w,m) — (w,n) € X be the canonical projection. For a € P, and
B8P, weset

W) o= D) 7 (00,

K

Wi = VI, na (v,

K

We also set /V[Zga’*) = ﬁ/\é“’{l""’d}) and /V[Zg*’ﬂ) = Wé{l’“"”}’ﬁ). Then the following
lemma is easily obtained by elementary computations.

LEMMA 3.4. Let & = (7,7, 3,0) € R* satisfy

/
~ o T ) ﬂ 5o 2 ﬁ
O<r<r, 0<7 < 5 0<b< T 0<po< 5 Sin
and the conditions corresponding to (2.3). Then the following hold for sufficiently small

e>0:

1) For any (z 6‘75*) in X2
(1) y (2,m) € Vi,
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(2} x v(z,m5 0,0) x {n} € W,

Here {z} x v(z,m;0,0) x {n} denotes the product of these three subsets in X? =
X x X xC.

(2) For any (z,n) € ‘Aféﬁ) with 8 € 770\{,
{2} x y(z,m;0,0) x {n} c WP,
(3) For any (z,n) € V>,
{2} x F(z,m; 0,0) x {n} € W{2m}),
Furthermore
{2} x 0y(z,m5 0,0) x {n} € W),
where 0y(z,m; 0,0) denotes the boundary of v(z,n; 0,0) as a real n-dimensional chain.

Now we are ready to define the action 1y of K(z,w)dw € F% (k) on C&X(”)'

THEOREM 3.5.  The bi-linear morphism

i BE ()9 CF x(0) > CF 1 (R)
defined by

K(z,w)dw® f(z) = [¢(z,w,n) dw] @ [u(z,n)]

o (K dw f) = / (2w, ) u(w, ) duw

v(2,m;0,0)

is well-defined. Here K is a 4-tuple of positive constants satisfying the conditions given
in Lemma 3.4. In particular, there exists the following linear morphism:

prc: O3 x () 2 f(2) = W(Kdw® f) € CF < ().

REMARK 3.6. The same result holds for ¢(z,w, 7,n)dw and u(w, 7,n) with addi-
tional holomorphic parameters 7.

PROOF OF THEOREM 3.5. For any ¢(z,w,n) € F(/W,g*’*); O»), set
() (z,m) = /so(z,wﬂ?) dw.
v(z,m;0,0)

Note that, by Lemma 3.4 (1) we have u(p)(z,n) € F(\A/E(*); 0%). Recall that P, denotes
the subset of P consisting o € P, with |a| =n — 1.
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LEMMA 3.7.  Assume that p(z,w,n) € F(W(O‘ A, i O%s) with a € P, and B = * or
with o = % and 8 € PJ. Then u(y)(z, )EF( B, o <) for some B € P).

ProoOF. If (z,w,n) € F(/VIZ&O"*); O%.) for some a € P, we have

w(@)(zm) € TV g0y (a={2,...,n}),
) (z,m) =0 (otherwise).

Here we remark that the first fact comes from Lemma 3.4 (3) by deforming the path
of integration to W(z 7;0,0). In the same way, by Lemma 3.4 (2), it follows that if
w(z,w,n) € F(W ), ; O%.,) for some 8 € PJ, then

1) (z,m) € TV 04). 0

It follows from Lemma 3.7 that u induces the canonical morphism

* ok (OnO) (=
TWeioe™) | L0R%0%) e o
> oI Wéﬂ*"ﬁﬁ?ﬁ’”) S Py
(a, B)EA BEPY

where A := {(a,%); o € P/} U {(x, B); B € PJ}. Furthermore, we have the canonical
morphism

ZF (a B). ﬁ(OnO))
(o, B)EA

B (%) © CF ()

by [¢(z, w,n) dw] @ [u(z,n)] — [W(z,w,n) u(w,n) dw]. Hence we have obtained the mor-
phism

s EX (k) ® Cy x(K) 2 [¥(z,w,m) dw] @ [u(z,7)]

o | [ v m et mde| < 6@
~(z,m50,0)

Thus to complete the proof, it suffices to show the image of pu is contained in C’&X(&).
We have

0 /an) (w,n) dw = /[Td}(z 2+ ) ulz + 7w )] 5, Wz - dw,

~(z,m;0,0) Yo (2,m50) X - X, (2,m50)
+ [0, wanulw.ydu + [ 6z, w,0)0,u(w.n) du
~(z,m;0,0) ~(z,m;0,0)

By Lemma 3.4 (3), the first term belongs to F(‘/}FEQ """ 9, Og). For the second and third
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terms, as each integrand belongs to Z(a, g)eAF(WSJ’ . 0,), the corresponding integral
also belongs to Zﬂepgf(fféﬁ); 0 ). Hence we have obtained (9/0n) p([iydw] @ [u]) =
0e C)H§|X(E)v which implies p([dw] ® [u]) € C$|X(E')' The proof is complete. O

As a corollary of the theorem, we have the result on the composition on E§ (K).

COROLLARY 3.8. Let k = (7,7, 5,0) € R* satisfy

/ 9 0
O<i<r, 0<7 <., 0<b<. 0<,§<§sinz,

oo

and the conditions corresponding to (2.3). Then there exists the bi-linear morphism
pi B (5) 9 B (w) > F% (R)
defined by

(¥ (2, w,m) dw] @ [Py (2, w,n) dw] = [ @ 1y)(z,w,n) dw],
where
(wy 6) ) = [ (2,8 6,(, ) 4.
~(2z,m;0,0)

PROOF. By employing the coordinates transformation z = 2’ +w, w = @’ +w and
w = w, the integration above becomes

/1/)1(2' +w, W +w,n) 1/}2(@/ +w,w,n) dw'.
v(2",m;50,0)

Then, under the new coordinates (z', @', w), the v, (resp. the result of the integration)
can be regarded as a holomorphic microfunction along {w’ = 0} (resp. {2’ = 0}). Hence,
by noticing the simple fact that |w,| < r'/2 and || < 7'/2 imply |w;| < 7', we can easily
obtain the result by the theorem. 0

The following theorem can be shown by the same arguments as in Kashiwara—Kawai
[16]. We give the detailed proof in Appendix A for the reader’s convenience. See also
Theorem B.8 for the corresponding claim at an arbitrary point in 7% X.

THEOREM 3.9. The action

@@5,25 %%}H’Q\X,za‘ = hﬁm(E?}(ﬁ) %CE%\X(K')) = H?nlc§|x(“) = Cg)]%x,zg

Lo . . . R R
coincides with the cohomological action of éBXst on %Y\X,zg'

As an immediate corollary, we have:
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COROLLARY 3.10.  The multiplication of the ring éa;?zg coincides with the compo-
sition defined by

- —
K

(g);léza‘ %gﬁ,zé‘ = 11H1(E§(K) %}E?}(K’)) i> hmEg{}(K’) = é();l?,zg'
K

4. Symbols with an apparent parameter.

Let X := C" and consider T*X ~ X x C" = {(z;¢)}. Let m: T*X — X be the
canonical projection. If V'C T* X is a conic set and d > 0, we set

Vid] :={(2¢) € V5 [I<]| = d}-

For any open conic subset 2 C T*X and p > 0, we set

2,:= 0l G+ 25¢+¢) e € 121 < p, 1) < lICI].
(z,8)en

Here Cl means the closure. In particular, £2, = C1{2. For any d > 0 and p € [0, 1 [, we
set for short:

d,:=d(1—p).

Let U, V be conic subsets of 7% X. Then we write V' € U if V is generated by a compact

conic

subset of U. We recall the definition of symbols of 5;5 :

DEFINITION 4.1 (see [2], [6]). Let £2 € T*X be an open conic subset.

conic

(1) We call P(z,¢) a symbol on 2 if there exist d > 0 and p € ]0,1[ such that
P(z,() € I'(22,]d }; Op. ), and for any h > 0 there exists C;, > 0 such that
1P(z, Q) < Gl ((2:¢) € 2,[d,]).

We denote by .#(§2) the set of symbols on (2.
(2) We call P(z,() a null-symbol on {2 if there exist d > 0 and p € |0, 1[ such that
P(z,¢) € I'(£2)[d ]; Op. ), and there exist C, § > 0 such that

|P(z,Q)l < Ce? Il ((2:¢) € 2,[d,]).

We denote by A7(£2) the set of null-symbols on (2.
(3) For any z; € T" X, we set

T :th(Q) DN ::ligt/i/(ﬂ)

2525 252§

where 2 € T" X ranges through open conic neighborhoods of z;.

conic

Next, set for short
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S:=8 (4.1)

K

for some r, 6 € ]0,1/2[ (recall (2.4)). In particular we always assume that || < 1/2 for
any n € S. For Z € S, we set m, :=min, ., |n| > 0.

DEFINITION 4.2.  We define a set N(2;.5) as follows: P(z,(,n) € N(£2;5) if
(i) P(z,¢,n) € I'(2,[d,] x S5 Op. xc) for some d >0 and p € Jo,1],

(ii) there exists § > 0 so that for any Z € S, there exists a constant C', > 0 satisfying

|P(z,¢m) < Cre™ 10 ((z:¢,m) € 2,[d ] x 2). (4.2)

]
LemMA 4.3, If P(z,(,n) € N(2;5), it follows that 0, P(z,(,n) € N(£2; S).
. lgf{;)(})g’.é/;?/:sassume that P(z,(,n) € I'(2,[d,] x S; Op.x ). For any Z € S, we
Z = eCln—n| <M} €S (4.3)
nez

Then by the Cauchy inequality, there exists a constant C',, > 0 such that

1 C. e—dllncl/2
sup | P(z,¢,n)| < —F—r

0,P(z,¢,n)| <
O ) 80l =5 | &'m

(z¢m) e d)xZ). O

PROPOSITION 4.4.  Let P(z,(,n) € I'(2]d)] x S;05.x,c). Assume that
9,P(z,¢,n) € N({2;5).
(1) The following conditions are equivalent:

(i) there exists a constant v > 0 satisfying the following: for any Z € S there exists a
constant C,, > 0 such that

|P(z,¢ )| < CpeI((z5¢,m) € 2,[d,) x 2). (4.4)
(i) for any h >0 and Z € S there exists constant C), , > 0 such that
P(z.¢m)] < Cppe™ N ((z:¢m) € 2,[d,) x 2).
(2) Assume that P(z,(,n) satisfies the equivalent conditions of (1) (resp. P(z,(,n) €
N(12;5)). Then for any n, € S, it follows that P(z,(,n,) € L (82) (resp. P(z,(,n,) €
N(82)) and further P(z,(,n) — P(z,(,n,) € N(2;5).

Proor. (1) (i) = (ii). For any h > 0, we choose 7, € SNR as vy, < h. Then
there exists a constant C170 > 0 such that

|P(2,¢,ny)| < Cnoevnol\CH < CnoehHCH () € 2,[d))).
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Forany Z € S, let Z' € S be the convex hull of ZU{n,}. Since 9, P(z,(,n) € N(£2; S), we
canfind § > 0 and a constant C';, > 0 such that for any (2;¢,n) € 2,[d |xZ C 2 [d ] x7Z'
the following holds:

n
PGl = |PlesGog) + [ 0,P(a.¢or) dr

o

h —om_,
< €, M4l 4y —ny|Cy e

<(C, +1Cy )"l

(ii) = (i). For any Z € S, we take 0 < h < m. Then there exists C,, , > 0 such
that

Pz, G| < Cy eI < 0 eI ((z:¢,m) € 2,[d,) x 2).

(2) Taking Z = {n,}, we see that P(z,(,n,) € (£2) by (1). Set 6, := d|n,|. As in
the proof of (i) = (ii) in (1), we see that for any (2;¢,n) € 2,[d,] x Z C 2/[d ] x Z'
the following holds: if |n| > |n,|

7
|P(z,(,n)—P(z,¢(,n)| = ‘ 9,P,(z, ¢, 7)dr| < |77—770\Ch72,675”’704” < rCh7Z,ef50”’7€”,
Mo

and if [n] < |,
|P(2,¢,n) — P(2,¢,m,)| < 7anh’Z/l,;J\IWC\I < Tch‘z/e*%\ln(\l.
Hence P(z,¢,n) — P(2,¢,n,) € N($2;5). If P(z,(,n) € N(£2;5), the proof is same. [J
DEFINITION 4.5. (1) We define a set &(£2;.5) as follows: P(z,(,n) € &(£2;5) if
(i) P(z,¢,m) € L(2,]d,] X S; Op. x ) for some d > 0 and p € ]0,1],
(i) 0, P(z,C,m) € N(2: 9),
(iii) P(z,(,n) satisfies the equivalent conditions of Proposition 4.4.

Note that 91(£2;S) C &(£2;5) holds by Lemma 4.3.
(2) For z; € T* X, we set

S, = 1lm&(2;9) DN, = lim N(2; ).
2,8 02,5

Here 2 € T" X ranges through open conic neighborhoods of z;, and the inductive limits
conic

with respect to S are taken by r, 6 — 0 in (4.1).

We call each element of &(£2;.5) (resp. M(§2;.5)) a symbol (resp. null-symbol) on 2
with an apparent parameter in S. Tt is easy to see that &(£2;9) is a C-algebra under
the ordinary operations of functions, and 9(§2; S) is a subalgebra. By definition, we can
regard that

L(2) ={P(z,(,n) € 6(42;,5); 6,P(2,¢,;n) = 0} C 6(42;5),
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N(02) =2(2) NN(2;S) C N S).
Hence we have an injective mapping . (£2)/ A4 (£2) — &(42;.5)/N(£2; S). Moreover
PROPOSITION 4.6.  There exists the following isomorphism:
L () [N (12) = &(82; 5)/N(82; ).

PrOOF. Let P(z,(,n) € 6(§2;5). We fix , € S. Then by Proposition 4.4, we
have P(z,(,n,) € 7 (£2) and [P(z,(,n)] = [P(2,¢(,ny)] € 6(£2;5)/M(2;9). O

DEFINITION 4.7.  We set
‘P(z,¢,n): == P(z,¢,n) mod N(§2;5) € S(£2; S)/‘J“((Q; S)

which is called the normal product or the Wick product of P(z,(,n).

5. Kernel functions and symbols.

In this section, we shall establish the correspondence of kernel functions and sym-
bols. For this purpose, first we define two mappings that give the correspondence above.
Set z5 = (295¢y) := (0;1,0,...,0). Take any element K(z,w)dw = [(z,w,n)dw] €
@E&%(H). Then a representative ¥(z, z + w,n) of K(z,z + w) is holomorphic on

n

1 m
(] G € €7 x5 el < o'l < sl < o' | < ol engoy | < 546
1=2

DEFINITION 5.1.  We set

o)z Go) = [ ez wi) e,
7(0,m;0,0)

Here the path v(0,7; 0,0) is given in (3.1) with z = 0. In Proposition 5.4 below, we show
that o induces a mapping (%1? T 6z3 /ng; .

In order to construct the inverse of o, we make full use of the following family of
functions (see Laurent [22, p. 39]):

DEFINITION 5.2.  We set
1 (v=0),

FII(T7 77) = 1 " —sT v—1
m‘/oe S ds (1/ c N)

Let z; = (0;1,0,...,0) € T*X, and P(z,(,n) € S, . By Proposition 4.4, for any
sufficiently small 7, > 0 we have P(z,(,n) — P(z,(,1,) € 0M... We may assume that
<] = [¢;] on a neighborhood of z)j. We develop P(z,(,n,) into the Taylor series with

respect to CI/C1 = (<2/<17 ) Cn/cl)
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C «
P(z,(,nq) ZP (2,¢1m0) (C . (5.1)
aeNg !
Then we set P5(z,¢,,1n) := P, (z, Cys 1) da‘f’la‘(glm) and
CI [e%
ZPB 2,(1,1 (C : (5.2)
Nn 1
DEFINITION 5.3. Under the preceding notation, we set
— e
w, (P)(z,wy,n /P 2,(q,1) T ¢,
G (5.3)
_ /dpa(z,gl,no)qa,(gl,n)gwlcl dc,,
and further define
o alw, (P)(z,wy,n)
w(P)(z,z +w,n) := Z @n Vo) (@) (5.4)
aEN371
Here we set w' := (w,,...,w,) and 1, := (1,...,1). In Proposition 5.5 below, we

show that w induces a mapping Gz;; /‘ﬁzg — é’}? 2

PROPOSITION 5.4.  The o in Definition 5.1 induces the linear mapping

0: &y == lim By (k) —————— &, /9.
w ®w w

K(z,w) dw = [(z,w,n) dw] = o (K)(2, ) = [0(¥) (2, ¢, )]

The o does not depend on the choice of the path of the integration.

We call o the symbol mapping, and o(K) the symbol of K(z,w)dw € é";l?zo

Proor. We expand

Z wa(zawl’n)

77[}(2’,2 + w,T)) = (27]_\/?)7%1 (w/)oz+1n71 .

aeznr—1

If a; +1 < 0 for some 2 < i < n, this term is zero in h_H;Egz} (k), and hence we may

assume from the beginning that

ﬂ)a Z,Wq,
Z ( 1)

’lﬂ(Zy Z+w, 77) = (271_ \/j)”*l (w/)a+1n71 .

aeNg !

Here

(5.5)
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Y, (z,wy,n) = % U(z,2, +wy, 2" + @', n)(0")* da’ (5.6)
|@y|=c|nl,....|w, |=c|n]
for ¢ > 1/0. Hence we may assume that ¢(z, z + w,n) is holomorphic on

Vs
N{ G € x5 ol < o] < dlal [argaoy | < 5 +0, 2 < o},
i=2 i

Take ¢’ > 0, an open conic neighborhood 2 € T*X and 0 < p < 1 as

conic

2, € {(xQ) €C = <v', ¢ <16, larg ¢,] <"},

Taking ¢’ small enough, we can assume that ||¢|| = [(;| on £2 ,- We have

o) (2, C,n) = /d'w1 ]{ j{ 3 (Qwéa)iz_’fu(lq;z)aﬂnl (0.0 gy

n—1
71(0,m50,0)  75(0,m50) ,,(0,m30) *ENg
ewlcl

- a o (w',¢’)
_Z /Q/Ja(z,wlm) o O€

n—1
@€Ny™ 'y, (0,m50,0)

:Z (C)| /¢a(27w1,77)€w141dw1.

dw,

w’=0

n—1 o
€Ny v, (0,m30,6)

We can change 7,(0,7;0) = {w; = |n|s'e*™ V™75 0 <t <1} with0 < 97! < 5. De-
forming ~, (0,7; 0, 6), we can see that for any h > 0 we have eRetwnG) < hnGl polds if
larg ¢;| < r" and w, € v,(0,7; 0,6). Thus we have

()] = Red) < exp (Re<w1,§1> + ) |w, C¢|>
=2
< hInG 1 +(n=1)¢'s"In¢;| _ o (ht(n—=1)c's")[InCll

Fix d > 0. Take Z € S. Then there exists a constant C > 0 such that
(w,¢) (h4(n—=1)c's")|[n<]| .
| [tz v wm e au| < ce (5:¢,m) € 2,0d,) % 2),

7(0,m;0,0)

that is, we can see that o(y)(z,¢,n) € I'(2,[d,] X S; 0.y, ) and satisfies (4.4). If
[¥(z,w,n)dw] =0 € ligEg{}(n), we may assume that there is &' > 0 such that |e{*1¢)| <

e~ holds if |arg ¢,| <" and w, € 7,(0,n;0,0). We choose ¢’ so small that § :
§" — (n—1)c’s’ > 0. Then there exists a constant C' > 0 such that

’/’(/)(Z,Z + wﬂ?) e(w,()dw < Ce((n_l)CISI_é,)lncl‘ < 06—5”77CH ((%Cﬂ?) € Qp[dp] x Z)a

~(0,m;0,0)
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that is, o(¢¥)(z,(,n) € N_.. Further we can prove that

/1/1(2, z+w,n) el dw — /7,/1(2, z+w,n) e dw e N,

~(0,m;0,0) 7(0,m50,,0,)

Note that

9,0(¥)(z,¢,n) = / [ﬂ/J(z,zl+T¢7,z’+w’,n)em§1+<w/7</>]ﬁ1 dw, - - dw,

T=0,

75 (0,m50) X -+ %7, (0,m50)

(w,¢)
+/8nw(z,z+w,n)e dw.

7(0,m;0,0)

Since 9,1(z, w,n) is a zero class, 9, 0(¥)(z,(,n) € N... Thus we see that o(¥)(z,(,w) €
6. . and o is well-defined. O

=
PRrROPOSITION 5.5.  The w in Definition 5.3 induces the linear mapping
w: 623/9?23 3 :P(z,¢(,n): = w(P) = [w(P)(z,w,n)dw] € (53526 . (5.7)
This mapping is independent of the choice of either n, or the path of the integration.
We call w(:P:) the kernel of (P: € &_. /M.
PROOF. We need the following estimate to prove that w is well-defined:

LEMMA 5.6.  Assume that Re(nt) > 20,|n7| > 0 for some §, € |0,1/2[. Then for
any v € N,

1< 1 6.9
676()'777—‘
I .9)
0

PrROOF. We have (5.8) as follows:

1 Il 1 y
L, (r )| € ——— / e 75 ds < —-— / 1 gs— 1
(v—=1!Jo v—-1!J, o

By the definition of I'-function and induction on v, we have

v o) v—1 k
v T —S8T _V— (777') —nT
1—7'FV<7'7’I']):(V1)!/7]6 S ldszkg Ll e .
=0

Therefore, we have

v—1 k
(50777) eI

v—1 k=28, |nT|
(6o|"77—|) e °
Ko <2

L= T ()| = T
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=20, |07 —6oln7l
0 0
< dolntl ¢ _° 0O
— 51/—1 51/—1 N
0 0

Recall (5.1) and (5.2). There exist sufficiently small 7, #' > 0 and sufficiently large
d > 0 such that P, (z,(;,,) is holomorphic on a common neighborhood of D for each
a € NJ~!, where

D :={(2,¢,) € C"h |2l < 7, farg G| < €', |G| = d}-

It follows from the Cauchy inequality that we can take a constant K > 0 so that for each
h > 0 there exists C; > 0 such that for every a € Ng_l,

P, (2.Gme)l < C, K14l ((2,¢)) € D). (5.10)

We take &, € ]0,1/2[ as Re(n¢;) > 26y[n¢,| > 0if n € S and |arg (| < 0. Take ¢ > 0
as 0 < Ke/d, < 1/2. For any Z € S, we chose h = §;m,/2. Then by (5.9), for
(2,¢;) € D x Z and |(;| < €|¢;| (2 < i< n) we have

P(2,Comy) = PPz, o)l = | S Po(z,¢amg) (1= T () (g)

la|=1

> |
< 5yCpe a2y (?)‘a < 2"715,Cp e %Il (5.11)

laj=1" 0

where we remark that #{a € Ny 7' [a| = i} = ("Fi72) < 2”72 Therefore we see

that P(Za<7n) - PB(ZﬂCan) = P(Z7<an) - P(ngvno) + P(vaﬂlo) - PB(ngan) € ng
Further by (5.8) and (5.10), there exists a constant K > 0 so that for each h > 0 there
exists €, > 0 such that for every a € Na“1 and (z,(;,n) € D x S, we have

IPE(z,¢m)| _ Cp(K )Tt

< (5.12)
|Gy [l |ov|!
We can take a sufficiently small §,, ¢’ > 0 such that
, T
{wl € C; largw,| <"+ E} C U {w, € C; Re(w,(;) > 0;|w, (|},
larg ¢; |<0"
and we set
L= {(z,wl) € T 2]l < 1y, Jargw,| < & + g} . (5.13)
By (5.12), for any k € N there exists C;, > 0 such that for every a € Ngil,
pPB O (K nDleledl¢l/k
1P (06| Cl(Bnl) e ((2,¢m) € D x 8). (5.14)

(ST !

By changing the direction of the integration in the complex 7-plane, w_ (P)(z, w,,n)
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extends analytically to the domain L x S. Set
n+1 ! ™ 2
L, =< (z,w) € C" ||z]| <y, largw, | < 8 + CRN <|wy| - (5.15)

Then by (5.14) and (5.8) for any n € S we have

sup{[ (Pl (2o,) € Ly} < ok () (5.16)

Therefore the right-hand side of (5.4) converges locally uniformly in

V, = ﬂ{(z,w,n) € C* x S; (z,w,) € L, K|n| < |w,| }. (5.17)

2<i<n

Hence w(P)(z, z +w,n) is a holomorphic function defined on the set

o0

Vs
=Uv=N { 2y w,m) € € x S5 ||2l| < 1o, largwy| < &' + -, Kln| < |wi|}.
k=1 2<i<n

(5.18)
Next, we have

1 = - w o —
anwa(P)(zawlvn) = ) /Pa(z’clano)e (n+ 1)§1n| \ 1d<1-

(la] =)' Jq

Let Z € S. Then choosing h = §,;m, in (5.10), for ||z]| < ry, n € Z and |w,| < §,|n|/2,
we have

sy, (K n])
|anwa(P)(Z7w1777)| < (J(|Oi|—_1)/{i domz G- Re(ncl)ﬂwlcl‘dK |
] ||
Cém(K'“/ G-l DIl g, < 2Coum KPIT
(laf =1 /a4 = Golnl(Je] = 1)!

Hence 0, @w(P)(2, z + w,n) is holomorphic on

U N {zwn )€ C2 x Z: ||2]] < g, | < 200 K|n|<wi|}

2
ZEeS 2<i<n
= [ §(zw,n) €C™ xS; ||z <7y, |wy| < L= 5 Kl <lwl ¢
2<i<n

This entails that [0, w(P)(z,w,n)dw] = 0 € é”;lgzé. It P(z,(,n) € M., there exist
constants §, C, K > 0 so that for every a € NJ ™!,

P, (2 Cromp)| < CK1e™?4l((z,¢) € D).

Thus if |w,| < 6/2, we have
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C(K|n|)"! / —(5—w, D¢, 20(K [n])!!
P < — willeilg < —

|wa( )(va1777)| = |Oé|' 4 |C | (S‘Oé“

Thus w(P)(z, z + w,n) is holomorphic on
2n J

[ §(zw,n) €T xS; |2l <, w, | < 5 Kl <]
2<i<n

and hence [@w(P)(z,w,n)dw] = 0. If we change 7, or d in (5.3), for the same reasoning
as above, we see that [w(P)(z,w,n)dw] = 0. Therefore we obtain a well-defined linear
mapping (5.7). O

Now we shall prove our fundamental theorem for the symbol theory:

THEOREM 5.7.  The mappings o and w are inverse to each other. In particular
o: Ex G../M
. €774 = 23 23

PrOOF. We may assume that z; = (0;1,0,...,0), and we may also assume ||([| =
|¢;| on a neighborhood of 2z in the course of proof.

Step 1. We shall show ¢ - @ = id: 6z3/m25 — ng/mzs. Let P(z,(,n) € S,
Assume that P5(z,¢,n) € S, is holomorphic on a neighborhood of

ﬂ{(z,Cﬂ?) €C® x Sillzll < 1o, |G| > ds dlarg ¢, < 1, dIG ] < |}
2<i<n
By the definition of w, we have

o w(P)(z¢n) = /W(P)(z7z+w,77) W) dap

~(0,m;0,0)

al efw:©) o0 e~ wié
- / dwz (27 =T )" (u/ )a+1n_1/d (2,600 )?d&

~(0,m;0,0) *€ENG ™ !

e 1<1 e 151
= 1 / d 1 2 \/7 (Z 51, ) ST dE] .
N" 1

(0,m;0,0)

We set

n

V.= (0 €€zl <r Il 2 2, Jars I < 2, [6) < el

=2

We deform the path of integration | doodfl in two ways as follows: Let 6 > 0 be a
sufficiently small constant and d* intersection points of the circle |7| = d and {¢, €
C; £Im¢& = 0Re& > 0}. Let X, be paths starting from d, first going to d* along the
circle and next going to the infinity along the half lines {§;, € C; £Im¢&, = dRe&; >
0} respectively (see Figure 1). According to these deformations, we divide the path



Analytic pseudodifferential operators, I 1743

v,(0,7; 0,0) into two parts:
7%(0,77; 0,0) :=7,(0,1;0,0) N {w, € C; £Imw, > 0}.

We take a € v,(0,7;0,0) N R. Now we can change the order of integration in I (cf.
Figure 1) and obtain:

B
o-w(P)(2,¢n) = Z(C’)“(/ dgLfDIZ?/ e (G=6) duy,

aeNg ! o 2nV/=1& S (0mie)
PB
+ / ag, Lo E00) / 66 du,
R S e N (X))
f(%flﬂ ) (ea(<17 1) - 65177@1751))

S [+

aeNy ! - 277\/75“'(51 - (1)

g,

PB(» £,7) (ePomG=8) _ gal6i=81))

s / o (2

aeng - 2 V=T (& — &)

de, .

Here we remark that a > 0 can be taken as sufficiently small. Further we set
PP (z,&.m) "
I := Z(C/)oz/ ( 1 \a)|
aENs—? 2oz 2mV=TE (6 - G)
(2,€,,17) P66

I =— dg,,
Z /2_ 27“/7§|a|(€1 -¢) G

<17§1)

1

OéENn 1
5077(41—51)
"= / \al dg, -
QGN" ! Ty 27TF§ (& —¢)
Imw, Imw,
51:7 Re(wlgl) =0 (|§1‘ > d) Byn \
g ex, oo Re(w;&;) > 0 (I&;] > d)
71 (0,m; 0,0) .
mEal= L gy <e
a d . dfe
% Rew,; B Rew,
a d
71 (0,15 0,0)
/ Re(wlgl) >0 (|§1| > d) — -
o Re(w &) =0 (I§| > d)
6077 /3077

Figure 1.
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Then o -w(P)(2,(,n) = I+1~ +1I*". Let us recall that we have discussed in |arg (,| < ¢,
|¢y| > d/e > d and |(;]| < €|¢;| (2 <7< n). We can find ¢, ¢ > 0 such that [(; — & | >
€] > ed and Re(¢;8,m) < —2¢|n¢;| hold for any e € ]0,¢,[ and (&,1) € X_ x S.
Further there exists a constant h, > 0 such that Re(f,1&,) > 2h,|n&;| holds for any
L eX ~{l§]|=d} andnpeS. Forany Z € S, choose h =h, > 0as h, < hym, in
(5.12). Hence replacing € > 0 as 2Ke < ¢ on YN/E x Z we have

-l < f: Gy, (Kelng, )l =2l
- 27med |a!

|a|=0
o (e(hz+\Rc(ﬁln)\)d/ e, Jr/006_(%0\n\—hz)lfl|d|§1‘)
€ ]=d d
2n72 —c|n¢, | —h, dr
SO (g e (5.19)
= c 2mhgdm ,

Hence we see that I~ € ‘)’tzg. Similarly, we have

271—20 e—C|TZC1| —h,dr
It < hy elhz+1BIr)d e v , (5.20)
c 2whodm

and hence I T € N... Now we consider I. For any K € {¢; € C; Jarg (y| < €}, we see
that the integral operator

(61 =€)
e
s_ -3, TV=1(6 —¢)
has the Cauchy kernel with a damping factor since —Re(a&;) < 0. Hence,

I= > Pf(z,gl,n)<cl)aPB(z,C,n)

a€N6171 Cl
holds if ¢; is located in the domain surrounded by X — X% e Thus we have

0w (P)(2,¢,1)=P(2,(,n) = 0w (P)(2,¢,n) = P5(2,¢,m)+PP(2,¢, ) —P(2,(,n) € Ny,

that is, 0 - w = id: st/’ﬁza ~ 6. /N, .
Step 2. Let P = [¢(z,w,n)dw] € 5’5 e Then we can assume that a representative

¥(z, 2+ w,n) has the form as in (5.5). By Proposition 5.4, each coefficient P (z,({;,n)
in (5.1) is written as

lex]

P (2,¢,n) = j/%(z,p,n) e’ dp.

71(0,m;0,0)

We assume that each v (z,p,7) is holomorphic on
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71'
{Gopom) € ©F1 xSy |12]) < 2r, | < ol largpl < T+ 6}

Fix n, € SNR, and we take ¢ < p as ¢'|n| < |n,| for any n € S. By (5.6), there exists
¢ > 0 and for any Z € S there exists C', > 0 such that for any n € Z,

sup{[v, (2,2, m): [|21] < 7o, P € 7, (0,05 0,0)} < Cy(efnl) I+~ (5.21)

By the definition, we have

o Z—o o /7_1(@0/)0““177,71 / d¢y G F\M(Cu /1/1 Z,p,1,) €’ dp.
o 71(0,m30,6)
We set
oo 1 00
o o 2,z +w,n) = / d 6*w1€1/ Z,p, ePS1dp.
(1/})( 77) Z 2%ﬁ(w’)a+1n,—1 4 Cl 7/10/( P 77) D
o= 71 (0,m950,6)

We assume that Re(n¢;) > 20,|n¢;| > 0 for some &, € ]0,1/2[. We deform the path
7,(0,10; 0,0) as |ePS1] < e 9Ml/2 for Jarg¢,| < e. Then by (5.9) and (5.21), for any
Z € S, there exists C, > 0 such that if 2w, | < d,|n| and c|n| < §y|w,;| (2 < i < n), we
have

Z oz+1 1 /dd<1 (174\1‘1|["a|(<1,77)) 6_w1<1/¢a(z,p7n) epqldp
|a|=0 71(0,m050,0)
- i sz(O,no;9,9)I(C\77|)"“+"*1 /°° e~ @olnl/2=[w, DI, | p
e 27 (w')*Flns d st '
C 5 |71 0 o> 07 | L,
= Z (6 ol — 2w ) ‘( ;) < 0o

la|=1
Here |, (0, 1,; 0,6)| denotes the length of v, (0,7,; 0,0). Next we consider
/¢ z,p,n) e”1dp — /w 20,7, ep(ldp—/dpep<1/8 Yoz, 7)dr. (5.22)
71 (0,m9;0,0) 71 (0,1930,0) 71 (0,m930,0)

Since 0, (2, w,n) is holomorphic on |w,| < o[n, as in (5.21) there exists ¢ and for any
S € Z there exists C';, > 0 such that for any n € Z,

sup{ [, (2,p,1) — ¥, (2,0.00)|; [|2]| < 75 |p| < &'Inl} < Cylcln))!—

Thus we can change the path of the integration in (5.22) as [¢?%1| < e~ "¢ for |arg Gl <
e. Hence if n € Z, |w,| < ¢|n] and ¢|n| < §y|w;| (2 < i < n), we have
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0o
lor|=0

|a|=0

<y

ee|=0

a+1 1 /d dC1 67101(1/(1/)0((2,]3, 77) — wa(z’p, 770)) 6P<1dp

71(0,m950,0)

|)\a|+n71 oo
/d e~ (nl=heDI] e
an

‘(5010’ )a+1”‘1

Summing up we can prove that [’ 0(¥)(z, w,n) dw] =

C’Zh/l (07 770; Qv 9)‘(0 77
27 (w!) T na

Cy 171 (0,1; 0,0)|
27 (c!|n] — w,])

< o0.

[0 () (2, w, ) dw] € lim EX (k).

We may assume that @’ - o(1)(z, 2 + w,n) is holomorphic on

n ™
N {Gwm e xS 2] < 10, 0 <y, largwy| < & + -, elnl < |1}

2<i<n

with some constants r,, ', ¢ > 0. Let 7] be a path starting from f,n,, ending at 3,7,
and detouring w, clockwise as in Figure 2.

5177()

71 (01 Mos 9, 0)

° ,y:l
wy
60770
Figure 2.
If Re (p — w,) < 0, we have

[e%s} (P—w )d

/ e(P—wl)C1d<1 — _€ ! ,

d p—wy

and the right-hand side extends analytically. Thus on the common domain of definition
we have

] ’l/) (Z D, ) (p—w,)d
w’ el Z,z +w, = a1 : d
()( n) Z;l (w')*F1n 27 V=T (p — wy) P
a€eNg 71(0,m9;0,0)
1 w (Z )e(p*“ﬁ)d
_ Z s f e 7p3 7] dp
—~ (w,)a+1n71 2m /=T (p - wl)
aeNy Y1 (0,77[);979)\/7{

¢o¢ (Zv b, 77) e(p_wl)d

>

aeNg ! (w

/)oz+1

dp
n—1 7
71

27 /=1 (p — wy)
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where

. wazp, eP—w1)d
n= 3 a+1 / P

aeNg !
As in (5.21), there exist ¢, ¢; > 0 and for any Z € S, there exists C', > 0 such that
e(piwl)d || +n—1
S| =Cp Walzpm)l < Cylelnl) T,

p—w

hold on {[|z]| < ¢y, [wy| < eylnl, p € 71, m € Z}. Thus, on {||z]| < ¢y, [uy| < c;lnl, n € Z}

we have
clnl\ettn-s
( w’ ) ’

By taking ¢ > 0 as ¢d < 1 and 0 < ¢;, we see that II is holomorphic on

C71|
ms 5 Sl

aEN371

U (MG w,n) € € x Z; ||z <6, Jw,| < 8lnl < 6wy}
ZeS i=2

n
= (M {(z,w,m) € C*" x S; ||2|| <6, Jw,| < 3[n| < 8%|w,][}.
i=2
a1 oR R
Thus w - o =id: gx,z;; ~ gx,zg
By Steps 1 and 2, we see that ¢~ = o, and hence o 6";1? S ng /‘ﬁza. O

Let P € &, and consider [@(P)(z,w,n)dw] € h_rr;Eg%(m) Here we can assume

that @(P)(z, 24w, n) is holomorphic on V' in (5.18). Take ¢, > 1 such that ¢, Re (; > |¢; ]
for |arg ¢;| < 0'. In (5.10), we take {¢,}°2; CR_, and C >0 as

208/2 v
1>e >ey>-->¢, =0, —— < 2¥C.

v
v
El/

Set ¢, = Elq| for short, and we define

@p,0(P)(2,w;) = /d Bo(2:Gatig) Ty (Grs o2, — wy) e d
alw, ,(P)(z,w;)

(2m =T )" (w)*Hhnr

wo(P)(z, 2 + w) := Z

aeNg !

THEOREM 5.8. (1) The w, induces the mapping w,: S.. /9’128 — 3}?723 .
(2) 1t follows that [w(P)(z, w,n) dw] = [wy(P)(z, w)dw] € li_n>1E§(/<;), and the fol-

K
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lowing diagram is commutative:
S| Ne —— G [N
0 0 0 0
¢ 2 s o2

Here, the isomorphism éa;lgzs ~ 5”28 /</Vz0 is induced by

Y(z,w) dw U(1/))(z,<,770) = /q/}(z’z + w) O duw

7(0,m00,0)
for any fized n, € S.

REMARK 5.9. (1) The isomorphism é";l?)zg ~ S /Ji{zs is established in [2], [5]
and [6].

(2) From the diagram (5.23), we obtain an explicit description of the isomorphism
Ex ;= lim EX (k).

Proor. Ife, < §;jw, ]|, Re(w,¢;) > 6;|w,¢;] and 0 < ¢ < 1, we have

|ef(t(coayfwl)+wl)(1| _ eftcosu Re(lf(lft) Re(wlcl) < efteu\cl|7(17t)ey\cl| _ efsy\cl\'

Thus
_ —w, ¢, — 1 0fy T —(s+w1)C1 v—1
I, (¢, coe, —wy) € | oo e " ds
I/ - . 0
v 1
_ (COEV — wl) 67(t(COEV7w1)+w1)<1tl’71dt
(v—1! 0
(Cufy TN [y (ot el e 2
- (v —1)! o v '
Set
L = {(z,wl) € C" 2|l < 7y, largw, | < & + %, g, < 51|w1|} .

Then taking h = ¢_/2 in (5.10) we have

C. (K (ege + hwy ) poo
2/21 7 %0 ! /de—aawcll/zdm

sup |y o (P)(z,w,)| < ,
L ]!

@

2C, jo(K(coeo + lw ) c@K (e, + w, )

g, |af! la]!

If (z,w;) € L, and 2K (c,e,, + |w,]) < |w,|, we have
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@y (P)(z 2 +w)| < D

aeNg !

C 2K (cye,, + lwy])\
(2m)|(w')tn-1] ’( . '+ )

w

and hence @, (P)(z, z + w) is holomorphic on

U ﬂ{(zaw) € C™; (z,w,) € Ly, 2K (¢ge,, + |w,]) < |w;}

v=12<i<n
m
fﬂ {zw ) € C*" 2|l < 7o, 2K |w,| < |wyl, |argw, | < & + 2}.
2<i<n

Therefore w,(P)(z, w) dw defines a germ of &5 .5+ There exists d > 0 such that Re(n¢;) >

20|n¢,| for any n € S and |arg¢,| < 6. Suppose that |w,| < é|n|. For any Z € S, there
exists N, € N such that dm, > ¢ for any v > N,. Thus if 0 <¢ <1, we have

e (1=Dege, O ) | o =(1=t)ege, Re G —tRe((4w,)6,) < o= (1=02, 16, =20l —|w, DIC, |

< e_(l_t)aylcll_témzlcl‘ < e_Eulcll_

Thus we have

n
(1, (C1om) = 1, (G e, — wy)) e 1| = ‘ﬁ/ 6_(S+w1)cls”_1ds‘
CoE, —wy
(77 +(’1U1 _];(')EV)V /6_((1_t)coev+t(n+w1))<1ty_ldt)
V - . 0
_ Il 8lnl + egdmg) eIl £y (148 4 cgdlal)’e I
- (v—1) 0 ! '

Set K, := K(14 6+ cy0). Choosing h =¢,_/2 in (5.10) (|a| > N,) we have

Cg 2(K1|77|) ICII °
0 (P)(zv101,1) = 0 (P <~ ez ag

20, 2(Baln)'™ _ c2x¢, )1

g, |af! - la|!

Thus if 2K, |n| < |w,|, we have

|@(P)(2, 2+ w,n) — @y (P)(2 2 + w)

al(w, (P)(z,wy,n) — @, (P)(2,w,)) c 2K, ||y
5) > (27 v=T )" (w/)*+Lns +a|§vz (2m)n|(w') 1 | ‘( )

|| <N,
< 00,

and hence w(P)(z,z + w,n) — w,(P)(z, 2 + w) is holomorphic on

U N{Gwn) eCx Z;|lz] < ro, lwy| < 8|nl, 2K, |n| < |w,]}
ZES 2<i<n
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— N {Ewm) € C x5 2] < 1o, lw,| < 8], 2K, In| < |w,]}

2<i<n

Therefore we have [w(P)(z,w,n) dw] = [wy(P)(z,w) dw] € h_n;E?}(n) O

K

6. Classical formal symbols with an spparent parameter.

DEFINITION 6.1 (see [6], [9]). Let ¢ be an indeterminate.
(1) P(t;2,¢) = Y02 g t"P,(2z,¢) is an element of .7, (12) if

(i) P(t;z,Q) € I'(£2)[d,]; Or. x)[t] for some d >0 and p € Jo,1],
(ii) there exists a constant A > 0 satisfying the following: for any h > 0 there exists a
constant €, > 0 such that

C’hV!A”ehHCH

P <
(=0l = e

(v e Ny, (5:0) € 2,[d))).

(2) P(t;2,0) = >0 gt"P(2,¢,n) € 5/{1(9) is an element of ,/T/C\I(Q) if there exists
a constant A > 0 satisfying the following: for any A > 0 there exists a constant C}, > 0
such that

m ml AT C
S P.0] < EIEEE— (e, (50 € 2,04,).

o~ o~ o~

Frgay =0T (2) DA o= Tim A (92).
2

C
We call each element of 5’;(()) (resp. J;(.Q)) a classical formal symbol (resp. clas-
sical formal null-symbol) on (2.

DEFINITION 6.2. Let ¢ be an indeterminate. Then we define a set ‘)A’ICI(Q; S) as
follows: P(t;2,(,n) = > 0o ot"P,(2,¢,n) € N, (£2;5) if

(i) P(t;2,¢n) € D(2,[d,] x S; Op. x . o)[t] for some d >0 and p € ]0,1],

(ii) there exists a constant A > 0, and for any Z € S, h > 0, there exists C}, , > 0

such that
m—1 mhl(<ll
C,, zmlA™e
v=0

DEFINITION 6.3. We define a set (A‘BCI(Q;S) as follows: P(t;z,(,n) =
oot P (2,¢,n) € 6,4(¢2;9) if

(i) P(t;z,¢,n) € I'(2,[d,] x S5 Op. x . c)[t] for some d > 0 and p € Jo,1],
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(ii) there exists a constant A > 0, and for any Z € S, h > 0 there exists C, , > 0 such
that

Cy, 5 1AMl

e WENo (5Gm e R,ld]x2).  (62)

|P,(2,¢,n)| <

(iii) 0, P(t; 2,¢,n) € Ny (2:9).

We call each element of @CI(Q; S) (resp. SAQCI(Q; S)) a classical formal symbol (resp.
classical formal null-symbol) on 2 with an apparent parameter in S.

LEMMA 6.4. N (2;8) C &,(2;5).

PROOF.  We assume (6.1). Take C', B > 0 as 2(v + 1)A""" < d C'B” and

24" < O'BY for any v € N;. Then for any v € N and (2;¢,n) € 2,[d,] x Z we have

v v—1 v v—1
PGl =[S0 P Com) = YO PG| < S Pz + [ 30 Pz G|
=0 =0 =0 =0
C Fartiehlicl o 147 <l c'C 1 BV hCll
h,Z (v ) : € hzV-A e < nzVD €
[Incl* Il [nllln¢l”

Next, for any Z € S, take &' and Z’ as in (4.3). Then by the Cauchy inequality, for any
h > 0 there exists a constant C, , > 0such that for any m € Nand (z;(,n) € £2,[d | x Z,

1 e C), 5 mi(2A)m el
‘Za Blem) = Fpy) |n:'Tgéf|n|’§)P”(Z’<’n/) - h’Z5’mZ(IIn€)||m b
For any z; € T* X, we set
Sorsy = 8, (42:8) 0 Ny ;o= im0y (:9).
2, 2,8
PROPOSITION 6.5.  Let P(t;z,(,n) € (Q S). Then for any n, € S, it follows

that P(t; z,¢,my) € 74(2) and P(t;2,¢,n) — P(t; 2,¢,ny) € N, (12 9).

PRrROOF. Set A, := A/|n,| > A. For any h > 0, there exists a constant Chm, >0
such that for any (z;¢) € £2 [d ] the following holds:

c, VIAV RICH
I

that is, P(t;2,(,n,) € LS/”C\](Q) For any Z € S, let Z' € S be the convex hull of ZU{n,}.
Since

|PU(Z7C7770)| S

n
PG = PG + [ 0,P(Cr)dr
7,

0
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and BnP(t;z,(,n) € ‘JA“(CI(Q;S), there exists A > 0 so that for any A~ > 0 we can find a
constant C), ,, > 0 such that for any m € Nand (2;¢,n) € 2)[d | x Z C 2,[d ] x Z' the
following holds: if || > |n,|

m—1 m—1
(PG = P o) ’—]Z/ﬁ 0,P, (2 ¢ dT‘_’/ Z ) dr
V=0 0 OC’h,z/ I AT Il rO,:Z, ml A ehl]
B < e 7
and if [n] < [ng],
rC, , mlA™ el rC, , m!A™eMCl
’Z (z,¢,m) = P, (2,¢,m0))| < hylenCl\m < hZ\InCll“g

Hence P(t;z,(,n) — P(t;2,(,1,) € 9’:{01((2; S). [

Since [|n¢|| < [|¢]| for any n € S, we can regard that

F(82) = {P(t;2,¢,m) € §4(£2; 8); 0, P(t; 2,¢,m) = 0} € &,4(2;9),
Ha(R2) = Z3(2) N0, (2;.8) € Ny (2 9).

cl

Hence we have an injective mapping 5/’;(9)//1/ (2) = écl(Q; S)/‘f’(d(ﬂ; S). Moreover

PROPOSITION 6.6. .7, (2)/ N,(£2) ~ & ,(£2; ) /N, (2;5).

PrROOF. Let us take any P(t;z@,n) € @ (92;8). We fix n, € S. Then by
Proposition 6.5, we have P(t;z,(,n,) € YI(Q) and [P(t;2,¢,n)] = [P(t;2,(,ny)] €

C

6, (£2;8)/9,(£2; 5). O

- Note that an element of écl(f}; S)NI(02,[d)] x S;Op. x ) s Sl ot'P(2,¢,m) €
6,,($2;5) such that P,(z,(,n) = 0 for v > 1 and Fy(2,¢,n) € I'(2,[d,] x S5 0p. xc)-
The space ‘ftCl(Q;S) NI(2,[d)] x S;0p. ) is similar.

PROPOSITION 6.7.  The following hold:

| X800 ) = N2, 5),
XS0 xc) = 6(82;5).

b}

Ny (2:8) N I(0,[d
S, (2;9)NI(2,[d

old,]

PrROOF. Let P(z,(,n) € ‘.?ICI(Q;S) NI'($2,[d,] x S;Op.xc). Then there exists
A >0 and for any Z € S, h > 0 there exists C;, , > 0 such that

Chz 1AV ehlIcll

P
[P(z,¢,m)] < T

(v €Ny, (2:¢,m) € 2,[d,] x Z).
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Then for any ¢ with [[([| > d,, taking v as the integer part of |[n¢]|/A, we have

2w |InC|INY2 B
IP(Z,C,W)ISC,LAy) eh=lnl/A) ¢l =1

We choose h as 2hA = m,. Hence eh=Inl/AIC < o=l<ll/(24)  Then we can find 0,
C"Z > 0 such that

2 1/2
gh,z(%> eI/ 24) < ¢ c=dlncll

Here § does not depend on Z. Thus (4.2) holds. Conversely, assume (4.2). Set A :=1/4.
Then for any m € N and h > 0, we have

n Ri<ll
P(.C,m)| < Cpedlncll < CzmtA™  CpmiA™e?
: = Tncl =T Tncl

Hence P(z,¢,n) € Ny (2;S) NT(2,[d,] x S; Op. x0).
Next, let P(z,¢,n) € &(62;S). Then P(z,(,n) +t-0+4t>-0+ --- satisfies (6.2),
and we have 0, P(z,(,n) € M($2;8) =N, (2;5)NI(£2)[d,] X S; Op. x ). Therefore we

have &(2;5) C (A‘SCI(Q; S)NI(£2,[d,] x S; Op. 5 c). The converse inclusion is proved in
the same way. O

Moreover

THEOREM 6.8. Let 2 € T*X be any sufficiently small neighborhood of zj =

(20:¢y) € T*X. Then for any P(t;z,(,n) = Soos ot'P,(2,¢,n) € écl(Q;S), there exists
P(z,¢) € .Z(£2) such that

P(t;2,¢,n) — P(2,¢) € Ny (2;9).

PrOOF. We may assume that {, = (1,0,...,0), 2 €{(2;¢); Re(; > 26,|¢,|} for
some 0 < &, < 1/2, [|C]| = [¢;| on £2[d ], and P, (2, ¢, n) € I'(£2,[d)] X S5 Op. ¢ c). Fix

ny € S. Thus P(t;2,(,n,) € 7. (§2) by Proposition 6.5. Set A, := A/|n,|. We take a
constant a as

0<a<mindl, . (6.3)
a < min A, )

and set B := max{1/0,a, A,/20,}. Using the function I' (7, a) in Definition 5.2, we set

o0

P(z,¢) ==Y P,(2,¢,n0) ¢{ T, ({4, a).

v=0

By (6.3) and (5.8) for any h >0 on {2 [d ] we have
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2 ¢, ALY ¢ | ar >0 ,
Pz < 3 Gt TGl o il Y () < 20, M.

|
v=0 HCHVV' v=0

Therefore P(z,() € #(£2). On the other hand, for any m € N, on £ [d ] we have

m—1
P(Z7C)_ZPV(Z7C7770)
v=0
Z (2, Cong) [ 11 = ¢7 T, () |+Z\P (2, Cmp) G T, (G @)

v=1 v=m

For any 1 < v < m — 1, we have e~%%l%l = ¢=%ll¢ll < (1, — v)!/(ady|ICI)™ Y. Thus by
(5.9) and (6.3) we have

m_l §,C, AL ehlcll g=ado sl

LIRSS AR

v—1 v=1

m _h
- 0,C,m!B™e i<t
B ISk

v

'« 6,0,V (m — )AL eMICl 5,C, miB™ el
Z 0 < Jo%n
ol (adyliCI™= 1€l

v—1 v=1

ad,)

Next, since

a ] k _ |
/ o= 2005l htm—1 go ak/ o208l gm—1 gg _ @ (m —1)!

0 0 25,lI¢IH™
we have
Z\P 2.Cm0) ¢ 1,(Gry )] < Gyl Z ”A”C'”C' / e~ #oslel s ds
0
_ ¢, et Z(k+m)Ag+m/ o= 20051l htm=1 g
k=0 0

C, (m — 1)1A7elcl

< =k . > (k+m)(ad,)”
@l 2

C, (m —1)1B™ehlCl 4C’Lm!Bmeh”<”

A G A T4

Thus by Proposition 6.5, we have

P(t;z,¢,n) — P(2,¢) = (P(t;2,¢,n) — P(t;2,¢,m)) + (Pt 2,¢,m) — P(2,0))
€N (2:9) + A,(2) C N, (2;9). 0

COROLLARY 6.9. Let 2 € T*X be any sufficiently small neighborhood of z; =

conic

(20:C) € T*X. Then &(£2;5) /N(2;S) 24 &,(2;8) /N, (25 ).
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DEFINITION 6.10.  As in the case of &(£2;5), for any P(t;z,(,n) € CASCI(Q; S) we
set

‘P(t;2,(,m): == P(t;2,¢,n) mod ‘)A?d(ﬂ; S) e éd(Q; S)/‘flcl(Q;S)
which is also called the normal product or the Wick product of P(t;z,(,n).

Take 2 € T*C". Let z = (2,...,2,) and w = (wy,...,w,) be local coordi-

’n
conic

nates on a neighborhood of Clw(2) C X, and (z;({), (w;\) corresponding local co-
ordinates on a neighborhood of Cl{2. Let z = &(w) be the coordinate transforma-
tion. We define J(2/,2) by the relation & '(z') — & !(2) = J3(2/,2)(z' — 2). Then
Jp(z,2)A = [(0w/02)(2)]A = (. Here Ow/dz stands for the Jacobian matrix of oL
Let P(t;z,(,n) € éc1(9§ S) with respect to (z;(). Then we set ®*P(t;w,\,n) =
2o 1" P, (w, Am) by

P P(t;w, A\, n) i= "0 Pt d(w), ¢ + T (B(w) + 2/, B(w))A, )

2/=0 ,
¢’/=0
i.e.

1

(@*P), (w,\,n) = Z — 9505 P (D(w), " + T (P(w) + 2, P(w)) A, 1) B
k+lal=v Z,;g

THEOREM 6.11.  Under the notation above, the following hold.

(1) @*P(t;w, \,n) defines an element of écl(ﬂ; S) with respect to (w; \). Moreover
if P(t;2,(,n) € {Y’(CI(Q;S), it follows that &*P(t;w, A\, n) € fj)\“(d(Q;S).

(2) If = id (the identity), id* is the identity, and if z = &(w) and w = ¥(v) are
complex coordinate transformations, ¥*®* = (V)" holds.

PrOOF. (1) Assume that P (z,¢,n) € I'(£2)]d] x S;0p.x,c). Note that
GUQ*P(t;w, An) = @*(37,P)(t; w, A\,n). We may assume that on a neighborhood of 2,
there exist ¢ > 1 and 0 < ¢ < 1 such that
t

ow
[(z)} /\H < c||A|l- (6.4)

M<Kl = | |5

We can choose 0 < ¢ < 1 such that ¢’ — ce > 0, and that there exists § > 0 such that if
||2|| < 6, it follows that

Tz 4+ 2, 2)\ —

A< V5 (2 + 2, 2)A] < el Al
Moreover take p’ € ]0, p[ and replacing €, § > 0 if necessary, setting

2= | JA{ECHT5E+2290; 121 <6 1) < elCh
(Z;C)Gﬂp/

we have
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Q,1d, CO%C.QP d,). (6.6)
Thus for any h >0, Z € S and (2;¢' + T, (2 + 2/, 2)\,n) € .Q/’J,[dp,] x Z, we have
C, , WAL+ (" 2]
P "4+ L)\ )| < =
| k(Z7C + qS(Z+Z ,Z) vn)| = Hn(g/"_t‘]%(z"_zl,z))‘)uk
Set &(w) := 2. If (2;¢,n) € 2,[d ] x Z, we have
‘aga (5, C + g+ 2 DA )|
B al ?{ P (z,¢ + tJ;,(z + 2, 2)\n) d2'd¢’
" lee @) s
I2f1=6
I¢h1=elicll
< O By, €+ Yz 4 22
= (Efilel s M ’ T
1ch1=elicl
C) 7 o k1A IS+ (42" A
ST 2 (¢ + Tz + 2, 2N [F
ch1=<lic]
C,, 5 alkl Akt oI C,, 5 o k1 AFe2helM
h.Z h.Z 6.7)

= ¢ DI — ) ADF = @ TADFT((@ — o)Al

Set B := 2/edc’ and replacing £, § > 0 as C := edc’ A/2(¢' —ce) < 1. Then if ||C|| >
AN = (v + 1)d,, we have

P €0, NS M S
la|=v

= (¢ =c)llnAlD> & (ede||A])le
-c h 2hc\|)\\| Z If'Ak 2n+1/7k71 (1/ o k)‘
o —ce)llnAlD* (oA

on— 1Oh,Z V!ButhcH)\H oo Ck 2n—1ch’Zy!Bu€2th)\H
AT 2=

Next, if P(t;2,(,n) € ‘fld((); S), for any m € N

1 m—1

C, , al mlA™ehellAl
— Y 0802P (5 ¢ + U + 2 2N ) S
k=0

<
= (e [IAIDI (¢ = ce)lInAl)™

z'=0
¢/'=0

Hence setting @(w) = z, we have

m—1 m—1 m—1— \al
I e DO i R L
v=0 |a|=0 k=0 CI;O
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m—1 1AM la]
<o el —lal)
<Gz |Zo 56c’||)\|| w s N

Ch Z€2hc\|)\|\ m—1 2n+u—1m!Am—V

[[nAll™ (edc) (¢! = ce)m=v

v=0
2n_1ch,Z m!BmBQhCH)\H 'mz—:lcm_y B 2n_1ch,Z m!B7n€2th>\H
Al - (1 =O)[nAlI™

v=0

(2) Tt is trivial that id* is the identity. In order to prove that ¥*®* = (P¥)*,
it is enough to show that ¥*®*P(t;v,&,n) = (P¥)*P(t;v,&,n) for any P(t;z,(,n) €
ﬁT*XXS,(ZoaCO»W)”:t]] for any fixed (zy;(,) € Clf£2. Note that [(dw/0z)(z)]A = ( and

[(Ov/ow)(w)]€ = A.

LEMMA 6.12 (see [4], [23]).  For any n-tuple A(t; z,¢) = (A,(2,(),..., A, (2,Q)) of
holomorphic functions, and holomorphic function Q(z,(), the following holds:

. : 1
e%0IQ(z,) ePAED| = %0y T — 0 (Q(2 (A=, ()%)

PROOF. We have:

6<6<’32>Q(Z, C) €<Z7A(Z7<)> |z:O = Z : | acﬁazﬁ (Q(Zv C) ZQA(Z7 C)O‘)

a,BEN] alp -
07z
_ZZ ( > al Bl ( Zw 6;3*“/(@(270 Alz, )a))
B y<p L
1
= 7@5613 a . Az )
azgﬁ al (B - a)! (Q(2.0) A(2,¢) )ZZO
_e<8§’8z> ZN %ag(Q<Z7C)A(Z',C)a) By -
aehg! z=

REMARK 6.13. Take 7 € C and 2’ € C" such that |72'| is sufficiently small, and
hence Jj;(z + 72', ) is holomorphic. Then by Lemma 6.12 for any holomorphic function

Q(¢), we have

{000 (1) et Vi et )= <0>} =0

=

e 3 5 O QU (T (= + 72, 2)A = ¢)*)

a ¢’'=0

(9,0, Q(C’ + gz 472 2)A — )

z/=0
¢/=0

_Z 950" (" + T3z + 72, 2)A = () L
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e
=3 000SQC + Uz + 2N = )|

¢’

0
0

Hence as a formal power series with respect to t, we have

t|0é\ .
90T Z o aﬁ@i‘ "+ 5+ 2 2)A =) ]
o ¢

= M0 QC + sz + 2, )N = ¢)

6(84,’8Z/>Q(</) e(z’,‘.];,(z—&-tz’,z))\—go)

0
0

2/=0
¢'=0
In what follows, we use this type of arguments.

By Lemma 6.12 and Remark 6.13, setting ®(w) = z we have

e<8</,8z/>P(t;Z,CO + C/,T]) €<J;(Z+tZI’Z)Z/’/\>67<Z/’CO>

z/=0
¢'=0

=3 el 0P (5, ¢ o () el Vi A0
v=0

=0
’=0

z
<

/=0
/=0

N

=> 17" %0 p (2, + (2 + 2 2)A )
v=0

= €t<a‘:/7azl>P(t; Z, C/ + tJ;(Z + zla Z)A) 77) = ¢*P(t7 w, >\’ 77)

z/=0
¢/'=0

On the other hand, we have
wH Jp(z+2,2) =07 (2) + P+ 2) - 2) =D (2 4+ ).
Hence we have
Jp(w+ J3(z+ 2, 2)2"  w) Jh(z + 2, 2)2

= Jp (@ M2+ 2), 07 ) Ja(z 4+ 2, 2) (2 + 2 — 2)

= Jg (@7 (2 +2),071(2)) (27 (2 + ) = 271 (2))

=0T 2+ ) T (2) = Ty (2 + 2, 2) 2.
Thus as a formal power series with respect to ¢, we have

Jp(w+ J3(z + 12, 2)t2"  w) Jp(z + t2,2)2" = Jpp (2 + 127, 2)2.

Set z, := ®(w,) and (dw/z)(z,)] Ay = ¢, Then on a neighborhood of (w; 1), setting
z = @(w) = ¥ (v) we have

W*@*P(t; v, 5, 7’) _ 6(6)\,,8“),)@*P(t; w, AO + )\/’ 77) e(];,(ert'uj/’w)w/’g)ef(w/’)\O) | Wi

A'=0

00001 0 0) (P12, ¢, + () VT D AN (o)

2/ =w’=0 -

* ’ ’ ’
- el ! w)w) o~ Ag))
¢'=XN"=0
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By Lemma 6.12 and Remark 6.13 we have

{00 D) (T (22" )2 Mg+ X) o (T (wrbtw’ w)w! &) p=(w' Ao) |,
=0
— 8000,0) T3 (a2 )2 N) (T (wrhtw w)w’ €) (T (et )2 —w o) |
=0

1 * ’ ’ * ’ ’ ’
j— 2] l’a ’ « * [e% w—Htw ,Ww)w-, z+tz WR)Z —w o,
= e(O0u) E —!6 ,((Jqs(ertz',z)z/) i (wit w8 o{Jg (z+t2"2) >‘0>)

« o
1 * aga s (wttw’ w)w’ s(zttz’,2)2 —w'
= ZJ(JQS(Z—th',z)z') 9,5 (Mo (wtwwywt€) o (I3 (z412"2) o))
« w’=0
_ e(Jl;(w—&-J;(z-i—tz’,z)tz/,w)J;(z—i—tz/,z)z/,{} _ e(J;W(z-i-tz/,z)z’,&)-
Therefore
WG P(t0,€,m) = €% %) P(t; 2,y + ') i (DT 0= G|,
=0
= (V)" P(t;v,€,m). O

DEFINITION 6.14. Under the notation above, we define a coordinate transformation
@* associated with @ by

(1P (t;w, A, n) == PPt w, A\, ).

LEMMA 6.15.  Let 2 C T*X be a conic open subset, d > 0, p € ]0, 1 [ Assume that
P(z,¢,n) € I'(2,[d ] x S5 Op. ) and v, m, N € Ny satisfy the following:

For any h > 0 and Z € S, there exists a constant C, , > 0 such that for any
p €l0,p[, on2,0d,]xZ

C R|I<]l
|P(2,(m)| < b2 . (6.8)

(p =)V [Ingl™
Then for any o, B € NI (la| + 8] > 0), p' € }O,p[, and (z;¢,m) € .Qp,[dp,] x Z, the
following hold:
(1) IfveN, set C, := (v+1)/v. Then

Cph.zCmeN (v + 1)1t la) g1 e2hICl

C, 5 e (v +1)lelal el
0oP(z,¢,m) < =0
R N P =0
(2) If v =0, then
C, 5ol gre?hlcl
029 P(z,¢,n)| < hZ 0),
00 PG G s Gt (= v e 070
C, 5 al el
0P (2, ()| < — (8=0).

(p = p")lel]In¢|™
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Proor. (1) Set p" := p' + (p—p')/(v +1). Note that for any (2;¢) € 2,[d,]
and (2, ") with [[2]| < (p = p')/(v+ 1) and [[C']] < (p = p)) ¢/ (v + 1) <[], we have
(z+25¢+¢) € £2,,[d,]. Indeed, by the definition there exists (zy:(,) € £2 such that
Iz = 2ol < o and [|¢ = Gll < p'lIGl, and hence we have [[C[| < (p" + 1)lIGoll < 2[IG]l-
Recall that we assumed that S C {n € C; |n| < 1/2}. Therefore

IS +¢" = Gl < A&l + ||n<|| < /lGl + IICoH =0"11Gll-

Further we have
2clz e+ ¢l (1= =Dy (1228 a0 -, )

and hence (z + 25+ (') € 2,,[(j + 1)d,]. Thus replacing p’ with p” in (6.8), for any
h>0and (2;¢,n) € 2,[d,]| x Z we have

C, el
sup |P(z + 2/, ¢+ (', n)| < -

I2f1=(p—p")/(v+1) 1 N
==/ (v
B ok ((1-5)e-m) ((-2)ma)

c, Z62hHCH

)

= Nv
(0-m)  (Fiel)”

Ch ZCmeNe%HCH
s v
= (p=p)N Inclim

Therefore if 5 # 0, we have

(v + 1)lothl a1 g1 , /
sup |[P(z + 2/, ¢+ ¢',n)l
(P _ p/)laJrﬁl ||n<”\ﬁ| | = (o= ')/ (41
\€§|=(pfp’)HnCII/(V+I)

C, ,CmeN (v 4 1) FPla) gre2hicll
< )
(p — p!) e BIHNY ||C||m+15]

0200 P(2,¢,m)| <

If 8 =0, we have

o v+1)llal
0P| < LD Pt o)
(p=p') I2f1=(p—p")/(v+1)
Cy (1) atelel CppeN (1) aletlCl

e T (e )l g
==L

- 1
(p—p")lel <(p—p’) (1—
(2) We may choose |2;| = p — p" and ([ = (p — o) [InC]l- O

THEOREM 6.16.  For any P(t;z,(), Q(t;2,() € @CI(Q; S), set
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z/:z

Qo P(t;2,¢,m) = "% PQ(t; 2, ) P(:2', G| -

= M0 Q(t2,C + ¢ o) Pt 2 + 2, C1)

Z':O .
¢’'=0

(1) Qo P(t;2,(,m) € éid(Q; S). Moreover if either P(t;z,¢,n) or Q(t;2,(,n) is an
element of ‘flcl((); S), it follows that Q o P(t;z,(,n) € ‘ﬁd(ﬁ; S).

(2) Ro(QoP)=(RoQ)o P holds.

(3) Let #(w) = z be a holomorphic coordinate transformation. Then

D Qo " P(tyw, A\, n) = ¢*(Q o P)(t;w, A\, ).

Proor. (1) We assume P(t;z,(,n) = Yo t"P,(z.(n), Qtz(n) =
ZEO:OtVQy(27C77}) S F(Qp[dp] X S, ﬁT*XXC)[[t]]' If we set Q o P(t’z7<,n) —
Soorot'R,(2,¢,m), we have

1 (63 (63
Ry(’27Cvn): Z Jang(ng,n)asz(Z,Can)
|| +k+1=v
Therefore R(t;z,(,n) € I'(2,[d ] x S5 Op. x,c)[t]. For any p'€]0,p[, keNyand Z €

S, on 2, [d,|xZ C 2,[d,)x Z we have | (2, ¢, 1)l Q. (2 ¢, )] < €y zk1A* N /|lnc]|.
Hence by Lemma 6.15, we have

C, 5 alllAle2el
(p = p")lel(1 = p+ p)H ][
C, 5 alklAReICl
(p = ")l IngIx

We choose p' € ]0,p[ as C := (p—p/)?4/2(1 —p+p') < 1, and set B := 1/(p— p')*.
Then on £2,,[d, | x Z we have

|8C(1QZ(Z7C’TI)| S

07 P (z,¢,m)| < (6.10)

v C2, kN IARTLShICH !
B (Gl 3 M(l —p+p) (p— p’)““ﬁln(l\’““*‘“'
k+1=0 lal=v—k—1
n—1 2 v_3 v n—1 2 v _3
2 Ch’Z 1Bl K < 2 Ch’Z 1BV 3l
¢l - 1=0)2 ¢l

k+-1=0
Assume that P(t;z,(,n) € ‘ﬁd((); S). Then by (6.10) for any m € N we have

1l AT 21C
Ch’Za.m.A e

(p—p")lel n¢|™

m—1
3 aspk<z,<,n>] <
k=0

Then on £2,,[d, | x Z we have
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-1 m—1 m—l—1—|af
SR =] Y ratQeen YR
v=0 I+]al=0 k=0

. n@il ChQ,Z alll (m N |a|)!Am*|a‘e3hHCH
- [n¢l™(1 = p+ p')t(p — p)2el

I+|a|=0
2n—lch2Z m!Bme?)hHCH m—1  m-—Il-1

5 o m—Il—1
S T P PR MU

=0 =0
on=toC,?, miBmehIcl

=TT o

Therefore @ o P(t;2,(,n) € ‘YICI(Q;S). For the same reasoning, we can show that if
Qt;z,¢,m) € M, (2;5), we have Q o P(t;z,(,n) € N, (£2;S). In particular, since

9,(Qo P)(t;2,¢,n) =0,Q o P(t;2,(,n) + Qo 0, P(t;z,(,n),

we see that if P(t;2,¢(,n), Q(t;2,(,n) € éCI(Q;S), we have Q o P(t;2,(,n) € @Cl(Q;S).
The proof of (2) is easy.
(3) We may show the equality around each point (&' (z),"[(92/0w)(w,)]¢,) =
(wg, Ag) as a formal series. Set z := @(w). We remark that

* 1" 1" ! * " " !’ _
a;fe(.](p(z-&-z ,2)2" A+ — e<J‘I)(Z+Z ,2)2" A+ (@ 1(Z+ZH) _ w)a

and hence as a formal power series with respect to ¢, we have

t\a|a)(\)fe<J;(z+tz”,z)z”,k-i-/\’) — W D N (g1 (4 21 )@,
Further since

Jp(z+ 2" 2)2" + T2+ 2"+ 2242 =072+ 2"+ ) - b7 (2)

=Jy(z+2"+2,2)(z" +2),
as a formal power series with respect to t, we have
Jp(z+t2",2)2" + Tp(z+t2" + 12,2+ 2") = Tz + 2" + 2/, 2) (2" + ).

Therefore we have

&*Q o P*P(t;w, \,n)
t(awaa ) ( s //>Q(t z, <0+<’/ 77) (T3 (22", 2)2"" ) A+ X") —<z 1 Co)

. $0cr 0. )P(t;qg(w +@),C+ ¢ n)e (T3 (@(wtD)+t2", D(w @)z, N) o= (=", G} |,

= 0
¢l=¢l= ;U/_O
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* " " 1" @71 t " - «
_ e(acu,az,» ZQ(t;ZaCO +CN777) 6<J¢(z+tz ,2)z ,A)ef(z 1 Co) ( (Z+ z ) w)

al
(e}

(%0 Pt @(w), G + (') eH P AN )

z/=z'"=0

¢/=¢"=0
= 0 2 Qb 2, ¢, + (") R EHE DN = )

. €<8C” az/>P(t; 2+ tZ”, CO + C/’ 77) e(J;(z+tz”+tz', z+t2"")z", )\>€7<Z/’ Co)

2l =z""=0
¢'=¢"=0

= 0 000 ) Q5 2, Gy + (") Pt 2 + 12", Gy + ¢ m)
. e(.];(z+tz"+tz’,z)(z”+z'),)\>€7(z”+z',C(J)|z/:z”:O

¢'=¢'"=0
t\@| atB , aay !
= 3 i Q2 G+ ) OO0 Pt 2 G+ )

. az"tazﬁ”e(J;(ertz”+tz’, 2)(z"+2"), A)ef(z”+z/, CO)

z/=z'"=0
¢'=0

1 * (ot ts! ’ R
= Z (5 +'7)' 8?+’Y(Q © P)(ta zaCO + C/ﬂ?) af/+’Y€<J‘I’( +t2', 2)z 7>\>€ (=", o) o
By ¢'=0
_ e(8<,782/>(Q o P)(t;Z,CO + </7n) €<J;(z+tz,7z)zlv/\>6_<Z/7<o>

=" (Q o P)(t;w, A, n).

z'=0
¢/'=0

O

DEFINITION 6.17.  For any (P(t;z,(,n):, :Q(t;2,(,n): € @CI(Q;S)/SfICI(Q;S)7 we
define the product by:

Qt;2,¢,m) 1P(t 2,¢,m)t i= Qo P(t;2,(,m).
THEOREM 6.18.  For any P(t;2,(,n) € écl(Q;S), set
P*(t:2,¢,m) = "% % P(t; 2,—(m).
(1) P*(t:2,¢,n) € 6,4(2% ), where 2% == {(2:¢); (:—C) € 2}, and P*™* = P.
Moreover if P(t;z,(,n) € M, (92;5), it follows that P*(t;z,¢(,n) € N, (02%;.9).
(2) (Qo P)"(t;2,¢,m) = P o Q" (t;2,(,m).

(3) Let &(w) = z be a holomorphic coordinate transformation. Then it follows that
on &, (£2% S)®ﬁx 2,

O (P*(t;2,(,n) ®dz) = D (P(t; 2, (,n) @dz)". (6.11)

Here ®* also stands for the pull-back of differential forms, and (6.11) means that

0z o/ 0z . \" s 0z
PrOOF. (1) For P(t;z,(,n) = Yic t'P(z,(,m), we set P*(t;z,(,n) =

Yo tjPi* (z,¢,n). Then
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P = ! AT 0P, (t;
z(ZaCﬂ?)— Z a ¢ z k(taz7 _C777)
la|+k=i

As in the proof of Theorem 6.16, we can show P*(¢;2,(,n) € éCI(QG;S), and that if
P(t;z,¢) € M, (£2;S), we have P*(t;2,¢) € M, (2.5). Moreover

P (t;2,¢,n) = "% 2P (t2, () = 0020700 0D P(ty 2, ¢ ) = P(t; 2, ¢, m).
(2) We have

(Qo P (t:2,¢,m) =% % (Qo P(t;2,~¢,n)
=000 (710 00Q(t; 2, ~C = (") Pt 2+, =) =)

= ! OO0 04 0.0 =00 00 Q12 4 2, ¢ = (") Pt 2 + 2/, =C = )|

z =z""=0
—¢r=o

<8</,8 //>€t<ac/,az/>P(t;Z+Z/’_C _C/,n)et<ac//,6z//>Q(t;z+Z 7_<_C//777)

2/ =z""=0
¢'=¢"=0

=00 Ptz 2 () Q (2 + 2", C+ F

=w%ﬁMPWw@+¢mQaz+%4n)~o—?oQuz<m

/ // =0
¢M=0

(3) (i) For any holomorphic function a(z,7), we have
P (a(z,n)" ®@dz) = D™ (a(z,n) @dz) = a(P(2),n) @ det o dw = a(P(z),n) det 0 ® dw,

P (a(z,n) ®@dz)" = <a(q5( ),n) det gw) ® dw = a(P(z),n) det g—; ® dw.

Set J := dz/0w for short. Since &*((;) = > p_, (0w, /0z;) A, we have

n

P*((¢) ®@dz) = —P*((; @ dz) = Z 8wk )\k®det g—dw = detJZ awk A, ® dw,

P(¢; ®dz)" <detJZ 7, ) ® dw

o w, odet J 8wk 0 (0w,
- Z(detJazink B dthwk( 4)) @ dw.

3

Here we remark

Odet J
ow,,

1
— det J Tr (J ~1 m), 0T _ _j19) 5
ow,, ow,, ow,,

Hence we have

(2T g 0 (00

3
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0J \ Ow n ow 8221. 8wu
= detJZ( (J 18wk) 3; - —~ azf 5wka/w,, 0z, )

)

"\ 0w, 0 Z, Ow, Ow, 822# ow,
= det Z ((‘32’” ow, dw, 9z, 0z, Ow,ow, 0z ) =0

k,p,v=1

Therefore *((¢;)* ®dz) = ¢*(¢, ®dz)".
(ii) If P and @ satisfy (6.11), then

5 (Qo P)* ®dz) = 0" (P* 0 Q" & dz) = 8" (P) 0 " (Q") @ det = du

ow
0z * * * * * * 0z « %
= det 7= &"(P") 0 #"(Q") @ dw = ($"P)" o det == &°(Q") ® dw
w
= ("P)” oé*(@*)odet%@vdw =&*(Qo P)* o det L @ dw

ow ow
0z * 0z _, : « .
deta—s{) (QoP)| ®@dw= deta—wsﬁ(Qop)@)dw =P"(QoP®dz)".

(iif) Take any point (zy;(,) € £2, and consider the Taylor expansion

P(t;2,¢,n) = Zpatzco, ) (¢ —¢p)® Zpatzco, o (¢ = ¢y)™.

We may prove (6.11) in a formal sense. Then by induction and (i), (ii), we obtain
(P @dz) =) P ((p,(t:2:Goom) 0 (¢ = (p)*) @ d2)

=D P (pa(t; 2, Gpm) 0 (¢ = )" ©dz)" = " (P @ dz)". U

DEFINITION 6.19. For any :P(t;z,(,n). € @CI(Q;S’)/‘JATCI(Q; S), we define the
formal adjoint by

(P(t;2,C,n)0)" o= TP (t;2,¢,m)t € 6,4(2%8) /N, (02% 5).

REMARK 6.20. We identify X with the diagonal set of X x X. Then the sheaf Z3
of holomorphic differential operators of infinite order on X is defined by

7% = Hy(2Q%) = 65 x-

We remark that we have & R\ “lx = 2% . Moreover, recall that for any open subset U C
X, a section P(z,0,)=>__,a,(z )60‘ € I'(U; 2%) is given by the following equivalent
conditions:

(1) For any W € U and h > 0 there exists C' > 0 such that
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(2) Set P(z,¢) :==>_,a,(2) (" Forany W € U and h > 0 there exists C' > 0 such
that

sup |P(z,¢)| < celiel,
zeW

25 is a sheaf of rings on X, and:

(1) the coordinate transform is given by

& P(w, \) = e'% %) P(d(w), ¢ + 5 (D(w) + 2, B(w))N)

/=0

(2) the product is given by

Qo P(2,¢) = % %)Q(2,¢ + () P(z + 2, ()

/=0 ,
/=0

¢
(3) the formal adjoint is given by

P*(2,¢) = e'% %) P(z, ().

Hence, the operations above are compatible with those of classical formal symbols.

THEOREM 6.21.  Let [)(z,w,n) dw], [p(z,w,n) dw] € £’R723. Set for short

o) © (@)= ) = 3 0o ()= ¢ m) () (2, ).
Then the following hold:
(1) O-(w) O] U((p)(za Cﬂ?) S ng R
(2) 0-(1/}) O] U((p)(Z, Cv 77) - UW) © 0-(90)<t7 2, C? 77) € mcl,z[’; ‘
(3) o(u(®@p))(z,¢,n) —o(¥) ©a(p)(z,¢,n) € N,..

PROOF.  We assume that o(1)(2, ¢, n), o(¢)(2,(,n) € I'(£2,[d)] X S5 Op. )

(1) Take p' € ]0,p[. Fix any Z € S and h > 0. In 7(0,7;0,6), we can change
7;(0,m50) as {w; = |n|s'e*™ VT 0 <t <1} with 0 < o' < s (2 <4 <n), and
7, (0,m; 0,0) C {|w,| < |n|s'}. Therefore, we have

0o () (2, ¢, m)| =

6g/w(z,z+w,n)e<@»<>dw‘ = ‘/@aw(z,z+@,n)e<w,c>da
7(0,m;0,6) 7(0,1;0,0)
< (|77|8/)|a‘0h ZehHCH~

For the same reason, we have

10,00 ($)(2,¢.m)| = |080,0() (2, ¢,m)| < (Inls")!*ICe?Iell,

In the same way taking ||z < ry <7/, for some R > 0 we have
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Chza!eh”“' C,al e~ 0lndl]

|8?U((p)(za47n)| S W? |8na?‘7(80)(274a77)| S R‘a|

Hence taking r small enough as rs’ < R, we have
02, el
(1 —[nls'/R)™ "
For any (z;¢,n) € £2,[d ] x Z, choosing h = ém /2, we have
10, (0 (1) © o)) (2, ¢, m)]
=3 %(377330(1#)(2, ) 07a(e)(z,¢m) + 0o () (2, ¢, n) 9,07 (¢)(2,¢,n))

lo(4) © a(p)(z,¢,n) <

40, Zce—5|\n<\|/2
(1= nls'/R)"

(2) By Lemma 6.15, under the same notation of proof of (1), for any 3,7 € N, on
2,d,] x Z we have

07 () )l = [0+ ez + @) e ]
¥(0,m;0,0)

= ‘8!3/@71/)(2,2 + w, n)ew’gd@‘ <

7(0,m;0,0)

(|77|s’)|”|Ch 4 B! e2hlIICll
(o — VPP

Therefore, setting B := 2/(p — p') R we obtain

m—1

o) © o) (2, Cm) = 3 0L 0)(=, ¢ m) 90 (9) (= Com)|
laj=0
1
=| 3 o)z G o o)z C)
la|>m
= 1
=| 3 X G e G m (o) (z )
|Bl=m |]=0 ‘
C}fyzm!e%IICII < (jnls)M! Qn—lchzyzm!BmethcH
~(p=p)mInglm™ RIBHAT = (1 —nls'/R)"[nC||™

[B]=m |v|=0

(3) Take two paths v(0,7; g,0) and (0, n; ¢, #'). Here we take § which is sufficiently
smaller than o, and next we take o' sufficiently smaller than ¢. Hence we may assume

u(w®so)(z,2+w,n):/w(z,2+@,n)<p(2+@,2+w,n)d@,

7(0,m;8,0)
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o ® 9))(z:Con) = [ (b © )2+ wn) eV

7(0,m30",0")

/ dw / V(2,2 + W,0) (2 + @, 2 +w,n) e dib
7(0.m:¢.0")  ~(0,m:8,0)

/ d@/wz, 2+ @,n) @z + @, 2+ w,n) e D dw.
¥(0,m:8,0) ~(0,m;0”,6")

Then we find

a(¥) ®a(e)(z,¢,m) Z o / (z z+1’D,n)em’deﬂ/@?cp(z,z+w,n)e<“”<>dw

7(0,m;0,9) 7(0,m;0,9)
—Z /w Y(z,z+w,n)e <“’de/3 oz, 2 +w,n) el dw
'y(O 7;0,0) ~(0,m;0,0)
+Z /w U(z,z+w,n) e ’deﬂ/@?w(z,z+w,n)e<w’c>dw.
7(0,m50,0)V (=(0,7;2,0)) 7(0,m;0,0)

By the Cauchy integration theorem, v, (0,7; 0,8)V (—v,(0,n; 9, 6)) can be changed to the
following two segment paths:

[@77 o VT2 O m(ww)/z} {@’7 v T(m0)/2 O /=T (n ) /2
2 g 2 g '

Then we can find § > 0 such that on the two paths above Re(w,, ;) < —d|n¢;| holds.
Thus as in (1) we can see

Z '/wd)zerwn) “’de/a (z,z4+w,m)e <w<dw€‘)’t
o

Y(0,150,0)V (—7(0,7;8,6)) 7(0,m;0,9)
Next we find
S o [ s e 0an [0tz ) e
7(0,m;8,0) ~v(0,m;0,0)

/w z,z+w,n (Z %Ojgo(z,z—&—w,n))e(@’w’@d@dw
7(0,7;8,8) x(0,n50,6)

= /d} 22+ W,n) p(z 4+ W, 2 4+ @+ w,n) T dw dw
7(0,7;2,0)x~(0,m50,0)

= / d@/z/}(z,z +@,n) oz + T, 2+ w,n) el Vdw

v(0,m;8,0) v(W,n;0,0)
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/ d{D/g/J (z,z+w,n) p(z + W, 2+ w,n) e dw

(0,m:8,0) ~(0,m;0,0)

/ dw/ (z,z+W,n) p(z + @, 2+ w,n) e dw.

~(0,m;8,8) Y(@W,m;0,0)V(—=~(0,m50,0))

We consider

o(u(Y @) (z,¢m) — /dw/¢zz+w n) e(z+W,z+w,n)e (w: Q) dhw

7(0,m;6,0)  ¥(0,m30,6)
— / d@/z/J(z,z—i—{E7 n) oz +w, z +w,n) w8 dao.

~7(0,m;8,6) v(0,m:0",0")V (=~(0,m50,6))

By the Cauchy integration theorem, ~,(0,7;0",6") V (—v,(0,7; 0,0)) can be changed to
the following two segment paths:

an e~ V=I(m+0)/2 @ e \/T(era/)/Q] [9/77 VT 40) /2 on T(n0)/2
2 79 ) 2 D)

Then we can find § > 0 such that on the two paths above Re(w,,(;) < —d|n¢;| holds.
Thus we can see

o (1 ® ) (5., 1) — /dw/wzz+wn> o+, 2+ wyn) el Vdw € M,

¥(0,m;6,0)  ¥(0,m50,0)
Next we consider two segment paths

%67 VET(T40)/2, % o~ VT(m+0)/2 —HEJ , [% oV T (m+6)/2 + @y, %eﬁ(ﬂ'JrO)/Q )

Since ¢ is sufficiently smaller than ¢ and |w,| < 8|n|/2, we can find § > 0 such that on
the two paths above Re(w,, (;) < —d|n¢;| holds. Therefore we can conclude that

/ dzﬂ/zb(Z z 4w, n)go(z+zﬂ7z+w,77)e<w’c>dwE‘ﬁzg.

7(0,m;8,0) Y(W,n50,0)—~(0,m50,0)

The proof is complete. U

REMARK 6.22.  Let P = [¢(z,w,n) dw], Q = [¢(z,w,n) dw] € é’ﬁ ;- By Corollary
3.10, the product PQ € gX ; is represented by w( @) (z,w,n) dw; “that is, PQ =
(v @ @) (2, w,n) dw], and by Theorem 6.21, we have

1 @)z w,m)] =[S 08 0) (2,¢,m) 9o (o) (=, C,m)|

-
'=¢

= [0 2 o), ¢ m o @ G
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In other words, the product in &% X,z coincides with that of the classical symbols given
in Theorem 6.16 through the symbol mapping o.

THEOREM 6.23.  Let :P(t;2,(,n): = [¢(z,w,n) dw] € 5;523.
(1) It follows that

P*(t,Z7C,T]): = :/11)(2—1072’77) e_<w7<> dw

~(0,m;0,0)

(2) Let z = ®(w) be a complex coordinate transformation. Then

PP (t;w, A\ m): /z/)zzn (=27 (=), N g

v(z,m;0,0)

Proor. We assume that

P(z,¢,n) =o()(z,(n) = /¢(Zyz +w,n) e Vdw € 1(2,[d,] X S; Op. x ).
~(0,m;0,0)

(1) We use the notation in the proof of Theorem 6.21. Then there exists 6 > 0 and
for any Z € S and h > 0, there exists Ch,Z’ C, > 0 such that

(|77‘5/)‘Q|Ch,z ol el
Rlel '
(|77|SI)‘Q|CZ al e lndll
Rlel

10705 P(2,¢,n)| <

|8nazaaCaP(Z7C777)| S
Further as in the proof of Theorem 6.21 (2), we have

N 10 a2 ,2hl[C]]
atB natB (Inls')™ Cy, 5 al(BY)” e
0770 P (=, Gl S el Rl A

Thus we see that P*(z,(,7) = >oa(1/a) 080 P(2z,—(\m) € Sy (zz) Where a(zy) =
(29:—C,) for 25 := (24;¢,). Further setting B :=2/(p — p/)? we obtain

m—1
Peon 3 Loparrt el =| £ 5 oot ee g
la|= 0 : |Bl=m |o|=0
C, ,mle2Iel < (Ipls)lel 2" 1c,fzm!Bme2h”<“
= (p— )2 In¢|m Rlel = (1 —[n|s'/R)"|In¢|™

|Bl=m |a|=0

and hence P*(t;z,(,n) — pr (2,¢,m) € {T\Icl,a(zé‘)' Moreover we have

D* 1 anga 1 anga —(w
P (va»")ZZaag 9, P(Z7—<,77)=Zaa< o; /¢(z,z+w,n)e (w0 day

«
~(0,m;0,0)
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= /a 6'@80‘ '8851/J(z z4w,n)e (0 gy

n;0,0

~(0,

a—O—ﬁ

/ 151 0205 (2, 2+ w,m) e dw = /1/)(2 —w,z,n)e” " dw.
~(0,

;0,0 ~(0,m;0,0)

I
QM

(2) Asin (1), we see that

&*P(w, \, 1) = Z % 970, P(P(w), ¢+ T (P(w) + 2, P(w))\,n)

[e3

& P(w, A, ) — O P(t;w,\,n) €N, .

Further under the relation z = @(w) we have

2 1 " ’ tr* ’
B Pl ) = 3 250505 [ (@), D) + 27, p) el < TIEAN g1

~(0,m:0,6) ]
= /w(z 2" n) Z i 0508 el T AN g
(2,m50,0) * c'=o
/w 52" )y (Z _Z) 9.2 (== i N g
Z ,150,0 z'=z
_ /w(z’z”’n)e(z”—z,‘J;(Z”,z)MdZ// _ /w(zw',n)e@fl(z”)‘ﬁl(z)’A>dz”_
v(zmie.0) v(2,m;0,0)
O

REMARK 6.24. For K(z,w)dw = [¢(z,w,n) dw] € éa;lgzs )
(1) The formal adjoint K*(z,w) dw is defined by [(—1)"¢(w, z,7) dw], and the sym-
bol is given by

1" / Bz 4w, 2,m) e O = / Wz —w, zm) e,

2 (0,m;0,0) ~(0,m;0,0)

here v*(0,7n; 0,0) is the image of (0, 7; 0,0) under the mapping w — —w.

(2) Let z = @(w) be a complex coordinate transformation. Then as we see in
Appendix B (in particular see (B.4)), the associated coordinate transform of K (z,w) dw
is given by

/1/)(2,2’,77)e<q§71(z’)7¢71(2)’)‘>dz'1.
v(zm30,0)

Thus, Theorem 6.23 means that as in the case of product, the operations of formal
adjoint and coordinate transformation for operators are also represented by the corre-
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sponding operations for formal symbols.

7. Formal symbols with an apparent parameter.

DEFINITION 7.1 (see [2], [6]). Let t be an indeterminate.

—~

(1) P(t;2,¢) = >_02 ot P,(2,¢) is an element of .7 (§2) if

v=0

(i) P,(2,¢) € I'(R2,[(v+1)d,]; Op. i) for some d > 0 and p € Jo,1],

(ii) there exists a constant A € }O, 1 [ satisfying the following: for any h > 0 there exists
a constant C; > 0 such that

1P, (2,Q)] < ChAueh”C” (v €Ny, (2;0) € Qp[(” + 1)dp])'

o~ —

(2) Let P(t;2,¢) = Y02 o t"P,(2,¢) € L (£2). Then P(t; z,¢) is an element of .4 (£2)

v

if there exists a constant A € }O, 1[ satisfying the following: for any h > 0 there exists a
constant C; > 0 such that

(WZP (z,C)’ < A (m e N, (2¢) € 2,[md,)).
v=0

3) For z* € T* X, we set
( ) 0 I

— — — —~

e =l () D N, = lim A (1),
2

o~ o~

We call each element of .7(£2) (resp. A (£2)) a formal symbol (resp. formal null-
symbol) on (2.
For U € S and m € N, we set

(02,«U)[md ] :={(z:¢,n) € 2, xU; |In¢|| = md,} C 2,[md,] xU.

DEFINITION 7.2. Let ¢t be an indeterminate. ~We say that P(t;z,(,n) =
Sl ot'P,(2,¢,n) is an element of N(2;.S) if

(i) P,(2,¢n) € I'((£2,« S)[(v + 1)d,]; Op. x ) for some d >0 and p € Jo,1],
(i) there exists a constant A € ]0,1[, and for any Z € S, h > 0 there exists C, , > 0

such that

m—1
PG| £C A (e, (:6,m) € (2,5 Z)md,).  (T.1)
v=0

DEFINITION 7.3. (1) We say that P(t;2,(,n) = > .o qt"P,(2,(,n) is an element
of &(02:9) if

(i) P,(z,¢m) € I'((£2,* S)[(v + 1)d,]; Op. x ) for some d >0 and p € Jo,1],
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(ii) there exists a constant A € ]0,1[, and for any Z € S, h > 0, there exists C,, , > 0
such that

P, (2,¢,m) < C, z A" (v € Ny, (¢,1) € (2, Z)[(v + 1)d,)).

(iii) 8, P(t;2,¢,n) € N2 S).

We call each element of &(£2; S) (resp. ‘5\1(!2; S)) a formal symbol (resp. formal null-
symbol) on 2 with an apparent parameter in S.

LEMMA 7.4. 0N(2;5) C &(12; 9).
PrROOF.  We assume (7.1). For any v € N and (2;¢,n) € (22, * Z)[(v + 1)d,] C
(£2,% Z)[vd ], we have
v v—1 v v—1
Pz Gl =[S0 Pz Com) = 3P| < |30 Pt Com)| 4+ [ Pz ¢om)|
=0 =0 =0 =0
<, ZAV+1ehHCH +C, ZAVehHCH <C, ,(A+ 1)Avehlel

Next, for any Z € S, take &' and Z’ as in (4.3). Then by the Cauchy inequality, for
any h > 0 there exist constants C, ,,, R > 0 such that for any m € N and (z;¢,m) €
(2, = Z)[m(2d) ], the following holds:

m—1 m—1 m h||C||
1 C, 5 Ae
‘ 0, P, (z,(,n)| < sup ‘ PV(Z7C777') L — 0
1;; ! 1l n—nt|=s"In] ;;; 8'm,
We set
S.. :=1lim&(2;8) D N_. := limN(12; 9)
RN © 0%

PROPOSITION 7.5.  Let P(t;z,(,n) € é(Q, S). Then for anyn, € S, P(t;z,(,n,) €
F(02) and P(t; 2,¢,n) — P(t; 2,(,1,) € N2 8).

PrOOF.  Setd :=d/|n,| > d. Then for any h > 0, there exists a constant C, ny >0
such that

P, (2.¢mo)l < Gy A7V ((2:0) € 2, (v + 1))

Therefore P(t;z,(,n,) € 5/’\((2) For any Z € S, let Z' € S be the convex hull of
Z U{ny}. Since

n

Py(z,g,n):Py(z,g,nO)—i—/ 9,P,(z.¢,7)dr

"o

and BnP(t; z,(,m) € ‘)A’K(!Z; S), there exists a constant A € ]0, 1[7 and for any h > 0 we
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can find a constant C), ,, > 0 such that for any m € N and (2;(,n) € (22, * Z)[md] C
(2, % Z")[md], the following holds:

\nf(Py(zx, P, (2, ¢,mp) j—\Z/ang, | = ]/ Zang,

=0""o
<|n-— 770|Ch,zfAm€hH<H < rC’h’Z,Ameh”C”.

Hence P(t;2,¢,1) — P(t;2,¢,my) € N2 9). O

PROPOSITION 7.6.  There exists the following isomorphism:

F(2)) N (2) 4 8(02;9)/R(02;9).
PROOF. We regard that
F(2) = {P(t:2.¢,n) € 6(2;8); 9, P(t; 2,¢.m) = 0} € 6(6%;5),
N (02) =.7(2) N2 8) € N2 9).

Hence we have an injective mapping ﬁﬁ)/ﬁﬁ) s &(02;8)/M(2; 9).
Let P(t;2z,¢,n) € 6(£2;5) and fix n, € S arbitrary. Then by Proposition 7.5, we
have P(t;z,(,n,) € L (£2) and P(t;2,(,n) — P(t;2,(,n,) € ‘JAT(Q;S). O

LEMMA 7.7. 8 ,(12;5) C &(12;S) and N, (12;S) € N(2; S).

PrRoOOF. Let P(t;2,(,n) € éCI(Q;S), and assume (6.2). We replace d as B :=
Ald, € 10, 1] if necessary. Hence on (2, % Z)[(v +1)d ], we have

c, el a4\ .,
< On, AV v hlicll
‘Py(za<7n)| = (V—|—1)V (dp) —Ch,ZB e
The proof of ‘ﬁcl(ﬂ; S) C M(2; ) is similar. O

PROPOSITION 7.8.  (£2;5) N I(2,[d,)] x S5 O0p. x c) = N(2;5).
PrOOF. If P(z,¢,n) € N(%S) N I(R2)[d)] x S;05.x,c), we set § =
—2log A/d, >0, and for any Z € S, take h = dm . For each (2;(,n) € 2 [d | x Z, we

take m as the integral part of |[n¢||/d, so that (m +1)d, > [|n¢|| = md,. Thus there
exists ', > 0 such that

C C
P(2.C.m)| < O, Amedma Il < o A/ d, =1 om el < C2 gom cl-260ncll < Cz —sinc.

Hence we have (4.2). Conversely, by Proposition 6.7 and Lemma 7.7 we have

N(62;8) = Ny (2:S)NT(2,[d,)] X S5 O o c) € N2 8) NT(82,[d,] % 3 Op ). O
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THEOREM 7.9. Let 25 € T*X and P(t;2,(,n) € . Then there exists P(z,(,n) €
6. such that

z

P(t,Z,C,T]) - f)(Z7Ca77) € 55'\123

PROOF. We may assume that z; = (0;1,0,...,0). We fix n, € SNR. Then by
Proposition 7.5 we have P(t; z,(,n,) € 5/”\(!2) and P(t;2,(,n) — P(t;2,(,n,) € ‘ft((?, S).
We use the notation of the proof in Theorem 5.7; We develop P, (z,(,7,) into the Taylor
series with respect to (¢y/(y,--..¢,/¢y):

cho ZP ZC1,770 (é)

aeNpg !

Then there exist sufficiently small r, 0’ > 0 and sufficiently large d > 0 such that
P, .(2,¢;,my) is holomorphic on a common neighborhood of D[(v + 1)d] for each o €

v,o

Ngil, where
D[(v+1)d) := {(2,¢,) € C"*Y 2| <o Jarg (| <6, [¢] > d(v + 1)}

It follows from the Cauchy inequality that we can take constants K > 0 and A € ]0, 1[
so that for each h > 0 there exists C; > 0 such that for every o € Ngil,

P, o (2:Cmp)| < G AV KM ((2,¢,) € Dl(v + 1)d]).

We set Pfa(z, ¢,,n) and PB(z,¢,n) as in (5.2). Then as in (5.11), for there exists 9y >0
and for any Z € S, there exists C7, such that for any (z,¢;,7) € D[(v + 1)d] x Z and
I¢;| < €|¢;| we have

P, (2,¢,mp) — PB(2,¢,m)| < 220, AVe%ln6l/2,

—8yd, /2

Thus shrinking {2 if necessary, setting A, :=e € ]0, 1[, for any m € N, we have

n (()p * Z)[mdp]

X C, AT
SR o) — PR )| < S
v=0
Hence
P(tazvaﬂ) *PB(quC,U)
= P(t;2,(,n) — P(t;2,C,ng) + P(t;2,(,1m) — PRt 2,¢,m) € N2 8).
We set
o0 67w1<1
wa(Py)(wilvn) ::/ Vo ( Cl? )T\dgl
(v+1)d Cl
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Recall L of (5.13) and L, of (5.15). Hence as in (5.16), w_(P,)(z,w,,n) extends ana-
lytically to the domain L x S, and for any n € S we have

2kC, , A

W (K|77|)|a|- (7.2)

sup{|wa(Py)(wi17n)|; (x’wl) € Lk} S

Now we define

a! WQ(PV)(Z, wla 77)
(2 V=T ) ()™l

w(P,)(z, 24+ w,n) = Z

aeNy !

The right-hand side converges locally uniformly V, of (5.17). Hence w(P,)(2,2z + w,n)
is a holomorphic function defined on V of (5.18). Hence we can define

P,(2,¢m) == /w(Py)(z,z +w,n)el® O dw

~(0,m;0,0)
w, ¢ e} —w,§
e 1>t B e Yis1
() / dw, <2 [T PE e e,
Z 1 27{' /—T (y+1)d s 1 5‘104 1

n—1
a€Ny 7, (0,m50,0)

By virtue of (7.2), there exist conic neighborhood 2 of z;, p € ]0, 1 [ and d > 0 such that
P,(z,¢,n) € I'(2,[d
C),.z > 0 such that

)] X S;0r. ) and for any h > 0 and Z € S there exist constants

P, (2,¢.n)| < €, A% ((z1¢,m) € 2, [d ) x Z). (7.3)

We set,

n

Tl + 1d = ) {<z,<> € 2] < 1o, 1]

=2

v d
L el < gl < el -

Recall ¥, (cf. Figure 1), and we set X7 := {(v +1)§, € C; § € X, }. Then we have
‘ZBU(Z’C777) = Iy + I,j +IV+, where

/ Pl/Ba (Z,§ 3 77) ea(cl _51)
L= 0" alnbin .
acmg-t TR 2MVATE (G G
S ! PuBa(zaf 77])6’81(77)(41751)
e )a/ 7 : la] dg,
aeNp~1 v 2nyv=1 &7 (& — ¢)
AT Pl/ a(z7€ 777)6’80(7])(41_51)
e Yoo [ et "
o 21 &0 (& — ()

—1
o’ eNy

On ‘7;_[(1/ +1)d] x Z, as in (5.19) and (5.20) we have
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2"720 AY —cln¢, | —h,dr
| < i ohotigina €07
v c 2whodm

n—2 v _—c|n¢, | _hod
I+ - 2 ChZA e 1 (hZ+|ﬁO|T)d e 0ar
| v | — e + N
c 2mhodm ,

Further

= 3 PE(5m (é) — PB(z,¢,)

aeNg !

holds if ¢, is located in the domain surrounded by X% — X%. Therefore, shrinking {2
and replacing d with a larger one if necessary, by (7.4), we can find 6 > 0 satisfying
the following: for any Z € S there exists C'; > 0 such that on 2 [(v +1)d,| x Z, the
following holds:

|P,(z,¢,n) — PB(z,¢,m)| < €, Avedlnell,

We set P(t;z,(,n) = Yot t”]su(z,g“,n). We set A, := e % e ]0,1[. Then for any
m €N, on (2, x Z)[md,] we have

S (Bz¢om) = PR G| <

ie. P(t;z,C,n) — PB(t;2,¢,n) € ‘)ATzs . In particular by Lemma 7.4,

0,P(t;2,¢,n) = 0,(P(t;2,¢,m) — PP(t;2,¢,m)) + 0, P5(t:2,¢,n) € M

.
20

Thus P(t; z,¢,n) € 628' By (7.3), we can define

P(z,¢,n) ZP 2,¢n) € I(R,[d,] x 8 Op. x c),
and we have
_ c, ZehHCH
|P(Za<7n)|§ﬁ ((Z;C/I])G.Qp[dp]XZ),
R me1 0 c, , Am el
‘P(zvgan)_zpy(zvgn ‘ ’Z ZCU ‘ T ((2§<>77)€Qp[mdp]xz)7
v=0 v=m

ie. 15(2, ¢,m)— JS(t; z,(,n) € 6/\128 . Moreover by Lemma 7.4 and Proposition 7.8, we have

0,P(2,¢,n) = 0,(P(z,¢,n) — P(t;2,¢,n)) + 0, P(t; 2,¢,m)
€N, NT(R,[d,] % 85 Op.x ) =MN,...
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Therefore P(z,¢,n) € 6., and

P(tvzaCan)iﬁ('Z’47n) :P(t5Z7<7n)7PB(t327C7n)+PB(t7Z7§7’r])7ﬁ(t)za<.7n)
+P(t;2,¢n) = P(z,¢m) €N, B

THEOREM 7.10.  For any z; € T*X, the inclusions & 2 C 6 Leg © S 2 and
‘ﬁ C‘ﬁ o C‘ﬁ* induce

Gz(’; /mz[’; = écl,z(’; /&cl,z(’; = ézé /{Y\tzg .

PROOF. By Proposition 7.8 and Theorem 7.9, we obtain an isomorphism

6z3 / ng ~ & / N o and we shall show that this isomorphism is compatible with
626/‘)?26 ~ GCI,ZS/WCI,ZS in Corollary 6.9. For any P(t;z,(,n) € 6(:12* c6 o
Theorems 6.8 and 7.9, there exist P'(z,(,n), P"(z,(,n) € .. such that
P(t; Z, CJ?) - Pl(zv Cv 77) € s),tcl,z(’; ’
P(t;2,¢,m) — P"(2,¢,m) € .
Then, by Propositions 6.7 and 7.8 we have
P/(Z7 C?T]) - P”(Z7 C?T]) € GZ(’)‘ N mza‘ N F(‘Qp[dp] X S’ ﬁT*XX(C)
:ng :‘ﬁcl’zé ﬂF(QP[dp] XS0 x ) O

REMARK 7.11. Summing up, we have the following commutative diagram:

R ~ ~
éoX,zg yzé‘/'/i/zg % cl,zg / cl,z§ =7

*
20

R

lim ES (k) 2 6. /9N, &, /N, . 56_./0N...
K

*
cl,zg

DEFINITION 7.12.  As in the case of &(§2;5) and écl(ﬂ; S), for any P(t;z,(,n) €
S(£2;5) we set

P(t;2,¢.n): := P(t;2,¢,n) mod R(; 5) € &(2; 5)/N(2; 5)
which is also called the normal product or the Wick product of P(t;z,(,n).

We use the notation of Theorem 6.11. For any P(¢;2,(,n) € é((), S), we also set

& P(t;w, \, 1) = "% 90 Pt B(w), ¢ + U5 (P(w) + 2/, D(w))A, 7) =0

THEOREM 7.13. UnaAfer the notation above, the following hold.
(1) &*P(t;w, A\, n) € &(£2;5) with respect to coordinate system (w; ). Further if
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P(t;z,¢.n) € N(62;S), it follows that &*P(t;w, A, n) € N(£2; 5).
(2) If & =id (the identity), id" is the identity, and for complex coordinate transfor-
mations z = ®(w) and w = ¥(v), it follow that W*O*P(t;v,&,n) — (P¥)*P(t;v,&,1n) €

Ny

Proor. (1) Suppose that Py (2,(,n) € I'((2, x S)[(k + 1)d ]; Op. x ). We also
assume (6.4), (6.5) and (6.6), and hence for any h > 0 there exists C, , > 0 such that
for any (2;¢" +Jg(2 + 2, 2)A) € (22, * Z)[(k 4+ 1)d ] we have

P2, ¢+ 52+ 2, )\ )| < € ARl ICHTal=H20 DA

Hence if (2;¢,n) € (2, * Z)[(k + 1)d ], instead of (6.7) we have

1 ag a *
™ 9507 Py (2, C+ 52+ 2, 2)\n)

z/=0
¢/=0

| Ak 1 Ak 2he| A
C}L,Z al A sup NI+ (42, N < Ch,za-A €
G TR R — (edc[[nA)led

1ch=<licll

We may assume that 1/2 < A < 1. Replacing d > 0 if necessary, we may assume
C:=¢edd, /2 > 4, and hence CA > 2. Hence if |[n([| > ¢'[|nAl| > (v + 1)d,,, we have

a!AkGthH)\H oh v 2n+V7k:71Ak:(V_k:)!
. - - eIl
(@ P)v(w’A’”)‘ = C’“Zkﬂza:u (e8¢ [IpAl)lel = Cn.z° kZ:O (edd,,)r=F (v +1)r=F

2“710h ZGQhCH)\” v

< o Y (CA) =

k=0

2nflch,Z€2th)\H ((CA)V+1 o 1) . 2n0h7Z AuthcH)\H
CV(CA—T) ST CA1

If P(t; 2,¢,n) € N(2;5), for any m € N and (2;¢, 1) € (92, % Z)[md,, | we have

1 m—1 C} Za!AmGthH)\H
o 6(,,18 ?CP ! tJ* / A ; 1,
o ‘kz_;) ., k(Z,C + qg(Z'f‘Zaz) :1) = (E(Sd”)\”)‘al

=0
¢'=0

Hence if [[nA|| > md,, /¢, we have

m—1 m—1 m—|al| 2hc|| Al
C, 5 alA e

> (@ P, (w A< >

p3 2 (A

m—1 m+1 2k Al
1 \k/m—1\k  C, ,CA e
< n—1 m _2hc||A|| < h,Z
S200, g AT kZ_O<CA>< m ) = CA_1

(2) Set v* := (v;£). By Theorem 7.9, we can find Py(z,(,n) € 6.. C écl,za‘ such
that

P(t,Z,<7’I7) 7P0(Z7Ca77) € &za‘ .
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By Theorem 6.11, we have ¥*®*P,(v,£,1) = (P¥)" Py(v,&,n). Hence by (1) we obtain

TrPTP(tv,§,m) — (PY)"P(t;v,€,n)
= (U0 P(t;v,&,n) — WS Py(v,€,n)) — (BV)" P(t;v,6,m) — (DF) Py(v,€,1m)) €N, .

O

THEOREM 7.14.  For any P(t;z,(,n), Q(t;2,(,n) € @(Q, S), set

z/=z
’

Qo P(t;2,¢,n) = "% %0 Q(t; 2, ) P(t: 2, ¢, n) =

= O 00 Qt; 2, + o) Ptz + 2/, A1)

2/=0 -«
¢'=0

(1) Qo P(t;z,¢,n) € &(£2;5). Moreover if either P(t;z,(,n) or Q(t; z,¢,n) is an
element of ‘)AT(Q, S), it follows that Qo P(t;2,(,n) € ‘5\?(9; S).

(2) Ro(QoP)=(RoQ)o P holds.

(3) Let @(w) = z be a holomorphic coordinate transformation. Then

D*Q o P*P(t;w, A\, n) —P*(Q o P)(t;w,\,n) € ‘./T\I(w;/\).

ProoF. (1) We assume that P;(2,¢, 1), Q;(2,¢,n) € I'((2,%9)[(i+1)d,]; Op. x )
for P(t;2,¢,m) = 2 20t'Pyz,¢n) and Q(t;2,¢,m) = 220 t'Qy(2,¢,n).  Set Q o
P(t727<777) = Z'LOiO tzR1(27C7,’7) Then

1
Ry(27C777) = Z a5gan(Z7Ca77)a?Pk(ZaC777)-
la|+k+l=v

Hence R, (2,¢,n) € I'((2, * S)[(v + 1)d |; Op.x ). We shall prove R(t;z,(,n) €
S(£2;5). Let Z € S. Note that for any (z,(,n) € (2, % Z)[(k +1)d,] and (2',{")
with [|2'[| < p—p" and [|("[| < (p—p')[In¢]| < [I¢]l, we have (2 +2",¢+(') € 2,[(k+1)d,].
Moreover as in (6.9) we have

In(C+ A =@ =p+p)lincll = (k+ 1)d(1 = p").

For any p’ € ]0,p[ and h > 0, on (2, * Z)[(k + 1)d ] we have

1Pu(2, ¢l 1Q(2,¢,m)| < €, g ARl

Hence in the same way as in the proof of Lemma 6.15, on (£2,, * Z)[(k + 1)d ] we have

108Q, (2, ¢, )] < Cyg QML
Y (p—p')lel|Ing||le]
Cyz ol AFetlcl
(p—p)lel

We replace d, p' >0 as C :=2/Ad ,(p - p')?> < 1, and choose C" > 0 and B € [A,1] as

10 Py(2,¢n)| < (7.5)
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(v+1)A” < C'BY for any v € N,. Since #{(k,1) € NJ; k+l = v—|a|} < v—|a|+1 < v+1,
for any (2;¢,n) € (2, = Z)[(v + 1)d ], we have
Crogatatleldl 2R, v+ 1)t A
¢l (p — p)2lel — (d,(p—p)?) (v + 1)
2rte'ey?, BYettll

1-C '

IR, (¢ < )

v=|a|+k+lI

< 2"_1Ch27Z (v+ 1)A”e3hHCH Z Ct <
i=0

Next, we assume P(t;z,(,n) € ‘JA’I(Q, S). Then, instead of (7.5), we have that for any
m €N, on (2, * Z)[md ] we have

el C, ,atAm el
D OXP (= Cm)| < —
=0 p—p
and thus we have
m—1 m—1 1 m—i—1—|af
Y RGm|=| Y Q=G DR G)|
v=0 itlal=0 k=0

m—1 ChZZ a!Amf\odeBhHCH

=55

m—1
< 2n—10h22 Am@BhHCH Z cv

e Ml o = o2l ot
. 2n—1ch%Z mA’rnBShHCH . 2n—1ClCh%ZBm63h\|C\|
- 1-C - 1-C

The proof in the case of Q(t; z,(,n) € ‘fl(Q; S) is similar. In particular, since
9,(Qo P)(t;2,¢,n) = 0,Q o Pt;2,(,n) + Qo 0, P(t;2,(,n),

we see that if P(¢;2,¢,n), Q(t;2,(,n) € @(.Q; S), we have Q o P(t;2,(,n) € é(!), S).
(2) is easily obtained.
(3) Set v* := (v;§). By Theorem 7.9, we can find Py(z,(,n), Qy(2,¢(,n) € 623 C

. such that

CHye
P(t;2,¢,m) = Py(%,Cm), Q(t2,6,m) — Qqlz,C,m) €N,
By Theorem 6.16, we have
P*Qy 0 D" Fy(w,\,n) = D™ (Qy o Fy)(w, A, n).
Hence by (1) we obtain

B°Q o & P(t;w, A1) = 5" Qq 0 B Py (t;w,\, ) + *(Q — Qy) 0 6" P(t;w, A\, )
+D*Q, 0 P*(P — Py)(t;w, A\, n)
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=P (Qy o Py)(tw, A\ n) + 27(Q — Q) o " P(t;w, A, 1)
+P*Qq 0 P" (P — Py)(t;w, A\, n)

= P7(Qq 0 Fy)(w, A1)

=2"(Qo P)(t;w, A, n) + &7 ((Qy — Q) o Fy)(t;w, A, 1)
+ P (Qo (Fy — P))(t;w, A n)

= &"(Q o P)(t;w, A, ). O

We can also prove

THEOREM 7.15.  For any P(t;z,(,n) € é(Q;S) set

P*(t;2,¢,n) = "% %Pt 2, — ().

o~

(1) P*(t;2,¢,m) (2% ) and P** = P. Moreover if P(t;z,(,n) € N(62;9), it
follows that P*(t; z (, n) € N(2%.9).

(2) (Qo P)*(ti2.Cm) = P* 0 Q" (t:2,C.1).

(3) Let ®(w) = =z be a holomorphic coordinate transformation.  Then on

@(Qa§5>®ﬁxgx
(P (t; 2, ¢ m) @dz) = P°(P(t; 2,(,n) @dz)".

Proor. (1) For P(t;z,(,n) = >0 t'P,(z,(n), we set P*(t;z,(,n) =
Sl ot"Pr(z,¢,m). Then

* ]‘ (e} «
PV(Z,C;U): Z Jag az Pk(t§2,*f,77)~

|a|+k=v

Let P(t;z,¢,n) € é(Q; S). As in the proof of Theorem 7.14, we can show P*(t;z,(,n) €
@(Q“; S), and that if P(t;2,() € 9A’K(Q; S), we have P*(t;z,() € ’)A?(Qa; S). Moreover for
any i € Ny, we set P(i)(t; 2,(,m) = ijzot”Py(z, ¢,n). Then we can see P(’Z’)k(t; 2,(,m) =
P (t;z,¢,n) for any 4, and hence P**(¢;z,(,n) = P(t;z,(,n).

(2), (3). For any 4, j € Ny we have (Q ;) 0 P;))"(t;2,(,n) = Pj, 0 Q) (t; 2,(,n) and
P~ (P(*j)(t; 2,(,n)®dz) = d* (P(j)(t; z,(,n) ®dz)*, and hence the results follow. O

A. The compatibility of actions.

The purpose of this appendix is to show Theorem 3.9. We follow the same notation
as those in Section 3. Set 7 : X2 5 (z,w,n) = (2,1) € X and Tyt X2 3 (z,w,n) —
(w,n) € X. We also define the canonical projections m:X? = X and 7y X? = X in
the same way. Note that we consider the problem at z; = (0;1,0,...,0). Then we have
the following commutative diagram:
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é”?’f,z; %%$|X,za“ %}H}\X,zg
y o
HgA (UA mﬁ(o n))%’HgmmUm(Uﬁ;ﬁX)LH&EQUE(UE;@X) (A1)
A C I
HE o, (T 00 ® HY o0 0%) "= HE 5 (U5 0%),

where the down injective morphisms are described in Section 2. We will explain the
other morphisms appearing in the diagram above. The top horizontal arrow in (A.1) is
associated with the cohomological action of & 5 to %ﬁl y- The second horizontal arrow
uf in (A.1) is given by the chain of morphisms

n 0,n n 0,n)
HGA,;@OUA,N(UA K ﬁ( )) = HénﬂUn(Un; ﬁX) - HG:dU(U ﬁ( ) (A 2)
%Hg: nu, (Ug: Ox).

Here we set

Gi=G,,Nm ' (G,), U:=Uy, Nmy'(U,).

K

The first morphism in (A.2) is the usual cohomological cup product and the second
morphism in (A.2) is the cohomological residue morphism. Note that since G C 7} *(G)
and G N7 '(K) € U for any compact subset K € U, the second morphism in (A.2) is
well-defined. The third horizontal arrow p¢ in (A.1) is defined by the cohomological cup
product and residue mapping in the same way as that for the second horizontal arrow.
Therefore, to show the theorem, it suffices to prove that the third horizontal arrow u®
and p defined in Theorem 3.5 coincide. Furthermore clearly the following diagram with

respect to the cup product

n 73 (0,n,0) - n 0 n,0)
HAA nm(jA.N(UA,K,’ ﬁ)?2 ) % Hénmﬁn(Un; ﬁ ) E— HAerA(U ﬁ )
(i 08" r(Ve; o%) P 08"
SN @ ;\a;,ﬁ@"@ ZFV D.0¢) N WA 6%
aePy BePY (o, B)EA

commutes. Here we set

Gi=G,, N7y Y(G,), U=U,, N7, N (T,).

Hence the problem is reduced to the following proposition.

ProprosITION A.1.  The diagram below commutes:
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(05000 — s L (U4 0%)

GnU H Ggmug‘
T17 (%, % (Oﬂho) 5 (*
P o™ L DY 0g) (4.3)
= 0,n,0 e
S W 6% S rvey)
(o, B)EA BEPY

Here p° is given by the cohomological residue morphism and p is given by

u(z, w,n) dw /u(z,w,n) dw.

v(z,m50,0)
PrOOF.  We first define the closed subsets in 7 := {(w,, n) € C?; |argn| < 6/4}
by

71' 30
L,y:= {(wl,n) €T, |argw,| < RS +arg17},
Lo 1= {(wy.m) € Ly i luy| < Slnl}

Note that T'\\ L 0.0 and T'~\ L’g ¢ are pseudoconvex open subsets. Then the top horizontal
morphism ¢ in (A.3) can be decomposed to the chain of morphisms:

n =~ (0,n,0), ¥ n OnO) 2 n OnO)
HM(U; 0%, )-1>Hé+d (U507 = = H g (U’ Oe3")
Vs rrndd (73, (0m,0) ¥§ ntd_ (f7. (0n0)
(.Hésmﬁf(U’ﬁ)?Z )->H@ (U 0% )

5. rrd 5o

Here we will explain all the subsets appearing in the chain above. Set

U :=Un# " Uz) = U, N7 TR) N7 H(T,),

Ki:ﬂ (2, w,m); _wl’n)gLQ,ev olz; —w;| < |nl},

K= ﬂ{ zZw,n); —wy,7) € ng,ov olz; — w;| < [nl}.
=2

Note that @A’H NU’ ¢ KNU' holds. Then @k (1 < k <4) are defined by

[

=K' n#, 4G,

G
G, =K' Nz Y(G,).

Q> C)>
)

The morphism 1) is nothing but the residue morphism. The other morphisms are canon-
ical ones associated with the inclusion of sets. If we take ¢ of k sufficiently small, we
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have U’ N G =0'n G Therefore the canonical morphlsm 1/)2 becomes an isomorphism.
Furthermore, as G C 7w (G ) holds, we get U'n G =0U'n G3, thus the canonical
morphism 15 is also an isomorphism. The correspondmg morphisms of Cech cohomology
groups are given by the following chain:

ZF W’ga,ﬁ 7@%2”70)) 1/;1 ZF (04 5) ﬁ(OnO)) R ZF W(a 5) ﬁ OnO))
(o, B)EA (e, B)EA (o, B)eA
N Zn—i—d(@ . ﬁ(O,n,O)) (W4(* )., ﬁ(o e 0)) ( *)’ ﬁX) (A 4)
0,n,0 «, (0,n, O :
hy Bn+d( ﬁ( )) 4 ZF WAE ﬁ); ﬁ)?2 ZF n(ﬂ)7 ﬁX
(o, B)EA BEPY
We also explain all the subsets appearing in (A.4). Set
Vo= {(z,w,m) €U’ (5 —wy,m) & L, o},
0(” {(zow,m) € U5 olz, —w,| > I} (i=2,...,m),
:{(Zawan)Eﬁ/;( _w17 )%L }
0" . {(z,w,n)eﬁ'; olz; —w,| > n|} (i=2,...,n).
Note that these open subsets are pseudoconvex. Then the coverings {Wl(a’B )} etc. ap-
pearing in (A.4) are given by
Wi = 0 Nz VW), Win? = 0" na YV,

WA A = 01 n g (O AT (V) W) = 01 R (),

and Z"+d(@3; ﬁg)z,n,o)) (resp. B"+d(ﬂﬂ ﬁ(o .- 0))) stands for the n + d cocycle group

(resp. the n + d coboundary group) of Cech complex C"(QH ﬁ’(ono))

to the covering Qﬂ = {W(”k)} 1<i<n . Let Pdw € HT"Q( ﬁ(o . 0)), and udw =

1<5,k<d
u(z,w,n)dw € F(W(* ™) ﬁ(on 0)) the corresponding representative of the Cech coho-
mology group. Let us trace the images of P and u by the chain of morphisms.
Step 1. Set Pdw := ¢{(Pdw) and u, dw := ¢, (udw). Then clearly u, dw is a
representative of P, dw and we have

with respect

p(udw) = p(uy dw) mod ZF(‘A/E@); 0%),
BePy

where p was defined in the statement of the proposition.
Step 2. As )3 is an isomorphism, there exists P,dw with P, dw = 15(P,ydw). Then
we can find a representative u, dw € F(/Wz(*’*); ﬁ%n’o)) of P,dw such that
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Uy dw — P, (u, dw) € Z F(ﬁ/\l(a’ ﬂ); ﬁ}?ﬁn’o)).
(e, B)EA

Since we have similar claims as in Lemma 3.4, we have p(u, dw) € F(‘A/FE*); 0 ) and
p(uy dw) = p(u, dw) mod ZF ARE 0%
BeEPY

Furthermore, we set

%(27 0, 9) = ’Y(zv 5 0, 0) \ (_7(23 0, 9))7
W (uy dw) = /u2(z,w,n) dw.
7(z,m50,0)

Note that the real n-dimensional chain ¥(z, n; o, 8) in X becomes a product of closed paths
where each path is homotopic to the circle in C, (i =1,...,n), in particular, we have

07 = 0. By the same claim as Lemma 3.4 (3), we get u'(u, dw) € ZﬁeP;F(‘A/E(ﬂ); 0%).
Hence we have obtained

pludw) = p (uy dw) mod ZF(IA/FE’(R); 0%).
BePY

Step 3. As )3 is an isomorphism, there exists Pydw with P,dw = 15(P;dw). Then
we can take a representative

,8,8" n+d oy (0,n,0) B’ OnO)
u3dw:{u:(3a p.p )dw}(a,,ﬁ’,ﬁ/)eAi,M €z +d(ﬂﬁ3;ﬁ’§2 ) C ZF (a B89, 0%y )
(e, 8,8)€A7 4 4

of Pydw, where we set
Arra=1{(0,8,8) € P, x Py x Py #a+ #6 + #6 = n+d}.
Since the covering {WQ(“B)} is finer than {Wé%&ﬁ’)}’ we get

uzdw—ué**mdwe ZF aﬂ)ﬁono)
(a,8)eA

and thus, we obtain

W (uy dw) = ,u’(ug*’*’@)dw) mod ZF(‘Z;EB); 0%)
BePY

for which we have:

LEMMA A.2.  The following holds:
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1 (S dw) = 1 (S P dw)  mod ZF(Véﬂ); O%).
BePY

PrROOF. We set V¥ := « ~ {k}. By the cocycle condition for uq dw, we have

(—1)"+d(ué*’*’®)dw - ué*’*w’{d})dw) —|—Z (—1)iug*w’*’{d})dw +Z (—1)”+iu§*’*w’{d})dw
i=1 i=1
=0.

Hence, by the same claim as Lemma 3.4 (2), we obtain

u'(ug*’*’m)dw) _ M/(ué*,*w,{d})dw) mod ZF("}E(B); O3).
BeEPY

By repeating the same argument, we obtain the result. O

Summing up, we have

p(udw) = @/ (w™dw) mod YDV 0g).
BePy

Step 4. Set P, dw := 93(P; dw). Clearly u, dw := 1,(u, dw) is given by ug*’w’*)dw
which is a representative of P,. By the previous step, we have

pludw) = ' (uydw) mod Y I(VY;05).
BeEPY

The Final Step. 1); is given by the residue morphism. Then the subsets U !
G 4 and the chain 4(z, n; o, 0) satisfy the geometrical situation under which the following
Lemma A.3 holds. Hence it follows from the lemma that the representative of 9; (v, dw)
is given by ' (u, dw). Therefore we have the conclusion that a representative of (P dw)
is given by u(udw). This completes the proof for the proposition. O

We first clarify a geometrical situation. Let X := Cﬁ and Y := C. Let Z (resp.
U) be a closed (resp. a Stein open) subset in X, and let K, (resp. W,) be a closed
(resp. a Stein open) subset in X x C, (i = 1,...,n). The mappings 7: X xY — X,
m: XXY = XxC, and7,: XxC, —5 X denote the canonical projections respectively.
In this situation, the following conditions are also assumed.

(i) The subset U~ Z C X has a covering {U(j)};-":1 of Stein open subsets for an m < £.

(ii) The subset W, \ K, is Stein in X x C, for 1 <i < n.

i

(iii) The mapping 7,: K; N W, — X is proper for 1 <i < n.
(iv) U Ccn(Uizym; (W)

K2

Set V) .= 7 1(W, \ K,) and
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n n

K:=rn1%2)n mwfl(Ki), W=7r"YU)n ﬂﬁfl(WiL
i=1 i=1

weh) = LU nv® (aeP, ,BeP,).

Here, for o = {j, ..., j,.} € P,, with k& < m, we set U@ .=yl n...nuUs and
U™ .= yAL2emb) a5 usual. Similarly subsets V), V) and W**) are defined.
We also denote by 7;(z) C C,, a closed path in 7; () N W, (regarded as a subset in

C,, ) turning around each component of Ti_l (2) N K; once with anti-clockwise direction.

i

LEMMA A.3.  Under the situation described above, there exists the following com-
mutative diagram:

m+n n we m
HK;W(W5 ﬁgg’xx)f) ——— Hy (U O)
[ I
rwt»;oQn) p o DUY;0y)
S orwlefoQ9n) > rw';oy)
(o, BYE(P,, XP,,)V a€cPy,

Here 1 is defined by

u(z, w) dw v /u(z,w)dw,

Y1 (2) XXy, (2)
and (P, x ”Pn)v denotes {(o, ) € P,, X P; #a+ #B=m+n — 1}.

PrOOF. The lemma immediately follows from [16, Corollary 3.1.4]. However, for
the reader’s convenience, we will give a proof in what follows.

Let Y/ = C" ! with coordinates w’ = (w,,...,w, ;),andlet 7’ : X xY — X x Y’
(resp. 7’ : X x Y' — X) be the canonical projection defined by (z,w) — (x,w’) (resp.
by (z,w’) = (x)). We also denote by 7 : X x Y = X x C, (1 <i < n—1) the
canonical projection by (z,w’) = (z,w,). Clearly we have m = 7" on' and we also see
that the cohomological residue mapping 1€ coincides with the following composition of
the cohomological residue mappings along the fibers of 7’ and 7’

HEg 3 (Wi 050 = Hgbi W 0850 0) = Hyy (U3 0),

where /¢ (resp. 1”’¢) is the cohomological residue mapping along the fiber of 7’ (resp.

7’") and the subsets K’ and W' are given by
n—1 n—1
K =x""Y2Z)n ﬂﬂ';/_l(Ki), W =" U)n mﬂ';’_l(Wi).
i=1 i=1

Hence, if we can show the lemma for n = 1, then the result follows for any n € N by the
induction on n. Therefore we may assume from the beginning that n = 1; i.e. Y = C.
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Let us show the claim by the induction on m > 0.

First we prove the lemma for m = 0. Let 8% . (resp. S%) be the d complex of
ﬁ’g?;}% (resp. Oy ) with coefficients in the sheaf of distributions on X x C = R* x R?
(resp. X = R?"). Then we have the following diagram:

Hie (W ﬁg?x%V—F(W\K @g?xlc )/T(W; ﬁg?x%)

J |

° 5 . =
1_H§H Fgew W5 8% o) th%F(W N K ﬁg?’xl()c)/F(W; o) (A.5)
Ll K 1)
HT(U;S%) I(U; 0y).

Here K ranges through closed subsets in W such that K C Int K and Ty K — X
is proper. Here Int K denotes the interior of K. The morphism 4§ is given by u o1,
where @ is a distribution extension of u to W with « = @ on W ~ K. The morphism
f is nothing but the integration along the fiber of 7: X x C — X for distributions.
Note that the element in H'I' ROw
the 9 complex of & )?ch. Then the commutativity of the lower square in (A.5) comes
from the Stokes formula. Let B% . be a 0 complex of ﬁgg’;(): with coefficients in the
sheaf of hyperfunctions on X x C = R? x R%2. Then we have H}mW(W; ﬁ’gg;}%) =
H' Iy (W3 B% ). The morphism 4’ is given by u D1, where 1 is an extension of u

to W as an element of the flabby sheaf. The morphism ¢ is the composition of morphisms

(W;S8% ) is a real differential 2-form as S%, ¢ is

H' ey (W3 B ) _HEH e (Wi Bx o) & 1_H§H e (Wi 8% we)-

Let @’ (resp. @) be a distribution (resp. hyperfunction) extension of u € T'(W \ K; ﬁg?xl()c)
to W with @ = won W~ K (resp. @ = u on W ~. K). Since supp(ii — @) C K, we have

ou — ot —OEh_n;H Izw

K

(W7 B;(X(C)7

which implies the commutativity of the upper square in (A.5). Hence, as the residue
morphism p¢ is the composition fc or by definition, we have obtained the claim of the
lemma for the case m = 0. Now suppose that the claim of the lemma is true for
0,...,m—1. We will show the lemma for m. Let us consider the commutative diagram
between exact sequences:

Higw (W35 0L0) = Hiioyyiom (W5 0Q500) — HEAS, (W5 6852) — 0
vl vl | (A.6)
Ho0 (U Ox) = Hy g0 (U 0x) —— Hypy (Us Ox) — 0,
where W™ .= Wnzx=L(U™), 2" .= U~U"'UD and K’ := 7 1(Z") nay H(K,). We
also have the commutative diagram between exact sequences:
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LW, g1 LW, g1 rwtD; g1
> rwren; o@1) ZFW”‘”) 2 ZFW(‘” ggl%
aePy aePy acPy
nl nl ml (A7)
ru'®;oy) ru';oy) rwt;oy) 0
S r';oy) S ;o) S rw® '
aEPY aEPY aePY

Here {W'(@D} (W@} (U@} {U"(@)} are the corresponding the coverings of W ~
K, Wi (K, U~ Z', U™ < Z' respectively. By the induction hypothesis, the first
and the second p¢ and p in (A.6) and (A.7) coincide. Hence the third ones in the both
diagrams also coincide. The proof is complete. O

B. General construction of CY| X,z

In this appendix, we will extend theories developed in Sections 2 and 3 to a general
family of Cech coverings, which enables us to define the symbol mapping o in a general
complex manifold. We continue to use the same notation as those in Section 2 unless
we specify them. Let X be an n-dimensional complex manifold with a system of local
coordinates z = (z,...,2,), and Y a closed complex submanifold of X which is defined

7 n

locally by {z' = 0} where z = (2/,2") with 2’ := (z,,...,2,) for some 1 < d < n.
Set X = X x C, and let m, : X 3 (z,m) — z € X be the canonical projection. Let
zo=(0,27) €Y and z; = (O, o) € Ty X with ¢ # 0.

Let x = {f,(2),..., f;(2)} be a sequence of holomorphic functions in an open neigh-
borhood of z, satisfying the following conditions:

(1) df1(z9) ANdfy(2g) A+ Ndfy(zy) # 0.
(2) fys---, [, belong to the defining ideal .#;, of Y.
(3) We have
‘fo / .
e @oeax,
where f(2) := (f,(2),..., f;(2)) and e := (1,0,...,0) € C*.

We denote by Z(z;) the set of sequences satisfying the conditions above. Set

f(2) = (f1(2), £o(2),- - fa(2)) = (f1(2), f'(2)),

Gy ={ze X; Pl () <A () fi(2) € LY,

where ¢ > 0 and L C C is a closed convex cone with L C {7 € C; ReT > 0} U {0}. We
also set, for an open neighborhood U of z, in X,

GX = {(zn) € X3 olf'(2)| < Inl, f,(2) € L},
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0%y = {(z:0) €U x 8,45 |£1(2)] < alnl}-
Now we define

ARX 1
CyiXeg = thG’;LﬂUX
o,m,0,L,U

R, X — . X AR,
CY|X,zg = Ker(@n. CY\X,zg — CY|X,Z(§)-

(UX, 4:0%),

o,r,0°

Then, by the same reasoning as that in Section 2, we have the isomorphisms

ng]gp(,z IHHGX (U 0 )§C§’|§(,z5a
o, L, U

where these isomorphisms are associated with the natural inclusions of sets and the
canonical morphism T, lo v — U5 as we have seen in Section 2. Hence, for any x, and

s R,x; R, X, .
X» in 5(z;), two modules CY|X,zg and CYlX .; are isomorphic through %YlX 2 . Using

this fact, we replace the definition of CY| Xz introduced in Section 2 with a slightly

generalized one. From now on, we write Mglf"}((,z : IEHGX qu(U; Oy) for short.
oL

DEFINITION B.1. We denote by CY|X -; the isomorphism class {C’Y‘X . “Yyez(a)
con51st1ng of CY| X,z indexed by x € Z(z;). In the same way, the 1som0rphlsm class
MY|X . is defined by {MY‘XZ bees =(z3)"

By a direct consequence of the construction above, we have the morphism of C& X,z
associated with a coordinate transformation. Let w = (w’,w”) be a system of local
coordinates of a copy of X where Y is locally defined by w’ = 0, and z = &(w) a local
coordinate transformation in an open neighborhood of w, € Y satisfying #(Y) C Y and

zy = P(w,). Set ® =P x id,. Then it induces the sheaf morphism
5_1ﬁ§ 9(,0'—)@056 ﬁ)f(‘.
Let wy = (wg; (0@ /0w)(w,)]((),0)) € Ty X. It is easy to see

xXo®:={fio®,...,f,0P} e E(w)

for any x = {f,..., f;} € Z(y). Hence we have the morphism C’Y‘X . = C’&’)‘é}i*
" Wo

defined by [u(z,1)] — [u(®(w),n)], which gives &*: CYlX w7 CYIX . This morphism
is compatible with the morphism @*: %Yl Xz ‘Ky‘ X,ws associated with the coordinate
transformation @ because the both morphlsms are 1nduced from the same coordinate
transformation of holomorphic functions.

Next we consider a Cech representation of CY‘X 2 for x = {f1,..., fu} € Z(zp)-
Set

d
UX=({z=(=",2") € X; |[f1(2)] <o, If () <, ||2" = =5l < '),

=2
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Uy = ﬁ{(z,n) = (2" m) € X x S; [f,(2)] < elnl, If;(2)] <7, 12" = zgll< 7'},
i=2
where [|2”]| denotes max{|z,,,,...,|z,|}. We also define
V,z"(l) = {ZQU;( gfﬁ<argf1 77r }
VW= {2 e UG SIS > AN (2<i<d

N - 3
v = {(2,77) eUs; % —0 <arg fi(2) < 777 + 9},

VYO i=A{(zm) €U olfi(2)] > Inl}  (2<i<a).

Then it follows from the same arguments in Section 2 that we have

Cty = Iy T(Tx s 05 )/ T r@iog),
aePy
057\))((@3 IHm {u € F(VX’( ) O ZF ‘A/,z"(“); 0%); O,u= O},
aePy

My .. = gr(va Oy) ) > Ty
aePy

Let us recall the definitions of the paths ~, (z,7; 0,6) and v,(2,7; ¢) in C which were
given in Section 2. In this appendix, we take slightly modified paths. Set

N (150,0) = =1(0,1;0,0), v, (m;0) :=7(0,m50) (i > 1).
We define the real d-dimensional chain in C¢
V(m;0,0) := 71 (m5.0,m) X Y2 (13.0) X -+ X Y415 0)-
Then, for any (0,z”) € Y near %, we also define the real d-dimensional chain in (Cf/ by
(" my0,0) = {2 € CY; f(2',2") € v(n;0,0)},

where f(2) := (f,(2),..., f4(2)): C* — C for x = {f,,..., f;} € () and the orien-
tation of v is determined by that of v through f.
Let us introduce the symbol spaces

6Y|X,z(§ = %GY\X(Q;S) 2 my\x,z;; = %mYlX(Q; S),

Py ix,z = ISy x (02) D ANy x e = Ay (02).

23523 2323

Here 2 € Ty X ranges through open conic neighborhoods of z;, and the inductive limits
conic
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with respect to S are taken by ry, 6 — 0. The sets Gy (£2;5), Ny ¢ (£2;.5), Ly x(£2)
and A5 ¢ (£2) are defined in the same way as in Section 4. Then we can define the

ine 6X - OR:Xx
mapping 6%: CY|X,zg — GY\X,zg/mHX,zg by

6X([u])(2//7 C/a n) = /u(zla 2", n) e gy
¥X(2'",n30,0)

for u(z',2",n) € F(‘/}é"(*);ﬁg) with a suitable x. Similarly we get the mapping
R,
MY|>)<(,z3 - yY|X,zS/‘/VY\X,ZS by

()¢ = [0 a
YX (2" ,m450,0)

for v(2/, 2") € D(VX™"); 6) with a suitable & and a sufficiently small fixed 7y > 0.
Now we have the following theorem.

THEOREM B.2.  The morphisms 6X and oX induce the well-defined mappings
G: C§|X,z(§ = Gy x,.e /mY‘X% and o M§‘X’25 = L e /Jl/zg respectively. To be more
precise, if X1, Xy € Z(z5) and [uy] € C’)D}l’;((l’zg and [u,] € C’f&fzg determining the same
element in ‘53}')(728, it follows that 6% ([u,]) = 6% ([u,]) € Sy ix.: /‘RY‘X% . Similarly,

R, R, .. . .
for [v,] € MY&IZ* and [vy] € MY&?Z* giving the same element in %ﬁlx 2z it follows
<0 270 )

that o*1([v,]) = 0*2([v,]) € Iy IX /=/Vy|x,zg .

PrROOF. By a linear coordinate transformation, we may assume z; =
(0;1,0,...,0) € Ty X and z, = 0 € X. We need the following easy lemma.

LEMMA B.3.  Let g(z) be a holomorphic function in an open neighborhood of z,.
Assume that g(z) € Iy and *[(09/02)(z,)] = (1,0,...,0). Then, for o and 0, there exists
a sufficiently small € > 0 such that

Reg(z) >elnl (¢ €0v(n;0.0), n€S,, 2" <e, Inl <e),
where 0y denotes the boundary of v(n; 0,0).
PrOOF. The Taylor expansion of g(z) along Y is given by
9(2) = Uy (Z")z + ()2 + -+ Py(2") 2y + O(Z'F)
with ¢, (0) = 1 and ¢, (0) = 0 (k > 2). The claim immediately follows from this. O

Let x = {f,,..., f,} € E(z5). Set f(2) := (f(2),..., f;(2)) and, for z" near 0, we
write by f_,(z') the mapping f(z',z") regarded as a mapping of the variable 2’ with a
fixed z”. Then, by the coordinate transformation, we have
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6X([U])(ZH7C/;77) _ /U(f;,l(w/),zu,n) e*(fz_,/l(w/),g‘/) det[aw,f;,l] dw',

~(1;0,0)

oX([])(=",¢) = / o( 5t (w'), 2"y e~ Vo <) det[9),, £, du

z

7 (19;0,0)

Therefore, by applying Lemma B.3 to the first coordinate function of f;,l(w’), we have
the commutative diagram below:

R, ox
MY|X,Z;; >‘yY|X,zs/‘/VY|X,z[’§

k l

R,x 6x
CY|X,Z; ? GY‘X,ZS /mY\X,zg .

Since the first down-arrow M%’)(( JEN Clﬂfl’;((’ 2 is isomorphic, to show the theorem,
it suffices to prove the last claim in the theorem. We first consider a special case.

LEMMA B4, Let x; ={f1,--- . fa}, Xo ={f1,---, fu_1,9} € Z(2,). Then the last
claim in Theorem B.2 holds for these x, and x,.

PROOF. Let v, € F(Vgl’(*); Oy)and v, € F(V,§2’(*); 0') with some k which give
the same element in ‘Kgl X,z Let us consider the coordinate transformation

w=(w,w") = f(z) = (fl(z),...,fd(z),zd+1,...,zn),

and let w, = f(z,) = 0, wy = (0;1,0,...,0). Clearly the coordinate transformation
changes x, and x, to X, = (w,,...,w,) and Xy = (wy,...,w, ,,h) with h(w) = go f "
respectively. Further, we have

o ([o]) (", ¢') = /vl(f_l(w))6_”5’1’(1“’)’“ det[d,, f,,,] du,

~(1930,0) (B.1)

7 (). ¢) = [~ ) e U denfo, £

Forr (V%2 (w0 ,n430,0))

It follows from definitions that v, (f ~*(w)) and v,(f ~'(w)) are holomorphic in VN(*) =
Vzl’(*) and Vf?’(*) respectively. We can also see

foor (P2 (W, 005 0,0)) = v*2(w”, ng; 0, 0).

Since x, belongs to =(wy), we have 8wdh(w0) # 0. This implies that, by keeping 7, of
Y4(1y: p) unchanged and by taking 7, of other v, (1 < k < d — 1) so small if needed,
the chain y(ny; p,0) x {w"} belongs the common domain of Vg(l’(*) and VSZ’(*) for a
sufficiently small w”. In particular, we can replace f, ., (7% (w",14;0,0)) in (B.1) with
Y¥(ng; 0,6). Therefore the problem can be reduced to the case where x; = {2,...,2,},
Xy = {#,---,24_1,9} and the morphisms o*1 and o*2 are replaced with the same
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morphism
o(v)(z",¢) = /v(z’,z”) e~ ()¢ g (B.2)
¥(1950,6)
for some 9(2) = (p(2)erpa() with {p1(2)nu()} € () (2 =
(0;1,0,...,0)). Let us show the lemma for this case. We have the diagram
My .. & liLglUHg:}LmGE?LmU(U; Ox) 4 MEG... (B.3)
o, L,

The corresponding diagram of Cech representations is given by

iy P(V19: 0) | 52 P05 0) gty 245,505 | B8, 05)

aePy

S lim D(V22 0 0y) [ 3 T(V: 0y),

Kk acPy
where the covering T, = {Tél)}fill is given by
T(Z) — VXlx(i) al VXQ!(i) (1 S Z S d _ 1)7 T(d) — VXlx(d) N UXQ’ T(d+1) — VXQ’(d) al UXl.
We also note that, for v = {v} € Z4(%_;0) C ZﬂeAdF(T,gﬁ); O ), we have

v, =1 (V) = U({l,...,d})7 vy 1= 1y (v) = pULd=1,d+1})

Hence, to complete the proof, it suffices to show o([v,]) = o([v,]). Since v satisfies a
cocycle condition, we have

v, — v, = (—1)4 Z (—l)kv(*w).

1<k<d

By modifying the path of the integration, we obtain o (v{%d+1})y) ¢ JVY|X,Z(§- Further-

more we get U(U(*Vk)) =0if 2 < k < d. Hence we have obtain that o(v,) = o(v,) €
‘SﬂY\X,z(’;/‘/VY\X,z(’;' O

By repeated application of Lemma B.4, we can show the last claim of the theorem

for the case x; = {f, for - fubs Xo = {f1:99,---,94} € Z(z;). Hence the theorem
immediately follows from the lemma below. This completes the proof. O

LEMMA B.5.  Let x; = {f1, for-- s fabs Xo = {9 fo,-- -, fu} € E(25). Then the
last claim in Theorem B.2 holds for these x; and x.

PROOF. By the same argument as that of the proof of Lemma B.4 and by noticing
Lemma B.3, the problem can be reduced to the case x; = (2, 2y,...,2,) and x, =
(9,29, ..,%,) with the morphism ¢ defined by (B.2). Then we have the diagram (B.3)



1796 T. Aoki, N. Honda and S. Yamazaki

and the corresponding one by Cech representations is given by

lim 1 (V3 Wi0y) ) Y TV 0y) & lig 24T 05) /BT, O)

acP)

= lng ' (Vs /ZF (V@ 0y,

acPy

where the covering ‘Ii = {T( 7) dj 1 is defined by

K
75— yxo@) A X)) A X O UXe.
K K K K K
Furthermore the morphisms ¢, and ¢, are given by

(+,0) (0.%)

v =1 (0) =0 v, =1, (v) =0

respectively for v = {v(*} € z2432%;0,) C 2o (@.B)eq, (1", 6). Then, by
employing the same argument in the proof of Lemma A.2 in Appendix A, we have
o(vy) = 0(vy) € Hyx 2 /JVY‘X -;- The proof is complete. O

Now we compute behavior of a symbol by a coordinate transformation. Let z =
(2',2") = (' (w), " (w)) = &(w) be a local coordinate transformation near w, € Y with
d(Y) CY and z, = ®(w,) where Y is also defined by v’ = 0 under the system of local
coordinates w = (w',w"). We denote by &/, (w') the mapping 2z’ = &' (v, w") regarded
as a mapping of the variable v’ with a fixed w”. Set wy := (wy; dP(w,)(¢},0)) € Ty X.
Let x = {#,,...,2,} and [u] € CY‘X 2 with u(z,n) € F(‘A/li"(*); 0) for some k. Then
we get &*([u]) = [u(®(w),n)] € 05\>§§30~ Hence we have obtained

S ()" Non) = [ u(@w)me N du!
X (w',n;0,0)

/ (2, 8" (D1 (2), "), m) e Pur G det[o, & di

w!’ w!’

v(n;0,0)

Let us consider the corresponding generalization of ER7z*. Hereafter we follow the
same notations as those in Section 3. Let X be an n—dimeflsional complex manifold.
Set X2 := X x X with a system of local coordinates (z,w) and X? := X? x C with
local coordinates (z,w,n). Let A C X? be the diagonal set identified with X and
2o = (20:¢,) € T"X = TiX? with ¢, # 0. Let {f,(2),...,f,(2)} be a sequence of
holomorphic functions in an open neighborhood of z, of X satisfying the conditions:

(1) df,(z) A+ Adfy(z) # 0.

(2) We have f(z,) = 0 and 7(0f/02)(z))]e = ¢, € (T*X)ZO where f(z) :=
(fi(z),..., f,(2)) and e := (1,0,...,0) € C".
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We denote by =, (z;) the set of such a sequence. Let x = {f,,..., f,,} € Z,(%;) and set
fai(zw) = f;(2) = fi(w),

fA(Z7w) = (fA,l(Z»w)v - 'va,n(sz)) = (fA,l(Zﬂw)7f/A(Z’w))'

Define, for an open neighborhood U ¢ X? of (29, %,) and a closed convex cone L C C
with L C {r € C; ReT > 0} U {0},

GQ,Q,L = {(Zaw) € X2; Q2|f/A(Zaw)| < |fA,1(va)|v fA,l(va) € L}a
and

UX pro = {(z;w,m) €U XS, g5 [f24(z,w)] < olnl},
G>Z7Q7L = {(Z’wan) € XQ; Q|f/A(Z7w)‘ < ‘77|7 fA,l(Z7w> € L}-
We also define
ESX_ = lim H2,
o wﬁ UG

= (O n,0)
UX ﬁ
X0k ( Ao,r, 07 )7
Rox . . mRx R, x
E%Y. = Ker(d,: B, — EYX),
R
X

X
mUAwe

, T n (0,m)
MEX =l HE (U5 087,

Then we obtain isomorphisms
R R,x R,x
(g)X,za‘ & Mx,zg =~ EX,Z;; .

Hence, by the same reasoning as that for %)H}| X250 We can introduce the following defini-
tion.

DErFINITION B.6.  We denote by Eg{} 2 (resp. M;% ZS) the isomorphism class
= . ;
{EX?;(*]}XGEA(;:;) (resp. {MX zo}xe_A(zo))

We also give Cech representations of these cohomology groups. Set
A~ n A~
UX = [z wm) e X2 If )<, n €S, g: |far(zw)] < elnl, [f,(zw)] < 7'},

UX.,. = [ {(z,w) € X% [ f(2) <7, [faq(zow)] < o, [fa,(zw)] <1}
We also set

= m
VX (1) {(Z,wﬂ?) € Uz,m D)

VX = {(z,w,m) € UX o olfai(zw)] > I} (2<i<n),

3
—0 <arg fn,(z, w)<2+6’}
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3
Vz,’f}) = {(z,w) €UX . % —0<argf,,(zw) < 777 + 9} ,

VAW = {(z, w) € UX ; &l asi(zw) > o, (zw)]} (2<i<n).

Then we get
~ . (0, 0) a (0,n,0)
B i (T 00 /Zfﬁiﬁylx
K aEPY
ERX =1 {KeF(VM Lo / ;620 anK:O},
K agPyY
MEX =lim P(VX 0%7) [ ST vy osm).

X

a€EPY

Let y(z,7; 0,0) be an n-dimension real chain in C™ defined in Section 3. Then we define
the n-dimensional real chain in C" by

Yz m50,0) = fAL(=7(0,m50,0)) = f 1 (y(f(2),m5 0,6)),

where f, _(w) is the morphism f, (2, w) = f(z) — f(w) regarded as a function of w for a
fixed z and the orientation of 4X is induced from that of v by f~!. Then we can define
the mapping 6% : E§§O -6, /‘ﬁzo by

X ([Kdw])(z,¢,n) == /K(z,w,n) e O dy
¥X(2,m;0,0)
for K(z,w,n)dw € F(VX (), ﬁ(o .- 0)) with a suitable . Similarly we have the mapping
R,x
Mx% = s/ Ny bY
X ([Kdw])(z,() ::/K(z,w)eW_Z’Odw
¥X(2,m450,9)

for K(z,w)dw € F(sz6 ). ﬁ(o n)) with a suitable k and a sufficiently small fixed 1, > 0.
As an immediate consequence of Theorem B.2, we have obtained the following corollary.

COROLLARY B.7.  There exist the well-defined symbol morphisms
~. R . R
6: Ey . — ng/ngv o My . — yzg/JVz(; ,
induced by 6% and oX respectively.

Let us consider a coordinate transformation. Let z = @(w) be a local coordinate
transformation of X near w, € X with z, = &(w,). We take (z,2',n) and (w,w’,n) as
the corresponding systems of local coordinates of X2 respectively and the associated local
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coordinate transformation @ of X? is defined by (z,2',m) = (P(w),d(w'),n). Set wy :=
(wy; dP(wy)(¢,)) € T*X. Let x ={z,...,2,} and [KdZ'] € E?}’ég with K(z,2',n)dz' €

r (‘72(7’,({*); ﬁgz,n,o)) for some k. Then, by the same argument as in O$7|>§(,zga we get
& ([Kd)) = [ (Kd2)] = [K(@(w), B(w),n) detld, &(w)] du] € FREL.
Hence we have obtained

&(D* ([Kdz"]))(w, A\, n) = / W' TN (Kd2)
yx°P (w,n;0,0)
:/K(z7z',77) (TN g (B.4)

v(z,m;0,0)

Finally we shall consider the action on C&  » associated with E?} Lo Let z) =

. . 20 2
(20:Co) = (0,203 ¢,0) € Ty X CT*X, X € Z(2y) and x € Z4(25). Assume xo C Xpi
that is, x and x are given by {f,,..., f,} and {f,,..., f,,..., f,} respectively. Note
that, for any x. € Z(z;), we can always find a x5 € Z,(2;) with xo C xp. Let

[u] € C;If"))cfzg with u(w,n) € D(VXe™; 6. ) and [Kdw] € EEEEJ with K(z,w,n)dw €

F(Vzi’(*); ﬁg);n,o)) for some k. Then we have the morphism

*
320

pXE Eg‘;XE %C&))((C:zg > [Kdw] @ [u] — /K(z, w,n) u(w,n)dw| € 051)5528’
YXE (2,m;0,0)

which is well-defined. Indeed, by the coordinate transformation (Z,w) = (f(2), f(w)),
the situation can be reduced to one studied in Section 3.

THEOREM B.8.  The family {,uXE}XE =) of morphisms constructed above in-

€z (

duces the well-defined morphism p: E§,z§ ®c¢ C&Xz; — C§|X,z(’;' Furthermore u coin-

. . . R R
cides with the action of é”X% on %Y|X1ZS‘

Proor. It suffices to show that, for x. C xj, the following diagram commutes:

R R ne R
éaX,za‘ %%Y|X,z(’; <gY|X,z6‘

! |

R,x R,x PXE R,x
E POy, —— Oy
<0 C

|X,z5 Y|X,z5"
We denote by ¢ the isomorphism éﬂ?zg ~ Eﬁif and by the same symbol the
one %}D}\X,z(’; ~ C§)|)§(ng§' Let u(w,n) € F(Vgc’(*);ﬁX) and K(z,w,n)dw €

F(Vzi’(*); ﬁg);n,o)) for some k. We define the coordinate transformations
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P(z) = @,(2) = fTH(Z),  Dylz,w) = (fTH(E), f (W),

Sz = (FTHEhm), By(zwm) = (FTHE) @) ).
It follows from the fact x ;o® = {Z,,...,%,} and Theorem 3.9 in Section 3 that we have
p (N (@K dw]) © @ ul) = o e (B ([Kdw]) © @3 ([u])).
By the coordinate transformation law of the integration, we get
p¥ee (B ([Kdw]) © B ([u])) = B 0 5 ([Kduw] © [u]).

Furthermore, it follows from functorial properties that :~! o 52 =®; 017" (k=1,2) and
1€ and @* commute. Hence we have obtained

& o u* (™ ([Kdw)) © .07 ([ul)) = B} 01~ o e ([Kdw] ® [ul]),

which implies p°(: ™ ([Kdw]) ® ¢ ([u])) = ¢ o X5 ([Kdw] @ [u]). This completes the
proof. O
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