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Abstract. This paper is devoted to the asymptotic analysis of the
optimal Sobolev constants in the semiclassical limit and in any dimension. We
combine semiclassical arguments and concentration-compactness estimates to
tackle the case when an electro-magnetic field is added as well as a smooth
boundary carrying a Robin condition. As a byproduct of the semiclassical
strategy, we also get exponentially weighted localization estimates of the
minimizers.

1. Introduction.

1.1. Description of the problem.
The aim of this work is to investigate optimal Sobolev constants under an electro-

magnetic field and in a domain with a smooth boundary. We want especially to investigate
the behavior of these constants in the semiclassical limit.

1.1.1. Geometric context.
Before describing our main results, we describe the geometric context of this paper.
For d ≥ 2, we consider an open and bounded set Ω ⊂ R

d with smooth boundary. We
also introduce the smooth electro-magnetic potential (V, A) ∈ C∞(Ω,R × R

d) and the
variable Robin coefficient γ ∈ C∞(∂Ω,R). We let G = (Ω, Id, V, A, γ) where Id stands for
the standard Euclidean metric.

Definition 1.1. For notational convenience, we will constantly consider quintuples
gathering the Robin electro-magnetic geometry G = (U, R, V, A, c) where

i. U is a smooth open set,

ii. R is a Riemannian metric on U ,

iii. the electric potential V belongs to C∞(U,R),

iv. the magnetic vector potential A belongs to C∞(U,Rd),
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v. the Robin coefficient c belongs to C∞(∂U,R).

If Φ : U ′ → U is a local chart near the boundary, then we introduce the pull-back geometry

Φ∗G = (U ′, (dΦ)T R(dΦ), V ◦ Φ, (dΦ)T ◦ A ◦ Φ, γ ◦ Φ) .

We recall that the “magnetic field” is the 2-form defined as the exterior derivative

B = dA = d

⎛⎝ d∑
j=1

Aj dxj

⎞⎠ ,

where A is identified with a 1-form thanks to the Euclidean duality. The 2-form B may
be identified with the skew-symmetric matrix, called “magnetic matrix”, (Bk�)1≤k,�≤d

where Bk� = ∂kA� − ∂�Ak. It is well known that the non-zero eigenvalues of the matrix
B are in the form (±iβk)1≤k≤�d/2�, βk > 0 and that 0 is always an eigenvalue in odd
dimension. This allows to define

Tr+ B =
�d/2�∑
k=1

βk .

In particular, if Tr+ B = 0, then B = 0.

Definition 1.2. We will say that the geometry G is homogeneous when (V, B, c)
is constant and when U is the whole space or a half-space, equipped with the Euclidean
metric R = Id. We will also say that a geometry is Euclidean when R = Id. In this case,
we will also use the notation G = (Rd, Id, V, A, 0), where A is a linear potential associated
with B.

1.1.2. Minimization problem.
We now introduce the minimization problem under consideration in this paper.
Let p ∈ [2, 2∗), with 2∗ = 2d/(d − 2). We are mainly interested in the following

“optimal Sobolev constant”, in the case of a Euclidean geometry G,

λ(G, h, p) = inf
ψ∈H1

A
(U),

ψ �=0

QG,h(ψ)
‖ψ‖2

Lp(U)
, (1.1)

where h > 0, and the magnetic Sobolev space is defined by

H1
A(U) = {ψ ∈ L2(U) : (−ih∇ + A)ψ ∈ L2(U)}

and for all ψ ∈ H1
A(U), the quadratic form QG,h is defined by

QG,h(ψ) =
∫

U

|(−ih∇ + A)ψ|2 + hV |ψ|2 dx + h3/2
∫

∂U

c|ψ|2 dσ(x) . (1.2)

Here, dσ is the surface measure on the boundary ∂U .
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1.1.3. Homogeneity.
Let us heuristically explain where the different powers of h come from. Let us

introduce the temporary semiclassical parameter �. We consider the initial quadratic
form: ∫

Ω
|(−i�a∇ + �

bA)ψ|2 + �
cV |ψ|2 dx + �

d

∫
∂Ω

γ|ψ|2 dσ(x) . (1.3)

After a semiclassical local zoom, we would like to get an homogeneous quadratic form. It is
sufficient to derive these appropriate powers “locally”, that is in the case of a homogeneous
geometry (and Ω being replaced for instance by the half-space U):∫

U

|(−i�a∇ + �
bA)ψ|2 + �

cV |ψ|2 dx + �
d

∫
∂U

c|ψ|2 dσ(x) . (1.4)

Let us determine the a, b, c, d that lead to non-trivial situations.
First, we may always reduce the investigation to a = 1 by multiplying the quadratic

form by an appropriate power of �. Then, we would like that, up to a semiclassical zoom,
all the different quantities play on the same scale (if not, this would mean that an effect
could be neglected). Thus, we let x = �

ηy with η 	= 0 and consider the rescaled quadratic
form ∫

U

|(−i�1−η∇ + �
b+ηA)ψ|2 + �

cV |ψ|2 dy + �
d−η

∫
∂U

c|ψ|2 dσ(y) .

In order to balance all the electro-magnetic effects, we choose c = 2−2η = 2b+2η = d−η.
We get

b = c − 1 , d = 1 + c

2 , η = 1 − c

2 .

Note that η 	= 0 means that c 	= 2 and that c = 2 corresponds then to a homogeneous
problem (which is not semiclassical!).

Therefore, coming back to (1.3), this leads to∫
Ω

|(−i�∇ + �
c−1A)ψ|2 + �

cV |ψ|2 dx + �
1+c/2

∫
∂Ω

γ|ψ|2 dσ(x) .

Now, if c − 1 > 1, this quadratic form is locally a perturbation of the one of −�
2Δ (with

Neumann condition) and thus the Robin-electro-magnetic geometry can be forgotten.
Thus, if we are interested in geometric effects, we only have to consider c < 2. In this
case, we write

�
2c−2

{∫
Ω

|(−i�2−c∇ + A)ψ|2 + �
2−cV |ψ|2 dx + �

3(2−c)/2
∫

∂Ω
γ|ψ|2 dσ(x)

}
,

and we can consider h = �
2−c as new semiclassical parameter. We get the powers

appearing in (1.2).
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1.1.4. Basic properties.
We can already make some elementary observations that we will constantly use.
We first recall the diamagnetic inequality (see for example [29, Theorem 7.21],

[13, Theorem 2.1.1]):

∀ψ ∈ H1
A(U) , ‖∇|ψ|‖2

L2(U) ≤ ‖(−i∇ + A)ψ‖2
L2(U) .

This inequality implies that |ψ| ∈ H1(U) and we get, thanks to the classical trace theorem,
that its trace is well-defined as an element of H1/2(∂U); thus QG,h is well-defined on
H1

A(U). Another important property of the magnetic Laplacian is the gauge invariance
(see for example [29, Section 7.21]):

∀ϕ ∈ C∞(U), QG,h(eiϕ/hψ) = QGϕ,h(ψ), with Gϕ = (U, R, V, A + ∇ϕ, c) .

(1.5)
Let us already notice that it is not clear whether the infimum (1.1) actually exists when U

is unbounded. Nevertheless, if V and c are non-negative, its existence is obvious. In any
case, when this infimum exists and is a minimum, the corresponding minimizers satisfy,
in the sense of distributions, the following nonlinear focusing equation{

(−ih∇ + A)2ψ + hV ψ = λ(G, h, p)|ψ|p−2ψ ,

(−ih∇ + A)ψ · n = −ih1/2cψ, on ∂U ,
(1.6)

where we assumed that ‖ψ‖Lp(U) = 1 and where n is the inward unit normal to the
boundary. By multiplying ψ by an appropriate constant, we therefore have a solution
(for p > 2) of the following stationary Schrödinger nonlinear equation{

(−ih∇ + A)2Ψ + hV Ψ = |Ψ|p−2Ψ ,

(−ih∇ + A)Ψ · n = −ih1/2cΨ, on ∂U .
(1.7)

As a byproduct of our investigation, we will get the existence of non-trivial solutions
of (1.7) (solitons) that are localized (in the semiclassical limit) near the minima of a
concentration function describing the local nonlinear electro-magnetic Robin geometry.

1.1.5. Mathematical context and motivations.
The aim of this paper is to estimate the optimal Sobolev constant λ(G, h, p) under

generic assumptions on the geometry.
In the linear case, i.e. when p = 2, this problem has now a long history, especially

in two and three dimensions in the case of Neumann boundary conditions and V = 0.
The investigation of the lowest eigenvalue of the semiclassical magnetic Laplacian can be
motivated by the theory of superconductivity and the study of the third critical field in the
Ginzburg–Landau theory. The reader may consult the book by Fournais and Helffer [13]
or the one by Raymond [36] for an introduction to these topics. In this linear and purely
magnetic framework, it appears that the microlocalization of the eigenfunctions is strongly
related to the asymptotics of the lowest eigenvalue. This fact was noticed, for instance,
in the papers by Helffer and Morame [19], [20] where numerous techniques have been
developed to analyze the magnetic Laplacian and its eigenfunctions. Even more recently in
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[17], [37], [18], in cases without boundary, subtle localization properties of the magnetic
eigenfunctions have played a fundamental role in the semiclassical spectral theory (and we
will meet again this aspect in the nonlinear context). In cases with boundaries, the Robin
condition is physically motivated by inhomogeneous superconductors (see for instance
the linear and nonlinear contributions by Kachmar [22], [23], [24], [21]): in this context,
the Robin condition is sometimes called “de Gennes condition”. In the linear framework
many recent contributions have also been made to investigate the semiclassical curvature
effects with Robin condition (see for instance [11], [34], [25] and also [16] in the case
with symmetries).

In the nonlinear case p > 2, the theory does not seem as developed as in the
linear case, especially when a magnetic field and a boundary are added. In the seminal
paper [10] and in the concentration-compactness spirit, it is proved that λ(G, 1, p) is
attained when G = (Rd, Id, 0, A, 0), when B is constant and non-zero and when p is
subcritical. In [8], the authors have analyzed the semiclassical situation and obtained,
up to subsequence extraction of the semiclassical parameter, the one term asymptotics
of λ(G, h, p) with the geometry G = (Ω, Id, V, A, +∞), when Ω bounded and Tr+ B + V

does not vanish. The idea in [8] was to use a semiclassical blow up argument near
each point x ∈ Ω and compare with nonlinear models with constant electro-magnetic
field (Vx, Bx). In particular the minimizers are essentially localized near the minima
of the concentration function Ω 
 x �→ λ((Rd, Id, Vx, Ax, 0), 1, p), where Ax is a linear
potential associated with the constant field Bx (see also [2] where some properties of the
concentration function are discussed). As we mentioned above, the localization properties
of the magnetic eigenfunctions are strongly connected to the eigenvalue asymptotics and
this phenomenon is expected to be even stronger in the nonlinear framework.

The present paper aims at extending the theory developed in [14] (in two dimensions
without boundary) by investigating the effect of a smooth boundary carrying a Robin
condition, in any dimension. For that purpose, we will decouple the semiclassical linear
methods (described in [13, Part I]) and the concentration-compactness arguments. By
doing so we will derive a quantitative remainder in the semiclassical asymptotics of
λ(G, h, p) as well as quantitative localization estimates of the minimizers.

1.2. Assumptions and main results.
We can now state our main assumptions and results. Let us first explain in which

framework our problem is well-posed.

Lemma 1.3. The quadratic form QG,h is bounded from below and defines a self-
adjoint operator LG,h with compact resolvent whose domain is

Dom (LG,h) =
{

ψ ∈ H1(Ω) : ((−ih∇ + A)2 + hV )ψ ∈ L2(Ω)

and (−ih∇ + A)ψ · n(x) = −ih1/2γ(x)ψ(x), x ∈ ∂Ω
}

.

In particular, λ(G, h, 2) coincides with its lowest eigenvalue.

Remark 1.4. We recall that Ω is bounded and that V and A are smooth on Ω.
Therefore, if ψ ∈ H1(Ω) and ((−ih∇ + A)2 + hV )ψ ∈ L2(Ω), then ψ ∈ H2(Ω) so that
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the Robin boundary condition is well-defined by a classical trace theorem.

We will provide a sufficient condition, for the geometry G, that ensures that the L2

norm is controlled by QG,h in the semiclassical limit h → 0. This condition will be related
to models with homogeneous geometry. Let us recall that, for all x0 ∈ Ω, the vector
potential, defined in a convex neighborhood of x0,

〈AL
x0(x), ·〉Rd =

∫ 1

0
tBx0+t(x−x0)(x − x0, ·) dt (1.8)

satisfies, in this neighborhood,

AL
x0(x0) = 0 and dAL

x0 = B . (1.9)

We introduce its linear approximation

AL
x0(x) = 1

2B(x0)(x − x0) . (1.10)

We will meet the following homogeneous Euclidean geometries:

i. if x0 ∈ Ω, we consider Gx0 = (x0 + R
d, Id, V (x0), AL

x0 , 0),

ii. if x0 ∈ ∂Ω, we consider Gx0 = (x0 + Tx0(∂Ω) + R+n(x0), Id, V (x0), AL
x0 , γ(x0)),

where Tx0(∂Ω) is the linear tangent space of ∂Ω at x0.

Let us now state our main assumption which is of spectral nature: we assume
that the 2-eigenvalue is not degenerate. Note that, for x ∈ Ω, we have λ(Gx, 1, 2) =
Tr+ B(x) + V (x), see [15, Theorem 2.9 and below] or [36, Section 1.2].

Assumption 1.5. We assume that

i. Ω 
 x �→ λ(Gx, 1, 2) = Tr+ B(x) + V (x) does not vanish,

ii. ∂Ω 
 x �→ λ(Gx, 1, 2) is bounded from below by a positive constant.

We will provide sufficient conditions under which Assumption 1.5 is satisfied in
Section 6.2. Before presenting our main result, let us state a proposition that ensures
that the infimum (1.1) is actually well-defined and a minimum.

Proposition 1.6. There exist h0, C > 0 such that, for all h ∈ (0, h0), we have

λ(G, h, 2) ≥ h inf
x∈Ω

λ(Gx, 1, 2) − Ch5/4 > 0 ,

and, under Assumption 1.5, the infimum (1.1) for G = G is a minimum.

We can transform Assumption 1.5 (related to the positivity of the spectrum) into
a semi-continuity property of the p-eigenvalue which will play a crucial role in our
investigation. This semi-continuity will be derived from a concentration-compactness
analysis and used when estimating the Sobolev constants from above.
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Proposition 1.7. Under Assumption 1.5, the function x �→ λ(Gx, 1, p) is lower
semi-continuous on Ω for p ∈ (2, 2∗).

Our main theorem is the following accurate estimate of the optimal Sobolev constant
with electro-magnetic field and Robin condition on the boundary, in the semiclassical
limit.

Theorem 1.8. Let p ∈ (2, 2∗). Under Assumption 1.5, there exist h0 > 0, C > 0
such that, for all h ∈ (0, h0),

hd/2−d/ph(1 − Ch1/6) inf
x∈Ω

λ(Gx, 1, p) ≤ λ(G, h, p)

≤ hd/2−d/ph(1 + Ch1/2| log h|) inf
x∈Ω

λ(Gx, 1, p) .

When there exists x0 ∈ ∂Ω such that

inf
x∈Ω

λ(Gx, 1, p) = λ(Gx0 , 1, p) < λ(Gx0
, 1, p) ,

or when there exists x0 ∈ Ω such that

inf
x∈Ω

λ(Gx, 1, p) = λ(Gx0 , 1, p) ,

the logarithm appearing in the upper bound can be removed.

By Proposition 1.7, we may consider the set M ⊂ Ω of the minimizers of the
concentration function x �→ λ(Gx, 1, p). In relation with the estimate of Theorem 1.8, we
can deduce the following (exponential) decay estimate of the minimizers away from M.

Theorem 1.9. Let p ∈ (2, 2∗). Under Assumption 1.5, for all ε > 0 we define

Mε = M + B(0, ε) (1.11)

where B(0, ε) is the Euclidean ball of radius ε centered at 0. Then, for all ε > 0 and
ρ ∈ (0, 1/2), there exist h0 > 0, C > 0 such that, for all h ∈ (0, h0) and all Lp-normalized
minimizers ψh,

‖ψh‖Lp(CMε) ≤ Ce−εh−ρ

.

1.3. Further results.
Let us now describe two applications or extensions of our results and methods.

1.3.1. Large smooth domains.
Let us consider a smooth domain Ω ⊂ R

d and, for R ≥ 1, the dilated domain
ΩR = R Ω. In this section, we consider V = 1, A = 0, and γ = 0. For p ∈ [2, 2∗), we
introduce the classical Sobolev constant
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λNeu(ΩR, p) = λ((ΩR, Id, 1, 0, 0), 1, p) = inf
ψ∈H1(ΩR),

ψ �=0

∫
ΩR

|∇ψ|2 + |ψ|2 dx

‖ψ‖2
Lp(ΩR)

.

We have the semiclassical reformulation

λNeu(ΩR, p) = R4−4/p inf
ψ∈H1(Ω),

ψ �=0

∫
Ω h2|∇ψ|2 + h|ψ|2 dx

‖ψ‖2
Lp(Ω)

= R4−4/pλ(Ω, h, p) , h = R−2 .

Note that, by a symmetrization argument,

λNeu(Rd
+, p) ≤

(
1
2

)1−2/p

λNeu(Rd, p) .

Thus we may directly apply our result.

Corollary 1.10. Let p ∈ (2, 2∗). There exist C, R0 > 0 such that, for all R ≥ R0,

R2−d+(2d−4)/p(1 − CR−1/3)λNeu(Rd
+, p) ≤ λNeu(ΩR, p)

≤ R2−d+(2d−4)/p(1 + CR−1)λNeu(Rd
+, p) .

Moreover, for all ε > 0 and ρ ∈ (0, 1/2), there exist R0 > 0, C > 0 such that, for all
R ≥ R0 and all associated Lp-normalized minimizers ψ,

‖ψ‖Lp(CMε) ≤ Ce−εRρ

,

where Mε is an ε-neighborhood of ∂ΩR.

Remark 1.11. Corollary 1.10 is a known result. In [33], Ni and Takagi were
even able to derive a two-term asymptotic expansion involving the mean curvature of
the boundary. The order of our remainder in the upper bound is coherent with their
result. Combining the estimates in [33] with refinements of our methods could likely
show that the minimizers are concentrated near the points of the boundary where the
mean curvature is maximal.

1.3.2. Shrinking waveguides.
It turns out that the strategies and methods of this paper can be applied to partially

semiclassical situations. Such limits appear for example in nanophysics when a strong
anisotropic confinement is imposed or in the context of quantum waveguides with small
cross section. The reader may consult [12], [9], [6] in relation with the spectral analysis
of waveguides (or [26] in presence of magnetic fields). The partially semiclassical limits
are also of crucial importance in the spectral analysis of problems with magnetic fields
(see [4] and the book [36]). Nevertheless, we do not aim here at being the most general
as possible on this topics and we will focus on the elementary example of bidimensional
tubes shrinking in their normal direction. We can notice here that such a situation was
also considered by del Pino and Felmer to investigate the Sobolev constants (see [7]).
The result below may be considered as a more quantitative version (in two dimensions)
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of their result.
Let us consider a smooth and simple curve Γ in R

2 and a variable height a : R →
[a0, a1], with a0 > 0. We assume that a admits a maximum (not attained at infinity) and
that a′ ∈ L∞(R). We let

∀(s, t) ∈ R × (−1, 1) = Σ, Φh(s, t) = Γ(s) + hta(s)n(s) .

We define the tube Σh = Φh(Σ) and we assume that Σh does not overlap itself, i.e. that
Φh is injective. Assuming in addition that the curvature is bounded, Φh is a smooth
diffeomorphism as soon as h is small enough. For p ∈ [2, +∞), we introduce

λDir(Σh, p) = λ((Σh, Id, 0, 0, +∞), 1, p) = inf
ψ∈H1

0 (Σh),
ψ �=0

∫
Σh

|∇ψ|2 dx

‖ψ‖2
Lp(Σh)

.

Proposition 1.12. Let p ∈ (2, 2∗). There exist h0, C > 0 such that, for all
h ∈ (0, h0),

(1 − Ch1/2)h−4/pa−4/p
max λDir(Σ, p) ≤ λDir(Σh, p) ≤ (1 + Ch)h−4/pa−4/p

max λDir(Σ, p) ,

where

λDir(Σ, p) = λ((Σ, Id, 0, 0, +∞), 1, p) .

Moreover, for all ε > 0 and ρ ∈ (0, 1), there exist h0 > 0, C > 0 such that, for all
h ∈ (0, h0) and all Lp-normalized minimizers ψ,

‖ψ‖Lp(CMε) ≤ Ce−εh−ρ

,

where Mε denotes here a ε-neighborhood of the set of the maxima of a.

1.4. Organization of the paper.
The paper is organized as follows. Section 2 is devoted to the investigation of the

Sobolev constants when the geometry is homogeneous (see Theorem 2.1). Under the
condition that the boundary Sobolev constant is strictly less than the interior constant,
we prove that the boundary constant is attained. Note that, in Section 2.7, we investigate
the special one-dimensional case of the half-axis with Robin condition and that we derive
a condition for the existence of the minimizers. In Section 3, we prove the first estimates
towards the upper bound of Theorem 1.8. In Section 4 we introduce sliding partitions of
the unity compatible with a quantum localization formula and establish the lower bound
of Theorem 1.8. In Section 5, by combining the results of Sections 3 and 4, we derive
accurate Lp-localization estimates of the minimizers (Proposition 5.1) and convert it into
the exponential estimate of Theorem 1.9. In Section 6, we prove Proposition 1.7 (and,
with Propositions 3.1 and 3.3, this ends the proof of the upper bound of Theorem 1.8).
In Section 6, we also provide sufficient conditions under which Assumption 1.5 is satisfied.
Finally, Section 7 is devoted to the waveguide framework and we establish Proposition 1.12.
To conclude, we provide some perspectives in Section 8.
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2. Boundary Sobolev constants with homogeneous geometry.

2.1. A first result.
The main goal of this section is to prove the following theorem by using a variant of

the concentration-compactness method (see the classical references [30], [31], [39], [41],
or the notes by Lewin [28]).

Theorem 2.1. Let us consider p ∈ (2, 2∗). We have the following two existence
results.

(i) If G is a homogeneous geometry with U = R
d and such that λ(G, 1, 2) is positive,

then the infimum λ(G, 1, p) is attained.

(ii) If G is a homogeneous geometry with U being an half-space and such that λ(G, 1, 2)
is positive and

λ(G, 1, p) < λ(G, 1, p) , (2.1)

then the infimum λ(G, 1, p) is attained.

Moreover, the condition (2.1) is always satisfied (for a given electro-magnetic field) as
soon as γ ∈ (−∞, c0) with c0 > 0 small enough.

Remark 2.2. We will only prove Theorem 2.1 (ii). The proof of point (i) in
Theorem 2.1 (which is related to the case when Ω = R

d) is simpler and can be adapted
from the proofs in [10] (see also [8]). The proof of Theorem 2.1 (ii) will take up the
following subsections. The proof of the last statement of the Theorem is given in
Subsection 2.6 below.

Remark 2.3. The main difficulty in the proof of these results comes from the lack
of compactness due to the action of the non-compact group of translations. Indeed, for
any ψ ∈ H1

A(U) and any x0 ∈ R
d if U = R

d or x0 ∈ R
d−1 × {0} if U = R

d
+ we can define

the magnetic translation

τx0ψ(x) = e−iA(x0)·xψ(x − x0)

which satisfies

QG,1(ψ) = QG,1(τx0ψ) and ‖ψ‖Lp = ‖τx0ψ‖Lp .

Since the minimization problem λ(G, h, p) is translation invariant, we always have:

λ(G, h, p) = inf
ψ∈C∞

c (Rd),
ψ �=0

QG,h(ψ)
‖ψ‖2

Lp(Rd)
= inf

ψ∈C∞
c (Rd

+),

ψ �=0

QG,h(ψ)
‖ψ‖2

Lp(Rd
+)

≥ λ(G, 1, p).

Up to a rotation, we may assume that U = R
d
+. Let us consider a minimizing

sequence (ψj)j≥1 such that ‖ψj‖Lp(Ω) = 1. By definition, we have

QG,1(ψj) −→
j→+∞

λ(G, 1, p) . (2.2)
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By Remark 2.3, (τxj ψj)j≥0 is also a minimizing sequence, (xj)j≥0 being any sequence in
R

d−1 × {0} so that we have a loss of compactness by magnetic translations.
We overcome this difficulty thanks to the concentration-compactness principle. Our

proof is divided in three steps. We show that :

1. (ψj)j≥0 is uniformly bounded in H1
A(Rd

+),

2. up to magnetic translation and up to extraction ψj ⇀ ψ 	= 0 weakly in H1
A(Rd

+),

3. ψj → ψ strongly in H1
A(Rd

+) and ψ is a minimizer of λ(G, 1, p).

2.2. Boundedness in H1
A(Rd

+).
This section is devoted to the proof of the following proposition.

Proposition 2.4. Under the assumptions of Theorem 2.1 (ii) there exists C > 0
such that for all ψ ∈ H1

A(Rd
+)

‖ψ‖2
L2(Rd

+) + ‖∇|ψ|‖2
L2(Rd

+) ≤ ‖ψ‖2
L2(Rd

+) + ‖(−i∇ + A)ψ‖2
L2(Rd

+) ≤ CQG,1(ψ).

Therefore,

λ(G, 1, p) > 0

and any minimizing sequence (ψj)j≥1 (normalized in Lp) is bounded in H1
A(Rd

+) whereas
(|ψj |)j≥1 is bounded in H1(Rd

+). Moreover, we can assume that for all j ≥ 1,

‖ψj‖2
L2(Rd

+) ≤ 2λ(G, 1, p)
λ(G, 1, 2) . (2.3)

In order to estimate the boundary term, we will need the following two lemmas.

Lemma 2.5. There exists C > 0 such that, for all ε > 0 and ψ ∈ H1(Rd
+), we have

‖ψ‖2
L2(Rd−1×{0}) ≤ ε‖∇ψ‖2

L2(Rd
+) + Cε−1‖ψ‖2

L2(Rd
+) .

Proof. The proof is based on the elementary trace estimate:

∃C > 0, ∀ψ ∈ H1(Rd
+), ‖ψ‖2

L2(Rd×{0}) ≤ C‖ψ‖2
H1(Rd

+) ,

that may be proved by density and partial integration. Then, for all ϕ ∈ H1(Rd−1
+ ) and

ρ > 0, we let ψρ(x) = ϕ(ρx). This easily leads to

‖ϕ‖2
L2(Rd−1×{0}) ≤ C

(
ρ‖∇ϕ‖2

L2(Rd
+) + ρ−1‖ϕ‖2

L2(Rd
+)

)
,

and we choose ρ = C−1ε. �

Lemma 2.6. There exists C > 0 such that for all ε > 0 and all ψ ∈ H1(Rd
+),

QG,1(ψ) ≥ (1 − Cε|γ|)‖(−i∇ + A)ψj‖2
L2(Rd

+) + (V − C|γ|ε−1)‖ψ‖2
L2(Rd

+) .
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Proof. It is a consequence of the diamagnetic inequality:

∀ψ ∈ H1
A(Rd

+) , ‖∇|ψ|‖2
L2(Rd

+) ≤ ‖(−i∇ + A)ψ‖2
L2(Rd

+) ,

and of Lemma 2.5. �

We can now deduce Proposition 2.4.

Proof. By point (i) of assumption 1.5, we have that λ(G, 1, 2) > 0 so that

‖ψ‖2
L2(Rd

+) ≤ λ(G, 1, 2)−1QG,1(ψ), for all ψ ∈ H1
A(Rd

+).

Then, Lemma 2.6 and the diamagnetic inequality give that there is C > 0 such that for
all ψ ∈ H1

A(Rd
+)

‖ψ‖2
L2(Rd

+) + ‖∇|ψ|‖2
L2(Rd

+) ≤ ‖ψ‖2
L2(Rd

+) + ‖(−i∇ + A)ψ‖2
L2(Rd

+) ≤ CQG,1(ψ).

Finally, we deduce thanks to Sobolev’s injections that

λ(G, 1, p) > 0 for any p ∈ [2, 2∗]

and the conclusion follows. �

2.3. Excluding the boundary vanishing.
We now focus on the following proposition (see [31, Lemma I.1], [41, Lemma 1.21],

[32, Lemma 2.3], [40]).

Proposition 2.7. Let us consider R > 0 and consider the paving near the boundary

ΣR := R
d−1 × (0, R) =

⊔
k∈Zd−1×{0}

Ωk,R , Ωk,R = [0, R]d−1 × (0, R) + Rk .

For q ∈ (2, 2∗) and ψ ∈ L2(ΣR), we introduce

MR(ψ) = sup
k∈Zd−1×{0}

‖ψ‖Lq(Ωk,R) .

For d ≥ 2 and R > 0, let S > 0 be the optimal Sobolev constant for the embedding

‖ψ‖Lq(Ω0,R) ≤ S‖ψ‖H1(Ω0,R) .

Then, we have

‖ψ‖Lq(ΣR) ≤ S2/q‖ψ‖2/q
H1(ΣR)MR(ψ)1−2/q .

Proof. We have

‖ψ‖q
Lq(ΣR) =

∑
k∈Zd−1×{0}

∫
Ωk,R

|ψ|q dx .
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By Sobolev embedding, we get

∫
Ωk,R

|ψ|q dx ≤ S2
(

‖ψ‖2
L2(Ωk,R) + ‖∇ψ‖2

L2(Ωk,R)

) (∫
Ωk,R

|ψ|q dx

)1−2/q

.

We deduce that

‖ψ‖q
Lq(ΣR) ≤ S2‖ψ‖2

H1(ΣR)M
q−2
R (ψ) . �

Let us now come back to our minimization sequence (ψj)j≥1 (that satisfies (2.2), by
definition).

Proposition 2.8. We take q = p. There exists R > 0, a subsequence extraction
and mR > 0 such that

∀j ≥ 1, MR(ψj) ≥ mR > 0 .

Moreover, we get

∃(kj)j≥1 ∈ Z
d−1 × {0}, ∀j ≥ 1, ‖ψj‖Lp(Ωkj ,R) ≥ mR . (2.4)

If we let

ϕj(x) := e−iA(Rkj)·xψj(x − Rkj) ,

then (ϕj)j≥1 is a minimizing sequence that, up to a subsequence extraction, weakly
converges to some ϕ 	= 0 in H1

A(Rd
+) equipped either with the sesquilinear form BG,1

associated with QG,1 or the standard scalar product.

Proof. Let us analyze the first part of the statement. Let us assume by contra-
diction that, for all R, limj→+∞ MR(ψj) = 0.

By applying Proposition 2.7 to ψ = |ψj | and using Proposition 2.4, we infer that

lim
j→+∞

‖ψj‖Lp(ΣR) = 0 . (2.5)

This means that we are in the “boundary vanishing” situation.
Let us now introduce a partition of unity to distinguish between a neighborhood

of the boundary and the interior. There exists C > 0 such that for all R ≥ 1 and two
smooth functions on R+ (depending only on the transversal variable xd), χ1,R, χ2,R such
that

χ2
1,R + χ2

2,R = 1 , |χ′
1,R|2 + |χ′

2,R|2 ≤ CR−2 ,

and where χ1,R is a smooth and compactly supported function being 1 for |xd| ≤ R/2
and 0 for |xd| ≥ R. A well-known localization formula gives

QG,1(ψj) =
∑

k=1,2
QG,1(χk,Rψj) − ‖χ′

k,Rψj‖2
L2(Rd

+) .
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It follows that, using (2.3),

QG,1(ψj) ≥
∑

k=1,2
QG,1(χk,Rψj) − 2CR−2 λ(G, 1, p)

λ(G, 1, 2) .

By a support consideration, we get

QG,1(χ2,Rψj) ≥ λ(G, 1, p)‖χ2,Rψj‖2
Lp(Rd

+) ,

so that there exists C > 0 such that, for all j ≥ 1 and R ≥ 1,

QG,1(ψj) ≥ λ(G, 1, p)‖χ2,Rψj‖2
Lp(Rd

+) − 2CR−2 λ(G, 1, p)
λ(G, 1, 2) .

Thanks to (2.5), we deduce that

lim
j→+∞

‖χ1,Rψj‖2
Lp(Rd

+) = 0 ,

so that, with the Lp-normalization of ψj ,

λ(G, 1, p) ≥ λ(G, 1, p) − 2CR−2 λ(G, 1, p)
λ(G, 1, 2) .

Finally, we reach a contradiction to (2.1) by choosing R large enough. Therefore, the first
part of the statement is now proved.

Then, (2.4) follows by definition of MR. The fact that (ϕj)j≥1 is still a minimizing
sequence comes from the gauge invariance presented in Remark 2.3.

By a simple translation, we have that, for all j ≥ 1,

‖ϕj‖Lp(Ω0,R) ≥ mR .

Since (ϕj)j≥0 may be assumed (by the Banach–Alaoglu Theorem) to converge weakly
(and pointwise) in H1

A(Rd
+) to ϕ and by compact embedding:

‖ϕ‖Lp(Ω0,R) ≥ mR > 0 . �

2.4. Excluding the dichotomy.
Proposition 2.9. The function ϕ of Proposition 2.8 satisfies ‖ϕ‖Lp(Rd

+) = 1.

Proof. By the Fatou lemma, we have α := ‖ϕ‖p

Lp(Rd
+) ∈ (0, 1].

We introduce δj = ϕj − ϕ for j ≥ 1. The sequence (δj)j≥1 weakly converges to
0 in H1

A(Rd
+) equipped with the sesquilinear form BG,1 associated with QG,1. Thus

BG,1(δj , ϕ) → 0. We have

QG,1(ϕj) = QG,1(δj) + QG,1(ϕ) + 2ReBG,1(δj , ϕ) .

In other words, we can write
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QG,1(ϕj) = QG,1(δj) + QG,1(ϕ) + εj , (2.6)

with εj → 0.
We must prove that the Lp norm also splits into two parts:

‖ϕj − ϕ‖p

Lp(Rd
+) + ‖ϕ‖p

Lp(Rd
+) − ‖ϕj‖p

Lp(Rd
+) = ε̃j → 0 . (2.7)

Let us temporarily assume that (2.7) holds. Thanks to (2.6), and using (2.7),

QG,1(ϕj) ≥ λ(G, 1, p)
(

‖δj‖2
Lp(Rd

+) + ‖ϕ‖2
Lp(Rd

+)

)
+ εj ,

= λ(G, 1, p)
(

(1 − α + ε̃j)2/p + α2/p
)

+ εj .

Since (ϕj)j≥1 is a minimizing sequence, we get

λ(G, 1, p) ≥ λ(G, 1, p)
(

(1 − α)2/p + α2/p
)

.

But we have λ(G, 1, p) > 0 so that

(1 − α)2/p + α2/p ≤ 1 , with α ∈ (0, 1] .

Since p > 2 and by strict convexity, we must have α = 1. Therefore we conclude that
‖ϕ‖Lp(Rd

+) = 1. This finishes the proof of the proposition, modulo the proof of (2.7). For
that purpose we write

ε̃j :=
∫
Rd

+

|ϕj − ϕ|p − |ϕj |p + |ϕ|p dx .

Let us prove that the sequence (|ϕj − ϕ|p − |ϕj |p)j≥1 is equi-integrable on R
d
+. There

exists C(p) > 0 such that,

||ϕj − ϕ|p − |ϕj |p| ≤ C(p)(|ϕj |p−1 + |ϕ|p−1)|ϕ| .

For R > 0, by the Hölder inequality, we get

∫
|x|≥R

|ϕj |p−1|ϕ| dx ≤
(∫

|x|≥R

|ϕj |p dx

)(p−1)/p (∫
|x|≥R

|ϕ|p dx

)1/p

≤
(∫

|x|≥R

|ϕ|p dx

)1/p

.

Thus, for all ε > 0, there exists R > 0, such that for all j ≥ 1, we have∣∣∣∣∣
∫

|x|≥R

|ϕj − ϕ|p − |ϕj |p + |ϕ|p dx

∣∣∣∣∣ ≤ ε

2 .

This proves the equi-integrability. Now the embedding H1(B(0, R)) ⊂ Lp(B(0, R)) is
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compact so that the sequence (ϕj)j≥1 strongly converges to ϕ in Lp(B(0, R)) and thus,
for j ≥ j(R, ε), ∣∣∣∣∣

∫
|x|≤R

|ϕj − ϕ|p − |ϕj |p + |ϕ|p dx

∣∣∣∣∣ ≤ ε

2 , .

This implies that |ε̃j | ≤ ε. �

Proof of Theorem 2.1 (ii). To finish the proof of Theorem 2.1 (ii), it remains
to notice that

λ(G, 1, p) = lim inf
j→+∞

QG,1(ϕj) ≥ QG,1(ϕ) ≥ λ(G, 1, p)‖ϕ‖2
Lp(Rd

+) = λ(G, 1, p) ,

and thus ϕ is a minimizer. �

2.5. Exponential estimates.
When the minimizers exist, they satisfy decay estimates of Agmon type.

Proposition 2.10. If G is a homogeneous geometry with λ(G, 1, 2) > 0 and if the
infimum (1.1) is attained, then, for all minimizer ψ, there exists α > 0 such that

eα|x|ψ ∈ L2(U) , QG,h(eα|x|ψ) < +∞ .

Proof. We only consider the case U = R
d
+. Let us consider a minimizer ψ0 and

the nonlinear potential VNL = −λ(G, 1, p)|ψ0|p−2. We have VNL ∈ Lp/(p−2)(U). The
corresponding quadratic form is defined on the space H1

A(U) by

QG,1,NL(ψ) = QG,1(ψ) +
∫

U

VNL|ψ|2 dx . (2.8)

By the Hölder inequality, we see that∫
U

|VNL||ψ|2 dx ≤ ‖VNL‖Lp/(p−2)(U)‖ψ‖2
Lp(U)

and thus, by Sobolev embedding (and homogeneity) and the diamagnetic inequality, for
all ε > 0, there exists Cε > 0 such that, for all ψ ∈ H1

A(U),∫
U

|VNL||ψ|2 dx ≤ C‖VNL‖Lp/(p−2)(U)(ε‖∇|ψ|‖2 + Cε‖ψ‖2
L2(U)) .

≤ C‖VNL‖Lp/(p−2)(U)(ε‖(−i∇ + A)ψ‖2
L2(U) + Cε‖ψ‖2

L2(U)) . (2.9)

We infer that there exists C̃ > 0 such that for all ε > 0 there exists C̃ε > 0 such that for
all ψ ∈ H1

A(U),

QG,1,NL(ψ) ≥ (1 − C̃ε)‖(−i∇ + A)ψ‖2
L2(U) + V ‖ψ‖2

L2(U) + c‖ψ‖2
∂U − C̃ε‖ψ‖2

L2(U) ,

and, by using Lemma 2.5 and again the diamagnetic inequality, it follows that
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QG,1,NL(ψ) ≥ (1 − Ĉε)
{

‖(−i∇ + A)ψ‖2
L2(U) + V ‖ψ‖2

L2(U)

}
− Ĉε‖ψ‖2

L2(U) .

This proves that QG,1,NL is bounded from below on H1
A(U) and thus defines a self-adjoint

operator LG,1,NL. The function ψ0 belongs to the domain of this operator and satisfies
LG,1,NLψ0 = 0. Now, the exponential decay will be established if we prove that

∃C > 0 , ∀ε > 0 , ∃R > 0 , ∀ψ ∈ H1
A(U) ,

supp (ψ) ⊂ CB(0, R) =⇒ QG,1,NL(ψ) ≥ (1 − Cε)QG,1(ψ) − Cε‖ψ‖2
L2(U) . (2.10)

Indeed, this implies that, for all ψ ∈ H1
A(U) with supp (ψ) ⊂ CB(0, R),

QG,1,NL(ψ) ≥ (1 − C ′ε)λ(G, 1, 2)‖ψ‖2
L2(U) .

From this we can deduce, by using Persson’s theorem (see [35]), that we have
inf spess(LG,1,NL) ≥ λ(G, 1, 2) > 0 and the conclusion follows by using the Agmon–
Persson estimates (see [1] or for instance [36, Proof of Proposition 10.10]). From the
proof of these estimates, we may even find an α > 0 common to all the minimizers ψ.

Therefore, let us explain where (2.10) comes from. For that purpose, we come
back to (2.9) with ε = 1 and we notice that, for all R ≥ 0 and ψ ∈ H1

A(U) such that
supp (ψ) ⊂ CB(0, R),∫

U

|VNL||ψ|2 dx ≤ C‖VNL‖Lp/(p−2)(CB(0,R))(‖(−i∇ + A)ψ‖2
L2(U) + C1‖ψ‖2

L2(U)) .

Since VNL ∈ Lp/(p−2)(U), ‖VNL‖Lp/(p−2)(CB(0,R)) goes to zero when R goes to infinity.
Then, from (2.8) (and again Lemma 2.5 with the diamagnetic inequality to control the
boundary term), we deduce (2.10). �

2.6. A sufficient condition for boundary attraction.
This section is devoted to the proof of the last part of Theorem 2.1.

Proposition 2.11. If G is a homogeneous geometry with U being a half-space and
with fixed (V, A), then there exists c0 > 0, such that for c ∈ (−∞, c0), we have

λ(G, 1, p) < λ(G, 1, p) .

Proof. Let us first prove the inequality in the case G = (Rd
+, Id, V, A, 0). Let

u0 ∈ H1
A(Rd) be a minimizer of λ(G, 1, p) given by point (i) Theorem 2.1 such that

‖u0‖Lp(Rd) = 1. Up to a translation in the ed = (0, . . . , 0, 1) direction and up to the
symmetry x �→ −x, we can assume that

‖u0‖p

Lp(Rd
+) = ‖u0‖p

Lp(Rd
−) = 1

2

and ∫
Rd

+

|(−i∇ + A)u0|2 + V |u0|2 dx ≤
∫
Rd

−

|(−i∇ + A)u0|2 + V |u0|2 dx .
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Then, we get

λ(G, 1, p) =
∫
Rd

|(−i∇ + A)u0|2 + V |u0|2 dx

≥ 2
∫
Rd

+

|(−i∇ + A)u0|2 + V |u0|2 dx

≥ 2‖u0‖2
Lp(Rd

+)λ(G, 1, p) = 21−2/pλ(G, 1, p) .

Thus, we are left with the case c 	= 0. Let us remark that

c �→ λ(G, 1, p)

is a non-negative, concave and non-decreasing function of c since it is a infimum of
non-negative, affine and non-decreasing functions. Hence, we get the result provided that
λ(G, 1, p) ≤ λ(G, 1, p) for any c > 0. To do so, we build a sequence made of magnetic
translated of u0 in the ed direction that are multiplied by a cut-off function so as to
vanish on R

d−1 × {0}. �

2.7. Study of a one-dimensional model.
In the last section, we have seen that the existence of the minimizers in presence

of a Robin boundary is ensured if the Robin parameter is not too large. Actually, in
dimension one (without electric or magnetic field), we can prove that, above a certain
intensity, the minimizers do not exist (as we will see in the following lines).

We are interested in the map c �→ λ((R+, Id, 1, 0, c), 1, p). The goal is to get a
good understanding of the phenomena occurring, studying the simplest case when the
concentration-compactness principle is not needed. Indeed, we look for a real-valued
solution of the following ordinary differential equation problem:⎧⎪⎨⎪⎩

−u′′ + u = λ|u|p−2u in R+,

u′(0) = cu(0),
‖u‖Lp(R+) = 1,

(2.11)

where λ = λ((R+, Id, 1, 0, c), 1, p), u ∈ H1(R+,R), p > 2 and c ∈ R. Note that a closely
related equation has been studied in [27]. We get the following result.

Proposition 2.12. The system (2.11) has a unique solution for c ∈ (−1, 1) and
no solution for |c| ≥ 1. Moreover, we have

(i) λ((R+, Id, 1, 0, c), 1, 2) > 0 if and only if c > −1,

(ii) λ((R+, Id, 1, 0, c), 1, p) < λ((R, Id, 1, 0, 0), 1, p) for all c ∈ (−1, 1),

(iii) λ((R+, Id, 1, 0, c), 1, p) = λ((R, Id, 1, 0, 0), 1, p) for all c ≥ 1.

We split our study into two steps:

i. Study of the Cauchy problem (2.11) with λ = 1 and c ∈ R fixed but without the
restriction ‖u‖Lp(R+) = 1.
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ii. Study of the dependence of the solutions of (2.11) to describe the behavior of the
function c �→ λ((R+, Id, 1, 0, c), 1, p).

2.7.1. First step.
Let us remark that up to the change of unknown u � uλ1/(p−2), the system (2.11)

without the constraint on the integral is equivalent to⎧⎪⎨⎪⎩
u′ = v,

v′ = u − |u|p−2u,

v(0) = cu(0) .

(2.12)

Obviously, we are only interested in nontrivial solutions of (2.12) so that without loss of
generality, we can assume that u(0) > 0. This is a Hamiltonian system⎧⎪⎨⎪⎩

u′ = ∂H

∂v
(u, v),

v′ = −∂H

∂u
(u, v),

(2.13)

where the Hamiltonian H is defined by

H(u, v) := |v|2 − |u|2
2 + |u|p

p
.

As a consequence, we immediately get that ∂rH(u(r), v(r)) = 0. Let us notice that H is
coercive:

lim
‖(u,v)‖→+∞

H(u, v) = +∞ ,

so that all solutions of (2.12) are global. Moreover, since we are looking for a solution
u ∈ H1(R+,R) i.e. such that ∫

R+

(|u|2 + |v|2) dr < +∞ ,

the initial condition has to satisfy H(u(0), v(0)) = 0. This follows from the continuity of
H since for any E 	= 0, there exists R > 0 such that

H−1({E}) ∩ B(0, R) = ∅

where B(0, R) is the open euclidian ball of radius R centered at (0, 0).
Thus, we obtain the following lemma.

Lemma 2.13. We have:

(i) for |c| ≥ 1, there is no nontrivial solution of (2.12),

(ii) for |c| < 1, there is a unique u0
c > 0 such that H(u0

c , cu0
c) = 0, the associated solution

(uc, vc) tends to (0, 0) at infinity and satisfies uc(r) > 0 for all r ≥ 0.
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Figure 1. Zero set of H.

Proof. The equation

0 = H(u0, cu0) = c2 − 1
2 |u0|2 + |u0|p

p

has no nontrivial solution for |c| ≥ 1 and has a unique solution u0
c > 0 for |c| < 1.

Moreover, (0, 0) is the unique critical point of H−1({0}) and the conclusion follows from
the Cauchy–Lipschitz theorem. �

Let us study now the decay at infinity of uc and vc for |c| < 1.

Lemma 2.14. Let c ∈ (−1, 1). Then, (uc, vc) decays exponentially at infinity and
uc belongs to H1(R+,R).

Proof. By Lemma 2.13, arctan(vc/uc) is well-defined on R+ and satisfies

d

dr
arctan(vc/uc) = vc

′uc − uc
′vc

u2
c + v2

c

= −(1 − 2/p)up
c

u2
c + v2

c

< 0

so that arctan(vc/uc) decays from arctan(c) to −π/4. Hence, there exists T ≥ 0 such
that −uc(r) ≤ vc(r) ≤ −uc(r)/2 for all r ≥ T and

d

dr
|uc|p = p|uc|p−2ucuc

′ = p|uc|p−2ucvc ≤ −p

2 |uc|p.

Thus, we obtain that |uc(r)|p ≤ C exp(−pr/2) for all r ≥ 0 and the conclusion follows. �

2.7.2. Second step.
In the following lemma, we study the dependence of Lp-norm of uc from c.

Lemma 2.15. We have that
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c ∈ (−1, 1) �→ ‖uc‖p
Lp(R+) ∈ R+

is strictly increasing.

Proof. Let −1 < c′ < c < 1. Let us write

Tc,c′ := inf{r > 0, arctan(vc(r)/uc(r)) < arctan(c′)} .

The quantity Tc,c′ > 0 is well-defined from the proof of Lemma 2.14. By the uniqueness
of the solution in the Cauchy–Lipschitz theorem, we get that

(uc, vc)(· + Tc,c′) = (uc′ , vc′)(·)

since H(uc, vc)(Tc,c′) = 0 and vc(Tc,c′) = c′uc(Tc,c′). This ensures that

‖uc‖p
Lp(R+) =

∫ Tc,c′

0
|uc|p dr +

∫ +∞

Tc,c′
|uc|p dr >

∫ +∞

0
|uc′ |p dr . �

Let us introduce for c ∈ (−1, 1)

λc :=
‖uc‖H1(R+)2 + c|uc(0)|2

‖uc‖2
Lp(R+)

= ‖uc‖p−2
Lp(R+) ≥ λ((R+, Id, 1, 0, c), 1, p).

Lemma 2.15 ensures that c �→ λc is strictly increasing. It remains to study the limiting
behavior of λc at ±1.

Lemma 2.16. We have

lim
c→1

λc = λ((R, Id, 1, 0, 0), 1, p) and lim
c→−1

λc = 0 ,

so that, for all c ∈ (−1, 1),

λc = λ((R+, Id, 1, 0, c), 1, p) .

Proof. Let us denote by

Tc := Tc,0 = inf{r > 0 : arctan(vc(r)/uc(r)) < 0} .

By the Cauchy–Lipschitz theorem, we get that

(uc, vc)(r + Tc) = (u, u′)(r) for all r ∈ [−Tc, +∞)

where (u, v) is the solution of

−u′′ + u = |u|p−2u on R

such that u(0) = u0
0 and u′(0) = 0 with u0

0 given by Lemma 2.13. Let us remark that
Theorem 2.1 ensures that
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λ((R, Id, 1, 0, 0), 1, p) = ‖u‖p−2
Lp(R) .

We also have that limc→+1 Tc = +∞ and

lim
c→1

λp/(p−2)
c = lim

c→1

∫ ∞

−Tc

|u|p dr =
∫ ∞

−∞
|u|p dr = λ((R, Id, 1, 0, 0), 1, p)p/(p−2)

since (0, 0) is an equilibrium of (2.12). The same ideas give that

lim
c→−1

λc = 0 .

Finally, Theorem 2.1 and Lemma 2.15 allow us to conclude. �

Let us end this section with the proof of Proposition 2.12.

Proof of Proposition 2.12. The first point follows from a standard spectral
analysis (for negative c there exists only one eigenvalue below the essential spectrum that
is 1 − c2). The second point follows from Lemmas 2.15 and 2.16. The third point is an
immediate consequence of the first point, Lemma 2.13 and Theorem 2.1. �

3. Upper bounds of λ(G, h, p).

The upper bound in Theorem 1.8 will be proved by inserting appropriate test functions
in the Sobolev quotient: either functions localized inside the domain, or functions localized
near the boundary. Of course, the case related to the boundary is slightly more delicate
and involves a local straightening of the boundary. Anyway, after an appropriate rescaling,
we will locally see the appearence of the concentration function x �→ λ(Gx, 1, p). Thus,
we will have to select a minimal point of this function. The existence of such a point
x0 ∈ Ω is ensured by Proposition 1.7 which we will prove in Section 5.

Depending on whether x0 ∈ Ω or x0 ∈ ∂Ω, this section is divided into two parts and
devoted to the proof of Propositions 3.1 and 3.3.

3.1. Interior estimate.
Here is the estimate related to the interior contribution.

Proposition 3.1. Let x0 ∈ Ω. There exists h0 > 0, C > 0 such that, for all
h ∈ (0, h0),

λ(G, h, p) ≤ hd/2−d/ph
(

λ(Gx0 , 1, p) + Ch1/2
)

.

Proof. Let us consider a smooth cutoff function 0 ≤ χ0 ≤ 1 being 1 in B(x0, ε0)
and being zero away from B (x0, 2ε0). It follows from (1.8), (1.9) and (1.10) that there
exists a smooth real function ϕ0 such that, on the support of χ0,

|A(x) − ∇ϕ0(x) − AL
x0(x)| ≤ C|x − x0|2 . (3.1)

Let us consider an Lp-normalized minimizer Ψx0 associated with λ(Gx0 , 1, p) and let
Ψ̃x0(·) = Ψx0(x0 + ·). We let



Semiclassical Sobolev constants 1689

ψh(x) = h−d/2pχ0(x)e−i(ϕ0(x)/h)Ψ̃x0(h−1/2(x − x0)) .

We notice that

‖ψh‖2
Lp(Ω) = h−d/p

(∫
Rd

|χ0(x)|p
∣∣∣Ψ̃x0(h−1/2(x − x0))

∣∣∣p

dx

)2/p

=
(

1 −
∫

CB(0,ε0h−1/2)

(
1 −

∣∣∣χ0(x0 + h1/2y)
∣∣∣p) ∣∣Ψ̃x0(y)

∣∣p dy

)2/p

and thus, thanks to Proposition 2.10,

‖ψh‖2
Lp(Ω) = 1 + O(h∞) . (3.2)

Then, we estimate QG,h(ψh). Thanks to the localization formula, we have∫
Ω

|(−ih∇ + A)ψh|2 dx

= h−d/p

∫
Ω

|χ0(x)|2
∣∣∣(−ih∇ + A)e−i(ϕ0(x)/h)Ψ̃x0

(
h−1/2(x − x0)

)∣∣∣2
dx

+ h2−d/p

∫
Rd

|∇χ0(x)|2
∣∣∣Ψ̃x0

(
h−1/2(x − x0)

)∣∣∣2
dx . (3.3)

By support considerations, and by using again Proposition 2.10, we get∫
Rd

|∇χ0(x)|2
∣∣∣Ψ̃x0

(
h−1/2(x − x0)

)∣∣∣2
dx = O(h∞) . (3.4)

We have ∫
Ω

|χ0(x)|2
∣∣∣(−ih∇ + A)e−i(ϕ0(x)/h)Ψ̃x0

(
h−1/2(x − x0)

)∣∣∣2
dx

≤
∫

B(x0,2ε0)

∣∣∣(−ih∇ + A − ∇ϕ0)Ψ̃x0

(
h−1/2(x − x0)

)∣∣∣2
dx . (3.5)

With (3.1), we get, for all η > 0,∫
B(x0,2ε0)

∣∣∣(−ih∇ + A − ∇ϕ0)Ψ̃x0

(
h−1/2(x − x0)

)∣∣∣2
dx

≤ (1 + η)
∫
Rd

∣∣∣(−ih∇ + AL
x0(x))Ψ̃x0

(
h−1/2(x − x0)

)∣∣∣2
dx

+ C2(1 + η−1)
∫
Rd

|x − x0|4
∣∣∣Ψ̃x0

(
h−1/2(x − x0)

)∣∣∣2
dx . (3.6)

With the definitions of Ψ̃x0 and Ψx0 and Proposition 2.10, we deduce∫
Rd

|x − x0|4
∣∣∣Ψ̃x0

(
h−1/2(x − x0)

)∣∣∣2
dx ≤ Dh2hd/2 . (3.7)
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Similarly, we get ∫
Ω

|V (x) − V (x0)||ψh(x)|2 dx ≤ Ch−d/ph1/2hd/2 . (3.8)

We choose η = h1/2. By combining (3.3), (3.4), (3.5), (3.6), (3.7) and (3.8), we infer from
the definition of Ψ̃x0 and Ψx0 that

QG,h,p(ψh) ≤ hd/2−d/ph
(

λ(Gx0 , 1, p) + Ch1/2
)

. (3.9)

The conclusion follows by combining (3.2) and (3.9). �

3.2. Boundary estimate.
3.2.1. The electro-magnetic Robin Laplacian near the boundary.
Let us describe the geometry near the boundary of Ω. Since ∂Ω is smooth, we

may consider a covering (B(X�, r))1≤�≤N of ∂Ω such that the following holds. For each
� ∈ {1, . . . , N}, there exists a smooth parametrization Φ� : U� × (0, t�) → Ω ∩ B(X�, r),
where U� ⊂ R

d−1 is an open set with 0 ∈ U� and Φ�(0, 0) = X�.
For x0 ∈ ∂Ω, we have

Tx0(∂Ω) = (dΦ�)y0
(Rd−1 × {0}) , x0 = Φ�(y0) , y0 = (s0, 0) .

We also recall that the metric induced by Φ� is in the form

G� = (dΦ�)T dΦ� ,

and we let

|G�| = det G�, g�(s) = G�(s, 0) , |g�| = det g� .

Then, we shall discuss the expression of our Laplacian in these coordinates. If ψ is
supported in Ω ∩ B(X�, r), we may use the change of variables x = Φ�(s, t) and we get

‖ψ‖2
Lp(Ω) =

(∫
U�×(0,t�)

|ψ̃|p|G�|1/2 ds dt

)2/p

and

QG,h(ψ) =
∫

U�×(0,t�)

(〈(−ih∇ + Ã)ψ̃, G−1
� (−ih∇ + Ã)ψ̃〉Cd + hṼ |ψ̃|2) |G�|1/2 ds dt

+ h3/2
∫

U�×{t�=0}
γ̃|ψ̃|2|g�|1/2 ds , (3.10)

where

Ã = (dΦ�)T ◦ A ◦ Φ� , Ṽ = V ◦ Φ� , γ̃ = γ ◦ Φ� , ψ̃ = ψ ◦ Φ� .

Note that in terms one 1-forms, the first equality means
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Φ∗
�

(
d∑

k=1
Ak dxk

)
=

d∑
k=1

Ãk dsk ,

so that, with a slight abuse of notation, we may write (G̃, ψ̃) = Φ∗
� (G, ψ). Since the

pull-back commutes with the exterior derivative, the magnetic matrix of B̃ is

MB̃ = (dΦ�)T
MB (dΦ�) ,

and we may easily deduce the following lemma.

Lemma 3.2. We let G̃y0 = (Rd−1 × R+, G�(y0), V (x0), ÃL
y0

, γ(x0)). There exists a
smooth function φ on R

d such that:(
x0 + (dΦ�)y0

)∗ Gx0 = G̃φ
y0

.

3.2.2. Upper bound.
Here is now the estimate related to the boundary case.

Proposition 3.3. Let x0 ∈ ∂Ω. There exists h0 > 0, C > 0 such that, for all
h ∈ (0, h0),

λ(G, h, p) ≤ hd/2−d/ph
(

λ(Gx0 , 1, p) + Ch1/2| log h|
)

.

Proof. Let us recall that we always have

λ(Gx0 , 1, p) ≤ λ(Gx0
, 1, p).

Let us consider first the case of the strict inequality as in Theorem 2.1. Using the notations
of Section 3.2.1, we choose

ψ̃h(s, t) = h−d/2pχ0(s, t)ei(ϕ0/h)Ψ̃0(h−1/2(s − s0, t)) ,

where Ψ̃0 belongs to S(Rd−1×R+) and χ0 is a smooth cutoff function such that 0 ≤ χ0 ≤ 1,
being 1 in B(y0, ε0) and being zero away from B (y0, 2ε0). The parameter ε0 is such that
supp ψ̃h ⊂ U� × (0, t�) and ϕ0 satisfies (3.1). With the same kind of computations as
previously (see Proposition 3.1), we get

QG,h(ψ̃h)

≤ hhd/2−d/p

∫
Rd−1×R+

(
〈(−i∇ + ÃL

y0
)Ψ̃0,G�(y0)−1(−i∇ + ÃL

y0
)Ψ̃0〉Cd + Ṽ (y0)|Ψ̃0|2

)
dy

+ hhd/2−d/p

∫
Rd−1×{t=0}

γ̃(y0)|Ψ̃0|2|g�(s0)|1/2 ds + Ch3/2hd/2−d/p

and

‖ψ̃h‖p
Lp(Ω) = 1 + O(h1/2) .
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Then, it remains to use the change of variable of Lemma 3.2 and take

Ψ̃0 =
(
x0 + (dΦ�)y0

)∗ Ψ0 ,

where Ψ0 is a minimizer associated with λ(Gx0 , 1, p).
Let us now consider the case when

λ(Gx0 , 1, p) = λ(Gx0
, 1, p)

for which Theorem 2.1 does not apply. Let us define Rh = rh1/2| log h|, where r > 0 is a
constant to be determined. We choose

ψ̃h(s, t) = h−d/2pχ0(R−1
h (s − s0, t − 2Rh))ei(ϕ0/h)Ψ̃0(h−1/2(s − s0, t − 2Rh)) ,

where Ψ̃0 =
(
x0 + (dΦ�)y0

)∗ Ψ0 for Ψ0 a minimizer associated with λ(Gx0
, 1, p), χ0 is a

smooth cutoff function such that 0 ≤ χ0 ≤ 1, being 1 in B(0, ε0) and being zero away
from B (0, 2ε0).

We get

‖ψh‖p
Lp(Ω) =

∫
U�×(0,t�)

|ψ̃h|p|G�|1/2 ds dt

≥
∫

B(0,ε0Rhh−1/2)
|Ψ̃0|p|G�(s0 + s̃h1/2, 2Rh + t̃h1/2)|1/2 ds̃ dt̃

≥
∫

B(0,ε0Rhh−1/2)
|Ψ̃0|p|G�(s0, 0)|1/2 ds̃ dt̃ − CRh

≥ 1 − CRh −
∫

B(0,ε0Rhh−1/2)c

|G�(s0, 0)|1/2|Ψ̃0|p ds̃ dt̃

≥ 1 − C(Rh + exp(−αpε0Rh/h1/2)),

where the last inequality follows from Proposition 2.10. Hence, by choosing r such that
2αε0r = 1/2, we have

‖ψh‖p
Lp(Ω) ≥ 1 − Ch1/2| log h| − Chp/4 ≥ 1 − C̃h1/2| log h| .

Then, we estimate QG,h(ψ̃h) in the same way. For example, the worst term appears when
taking the derivative of the cut-off function:

h−d/pR−2
h

∫
h2|∇χ(R−1

h (s − s0, t − 2Rh))|2|Ψ̃0(h−1/2(s − s0, t − 2Rh))|2 ds dt

≤ Ch−d/p h

| log h|2 hd/2
∫

{t̃≥ε0h−1/2Rh}
|Ψ̃0(s̃, t̃)|2 ds̃ dt̃

≤ C̃hd/2−d/p h

| log h|2 e−2αε0Rhh−1/2

≤ Chd/2−d/ph1/2 .

We deduce that
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QG,h(ψ̃h)

≤ hhd/2−d/p

∫
Rd−1×R+

(
〈(−i∇ + ÃL

y0
)Ψ̃0,G�(y0)−1(−i∇ + ÃL

y0
)Ψ̃0〉Cd + Ṽ (y0)|Ψ̃0|2

)
dy

+ hhd/2−d/p

∫
Rd−1×{t=0}

γ̃(y0)|Ψ̃0|2|g�(s0)|1/2 ds + C| logh|h3/2hd/2−d/p

and the result follows. �

4. Lower bound of λ(G, h, p).

This section is devoted to the proof of the lower bound in Theorem 1.8.

4.1. The two-scale localization formula with sliding centers.
We will need the following type of partition of the unity (see [14] for the proof) in

the case when p > 2.

Lemma 4.1. Let us consider E = {(α, ρ, h, k) ∈ (R+)3 × Z
d : α ≥ ρ}. There exists

a family of smooth cutoff functions (χ[k]
α,ρ,h)(α,ρ,h,k)∈E on R

d, with

χ
[k]
α,ρ,h(x) = χ

[0]
α,ρ,h(x − (2hρ + hα)k), (4.1)

such that 0 ≤ χ
[k]
α,ρ,h ≤ 1,

χ
[k]
α,ρ,h(x) = 1, on |x − (2hρ + hα)k|∞ ≤ hρ ,

χ
[k]
α,ρ,h(x) = 0, on |x − (2hρ + hα)k|∞ ≥ hρ + hα ,

and such that ∑
k∈Zd

(
χ

[k]
α,ρ,h

)2
= 1 . (4.2)

There exists also D > 0 such that, for all h > 0,∑
k∈Zd

|∇χ
[k]
α,ρ,h|2 ≤ Dh−2α , (4.3)

and ∫
Rd

|∇χ
[k]
α,ρ,h(y)|2 dy ≤ Dhρdh−α−ρ . (4.4)

The following lemma states that, up to a translation of our quadratic two-scale
partition, we may always estimate the global Lp-norm (resp. the global energy) by the
local Lp-norms (resp. the local energies). It is a generalization and strengthening of
[14, Lemma 4.3].

Lemma 4.2. Let p ≥ 2. Let us consider the partition of unity (χ[k]
α,ρ,h) defined in

Lemma 4.1, with α ≥ ρ > 0. There exist C > 0 and h0 > 0 such that for all ψ ∈ Lp(Ω)
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and h ∈ (0, h0), there exists τα,ρ,h,ψ = τ ∈ R
d such that∑

k∈Zd

∫
Ω

|χ̃[k]
α,ρ,hψ(x)|p dx ≤

∫
Ω

|ψ(x)|p dx ≤ (1 + Chα−ρ)
∑

k∈Zd

∫
Ω

|χ̃[k]
α,ρ,hψ(x)|p dx,

∑
k∈Zd

QG,h(χ̃[k]
α,ρ,hψ) − D̃h2−ρ−α‖ψ‖2

L2(Ω) ≤ QG,h(ψ) ≤
∑

k∈Zd

QG,h(χ̃[k]
α,ρ,hψ) ,

with χ̃
[k]
α,ρ,h(x) = χ

[k]
α,ρ,h(x − τ). Moreover, the translated partition (χ̃[k]

α,ρ,h) still satisfies
(4.3).

Proof. Since
∑

k∈Zd(χ̃[k]
α,ρ,h)2 = 1 for all τ , and p ≥ 2, we have immediately

∑
k∈Zd

∫
Ω

|χ̃[k]
α,ρ,hψ(x)|p dx ≤

∫
Ω

|ψ(x)|p dx.

Notice that, by paving R
d and by using that χ

[0]
α,ρ,h = 1 on a box of sidelength 2hρ,∫

[0,2hρ+hα)d

∑
k∈Zd

∣∣∣χ[0]
α,ρ,h(x − (2hρ + hα)k − τ)

∣∣∣p

dτ =
∫
Rd

∣∣∣χ[0]
α,ρ,h(x − y)

∣∣∣p

dy ≥ 2dhdρ.

(4.5)

Therefore, by changing the order of the integrations,

1
(2hρ + hα)d

∫
[0,2hρ+hα)d

⎛⎝ ∑
k∈Zd

∫
Ω

|χ̃[k]
α,ρ,hψ(x)|p dx

⎞⎠ dτ ≥ 2dhdρ

(2hρ + hα)d

∫
Ω

|ψ(x)|p dx,

and thus

1
(2hρ + hα)d

∫
[0,2hρ+hα)d

⎛⎝∫
Ω

|ψ(x)|p dx −
∑

k∈Zd

∫
Ω

|χ̃[k]
α,ρ,hψ(x)|p dx

⎞⎠ dτ

≤
(

1 − 2dhdρ

(2hρ + hα)d

) ∫
Ω

|ψ(x)|p dx .

This last inequality is in the form

1
Ld

∫
[0,L]d

f(τ) dτ ≤ A ,

with a non-negative and integrable function f , so that we get

∣∣{τ ∈ [0, L]d : f(τ) ≤ 3A}∣∣ ≥ 2Ld

3 .

In our particular situation, we deduce that the set of τ ∈ [0, 2hρ + hα)d such that
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∑
k∈Zd

∫
Ω

|χ̃[k]
α,ρ,hψ(x)|p dx ≥

(
1 − 3

(
1 − 2dhdρ

(2hρ + hα)d

)) ∫
Ω

|ψ(x)|p dx , (4.6)

has measure at least 2(2hρ + hα)d/3. We may notice here that

2dhdρ

(2hρ + hα)d
= 1 + O(hα−ρ) .

With the localization formula associated with the partition of unity (χ̃[k]
α,ρ,h) that is

adapted to ψ, we infer

QG,h(ψ) =
∑

k∈Zd

QG,h(χ̃[k]
α,ρ,hψ) − h2

∑
k∈Zd

‖∇χ̃
[k]
α,ρ,hψ‖2

L2(Ω) ,

so that in particular

QG,h(ψ) ≤
∑

k∈Zd

QG,h(χ̃[k]
α,ρ,hψ) .

With Fubini’s theorem and (4.4), we also observe that, for all x ∈ R
d,

1
(2hρ + hα)d

∫
[0,2hρ+hα)d

∑
k∈Z

|∇χ
[0]
α,ρ,h(x − (2hρ + hα)k − τ)|2 dτ

= 1
(2hρ + hα)d

∫
Rd

|∇χ
[0]
α,ρ,h(x − y)|2 dy ≤ C

hρ+α
.

Therefore,

1
(2hρ + hα)d

∫
[0,2hρ+hα)d

( ∑
k∈Zd

QG,h(χ̃[k]
α,ρ,hψ) − QG,h(ψ)

)
dτ

= h2

(2hρ + hα)d

(∫
[0,2hρ+hα)d

∑
k∈Zd

‖∇χ̃
[k]
α,ρ,hψ‖2

L2(Ω)

)
dτ ,

≤ Ch2−ρ−α‖ψ‖2
L2(Ω).

And thus the set of τ ∈ [0, 2hρ + hα)d such that

1
(2hρ + hα)d

∫
[0,2hρ+hα)d

⎛⎝ ∑
k∈Zd

QG,h(χ̃[k]
α,ρ,hψ) − QG,h(ψ)

⎞⎠ dτ ≤ 3Ch2−ρ−α‖ψ‖2
L2(Ω)

has measure at least 2(2hρ + hα)d/3.
We conclude that the desired estimates are satisfied for a set of τ of measure at least

(2hρ + hα)d/3. �

Remark 4.3. Note that if p = 2, we choose α = ρ and we do not need Lemma 4.2.
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4.2. Approximation by the homogeneous geometry.
In this section, we prove Proposition 1.6 and the lower bound in Theorem 1.8. Since

the lower bound in the nonlinear case (p > 2) is more subtle we will mainly focus on this
case. Note that in many places the estimates when p = 2 are better and easier to obtain.

Keeping in mind the estimate of the quadratic form of Lemma 4.2, we must now
approximate the local energies QG,h(χ̃[k]

α,ρ,hψ). To lighten the notation, we let ψk =
χ̃

[k]
α,ρ,hψ.

4.2.1. Interior estimates.
Let us consider the k ∈ Z

d such that supp (χ̃[k]
α,ρ,h) ∩ ∂Ω = ∅. We have

‖(−ih∇ + A)ψk‖2
L2(Ω) = ‖(−ih∇ + AL

xk
+ Rk)Ψk‖2

L2(Ω) ,

where Ψk = eiϕk/hψk for a suitable choice of gauge ϕk and the Taylor remainder Rk

satisfies, on the support of χ̃
[k]
α,ρ,h, |Rk| ≤ Ch2ρ. An elementary inequality implies, for all

ε ∈ (0, 1),

‖(−ih∇ + A)ψk‖2
L2(Ω) ≥ (1 − ε)‖(−ih∇ + AL

xk
)Ψk‖2

L2(Ω) − C2h4ρε−1‖ψk‖2
L2(Ω) .

Moreover, we have

h

∫
Ω

V (x)|ψk|2 dx ≥ h

∫
Ω

V (xk)|ψk|2 dx − Ĉh1+ρ‖ψk‖2
L2(Ω) .

Since we investigate the case p > 2, one need to control the remainder involving ‖ψk‖2
L2(Ω)

and not ‖ψk‖2
Lp(Ω). Note that we do not have to care about this when p = 2.

We have, by homogeneity and the min-max principle,

λ(Gxk
, 1, 2)h‖Ψk‖2

L2(Ω) ≤ QGxk
,h(Ψk) .

By using Assumption 1.5, we deduce that

QG,h(ψk) ≥ (1 − ε)‖(−ih∇ + AL
xk

)Ψk‖2
L2(Ω) + h

∫
Ω

V (xk)|Ψk|2 dx

− (C̃ε−1h4ρ−1 + C̃hρ)QGxk
,h(Ψk) .

Then, we get

h

∫
Ω

V (xk)|Ψk|2 dx ≥ (1 − ε)h
∫

Ω
V (xk)|Ψk|2 dx − εh

(
max

Ω
|V |

)
‖Ψk‖2

L2(Ω)

Therefore we deduce

QG,h(ψk) ≥ (1 − C̃ε − C̃ε−1h4ρ−1 − C̃hρ)QGxk
,h(Ψk) . (4.7)

We choose ε = h2ρ−1/2 and we notice that, since ρ ∈ (0, 1/2), then we can forget the term
in hρ. By definition of the infimum and homogeneity, it follows that
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QG,h(ψk) ≥ (1 − Ch2ρ−1/2)λ(Gck
, 1, p)h1+d/2−d/p‖ψk‖2

Lp(Ω) . (4.8)

We deduce in particular

QG,h(ψk) ≥ (1 − Ch2ρ−1/2)h1+d/2−d/p inf
x∈Ω

λ(Gx, 1, p)‖ψk‖2
Lp(Ω) . (4.9)

4.2.2. Boundary estimates.
Let us consider the k such that supp (χ̃[k]

α,ρ,h) ∩ ∂Ω 	= ∅. Let us consider ck ∈
supp (χ̃[k]

α,ρ,h) ∩ ∂Ω 	= ∅. On supp (χ̃[k]
α,ρ,h) we may consider the local coordinates (near

some point X�) introduced in Section 3.2.1 and x0 = ck. The coordinates of ck are
(sk, tk) in the parametrization Φ�. We use the expression (3.10) and the Taylor formula
to get

QG,h(ψk)≥ (1−Chρ)
∫

U�×(0,t�)
〈(−ih∇+Ã)ψ̃k,G�(ck)−1(−ih∇+Ã)ψ̃k〉Rd |G�(ck)|1/2 dy

+h

∫
U�×(0,t�)

V (ck)|ψ̃k|2|G�(ck)|1/2 dy −γ(ck)h3/2
∫

U�×{0}
|ψ̃k|2|g�(sk)|1/2 ds

−Ch3/2+ρ

∫
U�×{0}

|ψ̃k|2 ds−Ch1+ρ

∫
U�×(0,t�)

|ψ̃k|2 dy .

By using Lemma 2.5 with ε = h1/2, we deduce that∫
U�×{0}

|ψ̃k|2 ds ≤ Ch1/2‖∇|ψ̃k|‖2 + Ch−1/2‖ψ̃k‖2 ,

so that, with the diamagnetic inequality,∫
U�×{0}

|ψ̃k|2 ds ≤ Ch−3/2‖(−ih∇ + Ã)ψ̃k‖2 + Ch−1/2‖ψ̃k‖2 , and thus

QG,h(ψk)≥ (1−Chρ)
∫

U�×(0,t�)
〈(−ih∇+Ã)ψ̃k,G�(ck)−1(−ih∇+Ã)ψ̃k〉Rd |G�(ck)|1/2 dy

+h

∫
U�×(0,t�)

V (ck)|ψ̃k|2|G�(ck)|1/2 dy −γ(ck)h3/2
∫

U�×{0}
|ψ̃k|2|g�(sk)|1/2 ds

−Ch1+ρ

∫
U�×(0,t�)

|ψ̃k|2 dy .

Now, we approximate the vector potential as in Section 4.2.1 and we get

QG,h(ψk) ≥ (1 − Ch2ρ−1/2)QG∗
ck

,h(ψ̃k) , (4.10)

and thus

QG,h(ψk) ≥ (1 − Ch2ρ−1/2)λ(Gck
, 1, p)h1+d/2−d/p‖ψk‖2

Lp(Ω) . (4.11)

We get
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QG,h(ψk) ≥ (1 − Ch2ρ−1/2)h1+d/2−d/p inf
x∈∂Ω

λ(Gx, 1, p)‖ψk‖2
Lp(Ω) . (4.12)

From (4.9) and (4.12), we infer that there exist h0 > 0, C > 0 such that, for all k ∈ Z
d,

QG,h(ψk) ≥ (1 − Ch2ρ−1/2)h1+d/2−d/p inf
x∈Ω

λ(Gx, 1, p)‖ψk‖2
Lp(Ω) . (4.13)

We want to add the different local contributions. We use the following estimate

h2−ρ−α‖ψ‖2
L2(Ω) = h2−ρ−α

∑
k∈Zd

‖ψk‖2
L2(Ω) ≤ Ch1−α−ρ

∑
k∈Zd

QG,h(ψk) ,

where we used (4.8), (4.10) and the positivity in Assumption 1.5. Using Lemma 4.2, we
get

h2−ρ−α‖ψ‖2
L2(Ω) ≤ Ch1−α−ρQG,h(ψ) .

Summing over k in (4.13) and using Lemma 4.2 to reconstruct the total Lp-norm from
the local ones, we get

QG,h(ψ) ≥ (1 − Ch1−α−ρ)(1 − Ch2ρ−1/2)(1 − Chα−ρ)h1+d/2−d/p inf
x∈Ω

λ(Gx, 1, p)‖ψ‖2
Lp(Ω) .

We choose

1 − α − ρ = 2ρ − 1
2 = α − ρ , or equivalently ρ = 1

3 , α = 1
2 .

This gives the lower bound in Theorem 1.8.

Remark 4.4. In the case p = 2, we are led to the choice 1 − 2ρ = 2ρ − 1/2 and
thus ρ = 3/8. Note that, in this case, the term 1 − Chα−ρ is replaced by 1. From this we
find the remainder of order O(h5/4) given in Proposition 1.6.

5. Semiclassical localization.

In relation with the estimates of Section 4 and using the upper bound in Theorem 1.8,
we may deduce that the minimizers concentrate near the minima of the concentration
function Ω 
 x �→ λ(Gx, 1, p).

5.1. A rough localization estimate.
Before obtaining the exponential localization, we start by proving a weaker result.

Proposition 5.1. For all ε > 0, there exist h0, C > 0 such that for all h ∈ (0, h0)
and all Lp-normalized minimizer ψh of (1.1), we have

‖ψh‖Lp(CMε) ≤ Ch1/6p ,

where Mε is defined in (1.11).

Proof. We use again Lemma 4.2 with ψ = ψh and ρ = 1/3, α = 1/2 to get
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k∈Zd

QG,h(χ̃[k]
α,ρ,hψ) − D̃h2−ρ−α‖ψ‖2

L2(Ω) ≤ λ(G, h, p)‖ψh‖2
Lp(Ω) .

We deduce that

(1 − Ch1/6)
∑

k∈Zd

QG,h(χ̃[k]
α,ρ,hψh) ≤ λ(G, h, p)‖ψh‖2

Lp(Ω) .

Therefore, we find∑
k∈Zd

QG,h(ψh,k) ≤ λ(G, h, p)‖ψh‖2
Lp(Ω) + Ch1/6h1+d/2−d/p‖ψh‖2

Lp(Ω) .

We again have by Lemma 4.2,

‖ψh‖2
Lp(Ω) =

(∫
Ω

|ψh|p dx

)2/p

≤ (1 + Ch1/6)

⎛⎝ ∑
k∈Zd

‖χ̃
[k]
α,ρ,hψh‖p

Lp(Ω)

⎞⎠2/p

,

and thus

‖ψh‖2
Lp(Ω) ≤

⎛⎝ ∑
k∈Zd

‖χ̃
[k]
α,ρ,hψh‖p

Lp(Ω)

⎞⎠2/p

+ Ch1/6‖ψh‖2
Lp(Ω) .

By using that p ≥ 2, we deduce that∑
k∈Zd

QG,h(ψh,k) ≤ λ(G, h, p)
∑

k∈Zd

‖ψh,k‖2
Lp(Ω) + Ch1/6h1+d/2−d/p‖ψh‖2

Lp(Ω) . (5.1)

Then, we consider the local energies. For k such that supp (χ̃[k]
α,ρ,h) ∩ ∂Ω = ∅, we have

QG,h(ψh,k) ≥ (1 − Ch1/6)λ(Gxk
, 1, p)h1+d/2−d/p‖ψh,k‖2

Lp(Ω) ,

and, for k such that supp (χ̃[k]
α,ρ,h) ∩ ∂Ω 	= ∅,

QG,h(ψh,k) ≥ (1 − Ch1/6)λ(Gck
, 1, p)h1+d/2−d/p‖ψh,k‖2

Lp(Ω) .

For ε, h > 0, let us introduce

Kε,h =
{

k ∈ Z
d : supp (χ̃[k]

α,ρ,h) ∩ Mε/2 	= ∅
}

.

For all ε > 0, there exists cε > 0 such that for all k /∈ Kε,h, we have

QG,h(ψh,k) ≥ (1 − Ch1/6)
(

inf
x∈Ω

λ(Gx, 1, p) + cε

)
h1+d/2−d/p‖ψh,k‖2

Lp(Ω) . (5.2)

From (5.1), we get
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k/∈Kε,h

(
QG,h(ψh,k) − λ(G, h, p)‖ψh,k‖2

Lp(Ω)

)
+

∑
k∈Kε,h

(
QG,h(ψh,k) − λ(G, h, p)‖ψh,k‖2

Lp(Ω)

)
≤ Ch1/6h1+d/2−d/p‖ψh‖2

Lp(Ω) .

On one hand, from (5.2) and the upper bound on λ(G, h, p), we find the existence of
c̃ε > 0 such that, for all h ∈ (0, h0),∑

k/∈Kε,h

(
QG,h(ψh,k) − λ(G, h, p)‖ψh,k‖2

Lp(Ω)

)
≥ c̃εh1+d/2−d/p

∑
k/∈Kε,h

‖ψh,k‖2
Lp(Ω) .

On the other hand, we get, by using the definition of λ(G, h, p),∑
k∈Kε,h

(
QG,h(ψh,k) − λ(G, h, p)‖ψh,k‖2

Lp(Ω)

)
≥ 0 .

It follows that

c̃ε

∑
k/∈Kε,h

‖ψh,k‖2
Lp(Ω) ≤ Ch1/6‖ψh‖2

Lp(Ω) .

Since p ≥ 2, we deduce that∑
k/∈Kε,h

∫
Ω

|χ̃[k]
α,ρ,h|p|ψh|p dx ≤ Chp/12‖ψh‖p

Lp(Ω) .

Thus we have∑
k/∈Kε,h

∫
Ω

|χ̃[k]
α,ρ,h|2|ψh|p dx −

∑
k/∈Kε,h

∫
Ω

(
|χ̃[k]

α,ρ,h|2 − |χ̃[k]
α,ρ,h|p

)
|ψh|p dx

≤ Chp/12‖ψh‖p
Lp(Ω) .

With (4.6), we infer∫
CMε

|ψh|p dx =
∑

k/∈Kε,h

∫
CMε

|χ̃[k]
α,ρ,h|2|ψh|p dx ≤

∑
k/∈Kε,h

∫
Ω

|χ̃[k]
α,ρ,h|2|ψh|p dx

≤ C(hp/12 + h1/6)‖ψh‖p
Lp(Ω) . �

5.2. Application to the exponential estimates.
Now, Proposition 5.1 gives an a priori control of the nonlinear potential

−λ(G, h, p)|ψh|p−2 away from the minimal set M. Therefore, in this region, we are
essentially reduced to a perturbation of a linear equation and we may establish decay
estimates à la Agmon.

Proposition 5.2. For all ε > 0, ρ ∈ (0, 1/2), there exists h0, C > 0 such that for
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all h ∈ (0, h0) and all Lp-normalized minimizer ψh of (1.1), we have

‖ψh‖Lp(CM2ε) ≤ Ce−εh−ρ‖ψh‖Lp(Ω) .

Proof. Let us first consider a function v in the form domain of QG,h and supported
away from Mε. We have, with the Hölder inequality,

λ(G, h, p)
∫

Ω
|ψh|p−2|v|2 dx ≤ λ(G, h, p)‖v‖2

Lp(Ω)

(∫
CMε

|ψh|p dx

)(p−2)/p

.

Thus, by using Proposition 5.1, we get

λ(G, h, p)
∫

Ω
|ψh|p−2|v|2 dx ≤ Ch(p−2)/6pλ(G, h, p)‖v‖2

Lp(Ω) ≤ Ch(p−2)/6pQG,h(v) . (5.3)

In other words, the nonlinear potential is a perturbation of the linear part in the sense of
quadratic forms. Note that the equation satisfied by ψh reads

LNL
G,hψh =

(
(−ih∇ + A)2 + hV − λ(G, h, p)|ψh|p−2)

ψh = 0 ,

with the Robin condition

(−ih∇ + A)ψ · n(x) = −ih1/2γ(x)ψ(x), x ∈ ∂Ω .

Let us now introduce our exponential weight. We consider a smooth cutoff function
0 ≤ χ ≤ 1 supported away from Mε and being 1 away from M2ε. With the localization
formula, we get

QNL
G,h(eχh−ρdist(x,M)ψh) − Ch2−2ρ‖eχh−ρdist(x,M)ψh‖2

L2(Ω) ≤ 0 ;

all the norms are finite in view of the boundedness of the domain Ω. Now we want to
distinguish between the region close to M and far from M. Thus we introduce a smooth
quadratic partition of the unity χ2

1 + χ2
2 = 1 such that supp (χ2) ⊂ CMε. Using again

the localization formula, we deduce that

QNL
G,h(χ1eχh−ρdist(x,M)ψh) + QNL

G,h(χ2eχh−ρdist(x,M)ψh)

− C̃h2−2ρ‖χ1eχh−ρdist(x,M)ψh‖2
L2(Ω) − C̃h2−2ρ‖χ2eχh−ρdist(x,M)ψh‖2

L2(Ω) ≤ 0 . (5.4)

On one hand, by (5.3), we have

QNL
G,h(χ2eχh−ρdist(x,M)ψh) − C̃h2−2ρ‖χ2eχh−ρdist(x,M)ψh‖2

L2(Ω)

≥ (1 − Ch(p−2)/6p)QG,h(χ2eχh−ρdist(x,M)ψh) − C̃h2−2ρ‖χ2eχh−ρdist(x,M)ψh‖2
L2(Ω)

≥
(

(1 − Ch(p−2)/6p)λ(G, h, 2) − C̃h2−2ρ
)

‖χ2eχh−ρdist(x,M)ψh‖2
L2(Ω)

≥ ch‖χ2eχh−ρdist(x,M)ψh‖2
L2(Ω) , (5.5)

where the constant c > 0 comes from Proposition 1.6.
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On the other hand, by support considerations, we have

QNL
G,h(χ1eχh−ρdist(x,M)ψh) = QNL

G,h(χ1ψh) .

But we notice that

QNL
G,h(χ1ψh) ≥ QG,h(χ1ψh) − λ(G, h, p)

∫
Ω

|χ1ψh|2|ψh|p−2 dx .

Since ψh is Lp-normalized and thanks to the Hölder inequality, we have∫
Ω

|χ1ψh|2|ψh|p−2 dx ≤ ‖χ1ψh‖2
Lp(Ω) .

Thus we have

QNL
G,h(χ1eχh−ρdist(x,M)ψh) ≥ 0 . (5.6)

Combining (5.4), (5.5), (5.6) and again that χ = 0 on the support of χ1, we get

ch‖χ2eχh−ρdist(x,M)ψh‖2
L2(Ω) ≤ C̃h2−2ρ‖ψh‖2

L2(Ω) .

From this last estimate (and using again that ρ ∈ (0, 1/2)), it follows that

‖eχh−ρdist(x,M)ψh‖2
L2(Ω) ≤ C‖ψh‖2

L2(Ω) .

Now, we come back with this information to (5.4) to deduce that

QNL
G,h(χ2eχh−ρdist(x,M)ψh) ≤ C‖ψh‖2

L2(Ω) ,

and then, from (5.3), we get

QG,h(χ2eχh−ρdist(x,M)ψh) ≤ Ch2−2ρ‖ψh‖2
L2(Ω) ≤ C̃h2−2ρ‖ψh‖2

Lp(Ω) .

From the rough estimate QG,h(ψh) = λ(G, h, p) ≤ C and the localization formula, we get

QG,h(χ1eχh−ρdist(x,M)ψh) = QG,h(χ1ψh) ≤ C‖ψh‖2
Lp(Ω) .

By using again the localization formula, we have

QG,h(eχh−ρdist(x,M)ψh) ≤ C‖ψh‖2
Lp(Ω) ,

and thus

‖eχh−ρdist(x,M)ψh‖Lp(Ω) ≤ Ch−γ‖ψ‖Lp(Ω) ,

for some γ > 0. The conclusion easily follows. �
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6. Continuity estimates.

In this section, we discuss different kinds of continuity results.

6.1. Continuity.
The following proposition (jointly with Propositions 3.1 and 3.3) implies the upper

bound announced in Theorem 1.8.

Proposition 6.1. Here we consider a constant geometry Gx with x ∈ Ω and let
p ∈ (2, 2∗). We have the following continuity properties.

(i) The function x �→ λ(Gx, 1, p) is continuous on Ω.

(ii) The function x �→ λ(Gx, 1, p) is continuous on ∂Ω.

(iii) The function x �→ λ(Gx, 1, p) is lower semi-continuous on Ω.

Proof. Let us consider (i). This is a consequence of the results in [2], [8]. Actually
the reader may also adapt the forthcoming proof of (ii) to get the continuity.

Let us now prove (ii). Without loss of generality, we may assume that Ω = R
d
+.

Indeed we can simply use a rotation (smooth with respect to x) and a change of gauge to
rotate the problem from the affine tangent space to the tangent vector space.

Let us consider a point x∗ ∈ ∂Ω and a sequence (xn)n∈N ⊂ ∂Ω such that xn → x∗
when n goes to infinity. The proof is divided into two steps. First, it is rather easy to get

lim sup
n→+∞

λ(Gxn , 1, p) ≤ λ(Gx∗ , 1, p) , for xn → x∗ ∈ ∂Ω ,

by using a minimizer associated with λ(Gx∗ , 1, p) as test function. Then, we shall establish

lim inf
n→+∞ λ(Gxn

, 1, p) ≥ λ(Gx∗ , 1, p) , for xn → x∗ ∈ ∂Ω .

This last inequality is slightly more subtle and uses the concentration-compactness
strategy.

To simplify the notation, we denote QGxn ,1 = Qn and

λ(Gxn , 1, p) =: λ+
n , lim inf

n→+∞ λ+
n =: λ+

∗ ,

λ(Gxn , 1, p) =: λn , lim inf
n→+∞ λn =: λ∗ .

Let ψn be an Lp-normalized function such that.

Qn(ψn) = εn + λ+
n

with limn→+∞ εn = 0. We notice that by the positivity property (ii) in Assumption 1.5,
(ψn) is bounded in L2(Rd

+) and H1
loc(Rd

+). By diamagnetism and Sobolev embedding, we
infer that (|ψn|) is also bounded in H1(Rd

+). We are left with concentration-compactness
type arguments.

(a) Let us deal with the boundary vanishing.
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Assume first that for all R > 0

lim
n→+∞ MR(ψn) = 0.

By Proposition 2.7, we have that for all R > 0

lim
n→+∞ ‖ψn‖Lp(ΣR) = 0.

Let us consider a quadratic partition of the unity

χ2
R,1 + χ2

R,2 = 1 ,

with supp χR,1 supported in a neighborhood of the boundary of size R and such that

‖∇χR,1‖L∞ ≤ C

R
.

For n ≥ 1, we have, by the usual localization formula (and the fact that (ψn) is
bounded in L2),

Qn(ψn) ≥ Qn(χ̃R,1ψn) + Qn(χ̃R,2ψn) − C

R2 ≥ Qn(χ̃R,2ψn) − C

R2 .

Therefore, it follows that

λ+
n ≥ λn‖χR,2ψn‖2

Lp(Rd) − C

R2 − εn .

We take the limit n → +∞ and then R → +∞,

lim inf
n→+∞ λ+

n ≥ lim
n→+∞ λn = λ∗ ≥ λ+

∗ .

This is the result that we want to prove.

(b) Let us now exclude the dichotomy. We consider the case when there exists R0 > 0
such that MR0(ψn) does not go to 0. Up to extraction and magnetic translations
parallel to ∂Rd

+, we may assume that (ψn)n≥1 weakly converges in H1
loc(Rd

+) and in
Lq(Rd

+) to some ψ∗ 	= 0 for all q ∈ [2, 2∗].
Assume by contradiction that α := ‖ψ∗‖p

Lp(Rd
+) < 1. Let us again consider a quadratic

partition of the unity

χ̃2
R,1 + χ̃2

R,2 = 1 ,

with supp χ̃R,1 ⊂ D(0, R) such that ‖∇χR,1‖L∞ ≤ C/R. For all R ≥ R0 and n ≥ 1,
as previously, we have,

Qn(ψn) ≥ Qn(χ̃R,1ψn) + Qn(χ̃R,2ψn) − C

R2 .

In particular, we get
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λ+
n ≥ λ+

n

(
‖χ̃R,1ψn‖2

Lp(Rd
+) + ‖χ̃R,2ψn‖2

Lp(Rd
+)

)
− C

R2 − εn

≥ λ+
n

(
‖ψn‖2

Lp(BR∩Rd
+) +

(
1 − ‖ψn‖p

Lp(B2R∩Rd
+)

)2/p
)

− C

R2 − εn .

Taking the limit n → +∞ and then R → +∞, we obtain

lim inf
n→+∞ λ+

n ≥ lim inf
n→+∞ λ+

n

(
α2/p + (1 − α)2/p

)
.

This contradicts the concavity of α �→ α2/p so that ‖ψ∗‖p

Lp(Rd
+) = 1

(c) Finally we consider the pre-compact case. We obtain then that (ψn) converges
strongly to ψ∗ in Lp(Rd

+). We also start with the localization formula

Qn(ψn) ≥ Qn(χ̃R,1ψn) − C

R2 .

By the weak convergence in H1
loc(Rd

+), we obtain for each R > 0

lim inf
n→∞ λ+

n ≥ Q∗(χ̃R,1ψ∗) − C

R2 ≥ λ+
∗ ‖χ̃R,1ψ∗‖2

Lp(Rd
+) − C

R2 .

Taking then the limit R → +∞, we get:

lim inf
n→∞ λ+

n ≥ λ+
∗ .

This is the result that we want to prove.

Finally, concerning (iii), it is sufficient to combine (i) and (ii) with the fact that

∀x ∈ ∂Ω , λ(Gx, 1, p) ≤ λ(Gx, 1, p) . �

6.2. Sufficient conditions.
In this section, we discuss some sufficient conditions which ensure that Assumption 1.5

can be satisfied. These conditions are based on the following non-degeneracy result.

Proposition 6.2. The bottom of the spectrum λ(B) of the Neumann Laplacian
with constant magnetic field on L2(Rd

+) satisfies

max
(

Θ0‖B‖‖2, Tr+B⊥
)

≤ λ(B) ,

where

B =
(

B⊥ B‖

−(B‖)T 0

)
,

and B‖ is a vector belonging to R
d−1 and B⊥ is an skew-symmetric matrix of size

d − 1. The constant Θ0 ∈ (0, 1) (sometimes called de Gennes constant, see for instance
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[13, Chapter 4]) is the bottom of the spectrum of the Neumann magnetic Laplacian on
R

2
+ when the magnetic field is constant equal to 1.

Proof. Let us consider the rotations that preserve the xd-axis. They are in the
form

Q =
(

Q 0
0 1

)
,

with Q ∈ SO(d − 1). Letting x = Qy, LA is unitarily equivalent to the following operator
acting on L2(Rd

+):

(−i∇y + Ã(y)
)2

, where Ã(y) = 1
2B̃y , B̃ = QT BQ .

It is clear that we may find a rotation that sends B‖ onto ‖B‖‖2ed−1 and we may assume
that Bkd = 0 for 1 ≤ k ≤ d − 2. We notice that

Ã0(y‖) = Ã(y‖, 0) = 1
2QT B⊥Qy‖ . (6.1)

The magnetic Laplacian is now in the form

(−i∇y + Ã(y)
)2 =

(
Dyd

− 1
2 B̃d d−1yd−1

)2
+ (Dyd−1 + Ãd−1)2 +

d−2∑
�=1

(Dy�
+ Ã�)2 ,

with

Ãd−1 = 1
2 B̃d d−1yd + Âd−1 ,

where Âd−1 and (Ã�)1≤�≤d−2 are independent from yd. After a change of gauge, we may
consider the equivalent operator

L = D2
yd

+
(

Dyd−1 + B̃d d−1yd +
d−2∑
�=1

B̃�d−1y�

)2

+
d−2∑
�=1

(Dy�
+ Ã�(y1, . . . , yd−2, 0, 0))2 .

Therefore, there is no more dependence on yd−1. We may notice that, by definition, the
lower dimension magnetic Laplacian

L⊥ =
(

Dyd−1 +
d−2∑
�=1

B̃�d−1y�

)2

+
d−2∑
�=1

(Dy�
+ Ã�(y1, . . . , yd−2, 0, 0))2

admits B⊥ as magnetic matrix.
Then, we notice that, for all ψ in the domain of L, we have

〈Lψ, ψ〉L2(Rd
+) ≥

∫
(y1,...,yd−2)∈Rd−2

∫
(yd−1,yd)∈R2

+

|Dyd
ψ|2
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+

∣∣∣∣∣
(

Dyd−1 + B̃d d−1yd +
d−2∑
�=1

B̃�d−1y�

)
ψ

∣∣∣∣∣
2

dyd−1 dyd .

Thus, by using a partial change of gauge (for fixed (y1, . . . , yd−2)) to eliminate the sum
term, we infer that

〈Lψ, ψ〉L2(Rd
+) ≥ Θ0|B̃d d−1|‖ψ‖2

L2(Rd
+) = Θ0‖B‖‖2‖ψ‖2

L2(Rd
+) .

In the same way, dropping the term in Dyd
and canceling the term B̃d d−1yd by a partial

change of gauge, we find

〈Lψ, ψ〉L2(Rd
+) ≥ Tr+B⊥‖ψ‖2

L2(Rd
+) .

The conclusion follows by the min-max principle. �

We can now prove the following proposition.

Proposition 6.3. We have the following sufficient conditions.

i. Point (i) in Assumption 1.5 is satisfied when V ≥ 0 and B does not vanish on Ω.

ii. Point (ii) in Assumption 1.5 is satisfied when

inf
x∈∂Ω

λ((x + Tx(∂Ω) + R+n(x), Id, V (x), AL
x, 0), 1, 2) > 0

and if max
∂Ω

γ−(x) is small enough where γ−(x) = max(0, −γ(x)).

iii. Point (ii) in Assumption 1.5 is satisfied when V ≥ 0, B does not vanish on the
boundary and when max

∂Ω
γ−(x) is small enough.

Proof. The first point is obvious since Tr+ B(x) = 0 implies that B(x) = 0.
Let us now consider the second point. For x ∈ ∂Ω, we have, by the min-max principle

(and splitting the electro-magnetic energy into two equal parts), for all ψ ∈ Dom(QGx,1),

QGx,1(ψ) ≥ c

2‖ψ‖2
L2(Tx) + 1

2

∫
Tx

|(−i∇ + AL
x)ψ|2 + V (x)|ψ|2 dy − m

∫
∂Tx

|ψ|2 dσ ,

where Tx = x + Tx(∂Ω) + R+n(x) and

c = inf
x∈∂Ω

λ((Tx, Id, V (x), AL
x, 0), 1, 2) , m = max

x∈∂Ω
γ−(x) .

Then, by using the diamagnetic inequality and Lemma 2.5, we have∫
∂Tx

|ψ|2 dσ ≤ ε

∫
Tx

|(−i∇ + AL
x)ψ|2 dy + Cε−1‖ψ‖2

L2(Tx) .

Let us introduce M = max
x∈Ω

|V (x)|. It follows that
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∂Tx

|ψ|2 dσ ≤ ε

∫
Tx

|(−i∇ + AL
x)ψ|2 + V (x)|ψ|2 dy + (εM + Cε−1)‖ψ‖2

L2(Tx) ,

and thus, for ε ∈ (0, 1/2m),

QGx,1(ψ) ≥
( c

2 − Mmε − mCε−1
)

‖ψ‖2
L2(Tx) .

We choose ε = min (c/4mM, 1/4m) and then m small enough to get

QGx,1(ψ) ≥ c

8‖ψ‖2
L2(Tx) .

The conclusion follows.
To get the third assertion, we notice that, for all x ∈ ∂Ω,

λ((Tx, Id, V (x), AL
x, 0), 1, 2) ≥ λ(Bx) ≥ max

(
Θ0‖B‖

x‖2, Tr+B⊥
x

)
,

where we have used Proposition 6.2. Then, the lower bound is a continuous and positive
function of x on the compact set ∂Ω and we may apply the result of the second point. �

6.3. The Dirichlet case.
In this section we discuss the existence of the minimizers when Ω = R

d
+, V = 0, B is

uniform, non-zero and when the boundary carries the Dirichlet condition.

Proposition 6.4. Here d ≥ 2. Let us consider λ = λ((Rd
+, Id, 0, A, +∞), p, 1)

with A ∈ L(Rd) such that dA is not zero. Then λ is not attained. Moreover, if we let
λ = λ((Rd, Id, 0, A, 0), p, 1), then λ = λ.

Proof. We recall that we always have λ ≤ λ. Indeed λ is a minimum and any
associated minimizer has an exponential decay: it is sufficient to translate any minimizer
to infinity and use a cutoff function.

We next claim that λ ≥ λ. Indeed, if ϕ is a test function for the problem in R
d
+, we

extend ϕ by zero and denote by ϕ ∈ H1(Rd) its extension. We use ϕ as test function for
the quadratic form on R

d and get λ ≤ λ.
Let us assume that λ is attained for a function ψ ∈ H1

0 (Ω) with ‖ψ‖Lp(Ω) = 1. Let
ψ ∈ H1(Rd) be the extension of ψ by 0. Therefore ψ is a minimizer associated with λ and
it vanishes on a non-empty open set. It also satisfies the elliptic equation (the associated
Euler–Lagrange equation):

(−i∇ + A)2ψ = λ|ψ|p−2ψ .

For simplicity, we assume here that d ≥ 3 and we leave the adaptations for d = 2 to
the reader. By Sobolev embedding, we have ψ ∈ L2∗(Rd), with 2∗ = 2d/(d − 2). Let us
consider any bounded open set U ⊂ R

d. If 0 < d(p − 2)/2 ≤ 2∗, we have, by the Hölder
inequality, |ψ|p−2 ∈ Ld/2(U). But d(p − 2)/2 ≤ 2∗ is equivalent to p ≤ 2 + 4/(d − 2) = 2∗.
Thus we have |ψ|p−2 ∈ L

d/2
loc (Rd). From this and the fact that ψ ∈ L2∗(Rd) we get,

with the Hölder inequality, ψ ∈ Lp
loc(Rd) ⊂ L2

loc(Rd). We infer that ψ ∈ H2
loc(Rd). The
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assumptions of [38, Theorem 1.1] are satisfied (since 2d/(d + 2) ≤ 2) so that the unique
continuation property holds for ψ. We deduce that ψ = 0 and this is a contradiction. �

7. Bidimensional waveguides.

This section is devoted to the proof of Proposition 1.12.

7.1. Reduction to the straight waveguide.
Let us first pull back the variable geometry onto the homogeneous geometry.

Lemma 7.1. There exist h0, C > 0 such that for all h ∈ (0, h0) and for all
ψ ∈ H1

0 (Σh), we have the comparison

(1 − Ch)h−1−2/pQΣ,a,h(ϕ)
‖ϕ‖2

Lp(Σ)
≤

∫
Σh

|∇ψ|2 dx

‖ψ‖2
Lp(Σh)

≤ (1 + Ch)h−1−2/pQΣ,a,h(ϕ)
‖ϕ‖2

Lp(Σ)
,

where ϕ(s, t) = a(s)1/pψ(Φh(s, t)) and

QΣ,a,h(ϕ) =
∫

Σ
h2a1−2/p|∂sϕ|2 + a−1−2/p|∂tϕ|2 ds dt .

Proof. We notice that

dΦh = [(1 − tkha)Γ′ + tha′n, han] .

where k is the curvature, so that

Gh = (dΦh)T dΦh =
(

(1 − tkha)2 + h2a2t2 th2aa′

th2aa′ h2a2

)
.

We get that |Gh| = det Gh = a2h2(1 + O(h)). In the sense of quadratic forms, we have

G−1
h = (1 + O(h))

(
1 0
0 h−2a−2

)
.

Thanks to the change of variables x = Φh(s, t), we deduce the following comparison:

(1 − Ch)h−1Q̃Σ,a,h(ψ̃) ≤
∫

Σh

|∇ψ|2 dx ≤ (1 + Ch)h−1Q̃Σ,a,h(ψ̃) ,

where

Q̃Σ,a,h(ψ̃) =
∫

Σ
ah2|∂sψ̃|2 + a−1|∂tψ̃|2 ds dt .

In the same way, we get

(1−Ch)h2/p

(∫
Σ

|ψ̃|pa ds dt

)2/p

≤
(∫

Σ
|ψ|p dx

)2/p

≤ (1+Ch)h2/p

(∫
Σ

|ψ̃|pa ds dt

)2/p

.
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We introduce the change of function ψ̃ = a−1/pϕ so that
∫

Σ |ψ̃|pa ds dt =
∫

Σ |ϕ|p ds dt.
By a computation and an integration by parts, it follows that

Q̃Σ,a,h(ψ̃) =
∫

Σ
h2a1−2/p|∂sϕ|2 + h2V (s)|ϕ|2 + a−1−2/p|∂tϕ|2 ds dt ,

with

V (s) = 1
p2 a′2a−2/p−1 + 1

p
∂s

(
a′a−2/p

)
.

Note that there exists c > 0 such that, for all h > 0,

Q̃Σ,a,h(ψ̃) ≥ c‖ϕ‖2
L2(Σ) ,

and that V ∈ L∞(R). We get

(1 − Ch)QΣ,a,h(ϕ) ≤ Q̃Σ,h(ψ̃) ≤ (1 + Ch)QΣ,h(ϕ) . �

Therefore we are reduced to consider the minimization problem

minimize QΣ,a,h(ϕ)
‖ϕ‖2

Lp(Σ)
, for ϕ ∈ H1

0 (Σ) .

7.2. Estimate of the normalized Sobolev quotient.
We are now in position to use the strategy developed in this paper on QΣ,a,h. Note

here that we have a partially semiclassical problem. First, we have to establish an upper
bound for the Sobolev quotient. For that purpose, we must freeze the height a to the
maximal height amax, attained at some point smax. We will need the following lemma.

Lemma 7.2. The Sobolev constant λDir(Σ, p) is attained. Any corresponding mini-
mizer has an exponential decay.

Proof. Once the Sobolev is attained, it is rather clear that the minimizers have
an exponential decay (see the proof of Proposition 2.10). The fact that the infimum is
attained is a consequence of a concentration-compactness investigation along the s-axis:
we are in the compactness case modulo translations parallel to the s-axis. �

Lemma 7.3. There exist h0, C > 0 such that, for all h ∈ (0, h0),

inf
ϕ∈H1(Σ),

ψ �=0

QΣ,a,h(ϕ)
‖ϕ‖2

Lp(Σ)
≤ (1 + Ch2)h1−2/pa−4/p

max λDir(Σ, p) .

Proof. Let us consider an Lp-normalized minimizer φ0 associated with the p-
eigenvalue λ(Σ, Id, 0, 0, +∞, 1, p) and introduce

ϕh(s, t) = φ0

(
a−1

max
s − smax

h
, t

)
.
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We compute

QΣ,a,h(ϕh) = hamax

∫
Σ

{
a−2

maxa
1−2/p
h |∂sφ0 (σ, t) |2 + a

−1−2/p
h |∂tφ0 (σ, t) |2

}
dσ dt ,

with ah(σ, t) = a (smax + hamaxσ, t). Thanks to a Taylor expansion and to the exponential
decay of φ0, we get

QΣ,a,h(ϕh) ≤ (1 + Ch2)ha−2/p
max λ(Σ, Id, 0, 0, +∞, 1, p) .

We also get (∫
Σ

|ϕh|p dσ dt

)2/p

= h2/pa2/p
max .

The conclusion follows. �

Let us now deal with the lower bound.

Lemma 7.4. There exist h0, C > 0 such that, for all h ∈ (0, h0) and all ϕ ∈ H1
0 (Σ),

QΣ,a,h(ϕ) ≥ (1 − Ch1/2)h1−2/pa−4/p
max λDir(Σ, p)‖ϕ‖2

Lp(Σ) .

Proof. Let us use a “sliding” partition of the unity as in Section 4.1 but only
with respect to s (i.e. d = 1). We recall (4.2) and (4.3). By using the partition adapted
to ϕ, we have

QΣ,a,h(ϕ) ≥
∑
k∈Z

QΣ,a,h(χ̃[k]
α,ρ,hϕ) − D̃h2−α−ρ‖ϕ‖2

L2(Σ) ,

so that

QΣ,a,h(ϕ) ≥ (1 − Ch2−α−ρ)
∑
k∈Z

QΣ,a,h(χ̃[k]
α,ρ,hϕ) .

Then, by a support consideration and a Taylor expansion, we get

QΣ,a,h(ϕ) ≥ (1 − Ch2−α−ρ)(1 − Chρ)
∑
k∈Z

QΣ,a(sk),h(χ̃[k]
α,ρ,hϕ) ,

so that, by rescaling and a straightforward comparison,

QΣ,a,h(ϕ) ≥ λDir(Σ, p)h1−2/p(1 − Ch2−α−ρ)(1 − Chρ)
∑
k∈Z

a(sk)−4/p‖χ̃
[k]
α,ρ,hϕ‖2

Lp(Σ) .

Since a(sk)−4/p ≥ a
−4/p
max and by using that the partition is adapted to ϕ, we get

QΣ,a,h(ϕ) ≥ a−4/p
max λDir(Σ, p)h1−2/p(1 − Ch2−α−ρ)(1 − Chρ)(1 − Chα−ρ)‖ϕ‖2

Lp(Σ) .

Optimizing the remainders, we find ρ = 1/2 and α = 1. �
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We leave the proof of the corresponding localization estimates to the reader since
they follow from straightforward adaptations of the methods developed in this paper.

8. Some perspectives.

In this last section, we discuss some perspectives and open problems. There are
many possible directions to extend our investigation and we only select a few of them in
the next lines.

Firstly, it would be quite interesting to analyze the case of domains with corners. In
the semiclassical regime, the strategy developed in [3] (for the case p = 2 and Neumann
condition; see also [5] where the same strategy is used in the non-magnetic Robin case)
could likely apply to get semiclassical upper bounds (as in Theorem 1.8). Nevertheless
several modifications should be made (in particular about the considerations involving a
separation of variables or the Fourier transform). The semi-continuity (see Proposition 1.7)
in the Robin case and/or in dimension higher than three does not seem to be obvious.
For p = 2, it is only known for the Neumann case with pure magnetic field in two and
three dimensions (see [3]). For p > 2, one should perform a concentration-compactness
investigation along the singular chains. For the lower bound, the adaptations should be
easier (with a change of the localization scale near the conical singularities). Even in
the case without magnetic field, it would be quite interesting to analyze the p-eigenvalue
λ(G, 1, p) when G = (U, Id, 1, 0, c) and where U is a dihedral. It seems that the question
to know if λ(G, 1, p) is attained is open (and the answer should strongly depend on c as
we guess from Proposition 2.12).

Secondly, the waveguide situation could be extended to general partially semiclassical
problems. For instance, one could first consider a partially semiclassical and pure electric
interaction in R

d. Many inhomogeneous situations lead to this kind of limit (especially in
the case with magnetic field as we see in [4]). In the waveguides framework, the description
of curvature effects on the asymptotics of p-eigenvalues seems to be an open area (for
p = 2, it is known to play a role in the lower order terms). In the case of waveguides of
uniform width, we do not even know if the energy of the nonlinear groundstate is strictly
less than the nonlinear energy at infinity. These curvature effects on the p-eigenvalues in
magnetic/Robin situations would be interesting as well, especially if we imagine that the
non-linearity (p > 2) amplifies the localization properties of the linear groundstates.
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