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A transcendental function invariant of virtual knots
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Abstract. In this work we introduce a new invariant of virtual knots.
We show that this transcendental function invariant generalizes several poly-
nomial invariants of virtual knots, such as the writhe polynomial [3], the affine
index polynomial [19] and the zero polynomial [14]. Several applications of
this new invariant are discussed.

1. Introduction.

In recent years index type invariants of virtual knots have attracted a great deal of

attention from researchers in knot theory. Roughly speaking, this kind of virtual knot

invariants are usually defined by counting the indices (also called the weights) of real

crossing points in a virtual knot diagram. The first invariant of this type was introduced

by Henrich in [11]. It is well known that there are no degree one Vassiliev invariants in

classical knot theory. In [11] Henrich constructed a sequence of Vassiliev invariants of

degree one for virtual knots. By using the idea of parity discussed in [24], the author

defined a polynomial invariant of virtual knots, say the odd writhe polynomial [4]. We

choose this terminology because it generalizes the odd writhe, a numerical invariant of

virtual knots which was first proposed by Kauffman in [16]. Later, these polynomial

invariants were generalized independently by Im, Kim and Lee [12], Folwaczny and

Kauffman [9], [19], Cheng and Gao [3], Satoh and Taniguchi [30]. The key point of these

invariants is one can assign an index to each real crossing point such that the signed sum

of crossings with the same index is preserved under the generalized Reidemeister moves.

Several variations and applications of these invariants can be found in [5], [13], [20].

An interesting feature of index type invariants is that one can use them to distinguish

some virtual knot from its mirror image or inverse. However there also exists one obvious

drawback: if a real crossing has index zero then it has no contribution to the invariant.

Recently this shortcoming was improved by Myeong-Ju Jeong in [14]. In [14], Jeong

introduced the zero polynomial which focused on the real crossings with zero index.

Some examples of virtual knots that have trivial writhe polynomial but nontrivial zero

polynomial were given.

Inspired by Jeong’s work, in this paper we define a new virtual knot invariant which

generalizes all polynomial invariants mentioned above. The remaining part of this paper

is arranged as follows: Section 2 contains a brief review of virtual knot theory and the

definitions of several polynomial invariants of virtual knots. In Section 3 for each oriented

virtual knot diagram K we associate it with a transcendental function FK(t, s), which

has the form FK(t, s) =
∑

(±tg(s)). Here g(s) is a polynomial in s. In Section 4 it will
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be found that FK(t, s) is invariant under generalized Reidemeister moves, hence it is a

virtual knot invariant. We will discuss the relations between FK(t, s) and other index

type polynomial invariants mentioned above. Finally, some properties of FK(t, s) will be

systematically studied in Section 5.

2. Virtual knot theory and several polynomial invariants.

In this section we take a brief review of virtual knot theory and the definitions of

several polynomial invariants of virtual knots.

Virtual knot theory was first introduced by Kauffman in [15]. Roughly speaking,

classical knot theory studies the embeddings of circles in 3-dimensional Euclidean space

R3 up to ambient isotopy. Evidently the ambient space R3 can be replaced by S2×I. As

a generalization of the classical knot theory, virtual knot theory studies the embeddings

of circles in Σg × I up to ambient isotopy, homeomorphisms of Σg and the addition or

substraction of empty handles, here Σg denotes the closed orientable surface with genus

g. For simplicity we say two embeddings are stably equivalent if one can be obtained

from the other one by some operations above. When g = 0 virtual knot theory recovers

the classical knot theory [15], [2], [23].

Another useful way to understand virtual knots is to regard them as the realizations

of Gauss diagrams. Given a classical knot diagram, one can find a unique Gauss diagram

of it. However for a given Gauss diagram sometimes one can not realize it as a classical

knot diagram. In order to settle this problem, one needs to add some virtual crossings

on the knot diagram, although these virtual crossings are not indicated on the given

Gauss diagram. Since the way of adding virtual crossings is not unique, besides the

original Reidemeister moves we need to add some virtual Reidemeister moves to remove

the arbitrariness [10]. See Figure 1.

Formally speaking, a virtual knot diagram can be obtained from a classical knot

diagram by replacing some real crossings with virtual crossings. Usually a virtual cross-

ing is represented by a small circle placed around the crossing point. Two virtual knot

Ω1

Ω′
1

Ω2

Ω′
2

Ω3

Ω′
3

Ωs
3

Figure 1. Generalized Reidemeister moves.
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diagrams are equivalent if they can be connected by a finite sequence of generalized Rei-

demeister moves. Virtual knots can be defined as the equivalence classes of virtual knot

diagrams. For a given virtual knot diagram K, consider the one point compactification

of the plane where the diagram locates in, then one gets a 2-sphere. Let us attach a

1-handle to each virtual crossing and regard each virtual crossing as an overpass locally.

After interpreting all virtual crossings like this and thickening the surface, we will obtain

an embedding of S1 in Σcv(K)×[0, 1] where cv(K) is the number of virtual crossing points

in K. An important fact is these two interpretations of virtual knots coincide.

Theorem 2.1 ([15]). Two virtual knot diagrams are equivalent if and only if their

corresponding surface embeddings are stably equivalent.

Since one motivation of introducing virtual knots is to realize arbitrary Gauss dia-

gram, sometimes it is more convenient to study the corresponding Gauss diagram than

to study the virtual knot diagram. Let us give a short review of the definition of the

Gauss diagram. Let K be a virtual knot diagram, the Gauss diagram of K, written

G(K), is an oriented (counterclockwise) circle where the preimages of each real crossing

are indicated. For the two preimages of a real crossing we add a chord connecting them,

which is directed from the overcrossing to the undercrossing. Finally each chord is asso-

ciated with a sign according to the writhe of the corresponding real crossing. Recall that

a crossing is positive if one crosses over a crossing, the strand underneath goes from right

to left; otherwise it is negative. One simple example is given in Figure 2. We remark

that virtual Reidemeister moves {Ω′
1,Ω

′
2,Ω

′
3,Ω

s
3} have no effect on the Gauss diagram.

Therefore as an advantage, when we study virtual knots from the viewpoint of Gauss

diagrams we only need to consider the classical Reidemeister moves {Ω1,Ω2,Ω3}.

+

+

Figure 2. An example of Gauss diagram.

In order to classify virtual knots, one needs to introduce some virtual knot invariants.

Some classical knot invariants can be extended directly to virtual knots, such as the

Jones polynomial and the knot quandle. Later these invariants were generalized using

the “virtual structure” of virtual knots. For Jones polynomial, based on Kauffman’s

approach to it, after smoothing all real crossings one can assign a weight to each circle.

The state-sum gives a generalization of Jones polynomial for virtual knots. This were

independently finished by Miyazawa [27], [28] and Dye, Kauffman [6], now known as

the Miyazawa polynomial and the arrow polynomial. On the other hand, the idea of

quandle was generalized to some complicated algebraic structure, such as the biquandle

[8] and virtual biquandle [17]. We refer the reader to [18], [25] for more details on these

developments.

Now we recall the definition of the writhe polynomial introduced in [3]. Later we
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will show how to obtain other index type virtual knot invariants from this polynomial

invariant.

Let K be a virtual knot diagram and G(K) the corresponding Gauss diagram. Since

there is a bijection between the real crossings of K and the chords of G(K), we will use

the same letter to refer a real crossing point and the corresponding chord. Choose a

chord c in G(K), now let us assign an index to it, which will play an important role

in the definition of the writhe polynomial. Let r+ (r−) denotes the number of positive

(negative) chords crossing c from left to right, let l+ (l−) denotes the number of positive

(negative) chords crossing c from right to left (See Figure 3). Following [3], we define

the index of c as

Ind(c) = r+ − r− − l+ + l−.

We mention some similar indices appeared in the literature. In [11] Henrich defined an

intersection index for each chord, which equals to the absolute value of the index here.

In [7] Dye introduced a parity mapping from the chords of a Gauss diagram to Z, which

is exactly the inverse of the index used here.

+

−

−
+

c

r+

r−

l+

l−

Figure 3. Index of a chord.

Here we list some useful properties of Ind(c), which can be easily verified.

1. If c is isolated, i.e. no other chord has nonempty intersection with c, then Ind(c) =

0.

2. The two crossings appeared in Ω2 have the same index.

3. The indices of the three crossings appeared in Ω3 are invariant under Ω3.

4. Ωi (i = 1, 2, 3) preserves the indices of chords that do not appear in Ωi (i = 1, 2, 3).

5. If K contains no virtual crossings, then every crossing of K has index zero.

6. Ind(c) is invariant under switching some other real crossings.

Due to the properties above, one can define a numerical invariant of virtual knots

as below

QK =
∑

Ind(ci)�=0

w(ci) (ci ∈ Cr(K)),
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where w(ci) denotes the writhe of ci and Cr(K) denotes the set of real crossings of K.

Note that

−QK =
∑

Ind(ci)=0

w(ci)− w(K) (ci ∈ Cr(K)),

where w(K) denotes the writhe of K. The key observation is that QK can be generalized

by counting chords with a fixed index. For the sake of simplicity we write it in the form

of a polynomial. We define the writhe polynomial WK(t) to be

WK(t) =
∑

Ind(ci)�=0

w(ci)t
Ind(ci).

Note that WK(1) = QK . On the other hand, we remark that this definition is slightly

different from that given in [3], where the polynomial is equal to WK(t) · t. One can

easily deduce that WK(t) is a virtual knot invariant from the properties listed above.

Before discovering the indices of chords, it was first observed by Kauffman [16] that

J(K) =
∑

Ind(ci) is odd

w(ci),

which is named the odd writhe, is a virtual knot invariant. Later this numerical invariant

was generalized to the odd writhe polynomial, which equals to

∑

Ind(ci) is odd

w(ci)t
Ind(ci).

Again the definition we give here is also a bit different from the one we gave in [4]. Besides

of the writhe polynomial, the odd writhe polynomial was independently generalized by

several groups. We list the connections between them and the writhe polynomial below.

1. The parity writhe polynomial FK(x, y) introduced in [12] can be described as

∑

Ind(ci) is odd

w(ci)x
Ind(ci)+1 +

∑

Ind(ci) is even

w(ci)y
Ind(ci)+1 − w(K)x.

Note that replacing the variable y with x will not weaken the invariant. In this

case, it coincides with (WK(x)−QK)x = (WK(x)−WK(1))x.

2. The affine index polynomial PK(t) defined in [19] satisfies

PK(t) = WK(t)−QK = WK(t)−WK(1).

It is worth mentioning that in [19] the algebraic structure behind the affine index

polynomial was discussed. It was proved that this kind of index polynomial is es-

sentially the unique one derived from an affine linear flat biquandle with coefficients

in a commutative ring without zero divisors.

3. The nth parity writhe Jn(K) [30] is equal to the coefficient of tn in WK(t).
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Before ending this section we will give an interesting application of using writhe

polynomial to detect the non-classicality of virtual knots. A long-standing open problem

in knot theory is whether there exists a nontrivial knot with trivial Jones polynomial.

However in virtual knot theory, it is well-known that there exist infinitely many nontrivial

virtual knots with trivial Jones polynomial. More precisely, we have the following result.

Theorem 2.2 ([18]). Let K be a nontrivial classical knot, then there is a corre-

sponding nontrivial virtual knot v(K) with trivial Jones polynomial.

Proof. We give a sketch of the proof, see [18] for more details. Choose a diagram

ofK, let us still useK to denote it. We can find a set of crossings such that after switching

all these crossings one will obtain a trivial knot. Now for each crossing we take a local

replacement (virtualization), see Figure 4.

Figure 4. Virtualization.

Denote the new virtual knot diagram by v(K). Note that switching a crossing and

virtualizing a crossing have the same effect on the Jones polynomial, it follows that the

Jones polynomial of v(K) is trivial. However v(K) has the same involutory quandle (also

called kei) as K, which is nontrivial since K is nontrivial. Thus, v(K) is a nontrivial

virtual knot with unit Jones polynomial. �

Now we can ask the following two questions.

1. Can every nontrivial virtual knot that has trivial Jones polynomial be obtained by

virtualization?

2. Is v(K) non-classical?

If both the answers are YES, then we can conclude that Jones polynomial detects the

unknot. For this reason, it was suggested by Kauffman [19] to characterize which virtu-

alization can be detected by index type invariants.

Proposition 2.3. Let K be a reduced positive (negative) classical knot diagram.

Let K ′ be a virtual knot diagram obtained from K by applying virtualization at a crossing

c, then K ′ represents a non-classical virtual knot.

Proof. Without loss of generality, we assume that K is positive. Notice that the

Gauss diagram G(K ′) can be derived from G(K) by changing the writhe of c. Since

K is a classical knot diagram, it follows that Ind(c) = 0 in G(K). Let a ( �= 0, since

K is reduced) denotes the number of positive chords crossing c from left to right, then

there are also a positive chords crossing c from right to left. Now it is easy to check that

WK′(t) = at2 + at−2, which is nontrivial. �
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As a corollary, if a positive (negative) classical knot diagram has unknotting number

one, then the corresponding virtual knot v(K) is non-classical. This gives a partial answer

to the question above. Note that this result is in fact a special case of the main theorem

in [33], which is obtained from an analysis of the knot group.

3. The definition of FK(t, s).

In this section we give the definition of FK(t, s). The main idea of the construction

is to replace the integer Ind(c) in WK(t) by a polynomial gc(s).

Let K be a virtual knot diagram and c a real crossing of it. Denote the chords

crossing c from left to right and the chords crossing c from right to left by {r1, . . . , rn} and
{l1, . . . , lm} respectively. Let φ denotes the canonical quotient map from Z to Z|Ind(c)|.
Now we define the index function gc(s) as below

gc(s) =

n∑

i=1

w(ri)s
φ(Ind(ri)) −

m∑

i=1

w(li)s
φ(−Ind(li)).

More precisely, if Ind(c) = 0, then in this case φ = id, therefore

gc(s) =

n∑

i=1

w(ri)s
Ind(ri) −

m∑

i=1

w(li)s
−Ind(li).

If Ind(c) = ±1, then φ sends every integer into zero, hence

gc(s) =

n∑

i=1

w(ri)−
m∑

i=1

w(li) = Ind(c).

In general, gc(s) takes values in Z[s, s−1]/(s|Ind(c)| − 1).

For the writhe polynomialWK(t) and the numerical invariantQK , we define a refined

version for each of them by letting

WK(t, s) =
∑

Ind(ci)�=0

w(ci)t
gci (s), and QK(t, s) = w(K)−

∑

Ind(ci)=0

w(ci)t
gci (s).

Now we define the function FK(t, s) as

FK(t, s) =
∑

ci

w(ci)t
gci (s) − w(K) = WK(t, s)−QK(t, s).

We remark that according to the definition of the index function, it is easy to see that

gci(1) = Ind(ci). Hence gci(s) in fact takes values in Z[s, s−1]/(s|gci (1)| − 1), which

guarantees the definition above is well-defined.

Theorem 3.1. FK(t, s) is a virtual knot invariant.

Here we make some remarks on this invariant. First, in fact it is not necessary to use

two variables. One can easily find that replacing s with t will not weaken this invariant.
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However it is more convenient to regard it as a generalization of some other polynomial

invariants if we use FK(t, s) rather than FK(t, t). For example, we have

WK(t, 1) = WK(t), QK(t, 1) = QK , thus FK(t, 1) = PK(t).

On the other hand, Myeong-Ju Jeong introduced the zero polynomial in [14], which was

defined by

ZK(t) =
∑

Ind(ci)=0

w(ci)(t
gci − 1), where gci =

∑

Ind(rj)=0

w(rj)−
∑

Ind(lj)=0

w(lj).

The zero polynomial can be used to detect the non-classicality of some virtual knots that

have trivial writhe polynomials. According to the definition above one can easily deduce

that

ZK(t) = QK −QK(t, 0).

Together with the discussion in Section 2, we see that FK(t, s) indeed generalises all the

polynomial invariants mentioned in Section 1.

Another important thing we want to point out is, WK(t, s) and QK(t, s) are mutually

independent. Let us make a bit more explanation about this. At the beginning of this

story, we have two numerical invariants of virtual knots,

QK =
∑

Ind(ci)�=0

w(ci) and
∑

Ind(ci)=0

w(ci)− w(K).

Obviously they are mutually the inverse of each other. After the first generalization, we

have two polynomial invariants,

WK(t) =
∑

Ind(ci)�=0

w(ci)t
Ind(ci) and

∑

Ind(ci)=0

w(ci)t
Ind(ci) − w(K).

We can regard the first part as the contributions from the chords with nontrivial indices,

and the second part contains the contributions from the chords with index zero. However,

the second part is preserved hence it can be derived from the first part. After the second

generalization, now we have two transcendental function invariants of virtual knots,

WK(t, s) =
∑

Ind(ci)�=0

w(ci)t
gci (s) and −QK(t, s) =

∑

Ind(ci)=0

w(ci)t
gci (s) − w(K).

Later we will give some examples to show that WK(t, s) and QK(t, s) are mutually

independent, i.e. neither can be derived directly from the other one. Since

WK(1, s) = QK = QK(t, 1),

WK(t, s) and QK(t, s) can be viewed as two different generalizations of our original

numerical invariant QK .

Now we give one example to explain how to calculate FK(t, s). Let us consider the
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Figure 5. G(K).

virtual knot K, the Gauss diagram G(K) is depicted in Figure 5. First we write down

the index of each chord

Ind(c1) = Ind(c2) = 2, Ind(c3) = Ind(c4) = −1, Ind(c5) = 0.

Next we list the index function of each chord

gc1(s) = s+ 1, gc2(s) = 2, gc3(s) = gc4(s) = −1, gc5(s) = s−2 − s−1.

It follows that

FK(t, s) = ts+1 − t2 + t−1 − t−1 + ts
−2−s−1 − 1 = ts+1 − t2 + ts

−2−s−1 − 1.

We remark that in this example the writhe polynomial and zero polynomial are both

trivial.

The second example concerns the three virtual knots described in Figure 6. Direct

calculation shows that

WK1(t, s) = t+ t−1, QK1(t, s) = 2,

WK2
(t, s) = t+ t−1, QK2

(t, s) = −t1−s−1 − ts
−1−1 + 4,

WK3
(t, s) = 3t−1 − t−3s, QK3

(t, s) = 2.

Note that

WK1
(t, s) = WK2

(t, s), QK1
(t, s) = QK3

(t, s),

but

+
+

+

+

+

+

++− +
+

G(K1) G(K2) G(K3)

Figure 6. Gauss diagrams of K1,K2,K3.
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QK1(t, s) �= QK2(t, s), WK1(t, s) �= WK3(t, s).

This implies that in general WK(t, s) and QK(t, s) are mutually independent, as we

claimed before.

The third example was suggested by Kauffman in [19]. Proposition 2.3 tells us that

writhe polynomial can be used to detect the non-classicality of the virtualization of some

classical knots. However there exists some classical knot whose virtualization has the

trivial writhe polynomial. For example, consider the classical knotK illustrated in Figure

7, switching crossings {c1, c2, c3} yields the trivial knot. Straightforward calculation

shows that Wv(K)(t) = 0 but Fv(K)(t, s) = t−2s2−2 − t−3s2−1 − ts
2−1 + ts

−4−1, which

means v(K) is non-classical and hence nontrivial.

c1

c2

c3

c1

c2

c3

−

+

−

−

+

+

−

+

K G(v(K))

Figure 7. A classical knot and the Gauss diagram of its virtualization.

4. The proof of Theorem 3.1.

In this section we give the proof of Theorem 3.1. Before doing this, we need a simple

lemma.

Lemma 4.1. Let a, b, c be the three crossings of the virtual knot diagram locally

described on the left side of Figure 8. Then Ind(a)−Ind(b)+Ind(c) = 0.

+

+ −
+

− +

a b

c

ba

c ab

c

K G(K)1 G(K)2

x y

z

Figure 8. Two possibilities of the Gauss diagram of K.

Proof. According to the connecting ways outside of the local diagram, there are

two possibilities of the Gauss diagram of K, say G(K)1 and G(K)2 (see Figure 8).

Let us consider G(K)1. Due to the sixth property of index we listed in Section 2,

without loss of generality, we assume there are x, y, z positive chords intersects a and c,
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b and c, a and b respectively. See the middle graph of Figure 8 for the directions of these

chords. It follows directly that

Ind(a) = x− z, Ind(b) = −y − z, Ind(c) = −x− y,

which implies that Ind(a)−Ind(b)+Ind(c) = 0. The proof for G(K)2 is analogous. �

Now we give the proof of Theorem 3.1.

Proof. It suffices to check that FK(t, s) is invariant under all Reidemeister moves

illustrated in Figure 9 [29].

Ω1a Ω1b Ω2a Ω3a

Figure 9. A generating set of Reidemeister moves.

The only chord involved in Ω1a is isolated. Therefore it has index zero and the

indices of other chords are invariant. Consequently the index function of the isolated

chord is zero, and the index functions of other chords are invariant under Ω1a. It is

obvious that FK(t, s) is preserved under Ω1a. Similarly one can prove that Ω1b also

preserves FK(t, s).

For Ω2a, first we notice that the two chords involved have the same index but

different writhes. Secondly, if a chord intersects one of them then it also has nonempty

intersection with the other one. For these reasons, the two chords involved in Ω2a have

the same index functions but different writhes. It follows that the contributions from

these two chords to FK(t, s) will cancel out. On the other hand, these two chords will not

affect the index function of any other chord, which implies that the contribution from

any chord which is not involved in Ω2a is invariant under Ω2a. We conclude that FK(t, s)

is invariant under Ω2a.

Now let us consider the third Reidemeister move Ω3a. As we mentioned in Lemma

4.1, there exist two possibilities for the Gauss diagram of the whole knot diagram. We

only consider the one corresponding to G(K)1, the proof for G(K)2 is quite similar.

The variation of the Gauss diagram G(K)1 under Ω3a is depicted in Figure 10.

+

+ −
+

+ −

ba

c ba

c

Ω3a

Figure 10. The variation of G(K)1 under Ω3a.

Recall the properties (3) and (4) mentioned in Section 2, the index of each chord is

preserved under Ω3a. For any chord d which is not involved in Ω3a, it is not difficult to

observe that the index function gd(s) is invariant. Therefore it suffices to consider the

behaviors of ga(s), gb(s), gc(s) under Ω3a.
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For the Gauss diagram on the left side of Figure 10, we have

ga(s) = a(s) + sφa(−Ind(b)) − sφa(−Ind(c)),

gb(s) = b(s) + sφb(Ind(a)) − sφb(−Ind(c)),

gc(s) = c(s) + sφc(Ind(a)) − sφc(Ind(b)).

Here a(s), b(s), c(s) count the contributions from those chords not involved in

Ω3a to ga(s), gb(s), gc(s) respectively, φa, φb, φc denote the projection from Z to

Z|Ind(a)|,Z|Ind(b)|,Z|Ind(c)| respectively. For the Gauss diagram on the right side of Figure

10, one computes that

ga(s) = a(s), gb(s) = b(s), gc(s) = c(s).

Recall that Lemma 4.1 tells us Ind(a)−Ind(b)+Ind(c)=0. Thus

sφa(−Ind(b)) − sφa(−Ind(c)) = sφa(−Ind(a)−Ind(c)) − sφa(−Ind(c)) = 0,

sφb(Ind(a)) − sφb(−Ind(c)) = sφb(Ind(b)−Ind(c)) − sφb(−Ind(c)) = 0,

sφc(Ind(a)) − sφc(Ind(b)) = sφc(Ind(b)−Ind(c)) − sφc(Ind(b)) = 0,

The proof is completed. �

5. Some properties of FK(t, s).

In this section we listed some basic properties of FK(t, s). First of all, similar to the

other index type invariants, FK(t, s) is good at detecting the non-classicality of virtual

knots.

Proposition 5.1. Let K be a virtual knot diagram, if all real crossings of K have

trivial indices, then FK(t, s) = 0. In particular, classical knots have trivial FK(t, s).

Proof. Choose a real crossing ci, since all other crossings have trivial indices,

then gci(s) = Ind(ci) = 0. It follows that

FK(t, s) =
∑

ci

w(ci)t
gci (s) − w(K) =

∑

ci

w(ci)− w(K) = 0. �

Proposition 5.2. Given a virtual knot diagram K, let m(K) denote the virtual

knot diagram with all real crossings switched, let r(K) be the virtual knot diagram with

the orientation reversed. Then

Fm(K)(t, s) = −FK(t−1, s−1) and Fr(K)(t, s) = FK(t−1, s).

Proof. Choose a chord c in G(K), we denote the corresponding chords in

G(m(K)) and G(r(K)) by c′ and c′′ respectively. According to the definition of chord

index, it is not difficult to observe that

w(c) = −w(c′) = w(c′′) and Ind(c) = −Ind(c′) = −Ind(c′′).
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It follows that

gc′i(s) = −gci(s
−1) and gc′′i (s) = −gci(s).

Then if FK(t, s) =
∑
ci

w(ci)t
gci (s) − w(K), we have

Fm(K)(t,s)=
∑

c′i

w(c′i)t
gc′

i
(s)−w(m(K))=−

∑

ci

w(ci)t
−gci (s

−1)+w(K)=−FK(t−1,s−1),

and

Fr(K)(t, s) =
∑

c′′i

w(c′′i )t
gc′′

i
(s) − w(r(K)) =

∑

ci

w(ci)t
−gci (s) − w(K) = FK(t−1, s). �

In [32], Silver and Williams introduced the ith virtual Alexander polynomial of

virtual links. Very recently, Mellor [26] proved that the affine index polynomial PK(t)

is determined by the normalized 0th virtual Alexander polynomial Δ0(K)(u, v). More

precisely, B. Mellor showed that

PK(t) =
Δ0(K)(u, v)

uv − 1

∣∣∣∣
u=t−1,v=t

.

Now we show that our new virtual knot invariant FK(t, s) cannot be determined by

Δ0(K)(u, v) completely. Consider the virtual knot K in Figure 11. Since the Alexander

ideals of K and r(K) are identical [31], it follows that Δ0(K)(u, v) = Δ0(r(K))(u, v).

However, we have

FK(t, s) = −ts+1 + t2s + ts
−2−s−1 − 1 �= FK(t−1, s) = Fr(K)(t, s).

Figure 11. A non-invertible virtual knot.

Recall that the real crossing number of a virtual knot diagram is the number of real

crossings of this diagram. In virtual knot theory, the real crossing number cr(K) of a

virtual knot K is the smallest number of real crossings of any diagram of K. Obviously

cr(K) = 0 if and only if K is trivial, and there is no virtual knot with cr(K) = 1.

According to the definition of FK(t, s), it is easy to see that FK(t, s) gives a natural

lower bound for cr(K).

Proposition 5.3. For a given virtual knot K, if FK(t, s) has the form FK(t, s) =
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∑
gi(s)

agi(s)t
gi(s) + b, where agi(s), b ∈ Z and gi(s) ∈ Z[s, s−1] − {0}, then cr(K) ≥∑

gi(s)
|agi(s)|.

For example, let us consider the virtual knot K described in Figure 12. Direct

calculation shows that WK(t) = t2 + t+ t−3 and ZK(t) = 0. The writhe polynomial tells

us that cr(K) ≥ 3. In contrast we have FK(t, s) = ts+1 + t + ts
−3−s−2

+ t−s2−s−1 − 4,

which implies cr(K) ≥ 4. Since the Gauss diagram in Figure 12 has only 4 chords, we

conclude that cr(K) = 4.

+
+
+

+

Figure 12. A virtual knot with cr(K) = 4.

Next we study the behavior of FK(t, s) under a connected sum. Because of the

forbidden move, in general the connected sum is not well-defined for virtual knots. For

example, the connected sum of two trivial knots maybe nontrivial [22]. Similar to other

index type invariants of virtual knots, FK(t, s) is additive under a connected sum.

Proposition 5.4. Let K1 and K2 be two virtual knots, then FK1#K2
(t, s) =

FK1(t, s) + FK2(t, s). Here K1#K2 denotes one of the connected sums of K1 and K2

with an arbitrarily chosen connection place.

Proof. It suffices to notice that in G(K1#K2) the chords from G(K1) have no

intersections with the chords from G(K2). The result follows directly from the definition.

�

This proposition reveals a shortcoming of FK(t, s). If a nontrivial virtual knot is a

connected sum of two trivial knots, then we can not detect it via calculating the FK(t, s)

of it. For example, the Kishino Knot depicted in Figure 13 has trivial FK(t, s). However

it is well known that the Kishino Knot is nontrivial (in fact even the corresponding

flat virtual knot of it is nontrivial), which can be detected by, for example, the arrow

polynomial [18]. We remark that the Kishino Knot also provides a counterexample to

the first question we listed in the end of Section 2, since the involutory quandle of Kishino

Knot is trivial. Further, if each crossing of K has index zero, Proposition 5.1 tells us that

FK(t, s) = 0. The Kishino Knot is a special case of this. For writhe polynomial, if one

chord has index zero then it has no contribution to the writhe polynomial. For FK(t, s),

Figure 13. The Kishino Knot.
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the contribution comes from index zero chord may not be zero. However FK(t, s) is

powerless to distinguish a virtual knot from the unknot if each chord of it has index zero.

It is a challenging question to deal with this kind of knot by introducing some extended

index invariants. The three loop isotopy invariant [5] defined by assigning a weight to a

pair of non-intersecting chords may offer some hints to this problem.

In classical knot theory, the existence of a non-trivial cosmetic crossing change is an

longstanding open problem ([21], Problem 1.58). Recall that a crossing change on a knot

diagram D is cosmetic if the new knot diagram D′ represents the same knot as D. For

virtual knots, we also want to understand for which kind of real crossing, taking crossing

change at it will yield a different virtual knot. In [9], Folwaczny and Kauffman proved

that a cosmetic crossing change is impossible at any real crossing point with non-trivial

index. This result can be enhanced by the following proposition.

Proposition 5.5. Let K be a virtual knot diagram and c a real crossing point with

non-trivial index function, then switching c will yield a different virtual knot.

Proof. Without loss of generality, we assume that w(c) = +1. Let K ′ be the

virtual knot obtained from K by switching c, and let c′ be the switched crossing in K ′.
Since switching c changes both the direction and the writhe of the corresponding chord of

c, then the indices of other chords are preserved and Ind(c′) = −Ind(c). According to the

definition of the index function, for any other chord a which has nonempty intersection

with c, one easily conclude that c and c′ have the same contribution to the index function

of a. Hence the index function of each chord is invariant except c. It follows that

FK(t, s)− FK′(t, s) = tgc(s) − 1 + tgc′ (s) − 1.

By assumption, gc(s) �= 0, it follows that FK(t, s)− FK′(t, s) �= 0. �

Finally, let us take a moment to discuss the degree of the invariant we introduced

in the present paper. In virtual knot theory, there are mainly two kinds of finite-type

invariants. One was introduced by L. Kauffman in his introductory paper of virtual knot

theory [15], the other one was proposed by Goussarov, Polyak, and Viro in [10]. Here

we will focus on the Kauffman finite-type invariants, for the GPV finite-type invariants

we refer readers to [10]. We remark that if a virtual knot invariant is a GPV finite-

type invariant then it must be a Kauffman finite-type invariant. On the other hand, if

a knot diagram is classical, in this case Kauffman finite-type invariants are exactly the

classical finite-type invariants [1]. Recall that a virtual knot invariant f taking values

in an abelian group is called a finite-type invariant of degree ≤ n, if for any virtual knot

diagram K with n+ 1 singular crossings we have

∑

σ∈{0,1}n+1

(−1)|σ|f(Kσ) = 0.

Here σ runs over all (n + 1)-tuples of zeros and ones, |σ| denotes the number of ones

in σ and Kσ is obtained from K by replacing the i-th singular crossing with a positive

(negative) crossing if the i-th position of σ is zero (one). The minimal n is said to be the
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degree of f .

Proposition 5.6. The invariant FK(t, s) is a finite-type invariant of degree one.

Proof. It is sufficient to show that for any virtual knot diagram K with two

singular crossings, we have FK00
(t, s)− FK01

(t, s)− FK10
(t, s) + FK11

(t, s) = 0.

Let aσ, bσ denote the two real crossings obtained from the singular crossings in Kσ

(σ ∈ {00, 01, 10, 11}). First we assume that the chord corresponding to aσ has no inter-

section with the chord corresponding to bσ. It is not difficult to observe that Ind(a00) =

Ind(a01) = −Ind(a10) = −Ind(a11), Ind(b00) = Ind(b10) = −Ind(b01) = −Ind(b11), and

the index of any other chord in Kσ (σ ∈ {00, 01, 10, 11}) is equivalent. It follows that for
any real crossing c in K, the corresponding chords in Kσ (σ ∈ {00, 01, 10, 11}) have the

same index function. Therefore we only need to consider the contributions from aσ, bσ
to FK00

(t, s)− FK01
(t, s)− FK10

(t, s) + FK11
(t, s), which equals

tga(s) + tgb(s) − tga(s) + t−gb(s
−1) + t−ga(s

−1) − tgb(s) − t−ga(s
−1) − t−gb(s

−1) = 0.

Here ga(s) (gb(s)) denotes the index function of a00 (b00) in K00.

When the corresponding chord of aσ intersects the chord corresponding to bσ in Kσ,

all arguments above are still valid. The details are left to the reader. �

Roughly speaking, the reason why FK(t, s) is a finite-type invariant of degree one

is that FK(t, s) is a weighted sum of each chord in the Gauss diagram. If one wants to

define a finite-type invariant of higher degree, a sensible idea is to associate a weight to

each combinatorial structure of several chords, then take the sum over all subgraphs with

this structure in the Gauss diagram. Recently, a family of finite-type invariants of degree

two were defined in this way by Chrisman and Dye in [5]. It is an interesting question

to find some explicit virtual knot invariants with higher degrees.
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