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Abstract. We reduce Iitaka’s subadditivity conjecture for the logarith-
mic Kodaira dimension to a special case of the generalized abundance con-
jecture by establishing an Iitaka type inequality for Nakayama’s numerical
Kodaira dimension. Our proof heavily depends on Nakayama’s theory of ω-
sheaves and ω̂-sheaves. As an application, we prove the subadditivity of the
logarithmic Kodaira dimension for affine varieties by using the minimal model
program for projective klt pairs with big boundary divisor.

1. Introduction.

In this paper, we discuss Iitaka’s subadditivity conjecture on the logarithmic Kodaira

dimension κ.

Conjecture 1.1 (Subadditivity of logarithmic Kodaira dimension). Let g : V →
W be a dominant morphism between algebraic varieties. Then we have the following

inequality

κ(V ) ≥ κ(F ′) + κ(W )

where F ′ is an irreducible component of a sufficiently general fiber of g : V → W .

Conjecture 1.1 is usually called Conjecture Cn,m when dimV = n and dimW = m.

If V is complete in Conjecture 1.1, then it is nothing but the famous Iitaka subadditivity

conjecture for the Kodaira dimension κ. We see that Conjecture 1.1 is equivalent to:

Conjecture 1.2. Let f : X → Y be a surjective morphism between smooth pro-

jective varieties with connected fibers. Let DX (resp. DY ) be a simple normal crossing

divisor on X (resp. Y ). Assume that Suppf∗DY ⊂ SuppDX . Then we have

κ(X,KX +DX) ≥ κ(F,KF +DX |F ) + κ(Y,KY +DY )

where F is a sufficiently general fiber of f : X → Y .

One of the main purposes of this paper is to prove:
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Theorem 1.3 (Main theorem). Let f : X → Y be a surjective morphism between

smooth projective varieties with connected fibers. Let DX (resp. DY ) be a simple normal

crossing divisor on X (resp. Y ). Assume that Suppf∗DY ⊂ SuppDX . Then we have

κσ(X,KX +DX) ≥ κσ(F,KF +DX |F ) + κσ(Y,KY +DY )

where F is a sufficiently general fiber of f : X → Y .

Note that κσ denotes Nakayama’s numerical Kodaira dimension and that the in-

equality κσ ≥ κ always holds, where κ is Iitaka’s D-dimension. Theorem 1.3 is a variant

of Nakayama’s theorem (see [N, V.4.1. Theorem] and Remark 3.8). By Theorem 1.3,

Conjecture 1.2 is reduced to:

Conjecture 1.4. Let X be a smooth projective variety and let DX be a simple

normal crossing divisor on X. Then the equality

κσ(X,KX +DX) = κ(X,KX +DX)

holds.

Conjecture 1.4 is known as a special case of the generalized abundance conjecture (see

Conjecture 2.10), which is one of the most important conjectures for higher-dimensional

algebraic varieties. As an easy corollary of Theorem 1.3, we have:

Corollary 1.5. In Theorem 1.3, we further assume that dimX ≤ 3. Then we

have

κ(X,KX +DX) = κσ(X,KX +DX)

≥ κσ(F,KF +DX |F ) + κσ(Y,KY +DY )

≥ κ(F,KF +DX |F ) + κ(Y,KY +DY ).

In particular, if g : V → W is a dominant morphism between algebraic varieties with

dimV ≤ 3, then we have the inequality

κ(V ) ≥ κ(F ′) + κ(W )

where F ′ is an irreducible component of a sufficiently general fiber of g : V → W .

Note that the equality κσ(X,KX +DX) = κ(X,KX +DX) in Corollary 1.5 follows

from the minimal model program and the abundance theorem for (X,DX) (see Propo-

sition 4.3). We also note that Corollary 1.5 is new when dimV = 3 and dimW = 1.

Anyway, Conjecture 1.1 now becomes a consequence of the minimal model program and

the abundance conjecture by Theorem 1.3 (see Remark 4.5). This fact strongly supports

Conjecture 1.1.

As an application of Theorem 1.3, we obtain:

Corollary 1.6 (Subadditivity of the logarithmic Kodaira dimension for affine va-

rieties). Let g : V → W be a dominant morphism from an affine variety V . Then we
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have

κ(V ) ≥ κ(F ′) + κ(W )

where F ′ is an irreducible component of a sufficiently general fiber of g : V → W .

Note thatW is not necessarily assumed to be affine in Corollary 1.6. In order to prove

Corollary 1.6, we construct (X,DX) with κ(V ) = κ(X,KX + DX) such that (X,DX)

has a good minimal model or a Mori fiber space structure by using the minimal model

program for projective klt pairs with big boundary divisor. Note that κσ(X,KX+DX) =

κ(X,KX +DX) holds for such (X,DX).

Remark 1.7. By the proof of Corollary 1.6, we see that the inequality

κ(V ) ≥ κ(F ′) + κ(W )

holds for every strictly rational dominant map g : V ��� W from an affine variety V .

In this paper, we use Nakayama’s theory of ω-sheaves and ω̂-sheaves in order to prove

an Iitaka type inequality for Nakayama’s numerical Kodaira dimension (see Theorem 1.3).

It is closely related to Viehweg’s clever covering trick and weak positivity. We also use

the minimal model program for projective klt pairs with big boundary divisor for the

study of affine varieties (see Section 4).

Remark 1.8. Let f : X → Y be a projective surjective morphism between smooth

projective varieties with connected fibers. In [K], Kawamata proved that the inequality

κ(X) ≥ κ(F ) + κ(Y ),

where F is a sufficiently general fiber of f : X → Y , holds under the assumption that

the geometric generic fiber Xη of f : X → Y has a good minimal model. His approach

is completely different from ours. For the details, see [K].

Finally the following theorem, which is a slight generalization of Theorem 1.3, was

suggested by the referee.

Theorem 1.9. Let f : X → Y be a proper surjective morphism from a normal

variety X onto a smooth complete variety Y with connected fibers. Let DX be an effective

Q-divisor on X such that (X,DX) is lc and let DY be a simple normal crossing divisor

on Y . Assume that Suppf∗DY ⊂ �DX�, where �DX� is the round-down of DX . Then

we have

κσ(X,KX +DX) ≥ κσ(F,KF +DX |F ) + κσ(Y,KY +DY )

where F is a sufficiently general fiber of f : X → Y .

The formulation of Theorem 1.9 seems to be natural and useful from the minimal

model theoretic viewpoint.
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We summarize the contents of this paper. In Section 2, we briefly recall Iitaka’s

logarithmic Kodaira dimension, Nakayama’s numerical Kodaira dimension, Nakayama’s

ω-sheaves and ω̂-sheaves, and some related topics. In Section 3, we prove Theorem 1.3,

which is the main theorem of this paper. Our proof heavily depends on Nakayama’s

argument in his book [N], which is closely related to Viehweg’s covering trick and weak

positivity. In Section 4, we discuss the minimal model program for affine varieties. For

any affine variety, we see that there is a smooth compactification which has a good mini-

mal model or a Mori fiber space structure. As an application, we obtain the subadditivity

of the logarithmic Kodaira dimension for affine varieties by Theorem 1.3 (see Corollary

1.6).

Acknowledgments. The author thanks Professors Yoshinori Gongyo, Takeshi

Abe, Noboru Nakayama, and the referee for useful and helpful comments. He thanks

Université Lille 1 for its hospitality. He would like to thank Professor De-Qi Zhang for

pointing out a mistake. Finally, he thanks Professors Thomas Eckl and Brian Lehmann

for answering his questions on various numerical dimensions.

We will work over C, the complex number field, throughout this paper. For the

standard notation of the minimal model program, see [F1] and [F3].

2. Preliminaries.

In this section, we quickly explain the logarithmic Kodaira dimension introduced by

Iitaka, Nakayama’s numerical Kodaira dimension, ω-sheaves, and ω̂-sheaves.

2.1 (Sufficiently general fibers). Let us recall the definition of sufficiently

general fibers for the reader’s convenience.

Definition 2.2 (Sufficiently general fibers). Let f : X → Y be a morphism

between algebraic varieties. Then a sufficiently general fiber F of f : X → Y means

that F = f−1(y) where y is any point contained in a countable intersection of nonempty

Zariski open subsets of Y .

A sufficiently general fiber is sometimes called a very general fiber in the literature.

2.3 (Logarithmic Kodaira dimension). The notion of the logarithmic Kodaira

dimension was introduced by Shigeru Iitaka (see [I1]).

Definition 2.4 (Logarithmic Kodaira dimension). Let V be an irreducible al-

gebraic variety. By Nagata’s theorem, we have a complete algebraic variety V which

contains V as a dense Zariski open subset. By Hironaka’s theorem, we have a smooth

projective variety W and a projective birational morphism μ : W → V such that if

W = μ−1(V ), then D = W −W = μ−1(V − V ) is a simple normal crossing divisor on

W . The logarithmic Kodaira dimension κ(V ) of V is defined as

κ(V ) = κ(W,KW +D)
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where κ denotes Iitaka’s D-dimension.

It is well-known and is easy to see that κ(V ) is well-defined, that is, it is independent

of the choice of the pair (W,D).

As we have already explained, the following conjecture (see Conjecture 1.1) is usually

called Conjecture Cn,m when dimV = n and dimW = m.

Conjecture 2.5 (Subadditivity of logarithmic Kodaira dimension). Let g : V →
W be a dominant morphism between algebraic varieties. Then we have the following

inequality

κ(V ) ≥ κ(F ′) + κ(W )

where F ′ is an irreducible component of a sufficiently general fiber of g : V → W .

Note that Conjecture 1.2 is a special case of Conjecture 2.5 by putting V = X \DX

and W = Y \DY . On the other hand, we can easily check that Conjecture 2.5 follows

from Conjecture 1.2. For the details, see the proof of Corollary 1.6. Anyway, Conjecture

2.5 (see Conjecture 1.1) is equivalent to Conjecture 1.2. We note that Conjecture 1.2 is

easier to handle than Conjecture 2.5 from the minimal model theoretic viewpoint.

2.6 (Nakayama’s numerical Kodaira dimension). Let us recall the definition

of Nakayama’s numerical Kodaira dimension.

Definition 2.7 (Nakayama’s numerical Kodaira dimension). Let X be a smooth

projective variety and let D be a Cartier divisor on X. We put

σ(D;A) = max

{
k ∈ Z≥0

∣∣∣∣ lim sup
m→∞

dimH0(X,OX(A+mD))

mk
> 0

}

and

κσ(X,D) = max{σ(D;A) |A is a divisor}.

Note that if H0(X,OX(A + mD)) 	= 0 only for finitely many m ∈ Z≥0 then we define

σ(D;A) = −∞. It is obvious that κσ(X,D) ≥ κ(X,D), where κ(X,D) denotes Iitaka’s

D-dimension of D. We also note that κσ(X,D) ≥ 0 if and only if D is pseudo-effective

(see [N, V.1.4. Corollary]).

When X is a normal projective variety, we take a resolution ϕ : X ′ → X, where X ′

is a smooth projective variety, and put

κσ(X,D) = κσ(X
′, ϕ∗D).

It is not difficult to see that κσ(X,D) is well-defined and has various good properties.

For the details, see [N, V. Section 2], [L] and [E].

The following lemma, which is lacking in [N], will play a crucial role in the proof of

Theorem 1.3.
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Lemma 2.8 ([L, Theorem 6.7 (7)]). Let D be a pseudo-effective Cartier divisor on

a smooth projective variety X. We fix some sufficiently ample Cartier divisor A on X.

Then there exist positive constants C1 and C2 such that

C1m
κσ(X,D) ≤ dimH0(X,OX(mD +A)) ≤ C2m

κσ(X,D)

for every sufficiently large m.

For the details, see [L, Theorem 6.7 (7)] and [E, 2.8, 2.10, and Theorem 0.2].

Remark 2.9. Nakayama’s numerical Kodaira dimension can be defined for R-

Cartier R-divisors and has many equivalent definitions and several nontrivial character-

izations. For the details, see [N, V. Section 2], [L, Theorem 1.1], and [E, Theorem 0.2].

Note that [E, 2.9] describes a gap in Lehmann’s paper [L].

The following conjecture is one of the most important conjectures for higher-

dimensional algebraic varieties. Conjecture 1.4 is a special case of Conjecture 2.10.

Conjecture 2.10 (Generalized abundance conjecture). Let (X,Δ) be a Q-

factorial projective dlt pair. Then κσ(X,KX +Δ) = κι(X,KX +Δ).

It is obvious that if Conjecture 2.10 holds for (X,DX) in Theorem 1.3 then Theorem

1.3 implies Conjecture 1.2 in full generality.

Remark 2.11 (On the definition of κι(X,KX +Δ)). We have to be careful when

Δ is an R-divisor in Conjecture 2.10. If there exists an effective R-divisor D on X such

that KX +Δ ∼R D, then we put

κι(X,KX +Δ) = lim sup
m→∞

log dimH0(X,OX(�mD�))
logm

.

Otherwise, we put κι(X,KX + Δ) = −∞. The above definition of κι(X,KX + Δ) is

well-defined, that is, κι(X,KX +Δ) is independent of the choice of D (see, for example,

[C, Definition 2.2.1] and [F3]). Note that if KX +Δ is a Q-divisor then κι(X,KX +Δ)

coincides with κ(X,KX +Δ), that is,

κι(X,KX +Δ) = lim sup
m→∞

log dimH0(X,OX(�m(KX +Δ)�))
logm

.

Example 2.12. We put X = P1. Let Δ be an effective R-divisor on X. We assume

that degΔ = 2 and that Δ is not a Q-divisor. Then we can easily see that KX +Δ ∼R 0,

κσ(X,KX +Δ) = κι(X,KX +Δ) = 0, and κ(X,KX +Δ) = −∞.

Anyway, we do not use R-divisors in this paper. So, we do not discuss subtle

problems on R-divisors here. However, we note that it is indispensable to treat R-divisors

when we discuss Conjecture 2.10 and Conjecture 2.13 below.

Note that Conjecture 2.10 holds in dimension ≤ n if and only if Conjecture 2.13

holds in dimension ≤ n.
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Conjecture 2.13 (Good minimal model conjecture). Let (X,Δ) be a Q-factorial

projective dlt pair. Assume that KX + Δ is pseudo-effective. Then (X,Δ) has a good

minimal model.

For the relationships among various conjectures on the minimal model program, see

[FG].

We will use the following easy well-known lemma in the proof of Corollary 1.6.

Lemma 2.14. Let f : X → Y be a generically finite surjective morphism between

smooth projective varieties. Let DX (resp. DY ) be a simple normal crossing divisor on

X (resp. Y ). Assume that Suppf∗DY ⊂ SuppDX . Then we have

κ(X,KX +DX) ≥ κ(Y,KY +DY )

and

κσ(X,KX +DX) ≥ κσ(Y,KY +DY ).

Proof. We put n = dimX = dimY . Then we have

f∗Ωn
Y (logDY ) ⊂ Ωn

X(logDX).

Therefore, we can write

KX +DX = f∗(KY +DY ) +R

for some effective Cartier divisor R. Thus, we have the desired inequalities. �

2.15 (Nakayama’s ω-sheaves and ω̂-sheaves). Let us briefly recall the theory

of Nakayama’s ω-sheaves and ω̂-sheaves.

The following definition of ω-sheaf is equivalent to Nakayama’s original definition of

ω-sheaf in the category of projective varieties (see [N, V.3.8. Definition]).

Definition 2.16 (ω-sheaf). A coherent sheaf F on a projective variety Y is called

an ω-sheaf if there exists a projective morphism f : X → Y from a smooth projective

variety X such that F is a direct summand of f∗ωX .

We also need the notion of ω̂-sheaf (see [N, V.3.16. Definition]).

Definition 2.17 (ω̂-sheaf). A coherent torsion-free sheaf F on a normal projective

variety Y is called an ω̂-sheaf if there exist an ω-sheaf G and a generically isomorphic

inclusion G ↪→ F∗∗ into the double dual F∗∗ of F .

Although the following lemma is easy to prove, it plays a crucial role in the proof of

Theorem 1.3.

Lemma 2.18. Let Y be a projective variety. Then there exists an ample Cartier

divisor A on Y such that F ⊗OY (A) is generated by global sections for every ω-sheaf F
on Y .
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Proof. We may assume that F = f∗ωX for a projective morphism f : X → Y

from a smooth projective variety X. Let H be an ample Cartier divisor on Y such that

|H| is free. We put A = (dimY + 1)H. Then we have

Hi(Y,F ⊗OY (A)⊗OY (−iH)) = 0

for every i > 0 by Kollár’s vanishing theorem. Therefore, by using the Castelnuovo–

Mumford regularity, we see that F ⊗OY (A) is generated by global sections. �

As an obvious corollary of Lemma 2.18, we have:

Corollary 2.19. Let Y be a normal projective variety. Then there exists an

ample Cartier divisor A on Y such that F ⊗ OY (A) is generically generated by global

sections for every reflexive ω̂-sheaf F on Y .

2.20 (Strictly rational map). We close this section with the notion of strictly

rational maps. For the details, see [I2, Lecture 2] and [I3, Section 2.12 Strictly Rational

Maps].

Definition 2.21 (Strictly rational map). Let f : X ��� Y be a rational map

between irreducible varieties. If there is a proper birational morphism μ : Z → X from

an irreducible variety Z such that f ◦ μ is a morphism, then f : X ��� Y is called a

strictly rational map.

Z

μ

��

f◦μ

��
X

f
�� Y

Note that a rational map f : X ��� Y from X to a complete variety Y is always

strictly rational.

Example 2.22. Let X be a smooth projective variety and let U be a dense open

subset of X such that U � X. Then the natural open immersion ι : U ↪→ X is strictly

rational. On the other hand, f = ι−1 : X ��� U is not strictly rational.

3. Subadditivity of Nakayama’s numerical Kodaira dimension.

In this section, we prove Theorem 1.3 by using Nakayama’s theory of ω-sheaves

and ω̂-sheaves. The following lemma is a special case of [N, V.3.34. Lemma]. It is a

reformulation and a generalization of Viehweg’s deep result (see [V, Corollary 5.2]).

Lemma 3.1 (cf. [N, V.3.34. Lemma]). Let f : X → Y be a projective surjective

morphism from a normal projective variety X onto a smooth projective variety Y with

connected fibers. Let L be a Cartier divisor on X, let Δ be an effective Q-divisor on X,

and let k be an integer greater than one satisfying the following conditions:

(i) (X,Δ) is klt.



On subadditivity of the logarithmic Kodaira dimension 1573

(ii) L− k(KX/Y +Δ) is ample.

Then we obtain that

ωY ((k − 1)H)⊗ f∗OX(L)

is an ω̂-sheaf for any ample Cartier divisor H on Y .

Remark 3.2. In Lemma 3.1, it is sufficient to assume that (X,Δ) is lc and that

there is a positive rational number δ such that (X, (1 − δ)Δ) is klt. This is because

L− k(KX/Y + (1− ε)Δ) is ample and (X, (1− ε)Δ) is klt for 0 < ε � δ. Therefore, we

can replace (X,Δ) with (X, (1− ε)Δ) and may assume that (X,Δ) is klt.

We do not repeat the proof of [N, V.3.34. Lemma] here. For the details, see [N].

Note that the essence of Viehweg’s theory of weakly positive sheaves is contained in the

proof of Lemma 3.1. Therefore, Lemma 3.1 is highly nontrivial.

We make a small remark on the proof of [N, V.3.34. Lemma] for the reader’s con-

venience.

Remark 3.3. In the proof of [N, V.3.34. Lemma], P is nef and big in our setting.

By taking more blow-ups and perturbing the coefficients of Δ slightly, we may further

assume that P is ample. Therefore, it is easy to see that f∗OX(KX + �P �) is an ω-big

ω-sheaf. For the definition of ω-big ω-sheaves, see [N, V.3.16. Definition (1)].

By the proof of [N, V.3.35. Theorem], we can check the following theorem. It is an

application of Lemma 3.1.

Theorem 3.4 (cf. [N, V.3.35. Theorem]). Let f : X → Y be a surjective morphism

from a normal projective variety X onto a smooth projective variety Y with the following

properties :

(i) f has connected fibers.

(ii) f : (UX ⊂ X) → (UY ⊂ Y ) is toroidal and is equidimensional.

(iii) f is smooth over UY .

(iv) X has only quotient singularities.

(v) ΔY = Y \ UY .

(vi) ΔX is a reduced divisor contained in X \ UX .

(vii) Suppf∗ΔY ⊂ SuppΔX .

Let L be a Cartier divisor on X and let k be a positive integer with k ≥ 2 such that

k(KX +ΔX) is Cartier. Assume that

L− k(KX/Y +ΔX − f∗ΔY )
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is very ample. Then

ωY (ΔY )⊗ f∗OX(L)

is an ω̂-sheaf.

Remark 3.5. A key point of Theorem 3.4 is that ΔY does not depend on L.

Remark 3.6. We note that f∗OX(L) in Theorem 3.4 is reflexive. This is because

OX(L) is a locally free sheaf on a normal variety X and f is equidimensional. For the

details, see, for example, [H, Corollary 1.7]. We also note that f is flat because f is

equidimensional, X is Cohen–Macaulay, and Y is smooth.

Corollary 3.7. In Theorem 3.4, there is an ample Cartier divisor A′ on Y

such that OY (A
′)⊗ f∗OX(L) is generically generated by global sections. Moreover A′ is

independent of L and depends only on Y and ΔY .

Proof. Let A be an ample Cartier divisor on Y as in Corollary 2.19. Then

OY (A) ⊗ ωY (ΔY ) ⊗ f∗OX(L) is generically generated by global sections. Let A1 be an

ample Cartier divisor on Y such that A1 −KY −ΔY is very ample. Then A′ = A+ A1

is the desired ample Cartier divisor on Y . Note that f∗OX(L) is reflexive. �

Let us prove Theorem 3.4.

Proof of Theorem 3.4. We take an ample Cartier divisor H on Y such that

H = A1 −A2, where A1 and A2 are both smooth general very ample divisors on Y . Let

τ : Y ′ → Y be a finite Kawamata cover from a smooth projective variety Y ′ such that

τ∗H = mH ′ for some Cartier divisor H ′ on Y ′ with m � 0. We put

X ′ p ��

f ′
��

X̃
q ��

˜f
��

X

f

��
Y ′

τ
�� Y

and λ = q◦p, where X̃ = X×Y Y ′ andX ′ is the normalization of X̃. We may assume that

f ′ : X ′ → Y ′ is a weak semistable reduction by [AK, Proposition 5.1 and Proposition

5.10]. We put L′ = λ∗L. Since L−k(KX/Y +ΔX−f∗ΔY ) is very ample, we may assume

that

L = k(KX/Y +ΔX − f∗ΔY ) +B

where B is a general smooth very ample divisor on X. Then, by the arguments for

the proof of [F2, Lemma 10.4 and Lemma 10.5], there exists a generically isomorphic

injection

f ′
∗OX′(L′) ↪→ τ∗(f∗OX(L)⊗OY (ΔY )). (3.1)

We put Δ = ΔX − f∗ΔY and define Δ′ by



On subadditivity of the logarithmic Kodaira dimension 1575

k(KX′/Y ′ +Δ′) = λ∗k(KX/Y +Δ).

Since τ : Y ′ → Y is a finite Kawamata cover, we can write Δ = ΣX − f∗ΣY such that

ΣY is a simple normal crossing divisor on Y , ΔY ≤ ΣY , and τ is étale over Y \ ΣY .

Then we have KX′ + ΣX′ = λ∗(KX + ΣX) and KY ′ + ΣY ′ = τ∗(KY + ΣY ) such that

ΣX′ and ΣY ′ are effective and reduced. Of course, Δ′ = ΣX′ − f ′∗ΣY ′ . By construction,

SuppΣX′ ⊃ Suppf ′∗ΣY ′ . Since f ′ is weakly semistable, f ′∗ΣY ′ is reduced. Therefore,

ΣX′ ≥ f ′∗ΣY ′ . This means that Δ′ = ΣX′ − f ′∗ΣY ′ is effective. We can find a positive

rational number α such that

L− k(KX/Y +Δ)− αf∗H

is ample. Let τ : Y ′ → Y be the finite Kawamata cover as above for m > (k − 1)/α and

let H ′ be the same ample divisor as above. Then

L′ − k(KX′/Y ′ +Δ′)− (k − 1)f ′∗H ′ = λ∗
(
L− k(KX/Y +Δ)− k − 1

m
f∗H

)

is ample. We apply Lemma 3.1 to L′ − (k − 1)f ′∗H ′ (see also Remark 3.2). Thus

ωY ′ ⊗f ′
∗OX′(L′) is an ω̂-sheaf. Let G be the Galois group of τ : Y ′ → Y . By the proof of

Lemma 3.1 (see the proof of [N, V.3.34. Lemma]), we can make everything G-equivariant

and have an ω-sheaf F ′ and a generically isomorphic G-equivariant injection

F ′ ↪→ ωY ′ ⊗ f ′
∗OX′(L′).

Hence there is a generically isomorphic injection

F ↪→ ωY ⊗ f∗OX(L)⊗OY (ΔY )

from a direct summand F of τ∗F ′. Therefore, ωY (ΔY )⊗ f∗OX(L) is an ω̂-sheaf. �

Let us prove Theorem 1.3.

Proof of Theorem 1.3. Without loss of generality, we may assume that

κσ(F,KF +DX |F ) 	= −∞. By [AK, Theorem 2.1, Proposition 4.4, and Remark 4.5], we

may assume that f : X → Y satisfies the conditions (i)–(v) in Theorem 3.4. We may

also assume that DX ⊂ X \ UX and DY ⊂ Y \ UY . We take ΔX = Supp(DX + f∗ΔY ).

Then ΔX satisfies the conditions (vi) and (vii) in Theorem 3.4. We put

P = k(KX/Y +ΔX − f∗ΔY )

and

D = k(KX/Y +DX − f∗DY )

where k is a positive integer ≥ 2 such that D and P are both Cartier. We take a very

ample Cartier divisor A on X. We put

r(mD;A) = rankf∗OX(mD +A).
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Since D = P over the generic point of Y ,

r(mD;A) = rankf∗OX(mP +A).

Note that

σ(D|F ;A|F ) = max

{
k ∈ Z≥0 ∪ {−∞}

∣∣∣∣ lim sup
m→∞

r(mD;A)

mk
> 0

}

for a sufficiently general fiber F of f : X → Y . We also note that

κσ(F,KF +DX |F ) = κσ(F,D|F )
= max{σ(D|F ;A|F ) |A is very ample}.

Since f∗OX(mP + A) ⊗ ωY (ΔY ) is a reflexive ω̂-sheaf for every positive integer m by

Theorem 3.4, there is an ample Cartier divisor H on Y such that we have a generically

isomorphic injection

O⊕r(mD;A)
Y ↪→ OY (H)⊗ f∗OX(mP +A)

for every m ≥ 1 (see Corollary 3.7). Therefore, we have generically isomorphic injections

OY (mk(KY +DY ) +H)⊕r(mD;A)

↪→ OY (mk(KY +DY ) + 2H)⊗ f∗OX(mP +A)

↪→ OY (mk(KY +DY ) + 2H)⊗ f∗OX(mD +A).

This implies that

dimH0(X,OX(mk(KX +DX) +A+ 2f∗H))

≥ r(mD;A) · dimH0(Y,OY (mk(KY +DY ) +H)).

We assume that H is sufficiently ample and that A is also sufficiently ample. Then, by

Lemma 2.8, we can find a constant C such that

r(mD;A) · dimH0(Y,OY (mk(KY +DY ) +H))

≥ Cmκσ(F,D|F )+κσ(Y,KY +DY )

for every sufficiently large m. Hence we have

κσ(X,KX +DX) ≥ κσ(F,KF +DX |F ) + κσ(Y,KY +DY ).

This is the desired inequality. �

We give a remark on Nakayama’s proof of [N, V.4.1. Theorem] for the reader’s

convenience.

Remark 3.8. The proof of [N, V.4.1. Theorem] is insufficient. We think that we

need the inequality as in [L, Theorem 6.7 (7)] (see [E, 2.8, 2.10, and Theorem 0.2] and
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Lemma 2.8).

Let D be a pseudo-effective R-divisor on a smooth projective variety X. Then the

inequality in [L, Theorem 6.7 (7)] says that

κσ(X,D) = lim
m→∞

log dimH0(X,OX(�mD�+A))

logm

where A is a sufficiently ample Cartier divisor on X. This useful characterization is not

in [N].

From now on, we freely use the notation in the proof of [N, V.4.1. Theorem].

Nakayama proved the following inequality

h0(X, �m(D + f∗Q)�+A+ 2f∗H) ≥ r(mD;A) · h0(Y, �mQ�+H) (3.2)

in the proof of [N, V.4.1. Theorem (1)]. We think that we need [L, Theorem 6.7 (7)]

(see also [E, 2.8, 2.10, and Theorem 0.2]), which can not directly follow from the results

in [N], to obtain

κσ(D + f∗Q) ≥ κσ(D;X/Y ) + κσ(Q)

from the inequality (3.2). The same trouble is in the proof of [N, V.4.1. Theorem (2)].

We close this section with a sketch of the proof of Theorem 1.9. We leave the details

as an exercise for the reader.

Sketch of the proof of Theorem 1.9. Here, we will only explain how to

modify the proof of Theorem 1.3 for Theorem 1.9. First, we note that we can easily

check that Theorem 3.4 holds true even when the coefficients of the horizontal part of

ΔX are in [0, 1] ∩ Q. All we have to do is to check the generically isomorphic injection

(3.1)

f ′
∗OX′(L′) ↪→ τ∗(f∗OX(L)⊗OY (ΔY )).

exists when the horizontal part of ΔX is not necessarily reduced in the proof of Theorem

3.4 (see the arguments for the proof of [F2, Lemma 10.4 and Lemma 10.5]). Next, by

[AK, Theorem 2.1, Proposition 4.4, and Remark 4.5], we may assume that f : X → Y

satisfies the conditions (i)–(v) in Theorem 3.4. For the proof of Theorem 1.9, we may

further assume that the coefficients of the vertical part of DX are one by replacing DX

with Dh
X + �Dv

X�, where Dh
X (resp. Dv

X) is the horizontal (resp. vertical) part of DX .

Then we put ΔX = Dh
X + Suppf∗ΔY . Finally, the proof of Theorem 1.3 works for

Theorem 1.9 by the generalization of Theorem 3.4 discussed above. �

We strongly recommend the interested reader to see [N, V. Section 4] for various

related results.
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4. Minimal model program for affine varieties.

In this section, we discuss the minimal model program for affine varieties and prove

Corollary 1.6 as an application.

Let us start with Yoshinori Gongyo’s observation. Proposition 4.1 says that the

minimal model program works well for affine varieties.

Proposition 4.1 (Yoshinori Gongyo). Let V be an affine variety. We can take a

pair (W,D) as in Definition 2.4 such that

κσ(W,KW +D) = κ(W,KW +D) = κ(V ).

Proof. We take an embedding V ⊂ AN . Let V be the closure of V in PN . Then

there is an effective ample Cartier divisor H on V such that SuppH = V \ V . We take a

resolution μ : W → V as in Definition 2.4. Then μ∗H is an effective Cartier divisor such

that Suppμ∗H = SuppD. Let ε be a small positive rational number such that D− εμ∗H
is effective. Since μ∗H is semi-ample, we can take an effective Q-divisor B on W such

that B ∼Q εμ∗H and that (W, (D − εμ∗H) +B) is klt. Note that

KW +D ∼Q KW + (D − εμ∗H) +B

and that (D − εμ∗H) + B is big. By [BCHM, Theorem 1.1, Corollary 1.3.3, Corollary

3.9.2], (W,D) has a good minimal model or a Mori fiber space structure. Hence, we

obtain κσ(W,KW +D) = κ(W,KW +D) = κ(V ). More precisely, by running a minimal

model program with ample scaling, we have a finite sequence of flips and divisorial

contractions

(W,D) = (W 0, D0) ��� (W 1, D1) ��� · · · ��� (W k, Dk)

such that (W k, Dk) is a good minimal model or has a Mori fiber space structure. There-

fore, κ(W k,KWk
+ Dk) = κσ(W k,KWk

+ Dk) holds. Note that in each step of the

minimal model program κ and κσ are preserved. Thus, we obtain κσ(W,KW + D) =

κ(W,KW +D). �

Remark 4.2 (Logarithmic canonical ring). Let V be an affine variety and let

(W,D) be a pair as in Definition 2.4. We put

R(V ) =
⊕
m≥0

H0(W,OW (m(KW +D)))

and call it the logarithmic canonical ring of V . It is well-known and is easy to see that

R(V ) is independent of the pair (W,D) and is well-defined. Then R(V ) is a finitely

generated C-algebra. This is because we can choose (W,D) such that it has a good

minimal model or a Mori fiber space structure as we saw in the proof of Proposition 4.1.

Note that Conjecture 1.4 follows from the minimal model program and the abun-

dance conjecture.
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Proposition 4.3. Let X be a smooth projective variety and let DX be a simple

normal crossing divisor on X. Assume that the minimal model program and the abun-

dance conjecture hold for (X,DX). Then we have

κ(X,KX +DX) = κσ(X,KX +DX).

In particular, if dimX ≤ 3, then we have

κ(X,KX +DX) = κσ(X,KX +DX).

Proof. We run the minimal model program. If KX+DX is pseudo-effective, then

(X,DX) has a good minimal model. IfKX+DX is not pseudo-effective, then (X,DX) has

a Mori fiber space structure. Anyway, we obtain κ(X,KX + DX) = κσ(X,KX + DX)

(see also the proof of Proposition 4.1). Note that in each step of the minimal model

program κ and κσ are preserved. �

Proof of Corollary 1.5. This is obvious by Theorem 1.3 and Proposition 4.3.

�

Let us prove Corollary 1.6.

Proof of Corollary 1.6. We take the following commutative diagram:

V � � ��

g

��

V ′

h
��

V ′

��

X

f

��

α��

W � � �� W ′ W ′′�� Y
β��

such that h : V ′ → W ′ is a compactification of g : V → W , V ′ → W ′′ → W ′ is the Stein

factorization of V ′ → W ′, α and β are suitable resolutions. We can take a simple normal

crossing divisor DX on X such that

κ(V ) = κ(X,KX +DX) = κσ(X,KX +DX)

by Proposition 4.1. We have a simple normal crossing divisor DY on Y such that

Suppf∗DY ⊂ SuppDX and

κ(W ) ≤ κ(Y,KY +DY ) ≤ κσ(Y,KY +DY )

by Lemma 2.14. Then, by Theorem 1.3, we obtain

κ(V ) = κ(X,KX +DX) = κσ(X,KX +DX)

≥ κσ(F,KF +DX |F ) + κσ(Y,KY +DY )

≥ κ(F,KF +DX |F ) + κ(Y,KY +DY )

≥ κ(F ′) + κ(W )

where F is a sufficiently general fiber of f : X → Y . Note that
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κ(F ′) = κ(F,KF +DX |F ).

Therefore, we obtain the desired inequality of the logarithmic Kodaira dimension. �

Remark 4.4. If g : V ��� W is a strictly rational dominant map, then we can

take a proper birational morphism μ : Ṽ → V such that g ◦ μ : Ṽ → W is a morphism.

By applying the proof of Corollary 1.6 to g ◦ μ : Ṽ → W , we have κ(V ) ≥ κ(F ′) + κ(W )

as pointed out in Remark 1.7.

We close this paper with a remark on Conjecture 2.5 (see Conjecture 1.1).

Remark 4.5. By the proof of Corollary 1.6, we see that Conjecture 2.5 (see Con-

jecture 1.1) follows from κ(X,KX + DX) = κσ(X,KX + DX). Moreover, the equality

κ(X,KX +DX) = κσ(X,KX +DX) follows from the minimal model program and the

abundance conjecture for (X,DX) by Proposition 4.3. Therefore, Conjecture 2.5 (see

Conjecture 1.1) now becomes a consequence of the minimal model program and the

abundance conjecture by Theorem 1.3. This fact strongly supports Conjecture 2.5 (see

Conjecture 1.1 and Conjecture 1.2).
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