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Abstract. For any Wulff shape, its dual Wulff shape is naturally de-
fined. A self-dual Wulff shape is a Wulff shape equaling its dual Wulff shape
exactly. In this paper, it is shown that a Wulff shape is self-dual if and only if
the spherical convex body induced by it is of constant width π/2.

1. Introduction.

For a positive integer n, let Sn be the unit sphere in R
n+1. Let R+ be the set

consisting of positive real numbers. For any continuous function γ : Sn → R+ and any

θ ∈ Sn, let Γγ,θ be the set consisting of x ∈ R
n+1 such that x · θ ≤ γ(θ), where the dot

in the center stands for the scalar product of two vectors x, θ ∈ R
n+1. Then, the Wulff

shape associated with the support function γ is the following set Wγ :

Wγ =
⋂

θ∈Sn

Γγ,θ.

A Wulff shapeWγ was firstly introduced by Wulff in [7] as a geometric model of a crystal

at equilibrium. By definition, any Wulff shape is a convex body in R
n+1 containing the

origin as an interior point. Conversely, it has been known that for any convex body W

in R
n+1 such that int(W ) contains the origin where int(W ) stands for the set of interior

points of W , there exists a continuous function γ : Sn → R+ such that W = Wγ ([6]).

By using the polar plot expression of elements of Rn+1−{0}, Sn×R+ may be naturally

identified with R
n+1 − {0}. Under this identification, for any Wulff shape Wγ and any

θ ∈ Sn, the intersection ∂Wγ ∩ Lθ is exactly one point (denoted by (θ, w(θ))), where

∂Wγ is the boundary of Wγ and Lθ is the half line Lθ = {(θ, r) | r ∈ R+}. For a Wulff

shape Wγ , let γ : Sn → R+ be the continuous function defined by γ(θ) = 1/(w(−θ)).
Then, the Wulff shape Wγ is called the dual Wulff shape of Wγ and is denoted by

DWγ . For any Wulff shape Wγ , there is a characterization of the dual Wulff shape of

Wγ . The graph of a continuous function γ : Sn → R+ is denoted by graph(γ). Let

inv: Rn+1−{0} → R
n+1 be the inversion of Rn+1−{0} defined by inv(θ, r) = (−θ, 1/r).

Then, for any continuous function γ : Sn → R+, DWγ is exactly the convex hull of

inv(graph(γ)). By this characterization, it is clear that DDWγ is Wγ for any Wγ when
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inv(graph(γ)) is the boundary of the convex hull of inv(graph(γ)). A Wulff shape Wγ is

said to be self-dual if the equality Wγ = DWγ holds.

In this paper, a simple and useful characterization for a self-dual Wulff shape in

R
n+1 is given. In order to state our characterization, several notions in Sn+1 are defined.

For any point P of Sn+1, let H(P ) be the hemisphere centered at P , namely H(P ) is

the subset of Sn+1 consisting of Q ∈ Sn+1 satisfying P · Q ≥ 0, where the dot in the

center stands for the scalar product of two vectors P,Q ∈ R
n+2. A subset W̃ of Sn+1 is

said to be hemispherical if there exists a point P ∈ Sn+1 such that W̃ ∩H(P ) = ∅. A
hemispherical subset W̃ ⊂ Sn+1 is said to be spherical convex if for any P,Q ∈ W̃ the

following arc PQ is contained in W̃ :

PQ =

{
(1− t)P + tQ

‖(1− t)P + tQ‖
∣∣∣∣ t ∈ [0, 1]

}
.

A hemispherical subset W̃ is called a spherical convex body if it is closed, spherical convex

and has an interior point. A hemisphere H(P ) is said to support a spherical convex body

W̃ if both W̃ ⊂ H(P ) and ∂W̃ ∩ ∂H(P ) 
= ∅ hold. For a spherical convex body W̃

and a hemisphere H(P ) supporting W̃ , following [2], [3], the width of W̃ determined

by H(P ) is defined as follows. For any two P,Q ∈ Sn+1 (P 
= ±Q), the intersection
H(P )∩H(Q) is called a lune of Sn+1. The thickness of the lune H(P )∩H(Q), denoted

by �(H(P ) ∩ H(Q)), is the real number π − |PQ|, where |PQ| stands for the length
of the arc PQ. For a spherical convex body W̃ and a hemisphere H(P ) supporting W̃ ,

the width of W̃ determined by H(P ), denoted by widthH(P )W̃ , is the minimum of the

following set:{
�(H(P ) ∩H(Q))

∣∣∣ W̃ ⊂ H(P ) ∩H(Q), H(Q) supports W̃
}
.

For any ρ ∈ R+ less than π, a spherical convex body W̃ ⊂ Sn+1 is said to be of constant

width ρ if widthH(P )W̃ = ρ for any H(P ) supporting W̃ .

Let Id : Rn+1 → R
n+1×{1} ⊂ R

n+2, N ∈ Sn+1 and αN : Sn+1−H(−N)→ R
n+1×

{1} ⊂ R
n+2 be the mapping defined by Id(x) = (x, 1), the point (0, . . . , 0, 1) ∈ Sn+1 and

the central projection defined as follows respectively.

αN (P1, . . . , Pn+1, Pn+2) =

(
P1

Pn+2
, . . . ,

Pn+1

Pn+2
, 1

)
(∀ (P1, . . . , Pn+1, Pn+2) ∈ Sn+1 −H(−N)).

Then, for any Wulff shape Wγ , it is clear that α
−1
N ◦ Id(Wγ) is a spherical convex body.

The set α−1
N ◦ Id(Wγ) is called the spherical convex body induced by Wγ .

Theorem 1. Let γ : Sn → R+ be a continuous function. Then, the Wulff shape

Wγ is self-dual if and only if the spherical convex body induced by Wγ is of constant width

π/2.

The unit disc Dn+1 = {x ∈ R
n+1 | ‖x‖ ≤ 1} of Rn+1 is clearly self-dual. Let R be
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Figure 1. Self-dual Wulff shapes include central projections of spherical caps
of width π/2.

Figure 2. Self-dual Wulff shapes include triangles which are central projec-
tions of constant-width spherical triangles of width π/2.

a rotation of Rn+2 about an n dimensional linear subspace with a small angle. Then,

since the property of constant width is an invariant property by R, by Theorem 1,

Id−1 ◦αN

(
R
(
α−1
N ◦ Id(Dn+1)

))
is self-dual as well (see Figure 1). Moreover, let �̃ be a

spherical triangle of constant width π/2 in S2 containing N as an interior point. Then,

by Theorem 1, not only Id−1 ◦ αN (�̃) itself, but also any Id−1 ◦ αN

(
R(�̃)) is self-dual

(see Figure 2). For more consideration on simple, explicit examples, see Section 4.

On the other hand, any Reuleaux triangle in R
2 containing the origin as an interior

point (see Figure 3) is not a self-dual Wulff shape, although it is a Wulff shape of constant

width in R
2. This is because any Reuleaux triangle is strictly convex, and thus the

boundary of it must be smooth by [1] if it is self-dual. However, there are three non-

smooth points for any Reuleaux triangle in R
2. By Theorem 1, its spherical convex body

is not of constant width π/2.

In Section 2, preliminaries for the proof of Theorem 1 are given. The proof of
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Figure 3. Reuleaux triangle.

Theorem 1 is given in Section 3. Finally, more consideration on simple, explicit examples

are given.

2. Preliminaries.

The following two theorems given in [2] are keys for the proof of Theorem 1.

Theorem 2 ([2]). Let W̃ ⊂ Sn+1 be a spherical convex body and let H(P ) be a

hemisphere which supports W̃ .

1. If P /∈ W̃ , then there exists a unique hemisphere H(Q) supporting W̃ such that the

lune H(P )∩H(Q) contains W̃ and has thickness widthH(P )(W̃ ). This hemisphere

supports W̃ at the point R at which the largest ball B(P, r) touches W̃ from outside.

We have Δ(H(P ) ∩H(Q)) = (π/2)− r.

2. If P ∈ ∂W̃ , then there exists at least one hemisphere H(Q) supporting W̃ such that

H(P ) ∩ H(Q) is a lune containing W̃ which has thickness widthH(P )(W̃ ). This

hemisphere supports W̃ at R = P . We have Δ(H(P ) ∩H(Q)) = π/2.

3. If P ∈ int(W̃ ), then there exists at least one hemisphere H(Q) supporting W̃ such

that H(P ) ∩ H(Q) is a lune containing W̃ which has thickness widthH(P )(W̃ ).

Every such H(Q) supports W̃ at exactly one point R ∈ ∂W̃ ∩B(P, r), where B(P, r)

denotes the largest ball with center P contained in W̃ , and for every such R this

hemisphere H(Q), denoted by HR(Q), is unique. For every R we have Δ(H(P ) ∩
HR(Q)) = (π/2) + r.

Definition 1 ([2]). Let W̃ ⊂ Sn+1 be a spherical convex body. Then, the follow-

ing number is called the diameter of W̃ and is denoted by diam(W̃ ):

max
{
|PQ|

∣∣∣ P,Q ∈ W̃
}
.

Theorem 3 ([2]). Let W̃ ⊂ Sn+1 be a spherical convex body such that diam(
W̃

)
≤ π/2. Then, the following holds :

diam(W̃ ) =

max
{
widthH(P )(W̃ )

∣∣∣ H(P ) is a supporting hemisphere of W̃
}
.
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Definition 2 ([5]). For any hemispherical subset W̃ of Sn+1, the following set

(denoted by s-conv(W̃ )) is called the spherical convex hull of W̃ :

s-conv(W̃ ) =

{ ∑k
i=1 tiPi

‖∑k
i=1 tiPi‖

∣∣∣∣∣ Pi ∈ W̃ ,

k∑
i=1

ti = 1, ti ≥ 0, k ∈ N

}
.

It is clear that s-conv(W̃ ) = W̃ if W̃ is spherical convex. More generally, we have

the following:

Lemma 2.1 ([5]). Let W̃ be a hemispherical subset of Sn+1. Then, the spherical

convex hull of W̃ is the smallest spherical convex set containing W̃ .

Definition 3 ([5]). For any subset W̃ of Sn+1, the set⋂
P∈˜W

H(P )

is called the spherical polar set of W̃ and is denoted by W̃ ◦.

For the spherical polar sets, the following lemma is fundamental.

Lemma 2.2 ([5]). For any non-empty closed hemispherical subset W̃ ⊂ Sn+1, the

equality s-conv(W̃ ) =
(
s-conv(W̃ )

)◦◦
holds.

3. Proof of Theorem 1.

By the definition of the dual Wulff shape DWγ for a given Wulff shape Wγ , it is

sufficient to show the following:

Proposition 1. Let W̃ ⊂ Sn+1 be a spherical convex body. Then, W̃ = W̃ ◦ if

and only if W̃ is of constant width π/2.

3.1. Proof of the “if” part of Proposition1.

In this subsection, we show that W̃ = W̃ ◦ under the assumption that W̃ is of

constant width π/2. We first show the inclusion W̃ ⊂ W̃ ◦. Let P1, Q1 be two points

of ∂W̃ such that |P1Q1| = diam(W̃ ). Set P1 = (rθ, xn+2) (0 < r, xn+2 < 1, θ ∈ Sn).

Since W̃ is a spherical convex body, for the θ ∈ Sn, there exists the unique real number

t (0 < t < 1) such that H ((tθ + (1− t)N)/‖tθ + (1− t)N‖) supports W̃ . For the t,

set P = (tθ + (1− t)N)/‖tθ + (1− t)N‖. Then, since we have assumed that W̃ is of

constant width π/2, by Theorem 2, we have that P ∈ ∂W̃ . This implies P1 = P and

hemisphere H(P1) supports W̃ . Since Q1 ∈ W̃ ⊂ H(P1), we have the following,

diam(W̃ ) =| P1Q1 |≤ π

2
.

Let R be an arbitrary point of W̃ . Since diam(W̃ ) ≤ π/2, the following holds,
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P
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QQ

Figure 4. | PQ |> π/2.

R ∈
⋂
˜R∈˜W

H(R̃) = W̃ ◦.

Therefore, we have W̃ ⊂ W̃ ◦.
Next we show the converse inclusion W̃ ◦ ⊂ W̃ . Suppose that there exists a point

P ∈ W̃ ◦ such that P /∈ W̃ . By Lemma 2.2, it follows that P /∈ W̃ =
⋂

Q∈˜W◦ H(Q). This

implies that there exist two points P and Q of W̃ ◦ such that |PQ| > π/2. For these two

points P,Q ∈ W̃ ◦, set P̃ = PQ ∩ ∂H(P ), Q̃ = PQ ∩ ∂H(Q) (see Figure 4). Then we

have the following,

π =| PP̃ | + | Q̃Q |=| PQ̃ | + | Q̃P̃ | + | Q̃P̃ | + | P̃Q |=| PQ | + | P̃ Q̃ | .

By the assumption, it follows that | P̃ Q̃ |< π/2. Let H(R̃) be a supporting hemisphere

of W̃ whose boundary is perpendicular to the arc PQ at the intersecting point. Then,

the following holds:

widthH( ˜R)(W̃ ) ≤| P̃ Q̃ |< π

2
.

This contradicts the assumption that W̃ is of constant width π/2. Therefore, it follows

that W̃ ◦ ⊂ W̃ . �

3.2. Proof of the ”only if” part of Proposition 1.

In this subsection, we show that W̃ is of constant width π/2 under the assumption

that W̃ = W̃ ◦. Suppose that there exists a hemisphere H(P ) supporting W̃ such that

widthH(P )(W̃ ) > π/2. By Theorem 3, it follows that diam(W̃ ) ≥ widthH(P )(W̃ ) > π/2.

This implies that there exist two points P,Q ∈ W̃ such that P /∈ H(Q). Then, we have

the following:

P /∈
⋂

Q∈˜W

H(Q) = W̃ ◦.

This contradicts the assumption W̃ = W̃ ◦.
Suppose that there exists a hemisphere H(P ) supporting W̃ such that the following

holds:
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widthH(P )(W̃ ) <
π

2
.

Then, there exists a hemisphere H(Q) supporting W̃ such that the following holds:

Δ(H(P ) ∩H(Q)) = widthH(P )(W̃ ) <
π

2
.

Since Δ(H(P ) ∩H(Q)) = π− | PQ |, we have the following:

| PQ |> π − π

2
=

π

2
.

On the other hand, since W̃ is a subset of H(P ) (resp. H(Q)), it follows that P ∈ W̃ ◦ =
W̃ (resp. Q ∈ W̃ ◦ = W̃ ). This implies diam(W̃ ) ≥| PQ |> π/2. Thus, we have a

contradiction. �

4. More on simple, explicit examples.

4.1. Centrally symmetric self-dual Wulff shapes.

In this subsection, we determine centrally symmetric Wulff shapes. Here, a convex

body W ⊂ R
n+1 is said to be centrally symmetric if x ∈W implies −x ∈W .

Proposition 2. Let W ⊂ R
n+1 be a self-dual Wulff shape. Then, W is centrally

symmetric if and only if W is the unit disc Dn+1.

Proof. The “if”part is clear. We show the “only if”part. Suppose that there

exists a centrally symmetric self-dual Wulff shape W which is not the unit disc Dn+1.

Then one of the following holds.

(1) There exists a point p ∈W such that ‖p‖ > 1.

(2) The inequality ‖p‖ ≤ 1 holds for any point p of W and there exists a point q ∈ ∂W

such that ‖q‖ < 1.

Here, ‖x‖ is the distance from the origin to the point x ∈ R
n+1.

Suppose that (1) holds. Then, since W is centrally symmetric, it follows that −p ∈
W . Set p̃ = p/‖p‖ ∈ Sn. For any point x ∈ R

n+1, set X+ = α−1
N ◦ Id(x) and X− =

α−1
N ◦ Id(−x). Notice that P− ∈ W̃ = α−1

N ◦ Id(W ). Since the distance |P̃+P̃−| is equal
to π/2, we have the following:

π

2
= |P̃+P̃−| < |P+P−|.

This implies P+ /∈ H(P−). Thus, it follows that

P+ /∈
⋂

Q∈˜W

H(Q) = W̃ ◦.

On the other hands, since W is a self-dual Wulff shape and p ∈ W , we have that

P+ ∈ W̃ = W̃ ◦. Therefore, we have a contradiction.
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Next, suppose that (2) holds. Since there exists a point q ∈ ∂W such that ‖q‖ < 1,

it follows that the point q/‖q‖ ∈ Sn does not belong to W . Set q̃ = q/‖q‖. Then, since
W is a self-dual Wulff shape, it follows that Q̃+ /∈ W̃ = W̃ ◦. On the other hands, by the
assumption (2), the following holds.

W̃ ⊂ α−1
N ◦ Id(Dn+1) ⊂ H(Q̃+).

Thus, Q̃+ is a point of W̃ ◦ and we have a contradiction. �

4.2. Self-dual Wulff shapes of polytope type.

A Wulff shape is said to be of polytope type if there exist finitely many points

P1, . . . , Pk ∈ Sn+1 such that W̃ =
⋂k

i=1 H(Pi), where W̃ is the spherical convex body

induced by W and k ≥ n+ 2 ∈ N. For crystallines, we have the following proposition:

Lemma 4.1 (Maehara’s Lemma [4], [5]). For any hemispherical finite subset X =

{P1, . . . , Pk}, the following holds :{ ∑k
i=1 tiPi

‖∑k
i=1 tiPi‖

∣∣∣∣∣ Pi ∈ X,

k∑
i=1

ti = 1, ti ≥ 0

}◦

=

k⋂
i=1

H(Pi).

Proposition 3. Let W ⊂ R
n+1 be a Wulff shape of polytope type and let W̃ be

a spherical convex body induced by W . Set W̃ =
⋂k

i=1 H(Pi) ⊂ Sn+1. Then, W is a

self-dual Wulff shape if and only if Pi is a vertex of W̃ for any i (1 ≤ i ≤ k).

Proof.

Proof of the “only if” part. Let W be a self-dual Wulff shape of polytope

type. Then, by Maehara’s Lemma, we have the following equality:

W̃ =
k⋂

i=1

H(Pi) =

{ ∑k
i=1 tiPi

‖∑k
i=1 tiPi‖

∣∣∣∣∣ Pi ∈ X,
k∑

i=1

ti = 1, ti ≥ 0

}◦

.

Then, by Lemma 2.2, the following holds:

W̃ ◦ =

{ ∑k
i=1 tiPi

‖∑k
i=1 tiPi‖

∣∣∣∣∣ Pi ∈ X,
k∑

i=1

ti = 1, ti ≥ 0

}
.

Since W is a self-dual Wulff shape, it follows that W̃ = W̃ ◦. Hence, Pi is a vertex of W̃

for any i (1 ≤ i ≤ 2m+ 1). �

Proof of the “if” part. Since Pi is a vertex of W̃ , we have the following:

W̃ =

{ ∑k
i=1 tiPi

‖∑k
i=1 tiPi‖

∣∣∣∣∣ Pi ∈ X,

k∑
i=1

ti = 1, ti ≥ 0

}
.

Thus, by Maehara’s Lemma, we have the following:
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W̃ ◦ =

{ ∑k
i=1 tiPi

‖∑k
i=1 tiPi‖

∣∣∣∣∣ Pi ∈ X,
k∑

i=1

ti = 1, ti ≥ 0

}◦

=
k⋂

i=1

H(Pi) = W̃ .

Therefore, W is a self-dual Wulff shape. �

4.3. When is the dual Wulff shape congruent to the original Wulff shape?

Finally, as a generalized problem of characterization of self-dual Wulff shapes, we

pose the following:

Problem. Under what conditions is the dual Wulff shape merely congruent to the

original Wulff shape ?

We have partial results to this problem as follows:

Example. Let X2m be a regular polygon with 2m vertices in the plane where

m ≥ 2. Denote the half of the length of its diagonal by a2m. Suppose that the center of

X2m is the origin and a2m satisfies the following equation:

(∗) sin

(
π − (2π/2m)

2

)
=
1/a2m

a
2m

.

Then, X2m 
= DX2m but DX2m is congruent to X2m.

For instance, consider a square P1P2P3P4 ⊂ R
2 such that the origin is its center and

the length of its edge is 2/a4, where a24 =
√
2. Let Q1Q2Q3Q4 ⊂ R

2 be the dual Wulff

shape of P1P2P3P4. Then, P1P2P3P4 
= Q1Q2Q3Q4 (see Figure 5). And, it is easy to

see that Q1Q2Q3Q4 is also a square with properties that the origin is its center and the

length of its edge is 2/a4. Thus, Q1Q2Q3Q4 is congruent to P1P2P3P4.

It is not difficult to obtain the equation (∗) for a2m of general 2m-gon X2m.

Acknowledgements. The authors wish to express their sincere gratitude to the
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Figure 5. Square P1P2P3P4 and its dual square Q1Q2Q3Q4. P1O = a4,
RO = 1/a4, where a2

4 =
√
2.
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