Self-dual Wulff shapes and spherical convex bodies of constant width $\pi / 2$

By Huhe Han and Takashi Nishimura

(Received Jan. 9, 2016)

Abstract

For any Wulff shape, its dual Wulff shape is naturally defined. A self-dual Wulff shape is a Wulff shape equaling its dual Wulff shape exactly. In this paper, it is shown that a Wulff shape is self-dual if and only if the spherical convex body induced by it is of constant width $\pi / 2$.

1. Introduction.

For a positive integer n, let S^{n} be the unit sphere in \mathbb{R}^{n+1}. Let \mathbb{R}_{+}be the set consisting of positive real numbers. For any continuous function $\gamma: S^{n} \rightarrow \mathbb{R}_{+}$and any $\theta \in S^{n}$, let $\Gamma_{\gamma, \theta}$ be the set consisting of $x \in \mathbb{R}^{n+1}$ such that $x \cdot \theta \leq \gamma(\theta)$, where the dot in the center stands for the scalar product of two vectors $x, \theta \in \mathbb{R}^{n+1}$. Then, the Wulff shape associated with the support function γ is the following set \mathcal{W}_{γ} :

$$
\mathcal{W}_{\gamma}=\bigcap_{\theta \in S^{n}} \Gamma_{\gamma, \theta} .
$$

A Wulff shape \mathcal{W}_{γ} was firstly introduced by Wulff in $[7]$ as a geometric model of a crystal at equilibrium. By definition, any Wulff shape is a convex body in \mathbb{R}^{n+1} containing the origin as an interior point. Conversely, it has been known that for any convex body W in \mathbb{R}^{n+1} such that $\operatorname{int}(W)$ contains the origin where $\operatorname{int}(W)$ stands for the set of interior points of W, there exists a continuous function $\gamma: S^{n} \rightarrow \mathbb{R}_{+}$such that $W=\mathcal{W}_{\gamma}([\mathbf{6}])$. By using the polar plot expression of elements of $\mathbb{R}^{n+1}-\{0\}, S^{n} \times \mathbb{R}_{+}$may be naturally identified with $\mathbb{R}^{n+1}-\{0\}$. Under this identification, for any Wulff shape \mathcal{W}_{γ} and any $\theta \in S^{n}$, the intersection $\partial \mathcal{W}_{\gamma} \cap L_{\theta}$ is exactly one point (denoted by $(\theta, w(\theta))$), where $\partial \mathcal{W}_{\gamma}$ is the boundary of \mathcal{W}_{γ} and L_{θ} is the half line $L_{\theta}=\left\{(\theta, r) \mid r \in \mathbb{R}_{+}\right\}$. For a Wulff shape \mathcal{W}_{γ}, let $\bar{\gamma}: S^{n} \rightarrow \mathbb{R}_{+}$be the continuous function defined by $\bar{\gamma}(\theta)=1 /(w(-\theta))$. Then, the Wulff shape $\mathcal{W}_{\bar{\gamma}}$ is called the dual Wulff shape of \mathcal{W}_{γ} and is denoted by $\mathcal{D} \mathcal{W}_{\gamma}$. For any Wulff shape \mathcal{W}_{γ}, there is a characterization of the dual Wulff shape of \mathcal{W}_{γ}. The graph of a continuous function $\gamma: S^{n} \rightarrow \mathbb{R}_{+}$is denoted by $\operatorname{graph}(\gamma)$. Let inv: $\mathbb{R}^{n+1}-\{0\} \rightarrow \mathbb{R}^{n+1}$ be the inversion of $\mathbb{R}^{n+1}-\{0\}$ defined by $\operatorname{inv}(\theta, r)=(-\theta, 1 / r)$. Then, for any continuous function $\gamma: S^{n} \rightarrow \mathbb{R}_{+}, \mathcal{D} \mathcal{W}_{\gamma}$ is exactly the convex hull of $\operatorname{inv}(\operatorname{graph}(\gamma))$. By this characterization, it is clear that $\mathcal{D D} \mathcal{W}_{\gamma}$ is \mathcal{W}_{γ} for any \mathcal{W}_{γ} when

[^0]$\operatorname{inv}(\operatorname{graph}(\gamma))$ is the boundary of the convex hull of $\operatorname{inv}(\operatorname{graph}(\gamma))$. A Wulff shape \mathcal{W}_{γ} is said to be self-dual if the equality $\mathcal{W}_{\gamma}=\mathcal{D} \mathcal{W}_{\gamma}$ holds.

In this paper, a simple and useful characterization for a self-dual Wulff shape in \mathbb{R}^{n+1} is given. In order to state our characterization, several notions in S^{n+1} are defined. For any point P of S^{n+1}, let $H(P)$ be the hemisphere centered at P, namely $H(P)$ is the subset of S^{n+1} consisting of $Q \in S^{n+1}$ satisfying $P \cdot Q \geq 0$, where the dot in the center stands for the scalar product of two vectors $P, Q \in \mathbb{R}^{n+2}$. A subset \widetilde{W} of S^{n+1} is said to be hemispherical if there exists a point $P \in S^{n+1}$ such that $\widetilde{W} \cap H(P)=\emptyset$. A hemispherical subset $\widetilde{W} \subset S^{n+1}$ is said to be spherical convex if for any $P, Q \in \widetilde{W}$ the following arc $P Q$ is contained in \widetilde{W} :

$$
P Q=\left\{\left.\frac{(1-t) P+t Q}{\|(1-t) P+t Q\|} \right\rvert\, t \in[0,1]\right\} .
$$

A hemispherical subset \widetilde{W} is called a spherical convex body if it is closed, spherical convex and has an interior point. A hemisphere $H(P)$ is said to support a spherical convex body \widetilde{W} if both $\widetilde{W} \subset H(P)$ and $\partial \widetilde{W} \cap \partial H(P) \neq \emptyset$ hold. For a spherical convex body \widetilde{W} and a hemisphere $H(P)$ supporting \widetilde{W}, following [2], [3], the width of \widetilde{W} determined by $H(P)$ is defined as follows. For any two $P, Q \in S^{n+1}(P \neq \pm Q)$, the intersection $H(P) \cap H(Q)$ is called a lune of S^{n+1}. The thickness of the lune $H(P) \cap H(Q)$, denoted by $\triangle(H(P) \cap H(Q))$, is the real number $\pi-|P Q|$, where $|P Q|$ stands for the length of the arc $P Q$. For a spherical convex body \widetilde{W} and a hemisphere $H(P)$ supporting \widetilde{W}, the width of \widetilde{W} determined by $H(P)$, denoted by $\operatorname{width}_{H(P)} \widetilde{W}$, is the minimum of the following set:

$$
\{\triangle(H(P) \cap H(Q)) \mid \widetilde{W} \subset H(P) \cap H(Q), H(Q) \text { supports } \widetilde{W}\}
$$

For any $\rho \in \mathbb{R}_{+}$less than π, a spherical convex body $\widetilde{W} \subset S^{n+1}$ is said to be of constant width ρ if $\operatorname{width}_{H(P)} \widetilde{W}=\rho$ for any $H(P)$ supporting \widetilde{W}.

Let $I d: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1} \times\{1\} \subset \mathbb{R}^{n+2}, N \in S^{n+1}$ and $\alpha_{N}: S^{n+1}-H(-N) \rightarrow \mathbb{R}^{n+1} \times$ $\{1\} \subset \mathbb{R}^{n+2}$ be the mapping defined by $\operatorname{Id}(x)=(x, 1)$, the point $(0, \ldots, 0,1) \in S^{n+1}$ and the central projection defined as follows respectively.

$$
\begin{aligned}
& \alpha_{N}\left(P_{1}, \ldots, P_{n+1}, P_{n+2}\right)=\left(\frac{P_{1}}{P_{n+2}}, \ldots, \frac{P_{n+1}}{P_{n+2}}, 1\right) \\
&\left(\forall\left(P_{1}, \ldots, P_{n+1}, P_{n+2}\right) \in S^{n+1}-H(-N)\right) .
\end{aligned}
$$

Then, for any Wulff shape \mathcal{W}_{γ}, it is clear that $\alpha_{N}^{-1} \circ \operatorname{Id}\left(\mathcal{W}_{\gamma}\right)$ is a spherical convex body. The set $\alpha_{N}^{-1} \circ \operatorname{Id}\left(\mathcal{W}_{\gamma}\right)$ is called the spherical convex body induced by \mathcal{W}_{γ}.

Theorem 1. Let $\gamma: S^{n} \rightarrow \mathbb{R}_{+}$be a continuous function. Then, the Wulff shape W_{γ} is self-dual if and only if the spherical convex body induced by W_{γ} is of constant width $\pi / 2$.

The unit disc $D^{n+1}=\left\{x \in \mathbb{R}^{n+1} \mid\|x\| \leq 1\right\}$ of \mathbb{R}^{n+1} is clearly self-dual. Let R be

Figure 1. Self-dual Wulff shapes include central projections of spherical caps of width $\pi / 2$.

Figure 2. Self-dual Wulff shapes include triangles which are central projections of constant-width spherical triangles of width $\pi / 2$.
a rotation of \mathbb{R}^{n+2} about an n dimensional linear subspace with a small angle. Then, since the property of constant width is an invariant property by R, by Theorem 1 , $I d^{-1} \circ \alpha_{N}\left(R\left(\alpha_{N}^{-1} \circ I d\left(D^{n+1}\right)\right)\right)$ is self-dual as well (see Figure 1). Moreover, let $\widetilde{\triangle}$ be a spherical triangle of constant width $\pi / 2$ in S^{2} containing N as an interior point. Then, by Theorem 1 , not only $I d^{-1} \circ \alpha_{N}(\widetilde{\triangle})$ itself, but also any $I d^{-1} \circ \alpha_{N}(R(\widetilde{\triangle}))$ is self-dual (see Figure 2). For more consideration on simple, explicit examples, see Section 4.

On the other hand, any Reuleaux triangle in \mathbb{R}^{2} containing the origin as an interior point (see Figure 3) is not a self-dual Wulff shape, although it is a Wulff shape of constant width in \mathbb{R}^{2}. This is because any Reuleaux triangle is strictly convex, and thus the boundary of it must be smooth by $[\mathbf{1}]$ if it is self-dual. However, there are three nonsmooth points for any Reuleaux triangle in \mathbb{R}^{2}. By Theorem 1, its spherical convex body is not of constant width $\pi / 2$.

In Section 2, preliminaries for the proof of Theorem 1 are given. The proof of

Figure 3. Reuleaux triangle.
Theorem 1 is given in Section 3. Finally, more consideration on simple, explicit examples are given.

2. Preliminaries.

The following two theorems given in [2] are keys for the proof of Theorem 1.
Theorem $2([\mathbf{2}])$. Let $\widetilde{W} \subset S^{n+1}$ be a spherical convex body and let $H(P)$ be a hemisphere which supports \widetilde{W}.

1. If $P \notin \widetilde{W}$, then there exists a unique hemisphere $H(Q)$ supporting \widetilde{W} such that the lune $H(P) \cap H(Q)$ contains \widetilde{W} and has thickness width $_{H(P)}(\widetilde{W})$. This hemisphere supports \widetilde{W} at the point R at which the largest ball $B(P, r)$ touches \widetilde{W} from outside. We have $\Delta(H(P) \cap H(Q))=(\pi / 2)-r$.
2. If $P \in \partial \widetilde{W}$, then there exists at least one hemisphere $H(Q)$ supporting \widetilde{W} such that $H(P) \cap H(Q)$ is a lune containing \widetilde{W} which has thickness width $_{H(P)}(\widetilde{W})$. This hemisphere supports \widetilde{W} at $R=P$. We have $\Delta(H(P) \cap H(Q))=\pi / 2$.
3. If $P \in \operatorname{int}(\widetilde{W})$, then there exists at least one hemisphere $H(Q)$ supporting \widetilde{W} such that $H(P) \cap H(Q)$ is a lune containing \widetilde{W} which has thickness width $_{H(P)}(\widetilde{W})$. Every such $H(Q)$ supports \widetilde{W} at exactly one point $R \in \partial \widetilde{W} \cap B(P, r)$, where $B(P, r)$ denotes the largest ball with center P contained in \widetilde{W}, and for every such R this hemisphere $H(Q)$, denoted by $H_{R}(Q)$, is unique. For every R we have $\Delta(H(P) \cap$ $\left.H_{R}(Q)\right)=(\pi / 2)+r$.

Definition 1 ([2]). Let $\widetilde{W} \subset S^{n+1}$ be a spherical convex body. Then, the following number is called the diameter of \widetilde{W} and is denoted by $\operatorname{diam}(\widetilde{W})$:

$$
\max \{|P Q| \mid P, Q \in \widetilde{W}\}
$$

ThEOREM 3 ([2]). Let $\widetilde{W} \subset S^{n+1}$ be a spherical convex body such that diam $(\widetilde{W}) \leq \pi / 2$. Then, the following holds:

$$
\begin{aligned}
& \operatorname{diam}(\widetilde{W})= \\
& \quad \max \left\{\operatorname{width}_{H(P)}(\widetilde{W}) \mid H(P) \text { is a supporting hemisphere of } \widetilde{W}\right\} .
\end{aligned}
$$

Definition $2([\mathbf{5}])$. For any hemispherical subset \widetilde{W} of S^{n+1}, the following set (denoted by s-conv (\widetilde{W})) is called the spherical convex hull of \widetilde{W} :

$$
\operatorname{s-conv}(\widetilde{W})=\left\{\left.\frac{\sum_{i=1}^{k} t_{i} P_{i}}{\left\|\sum_{i=1}^{k} t_{i} P_{i}\right\|} \right\rvert\, P_{i} \in \widetilde{W}, \sum_{i=1}^{k} t_{i}=1, t_{i} \geq 0, k \in \mathbb{N}\right\}
$$

It is clear that s-conv $(\widetilde{W})=\widetilde{W}$ if \widetilde{W} is spherical convex. More generally, we have the following:

Lemma 2.1 ([5]). Let \widetilde{W} be a hemispherical subset of S^{n+1}. Then, the spherical convex hull of \widetilde{W} is the smallest spherical convex set containing \widetilde{W}.

Definition 3 ([5]). For any subset \widetilde{W} of S^{n+1}, the set

$$
\bigcap_{P \in \widetilde{W}} H(P)
$$

is called the spherical polar set of \widetilde{W} and is denoted by \widetilde{W}°.
For the spherical polar sets, the following lemma is fundamental.
Lemma 2.2 ([5]). For any non-empty closed hemispherical subset $\widetilde{W} \subset S^{n+1}$, the equality $\mathrm{s}-\operatorname{conv}(\widetilde{W})=(\mathrm{s}-\operatorname{conv}(\widetilde{W}))^{\circ \circ}$ holds.

3. Proof of Theorem 1.

By the definition of the dual Wulff shape $\mathcal{D} \mathcal{W}_{\gamma}$ for a given Wulff shape \mathcal{W}_{γ}, it is sufficient to show the following:

Proposition 1. Let $\widetilde{W} \subset S^{n+1}$ be a spherical convex body. Then, $\widetilde{W}=\widetilde{W}^{\circ}$ if and only if \widetilde{W} is of constant width $\pi / 2$.

3.1. Proof of the "if" part of Proposition1.

In this subsection, we show that $\widetilde{W}=\widetilde{W}^{\circ}$ under the assumption that \widetilde{W} is of constant width $\pi / 2$. We first show the inclusion $\widetilde{W} \subset \widetilde{W}^{\circ}$. Let P_{1}, Q_{1} be two points of $\partial \widetilde{W}$ such that $\left|P_{1} Q_{1}\right|=\operatorname{diam}(\widetilde{W})$. Set $P_{1}=\left(r \theta, x_{n+2}\right)\left(0<r, x_{n+2}<1, \theta \in S^{n}\right)$. Since \widetilde{W} is a spherical convex body, for the $\theta \in S^{n}$, there exists the unique real number $t(0<t<1)$ such that $H((t \theta+(1-t) N) /\|t \theta+(1-t) N\|)$ supports \widetilde{W}. For the t, set $P=(t \theta+(1-t) N) /\|t \theta+(1-t) N\|$. Then, since we have assumed that \widetilde{W} is of constant width $\pi / 2$, by Theorem 2, we have that $P \in \partial \widetilde{W}$. This implies $P_{1}=P$ and hemisphere $H\left(P_{1}\right)$ supports \widetilde{W}. Since $Q_{1} \in \widetilde{W} \subset H\left(P_{1}\right)$, we have the following,

$$
\operatorname{diam}(\widetilde{W})=\left|P_{1} Q_{1}\right| \leq \frac{\pi}{2}
$$

Let R be an arbitrary point of \widetilde{W}. Since $\operatorname{diam}(\widetilde{W}) \leq \pi / 2$, the following holds,

Figure 4. $|P Q|>\pi / 2$.

$$
R \in \bigcap_{\widetilde{R} \in \widetilde{W}} H(\widetilde{R})=\widetilde{W}^{\circ}
$$

Therefore, we have $\widetilde{W} \subset \widetilde{W}$.
Next we show the converse inclusion $\widetilde{W} \subset \widetilde{W}$. Suppose that there exists a point $P \in \widetilde{W}^{\circ}$ such that $P \notin \widetilde{W}$. By Lemma 2.2, it follows that $P \notin \widetilde{W}=\bigcap_{Q \in \widetilde{W}}{ }^{\circ} H(Q)$. This implies that there exist two points P and Q of \widetilde{W}° such that $|P Q|>\pi / 2$. For these two points $P, Q \in \widetilde{W^{\circ}}$, set $\widetilde{P}=P Q \cap \partial H(P), \widetilde{Q}=P Q \cap \partial H(Q)$ (see Figure 4). Then we have the following,

$$
\pi=|P \widetilde{P}|+|\widetilde{Q} Q|=|P \widetilde{Q}|+|\widetilde{Q} \widetilde{P}|+|\widetilde{Q} \widetilde{P}|+|\widetilde{P} Q|=|P Q|+|\widetilde{P} \widetilde{Q}|
$$

By the assumption, it follows that $|\widetilde{P} \widetilde{Q}|<\pi / 2$. Let $H(\widetilde{R})$ be a supporting hemisphere of \widetilde{W} whose boundary is perpendicular to the arc $P Q$ at the intersecting point. Then, the following holds:

$$
\operatorname{width}_{H(\widetilde{R})}(\widetilde{W}) \leq|\widetilde{P} \widetilde{Q}|<\frac{\pi}{2}
$$

This contradicts the assumption that \widetilde{W} is of constant width $\pi / 2$. Therefore, it follows that $\widetilde{W} \subset \widetilde{W}$.

3.2. Proof of the "only if" part of Proposition 1.

In this subsection, we show that \widetilde{W} is of constant width $\pi / 2$ under the assumption that $\widetilde{W}=\widetilde{W}^{\circ}$. Suppose that there exists a hemisphere $H(P)$ supporting \widetilde{W} such that $\operatorname{width}_{H(P)}(\widetilde{W})>\pi / 2$. By Theorem 3, it follows that $\operatorname{diam}(\widetilde{W}) \geq \operatorname{width}_{H(P)}(\widetilde{W})>\pi / 2$. This implies that there exist two points $P, Q \in \widetilde{W}$ such that $P \notin H(Q)$. Then, we have the following:

$$
P \notin \bigcap_{Q \in \widetilde{W}} H(Q)=\widetilde{W}^{\circ} .
$$

This contradicts the assumption $\widetilde{W}=\widetilde{W}^{\circ}$.
Suppose that there exists a hemisphere $H(P)$ supporting \widetilde{W} such that the following holds:

$$
\operatorname{width}_{H(P)}(\widetilde{W})<\frac{\pi}{2}
$$

Then, there exists a hemisphere $H(Q)$ supporting \widetilde{W} such that the following holds:

$$
\Delta(H(P) \cap H(Q))=\operatorname{width}_{H(P)}(\widetilde{W})<\frac{\pi}{2}
$$

Since $\Delta(H(P) \cap H(Q))=\pi-|P Q|$, we have the following:

$$
|P Q|>\pi-\frac{\pi}{2}=\frac{\pi}{2}
$$

On the other hand, since \widetilde{W} is a subset of $H(P)$ (resp. $H(Q)$), it follows that $P \in \widetilde{W}^{\circ}=$ \widetilde{W} (resp. $\left.Q \in \widetilde{W}^{\circ}=\widetilde{W}\right)$. This implies $\operatorname{diam}(\widetilde{W}) \geq|P Q|>\pi / 2$. Thus, we have a contradiction.

4. More on simple, explicit examples.

4.1. Centrally symmetric self-dual Wulff shapes.

In this subsection, we determine centrally symmetric Wulff shapes. Here, a convex body $W \subset \mathbb{R}^{n+1}$ is said to be centrally symmetric if $x \in W$ implies $-x \in W$.

Proposition 2. Let $W \subset \mathbb{R}^{n+1}$ be a self-dual Wulff shape. Then, W is centrally symmetric if and only if W is the unit disc D^{n+1}.

Proof. The "if"part is clear. We show the "only if"part. Suppose that there exists a centrally symmetric self-dual Wulff shape W which is not the unit disc D^{n+1}. Then one of the following holds.
(1) There exists a point $p \in W$ such that $\|p\|>1$.
(2) The inequality $\|p\| \leq 1$ holds for any point p of W and there exists a point $q \in \partial W$ such that $\|q\|<1$.

Here, $\|x\|$ is the distance from the origin to the point $x \in \mathbb{R}^{n+1}$.
Suppose that (1) holds. Then, since W is centrally symmetric, it follows that $-p \in$ W. Set $\widetilde{p}=p /\|p\| \in S^{n}$. For any point $x \in \mathbb{R}^{n+1}$, set $X_{+}=\alpha_{N}^{-1} \circ \operatorname{Id}(x)$ and $X_{-}=$ $\alpha_{N}^{-1} \circ \operatorname{Id}(-x)$. Notice that $P_{-} \in \widetilde{W}=\alpha_{N}^{-1} \circ \operatorname{Id}(W)$. Since the distance $\left|\widetilde{P}_{+} \widetilde{P}_{-}\right|$is equal to $\pi / 2$, we have the following:

$$
\frac{\pi}{2}=\left|\widetilde{P}_{+} \widetilde{P}_{-}\right|<\left|P_{+} P_{-}\right|
$$

This implies $P_{+} \notin H\left(P_{-}\right)$. Thus, it follows that

$$
P_{+} \notin \bigcap_{Q \in \widetilde{W}} H(Q)=\widetilde{W}^{\circ}
$$

On the other hands, since W is a self-dual Wulff shape and $p \in W$, we have that $P_{+} \in \widetilde{W}=\widetilde{W}^{\circ}$. Therefore, we have a contradiction.

Next, suppose that (2) holds. Since there exists a point $q \in \partial W$ such that $\|q\|<1$, it follows that the point $q /\|q\| \in S^{n}$ does not belong to W. Set $\widetilde{q}=q /\|q\|$. Then, since W is a self-dual Wulff shape, it follows that $\widetilde{Q}_{+} \notin \widetilde{W}=\widetilde{W}^{\circ}$. On the other hands, by the assumption (2), the following holds.

$$
\widetilde{W} \subset \alpha_{N}^{-1} \circ I d\left(D^{n+1}\right) \subset H\left(\widetilde{Q}_{+}\right) .
$$

Thus, \widetilde{Q}_{+}is a point of \widetilde{W}° and we have a contradiction.

4.2. Self-dual Wulff shapes of polytope type.

A Wulff shape is said to be of polytope type if there exist finitely many points $P_{1}, \ldots, P_{k} \in S^{n+1}$ such that $\widetilde{W}=\bigcap_{i=1}^{k} H\left(P_{i}\right)$, where \widetilde{W} is the spherical convex body induced by W and $k \geq n+2 \in \mathbb{N}$. For crystallines, we have the following proposition:

Lemma 4.1 (Maehara's Lemma [4], [5]). For any hemispherical finite subset $X=$ $\left\{P_{1}, \ldots, P_{k}\right\}$, the following holds:

$$
\left\{\left.\frac{\sum_{i=1}^{k} t_{i} P_{i}}{\left\|\sum_{i=1}^{k} t_{i} P_{i}\right\|} \right\rvert\, P_{i} \in X, \sum_{i=1}^{k} t_{i}=1, t_{i} \geq 0\right\}^{\circ}=\bigcap_{i=1}^{k} H\left(P_{i}\right) .
$$

Proposition 3. Let $W \subset \mathbb{R}^{n+1}$ be a Wulff shape of polytope type and let \widetilde{W} be a spherical convex body induced by W. Set $\widetilde{W}=\bigcap_{i=1}^{k} H\left(P_{i}\right) \subset S^{n+1}$. Then, W is a self-dual Wulff shape if and only if P_{i} is a vertex of \widetilde{W} for any $i(1 \leq i \leq k)$.

Proof.
Proof of the "Only if" part. Let W be a self-dual Wulff shape of polytope type. Then, by Maehara's Lemma, we have the following equality:

$$
\widetilde{W}=\bigcap_{i=1}^{k} H\left(P_{i}\right)=\left\{\left.\frac{\sum_{i=1}^{k} t_{i} P_{i}}{\left\|\sum_{i=1}^{k} t_{i} P_{i}\right\|} \right\rvert\, P_{i} \in X, \sum_{i=1}^{k} t_{i}=1, t_{i} \geq 0\right\}^{\circ} .
$$

Then, by Lemma 2.2, the following holds:

$$
\widetilde{W}^{\circ}=\left\{\left.\frac{\sum_{i=1}^{k} t_{i} P_{i}}{\left\|\sum_{i=1}^{k} t_{i} P_{i}\right\|} \right\rvert\, P_{i} \in X, \sum_{i=1}^{k} t_{i}=1, t_{i} \geq 0\right\} .
$$

Since W is a self-dual Wulff shape, it follows that $\widetilde{W}=\widetilde{W}$. Hence, P_{i} is a vertex of \widetilde{W} for any $i(1 \leq i \leq 2 m+1)$.

Proof of the "if" part. Since P_{i} is a vertex of \widetilde{W}, we have the following:

$$
\widetilde{W}=\left\{\left.\frac{\sum_{i=1}^{k} t_{i} P_{i}}{\left\|\sum_{i=1}^{k} t_{i} P_{i}\right\|} \right\rvert\, P_{i} \in X, \sum_{i=1}^{k} t_{i}=1, t_{i} \geq 0\right\} .
$$

Thus, by Maehara's Lemma, we have the following:

$$
\widetilde{W^{\circ}}=\left\{\left.\frac{\sum_{i=1}^{k} t_{i} P_{i}}{\left\|\sum_{i=1}^{k} t_{i} P_{i}\right\|} \right\rvert\, P_{i} \in X, \sum_{i=1}^{k} t_{i}=1, t_{i} \geq 0\right\}^{\circ}=\bigcap_{i=1}^{k} H\left(P_{i}\right)=\widetilde{W}
$$

Therefore, W is a self-dual Wulff shape.
4.3. When is the dual Wulff shape congruent to the original Wulff shape?

Finally, as a generalized problem of characterization of self-dual Wulff shapes, we pose the following:

Problem. Under what conditions is the dual Wulff shape merely congruent to the original Wulff shape?

We have partial results to this problem as follows:
Example. Let $X_{2 m}$ be a regular polygon with $2 m$ vertices in the plane where $m \geq 2$. Denote the half of the length of its diagonal by $a_{2 m}$. Suppose that the center of $X_{2 m}$ is the origin and $a_{2 m}$ satisfies the following equation:

$$
\begin{equation*}
\sin \left(\frac{\pi-(2 \pi / 2 m)}{2}\right)=\frac{1 / a_{2 m}}{a_{2 m}} \tag{*}
\end{equation*}
$$

Then, $X_{2 m} \neq \mathcal{D} X_{2 m}$ but $\mathcal{D} X_{2 m}$ is congruent to $X_{2 m}$.
For instance, consider a square $P_{1} P_{2} P_{3} P_{4} \subset \mathbb{R}^{2}$ such that the origin is its center and the length of its edge is $2 / a_{4}$, where $a_{4}^{2}=\sqrt{2}$. Let $Q_{1} Q_{2} Q_{3} Q_{4} \subset \mathbb{R}^{2}$ be the dual Wulff shape of $P_{1} P_{2} P_{3} P_{4}$. Then, $P_{1} P_{2} P_{3} P_{4} \neq Q_{1} Q_{2} Q_{3} Q_{4}$ (see Figure 5). And, it is easy to see that $Q_{1} Q_{2} Q_{3} Q_{4}$ is also a square with properties that the origin is its center and the length of its edge is $2 / a_{4}$. Thus, $Q_{1} Q_{2} Q_{3} Q_{4}$ is congruent to $P_{1} P_{2} P_{3} P_{4}$.

It is not difficult to obtain the equation (*) for $a_{2 m}$ of general $2 m$-gon $X_{2 m}$.
Acknowledgements. The authors wish to express their sincere gratitude to the referee for careful reading of this paper and making invaluable suggestions.

Figure 5. Square $P_{1} P_{2} P_{3} P_{4}$ and its dual square $Q_{1} Q_{2} Q_{3} Q_{4} . \quad P_{1} O=a_{4}$, $R O=1 / a_{4}$, where $a_{4}^{2}=\sqrt{2}$.

References

[1] H. Han and T. Nishimura, Strictly convex Wulff shapes and C^{1} convex integrands, Proc. Amer. Math. Soc., 145 (2017), 3997-4008.
[2] M. Lassak, Width of spherical convex bodies, Aequationes Math., 89 (2015), 555-567.
[3] M. Lassak, Reduced spherical polygons, Colloq. Math., 138 (2015), 205-216.
[4] H. Maehara, Geometry of Circles and Spheres, Asakura Publishing, 1998 (in Japanese).
[5] T. Nishimura and Y. Sakemi, Topological aspect of Wulff shapes, J. Math. Soc. Japan, 66 (2014), 89-109.
[6] J. E. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc., 84 (1978), 568-588.
[7] G. Wulff, Zur frage der geschwindindigkeit des wachstrums und der auflösung der krystallflachen, Z. Kristallographine und Mineralogie, 34 (1901), 449-530.

Huhe Han

Graduate School of Environment and Information Sciences
Yokohama National University
Yokohama 240-8501, Japan
E-mail: han-huhe-bx@ynu.jp

Takashi Nishimura

Research Institute of Environment and Information Sciences
Yokohama National University
Yokohama 240-8501, Japan
E-mail: nishimura-takashi-yx@ynu.jp

[^0]: 2010 Mathematics Subject Classification. Primary 52A55.
 Key Words and Phrases. Wulff shape, dual Wulff shape, self-dual Wulff shape, spherical convex body, width, constant width, Lune, thickness, diameter, spherical polar set.

 This work was partially supported by JSPS KAKENHI Grant Number 26610035.

