
c©2017 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 69, No. 4 (2017) pp. 1443–1474
doi: 10.2969/jmsj/06941443

Jacquet–Langlands–Shimizu correspondence for theta lifts to

GSp(2) and its inner forms I:

An explicit functorial correspondence

By Hiro-aki Narita

Appendix by Ralf Schmidt

(Received Jan. 8, 2016)

Abstract. As was first essentially pointed out by Tomoyoshi Ibukiyama,
Hecke eigenforms on the indefinite symplectic group GSp(1, 1) or the definite
symplectic group GSp∗(2) over Q right invariant by a (global) maximal open
compact subgroup are conjectured to have the same spinor L-functions as
those of paramodular new forms of some specified level on the symplectic group
GSp(2) (or GSp(4)). This can be viewed as a generalization of the Jacquet–
Langlands–Shimizu correspondence to the case of GSp(2) and its inner forms
GSp(1, 1) and GSp∗(2).

In this paper we provide evidence of the conjecture on this explicit functo-
rial correspondence with theta lifts: a theta lift from GL(2)×B× to GSp(1, 1)
or GSp∗(2) and a theta lift from GL(2) × GL(2) (or GO(2, 2)) to GSp(2).
Here B denotes a definite quaternion algebra over Q. Our explicit functo-
rial correspondence given by these theta lifts are proved to be compatible
with archimedean and non-archimedean local Jacquet–Langlands correspon-
dences. Regarding the non-archimedean local theory we need some explicit
functorial correspondence for spherical representations of the inner form and
non-supercuspidal representations of GSp(2), which is studied in the appendix
by Ralf Schmidt.

1. Introduction.

1.1. Background and aim of this paper.

According to Eichler [7], [8], Shimizu [41] and Jacquet–Langlands [20], automorphic

L-functions of a multiplicative group of a definite quaternion algebra are those of holo-

morphic new forms on GL(2). The Langlands principle of functoriality (cf. [22]) predicts

that this should have more generality. More precisely, let G and H be two reductive

algebraic groups, and LG and LH be their L-groups (for the definition see [22] or [4]).

The principle says that, given an L-homomorphism between LG and LH, there should

be a correspondence between automorphic representations of G and those of H such that

it preserves the relation of their L-functions induced by the L-homomorphism. For this

we note that it is standard to assume that G or H is quasi-split.
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When H is a quasi-split group and G is an inner form of H we have LG = LH. As a

natural L-morphism we can take the identity map for this case. Namely we expect that an

automorphic L-function of G is some L-function of H. The original Jacquet–Langlands–

Shimizu correspondence (cf. [20], [41]) is a typical example of this, which deals with the

case where G is a multiplicative group of a quaternion algebra and H = GL(2). We

now have the Jacquet–Langlands correspondence for GL(n) established by Badulescu–

Renard (cf. [2], [3]). The aim of this paper is to provide examples of automorphic forms or

automorphic representations satisfying the principle when G is the indefinite or definite

symplectic group GSp(1, 1) or GSp∗(2) respectively and H is the split symplectic group

GSp(2) of genus two (for these groups see Section 2.1). We note that GSp(1, 1) and

GSp∗(2) are non-split inner forms of GSp(2).

We are inspired by Ibukiyama’s conjecture [17] (see also [18]). He considers the

case of G = GSp∗(2), which is the compact inner form of H = GSp(2). His conjecture

says that spinor L-functions of Hecke eigenforms on this compact form right-invariant by

some (global) maximal open compact subgroup of non-principal genus should be those

of paramodular new forms on GSp(2) of square free level. For this we should note that

there is a quite established study on a non-archimedean local theory of paramodular

forms by Roberts and Schmidt [39]. We can expect the conjecture not only for GSp∗(2)
but also for GSp(1, 1) since their L-group are the same. We will generalize Ibukiyama’s

conjecture for the cases of any (global) maximal open compact subgroups (cf. Conjecture

4.2), for which our result provides evidence.

1.2. Main result.

Throughout this paper, we work over the rational number field Q and assume that

every automorphic form or automorphic representation has the trivial central character.

In what follows, we denote the adele ring of Q by A. By B we denote a definite quaternion

algebra over Q. Let dB be the discriminant of B and D a (square free) divisor of dB . To

state our result we introduce the space Sκ1
(D) of elliptic cusp forms of weight κ1 and

level D (cf. [31, Section 3.1]) and the space Aκ2
of automorphic forms on B×

A of weight

σκ2
(cf. [31, Section 3.2]), for which we assume that κ2 > 0.

For (f, f ′) ∈ Sκ1
(D) × Aκ2

we define the theta lifting from (f, f ′) to an auto-

morphic form L(f, f ′) on GSp(1, 1)(A) or GSp∗(2)(A), following the formulation as in

[30] (cf. Section 3.2.2). By a theta integral kernel with some specified Schwartz–Bruhat

function, we define the theta lift L(f, f ′) on GSp(1, 1)(A) (respectively GSp∗(2)(A)) so
that it is a cusp form on GSp(1, 1)(A) (respectively an automorphic form on GSp∗(2)(A))
right-invariant by a (global) maximal open compact subgroup. By π(f, f ′) we denote the
automorphic representation generated by L(f, f ′).

On the other hand, let JL(f ′) ∈ Sκ2+2(dB) be a primitive cusp form corresponding

to a Hecke eigenform f ′ ∈ Aκ2
by Eichler or Jacquet–Langlands–Shimizu correspon-

dence (cf. [7], [8], [20], [41]). We consider the cuspidal representation π′(f, JL(f ′))
given by a theta lift to GSp(2)(A) from (f, JL(f ′)) (or from a cuspidal representation of

GO(2, 2) defined by (f, JL(f ′))). This theta lift follows the formulation by Roberts [38]

and Harris–Kudla [12].

Now we can consider the natural map Φ : π(f, f ′) �→ π′(f, JL(f ′)), which makes the

following diagram commute (if we assume the non-vanishing of π(f, f ′) and π′(f, JL(f ′))):



Jacquet–Langlands–Shimizu correspondence 1445

(f, f ′) −−−−→ π(f, f ′)

id× JL

⏐⏐� ⏐⏐�Φ
(f, JL(f ′)) −−−−→ π′(f, JL(f ′))

Our result (cf. Theorem 4.13) is that Φ satisfies the expected conditions of the Jacquet–

Langlands–Shimizu correspondence for GSp(2) and its inner forms GSp∗(2), GSp(1, 1).

Theorem. Let (f, f ′) ∈ Sκ1
(D) × Aκ2

be Hecke eigenforms and suppose that f

is primitive. When L(f, f ′) is a theta lift to GSp(1, 1)(A) (respectively GSp∗(2)(A)) we

assume that 1 < κ1 < κ2+2 (respectively 1 < κ2+2 < κ1). Let π(f, f
′) and π′(f, JL(f ′))

be the automorphic representations above.

(1) The two representations π(f, f ′) and π′(f, JL(f ′)) are irreducible and thus decompose

into the restricted tensor product π(f, f ′) =
⊗′

v≤∞ πv and π′(f, JL(f ′)) =
⊗′

v≤∞ π′
v.

For v = p � dB, πp � π′
p is a unique irreducible subquotient with a spherical vector for

an unramified principal series representation, which we call type I. For v = p|dB/D (re-

spectively p|D), πp and π′
p are the representation of type IIa (respectively Va). Here see

section A.4 of the appendix for the representations of type I, IIa and Va. For v = ∞, π∞
and π′

∞ are irreducible admissible representations square integrable modulo center (Sec-

tion 2.3.2) with the same L-parameter.

The map Φ is thus compatible with archimedean and non-archimedean local Jacquet–

Langlands correspondences (for the non-archimedean correspondence, see the appendix ).

(2) We have the coincidence of the global spinor L-functions as follows :

L(π(f, f ′), spin, s) = L(π′(f, JL(f ′)), spin, s).

Remark. (1) We remark that Sorensen [44] dealt with some other special case of

the global Jacquet–Langlands correspondence for GSp∗(2) and GSp(2) by a trace for-

mula approach. As for the trace formula approach toward the Langlands functoriality,

many specialists are interested in the recent remarkable progress due to Arthur (cf. [1])

and to Moeglin and Waldspurger (cf. [26]). However, the global Jacquet–Langlands cor-

respondence of GSp(2) and its inner forms seems still open in gerenal.

(2) For this theorem we note that all πp’s for p|dB are spherical representations of the

non-split group GSp(1, 1)(Qp) � GSp∗(2)(Qp). We define local spinor L-functions for all

spherical representations of this group in terms of Hecke eigenvalues. We verify that such

local L-functions are local spinor L-functions of irreducible admissible representations of

GSp2(Qp) with the same L-parameters as the spherical representations (cf. Proposition

4.9). In Remark 4.10 it is remarked how the invariance conditions of spherical represen-

tations with respect to the maximal compact subgroups are related to the degrees of the

local spinor L-functions.

(3) The non-archimedean local Jacquet–Langlands correspondence ofGSp(2) (orGSp(4))

and its inner forms has been essentially established by Gan–Takeda [10] and Gan–

Tantono [11]. However, the local Jacquet–Langlands correspondence we take up describes

the correspondence between the paramodular level structures for the local representations

of GSp(2) and the invariance conditions mentioned in (2) for spherical representations

of the inner forms, which [10] and [11] do not point out. If one wants to understand
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the Jacquet–Langlands correspondence in the context of modular forms or automorphic

forms, this description is quite natural to study.

(4) Though the statement of the theorem is representation theoretic we remark that we

are interested in the realization of the Jacquet–Langlands correspondence in terms of

the explicit construction of automorphic forms like Shimizu [41]. The construction of

the theta lifts L(f, f ′)’s is due to such motivation. We remark that, when f is a primi-

tive form, the cuspidal representation π′(f, JL(f ′)) has a paramodular newform of level

DdB (cf. Section 4.6), which should correspond to L(f, f ′) by the Jacquet–Langlands

correspondence.

1.3. A brief explanation of the paper.

Let us explain the outline of the paper. In Section 2 we provide basic notation and

facts necessary for the later argument. In Section 3 we introduce automorphic forms on

GSp(1, 1)(A) and GSp∗(2)(A) in our concern and formulate the theta lifts to the two

inner forms. We then discuss the global Jacquet–Langlands–Shimizu correspondence for

representations π(f, f ′) and π′(f, JL(f ′)) in Section 4. These representations are shown

to have the same spinor L-function (cf. Corollary 4.12). The main theorem, Theorem

4.13, asserts that the correspondence is compatible with the local Jacquet–Langlands

correspondences for GSp(2) and its inner form.

In the second work [35] we discuss non-vanishing of the theta lifts L(f, f ′) to

GSp(1, 1) and GSp∗(2). For this we remark that the non-vanishing of the theta lifts

π′(f, JL(f ′)) can be said to be known in view of Roberts [38, Theorem 8.3], Przebinda

[37] and Gan–Takeda [9] (cf. Section 4.4). In [35] we provide an explicit formula for

Bessel periods of L(f, f ′) in terms of central L-values for the case of GSp(1, 1), and

we apply it to our study on the non-vanishing of L(f, f ′). This result is announced in

[34]. The work [35] is viewed as a generalization of the papers [31] and [32], which

already provided examples of non-vanishing L(f, f ′)’s on GSp(1, 1)(A) for the case of

κ1 = κ2. In [35] we also remark that Ibukiyama–Ihara [19] have given several examples

of non-vanishing L(f, f ′)’s for GSp∗(2).

Notation. For a number filed F we denote by AF the adele ring of F . When

F = Q we denote AQ simply by A and the ring of finite adeles in A by Af . Given a Q-

algebra R and a Q-algebraic group G, G(R) denotes the group of R-valued points. When

R is the p-adic field Qp (respectively the field R of real numbers), we sometimes write

Gp (respectively G∞) for G(R). By diag(a1, a2, . . . , an) we denote the diagonal matrix

with the i-th diagonal entry ai for 1 ≤ i ≤ n. For a group H, ZH denotes the center of

H.

2. Basic notations and facts.

2.1. Algebraic groups.

Let B be a definite quaternion algebra over Q and denote the discriminant of B

by dB , which is defined as the product of finite primes p’s such that Bp = B ⊗Q Qp is

a division algebra. The real division algebra H := B ⊗Q R is the Hamilton quaternion

algebra. Let B 	 x �→ x̄ ∈ B be the main involution of B. By n and tr we denote the

reduced norm and the reduced trace of B respectively.
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Let Gnc = GSp(1, 1) and Sp(1, 1) be the Q-algebraic groups defined by

Gnc(Q) := {g ∈ M2(B) | tḡQncg = ν(g)Qnc, ν(g) ∈ Q×},
Sp(1, 1)(Q) := {g ∈ Gnc(Q) | ν(g) = 1},

where Qnc := ( 0 1
1 0 ). Furthermore let Gc = GSp∗(2) and Sp∗(2) be the Q-algebraic

groups defined by

Gc(Q) :={g∈M2(B) | tḡQcg=μ(g)Qc, μ(g)∈Q×}, Sp∗(2)(Q) :={g∈Gc(Q) |μ(g)=1},

where Qc := ( 1 0
0 1 ). In what follows, we often denote Gnc or Gc simply by G. In addition

to this, we introduce a Q-algebraic group O∗
4 defined by the group of Q-rational points

as follows:

O∗
4(Q) := {g ∈ M2(B) | tḡRg = R},

where R :=
(

0 1−1 0

)
. It is known that the accidental isomorphism

O∗
4(R) � (SL(2;R)×H1)/{±(12, 1)}

holds, where H1 := {u ∈ H | n(u) = 1}. Later we need this and the fact that Sp(1, 1)×O∗
4

and Sp∗(2)× O∗
4 form dual pairs in the symplectic group Sp(8) of degree eight (see the

proof of Proposition 3.3 (2)).

On the other hand, let G′ = GSp(2) and Sp(2) be the Q-algebraic groups defined

by

G′(Q) := {g ∈GL4(Q) | tgSg = λ(g)S, λ(g) ∈Q×}, Sp(2)(Q) := {g ∈G′(Q) | λ(g) = 1},

where S =
(

02 12−12 02

)
. We should note that G = Gnc or Gc is a non-split inner form of G′.

2.2. Maximal compact subgroups at ∞ and open compact subgroups at

finite places.

Let Q = Qnc or Qc. We first introduce maximal compact subgroups at the

archimedean place. We put G1
∞ := {g ∈ M2(H) | tḡQg = Q}, namely Sp(1, 1)(R)

or Sp∗(2)(R). Then G1
∞ is the compact Lie group itself when Q = Qc, and

K∞ :=

{(
a b

b a

)
∈ M2(H) | a± b ∈ H1

}

forms a maximal compact subgroup of G1
∞ when Q = Qnc, where recall that H1 := {u ∈

H | n(u) = 1}. The map K∞ 	
(
a b
b a

)
�→ (a + b, a − b) ∈ H1 × H1 gives rise to an

isomorphism K∞ � H1 ×H1.

We put G′1
∞ := {g ∈ GL4(R) | tgSg = S}, namely Sp(2)(R). Then

K ′∞ :=

{(
A B

−B A

)
∈ GL4(R)

∣∣∣∣ A+
√
−1B ∈ U(2)

}

is a maximal compact subgroup of G′1
∞, where U(2) := {X ∈ M2(C) | tX̄X = 12}
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denotes the unitary group of degree two. The map K ′∞ 	
(

A B
−B A

)
�→ A+

√
−1B ∈ U(2)

induces an isomorphism K ′∞ � U(2).

Let us next introduce open compact subgroups at non-archimedean places for G =

GSp(1, 1) or GSp∗(2) and G′ = GSp(2). We remark that GSp(1, 1) and GSp∗(2) are

isomorphic to each other over Qp for any p < ∞, and that these are isomorphic to GSp(2)

over Qp for p � dB . In what follows, we thus identify GSp∗(2)(Qp) with GSp(1, 1)(Qp)

for any p < ∞, and Gp with G′
p for p � dB .

We let D be a divisor of dB and fix a maximal order O of B. For p|dB let Pp be

the maximal ideal of the p-adic completion Op of O and let{
L1,p := t(Op ⊕Op) (p � dB/D),

L2,p := t(Op ⊕P−1
p ) (p|dB/D).

We introduce Ki,p := {k ∈ Gp | kLi,p = Li,p} for i = 1, 2. Then, up to Gp-conjugation,

every maximal compact subgroup of Gp is isomorphic to K1,p or K2,p for each finite

prime p when G = GSp(1, 1) or GSp∗(2) (cf. Section A.2 of the appendix).

Let us deal with the case of GSp(2). For a non-negative power pn of a prime p we

put

K ′
p(p

n) :=

⎧⎪⎪⎨
⎪⎪⎩g ∈ GSp(2)(Qp) ∩

⎛
⎜⎜⎝

Zp Zp p−nZp Zp

pnZp Zp Zp Zp

pnZp p
nZp Zp pnZp

pnZp Zp Zp Zp

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
λ(g) ∈ Z×

p

⎫⎪⎪⎬
⎪⎪⎭ .

We call this open compact subgroup of GSp(2)(Qp) a paramodular subgroup of level pn.

From now on K ′
p denotes K ′

p(Np) with

Np =

⎧⎪⎨
⎪⎩
1 (p � dB),

p (p|dB/D),

p2 (p|D).

We remark that K1,p � K ′
p = GSp(2)(Zp)(:= GSp(2)(Qp) ∩GL(4)(Zp)) for p � dB .

We now introduce open compact subgroups Kf (D) :=
∏

p�dB/D K1,p

∏
p|dB/D K2,p

and K ′
f (D) :=

∏
p<∞ K ′

p of G(Af ) and G′(Af ) respectively. For this we note that

Gnc(Af ) � Gc(Af ) since Gnc(Qp) � Gc(Qp) for each p < ∞ as is remarked above. We

further note that the subgroup Kf (D) is a maximal open compact subgroup of G(Af )

and that every maximal open compact subgroup of G(Af ) is conjugate to some Kf (D).

2.3. Representations at the archimedean place.

We will need admissible representations of G1
∞, G′1

∞, G∞ and G′∞, called discrete

series representations or square integrable representations (modulo center). For the def-

inition of admissible representations, see [48, p. 81] for instance.

2.3.1. Discrete series representations of G1
∞ and G′1

∞.

We give Harish-Chandra’s parametrization of discrete series representations of G1
∞

and G′1
∞ (cf. [14, Theorem 16]). For a detail on this see [21, Theorem 9.20, Theorem
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12.21]. We can realize such parametrization in Z2. Let g (respectively g′) be the Lie

algebra of G1
∞ (respectively G′1

∞). The complexifications gC and g′C of g and g′ are

isomorphic to each other. The complex root system of the complexified Lie algebras

with respect to a (complexified) compact Cartan subalgebra is given by

Δ := {±2e1, ±2e2, ±(e1 − e2), ±(e1 + e2)},

where {e1, e2} denotes the standard basis of Z2. For gC (respectively g′C) the standard

choice of the compact positive roots is

Δ+
c =

{
{2e1, 2e2, e1 ± e2} (Q = Qc),

{2e1, 2e2} (Q = Qnc)

(respectively Δ′+
c = {e1 − e2}). Let ρc (respectively ρn) denote the half sum of compact

positive roots (respectively non-compact positive roots). Given a Harish–Chandra pa-

rameter λ ∈ Z2, Λ := λ+ρn−ρc parametrizes the highest weight of the minimal K-type

of the discrete series representation with Harish–Chandra parameter λ, where K stands

for a maximal compact subgroup of G1
∞ or G′1

∞ (Λ is called the Blattner parameter).

When Q = Qnc the Lie algebra gC has two positive systems

Δ+
I = {2e1, 2e2, e1 ± e2},

Δ+
II = {2e1, 2e2, ±e1 + e2}

containing Δ+
c , while it has one positive system Δ+

I containing Δ+
c when Q = Qc. We

now introduce the following two sets of weights

ΞI := {(λ1, λ2) ∈ Z2
>0 | λ1 > λ2}, ΞII := {(λ1, λ2) ∈ Z2

>0 | λ2 > λ1},

which are regular dominant with respect to Δ+
I and Δ+

II respectively. When Q = Qc, the

equivalence classes of discrete series representations of G1
∞ are parametrized by ΞI . On

the other hand, when Q = Qnc, the equivalence classes of discrete series representations

of G1
∞ are parametrized by the union of ΞI and ΞII .

When Q = Qc the discrete series parametrized by λ = (λ1, λ2) ∈ ΞI is nothing

but the irreducible representation of G1
∞ with the highest weight given by the dominant

weight Λ = (λ1 − 2, λ2 − 1). When Q = Qnc the minimal K∞-type of the discrete

series parametrized by λ = (λ1, λ2) ∈ ΞI (respectively ΞII) has the highest weight

Λ = (λ1, λ2 − 1) (respectively (λ1 − 1, λ2)).

On the other hand, g′C has four positive systems containing Δ′+
c :

Δ′+
I = {e1 − e2, e1 + e2, 2e1, 2e2},

Δ′+
II = {e1 − e2, 2e1, −2e2, e1 + e2},

Δ′+
III = {e1 − e2, 2e1, −2e2, −e1 − e2},

Δ′+
IV = {e1 − e2, −2e1, −2e2, −e1 − e2}.

The equivalence classes of holomorphic discrete series and anti-holomorphic discrete series
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of G′1
∞ are parametrized by

Ξ′
I := {(λ′

1, λ
′
2) ∈ Z2

>0 | λ′
1 > λ′

2}, Ξ′
IV := {(λ′

1, λ
′
2) ∈ Z2

<0 | λ′
1 > λ′

2},

which are regular dominant with respect to Δ′+
I and Δ′+

IV respectively. The equivalence

classes of non-holomorphic (or large) discrete series and their contragredients of G′1
∞ are

parametrized by

Ξ′
II := {(λ′

1, λ
′
2) ∈ Z>0×Z<0 | λ′

1 > −λ′
2}, Ξ′

III := {(λ′
1, λ

′
2) ∈ Z>0×Z<0 | λ′

1 < −λ′
2},

which are regular dominant with respect to Δ′
II and Δ′

III respectively. We remark that

all discrete series of G′1
∞ are exhausted by these four sets, up to equivalence. We call ΞI

or ΞI ∪ ΞII (respectively Ξ′
I ∪ Ξ′

II ∪ Ξ′
III ∪ Ξ′

IV ) the set of Harish–Chandra parameters

for G1
∞ (respectively G′1

∞).

2.3.2. Square integrable representations modulo center.

We will need some irreducible admissible representations of G∞ and G′∞ square

integrable modulo center (cf. [23, Section 3]). To explain them we remark that the four

sets ΞI ,ΞII , Ξ
′
II and Ξ′

III are conjugate to each other by the Weyl group of gC � g′C.
More precisely, given (λ1, λ2) ∈ ΞI , the set consisting of

λ=λI :=(λ1,λ2)∈ΞI , λII :=(λ2,λ1)∈ΞII , λ
′
II :=(λ1,−λ2)∈Ξ′

II , λ
′
III :=(λ2,−λ1)∈Ξ′

III

is included in an orbit of the Weyl group. The discrete series representations with these

parameters have the same L-parameter. The following proposition is viewed as a special

case of the general theory in [23, Section 3] for G∞ and G′∞.

Proposition 2.1. (1) For λ = (λ1, λ2) ∈ ΞI there is the irreducible admissible

representation πλ of G∞ satisfying the following :

• it has the trivial central character and is square integrable modulo center,

• its restriction to G1
∞ is the direct sum of two discrete series representations with

Harish–Chandra parameters λ = λI and λII when G = Gnc (respectively the dis-

crete series representation with Harish–Chandra parameter λ = λI when G = Gc).

On the other hand, there is the irreducible admissible representation π′
λ of G′∞ satisfying

the following :

• it has the trivial central character and is square integrable modulo center,

• its restriction to G′1
∞ is the direct sum of two discrete series representations with

Harish–Chandra parameters λ′
II and λ′

III .

(2) The two representations πλ and π′
λ have the same L-parameter, namely these two are

involved in the archimedean local Jacquet–Langlands correspondence.

The first assertion is a special case of [23, Lemma 3.5]. For the second assertion, see

[23, pp. 38–44], which discusses how to define L-packets for square integrable representa-

tions modulo center. We remark that πλ and π′
λ are representations induced from discrete

series representations of G1
∞ and G′1

∞ with the same L-parameter (cf. [23, p. 41]).
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3. Automorphic forms on Gnc = GSp(1, 1) and Gc = GSp∗(2).

3.1. Automorphic forms generating representations square integrable

modulo center at the archimedean place.

Let Λ = (Λ1,Λ2) ∈ (Z≥0)
2. For such Λ we introduce an irreducible representation

of G1
∞ for G = Gc or an irreducible representation of K∞ for G = Gnc. We denote it by

τΛ. We then define two spaces of automorphic forms of weight τΛ for G = Gc or Gnc.

We first let G = Gc and assume that Λ1 ≥ Λ2 for Λ = (Λ1,Λ2). By (τΛ,WΛ) we

mean the irreducible representation of G1
∞ with highest weight Λ, where WΛ denotes the

representation space of τΛ.

Definition 3.1. Let G = Gc and D|dB . For Λ = (Λ1,Λ2) ∈ Z2 with Λ1 ≥ Λ2 we

introduce the space Ac
τΛ(D) of WΛ-valued functions on G(A) satisfying

F (zγgkfk∞) = τΛ(k∞)−1F (g)

for (z, γ, g, kf , k∞) ∈ ZG(A)×G(Q)×G(A)×Kf (D)×G1
∞.

For this we note that, with any fixed gf ∈ G(Af ), the right translations of the

coefficients of F (gf∗) by G∞ generates the irreducible representation πλ (cf. Section

2.3.2) with λ = (Λ1 + 2,Λ2 + 1) ∈ ΞI (if F is non-zero).

We next let G = Gnc. For a non-negative integer κ we let (σ′
κ, Vκ) be the κ-th

symmetric tensor representation of GL2(C) with the representation space Vκ and let σκ

be the pull-back of σ′
κ to H× via the standard embedding H ⊂ M2(C) given by

H 	 x0 + x1i+ x2j + x3k �→
(

x0 +
√
−1x1 x2 +

√
−1x3

−(x2 −
√
−1x3) x0 −

√
−1x1

)
∈ M2(C).

Here {1, i, j, k} is the basis of H defined by

i2 = j2 = −1, ij = −ji = k.

For Λ = (Λ1,Λ2) ∈ Z⊕2
≥0 we define an irreducible representation (τΛ, VΛ1

⊗ VΛ2
) of K∞

by

τΛ

((
a b

b a

))
:= σΛ1(a+ b)� σΛ2(a− b),

((
a b

b a

)
∈ K∞

)
.

Definition 3.2. Let G = Gnc and D|dB . For λ = (λ1, λ2) ∈ ΞI let πλ be the

irreducible admissible representation of G∞ square integrable modulo center (cf. Section

2.3.2) and let Λ = (Λ1,Λ2) := (λ1, λ2 − 1). We then introduce the space Snc
τΛ(D) of

VΛ1
� VΛ2

-valued cusp forms F on G(A) satisfying the following:

1. F (zγgkfk∞) = τΛ(k∞)−1F (g) for (z, γ, g, kf , k∞) ∈ ZG(A) × G(Q) × G(A) ×
Kf (D)×K∞,

2. for each fixed gf ∈ G(Af ), the right translations of the coefficients of F (gf∗) by

G∞ generate πλ (cf. Section 2.3.2) as admissible representations of G∞ (if F is

non-zero).
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For this definition we remark that τΛ is the minimal K∞-type of the discrete series

representation of G1
∞ with Harish–Chandra parameter λ = (λ1, λ2) ∈ ΞI .

3.2. Theta lifts to G.

3.2.1. Automorphic forms on GL(2) and B×.

Let H and H ′ be Q-algebraic groups defined by

H(Q) = GL2(Q), H ′(Q) := B×

respectively. For a positive even integer κ1 we let Sκ1
(D) be the space of elliptic cusp

forms of weight κ1 with level D (cf. [31, Section 3.1]), namely f ∈ Sκ1
(D) is right-

invariant with respect to Uf (D) :=
∏

p<∞ Up with Up := {(uij) ∈ GL2(Zp) | u21 ∈ DZp}.
For a non-negative even integer κ2 we let Aκ2 be the space of automorphic forms of

weight σκ2 with respect to
∏

v<∞ O×
v (cf. [31, Section 3.2]), where O×

v denotes the unit

group of Ov (for O and Ov see Section 2.2). In what follows, we will often assume that

(f, f ′) ∈ Sκ1
(D)×Aκ2

are Hecke eigenforms (for the definition see [31, Sections 3.1, 3.2]).

We note that f (respectively f̄) generates the discrete series representation of lowest

weight −κ1 (respectively lowest weight κ1) as an admissible representation of SL2(R),

and that f ′ generates the irreducible representation σκ2
of H1. Assuming that (κ1, κ2) ∈

(2Z>0)
2 satisfies 1 < κ1 < κ2+2 or 1 < κ2+2 < κ1, we then know that (f̄ , f ′) generates

the discrete series representation of O∗
4(R) � (SL2(R)×H1)/{±(12, 1)} (for this isomor-

phism see Section 2.1) with Harish–Chandra parameter ((κ1 + κ2)/2,−(κ2 − κ1)/2−1) as

an admissible representation of O∗
4(R), where see [24, Section 2.2]) for Harish–Chandra’s

parametrization of discrete series of O∗
4(R). We use this fact for the proof of Proposition

3.3.

3.2.2. Theta lifts to automorphic forms on G.

We shall introduce theta lifts from H×H ′ to Gnc and Gc, following the formulation

as in [30]. The archimedean representations of our theta lifts are more general than those

in [30].

For v = p < ∞ let Vp be the space of locally constant compactly supported functions

on B2
p×Q×

p . We let ϕ0,p ∈ Vp be the characteristic function of Lp×Z×
p , where see Section

2.2 for Lp.

Let S(H2) stand for the space of Schwartz functions on H2 and let Hκ1−4 denote the

space of homogeneous harmonic polynomials of degree κ1− 4 on H2. For v = ∞ we then

introduce the function space V∞. When G = Gnc (respectively G = Gc) it stands for

the space of smooth functions ϕ on H2×R× such that, for each fixed t ∈ R×, H2 	 X �→
ϕ(X, t) belongs to S(H2) ⊗ End(V(κ1+κ2)/2 � V(κ2−κ1)/2) (respectively S(H2) ⊗ Hκ1−4)

for (κ1, κ2) ∈ (2Z≥0)
2 with κ1 ≤ κ2 (respectively κ1 ∈ 2Z≥0 with κ1 ≥ 4).

Let G = Gnc. For (κ1, κ2) ∈ (2Z≥0)
2 with κ1 ≤ κ2 we define ϕnc

0,∞(X, t) by

ϕnc
0,∞(X, t)

:=

{
t(κ2+3)/2σ(κ1+κ2)/2(X1 +X2)� σ(κ2−κ1)/2(X1 −X2) exp(−2πttX̄X) (t > 0),

0 (t < 0).

Let G = Gc. We note that, given an inner product (∗, ∗) of Hκ1−4, there is a
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reproducing kernel function

H2 	 X �→ CX ∈ Hκ1−4,

which satisfies (CX ,Φ) = Φ(X) for Φ ∈ Hκ1−4. Modifying [25, Definition 6.1], we define

ϕc
0,∞(X, t) by

ϕc
0,∞(X, t) :=

{
t(κ1−1)/2 exp(−2πttX̄X)CX (t > 0),

0 (t < 0).

For this case we have a remark necessary to consider the theta lift to Gc with this ϕc
0,∞.

Recall that, for (a, b) ∈ (Z≥0)
2 such that a ≥ b, (τ(a,b),W(a,b)) denotes the irreducible

representation of G1
∞ = Sp∗(2)(R) with highest weight (a, b) (cf. Section 3.1). As a

unitary representation of Sp∗(2)(R)×H1, Hκ1−4 has a decomposition

Hκ1−4 =
⊕

a≥b≥0
a+b=κ1−4

W(a,b) � Va−b (3.1)

(cf. [19, Section 1.2]). We therefore know that there is a Sp∗(2)(R)-equivariant W(a,b)-

valued paring (∗, ∗)a,b of Hκ1−4 × Va−b, which is unique up to constant multiples.

Following [30, Section 3] we introduce a metaplectic representation r =
⊗′

v≤∞ rv

of G(A) × H(A) × H ′(A) on the restricted tensor product V =
⊗′

v≤∞ Vv with respect

to {ϕ0,p}p<∞. It is associated with the standard additive character ψ of A/Q, which

satisfies ψ(a) = exp(2π
√
−1a) for a ∈ R. For G = Gnc (respectively G = Gc) we de-

fine the End
(
V(κ1+κ2)/2 � V(κ2−κ1)/2

)
-valued (respectively Hκ1−4-valued) theta function

θκ1,κ2
(g, h, h′) by ∑

(X,t)∈B2×Q×
r(g, h, h′)ϕ0(X, t),

where ϕ0 :=
∏

v≤∞ ϕ0,v with

ϕ0,∞ :=

{
ϕnc
0,∞ (G = Gnc),

ϕc
0,∞ (G = Gc).

When G = Gnc (respectively G = Gc) we consider the theta lift

Sκ1(D)×Aκ2 	 (f, f ′) �→ L(f, f ′)(g)

for (κ1, κ2) ∈ (2Z>0)
2 with κ1 ≤ κ2 (respectively with κ1 ≥ κ2 and κ1 ≥ 4), where

L(f, f ′)(g) :=
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
R2

+(H×H′)(Q)\(H×H′)(A)
f(h)θκ1,κ2

(g, h, h′)f ′(h′)dhdh′ (G = Gnc),∫
R2

+(H×H′)(Q)\(H×H′)(A)
f(h)(θκ1,κ2

(g, h, h′), f ′(h′))(κ1+κ2)/2−2,(κ1−κ2)/2−2dhdh
′

(G = Gc).

For the case of Gnc we note that, as a representation of H1, σκ2 occurs with multiplicity

one in the restriction of σ(κ1+κ2)/2 � σ(κ2−κ1)/2 to
{
( a 0
0 a ) | a ∈ H1

}
(cf. [46, Section

6.9.5, (2)]). As for the case of Gc note that the paring (∗, ∗)(κ1+κ2)/2−2,(κ1−κ2)/2−2

has been defined on Hκ1−4 × Vκ2
. We then know that the integral above with respect

to the archimedean part h′
∞ of h′ is well-defined. In addition, for Gnc and Gc, note

that θκ1,κ2
(g, h, h′) satisfies the invariance with respect to

∏
v<∞ O×

v × B× as f ′ satis-
fies (cf. [30, Sections 3, 4]). Hence we can say that the integral representing L(f, f ′) is
well-defined with respect to h′ for both of Gnc and Gc.

We furthermore note that, as a function in h, θκ1,κ2(g, h, h
′) is shown to satisfy

the same automorphy as Sκ1(D). The proof is similar to [30, Sections 3, 4]. For this

we remark that the proof of the equivariance with respect to “U∞”(� SO(2)) needs

[30, Lemma 3.2] for ϕnc
0,∞ and ϕc

0,∞. It is obtained by considering [33, Proposition

3.3] for the case of “(ν1, ν2) = ((κ1 + κ2)/2, (κ2 − κ1)/2) and (p, q) = (4, 4)” when G =

Gnc (respectively for the case of “(ν1, ν2) = (κ1−4, 0) and (p, q) = (8, 0)′′ when G = Gc).

This leads to [33, Lemma 3.8] and thus [30, Lemma 3.2] for ϕnc
0,∞ and ϕc

0,∞. We remark

that the case of Gc is also due to [15, Section 6] or [19, Section 2.1]. As a result we can

also say that the integral representing L(f, f ′) is well-defined with respect to h.

Proposition 3.3. Let (κ1, κ2) ∈ (2Z≥0)
⊕2.

(1) Suppose that (f, f ′) are Hecke eigenforms. Then L(f, f ′) is also a Hecke eigenform.

Furthermore, for each p|D, let εp (respectively ε′p) be the eigenvalue for the Atkin–Lehner

involution, i.e. the involutive action of
(

0 1−p 0

)
(respectively a prime element �B,p ∈ Bp)

on f (respectively f ′). Then L(f, f ′) ≡ 0 unless εp = ε′p.
(2) Assume that 1 < κ1 < κ2 + 2 when G = Gnc (respectively 1 < κ2 + 2 < κ1

when G = Gc). Then we have L(f, f ′) ∈ Snc
τΛ(D) with Harish–Chandra parameter

λ = ((κ1 + κ2)/2, (κ2 − κ1)/2 + 1) (respectively L(f, f ′) ∈ Ac
τΛ(D) with Harish–Chandra

parameter λ = ((κ2 + κ1)/2, (κ1 − κ2)/2− 1)).

Proof. (1) The proof of [30, Theorem 5.1] is useful also for our situation, which

implies the first assertion. The second assertion is due to [30, Remark 5.2 (ii)].

(2) Let G = Gnc. Following the argument in [30, Section 4], we can show the conver-

gence of θκ1,κ2(g, h, h
′) and further see that, as a function in g ∈ G(A), θκ1,κ2(g, h, h

′)
satisfies the automorphy of Snc

τΛ(D) with Λ = ((κ1 + κ2)/2, (κ2 − κ1)/2), which implies

such automorphy of L(f, f ′)(g). By the argument in [30, Section 4] we then verify that

L(f, f ′)(g) is convergent on any compact subset of G(A). In fact, as in the proof of

[30, Theorem 4.1], we can reduce its convergence to that of the restriction of L(f, f ′)
to G1

∞. We can then show the convergence by following the proof of [33, Proposition

4.2]. For the proof we should note the convergence of the theta series introduced at

[33, (3.1)], particularly those for the case of “(ν1, ν2) = ((κ1 + κ2)/2, (κ2 − κ1)/2) and
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V = H2 � R8”. We can further verify that L(f, f ′) is cuspidal by the same reasoning as

in the proof of [31, Proposition 2.4.1].

Let us note that Sp(1, 1) × O∗
4 forms a dual pair in the symplectic group Sp(8)

of degree eight. For the local metaplectic representation rv the transformation law of

rv|Sp(1,1)(Qv)×O∗
4 (Qv) turns out to be that of the restriction of the Weil representation of

Sp(8)(Qv) (cf. [47]) to Sp(1, 1)(Qv)×O∗
4(Qv). As we did in the proof of [30, Theorem 4.1],

we can view L(f, f ′)|G1∞(gf∗) with any fixed gf ∈ G(Af ) as a finite linear combination of

non-adelic theta lifts from (SL(2;R) × H1)/{±(12, 1)} � O∗(4)(R) to G1
∞. We thereby

see that, at the archimedean component, the coefficient functions of L(f, f ′)|G1∞(gf∗) as
above generate an admissible G1

∞-module isomorphic to a subquotient of the admissible

G1
∞-module in the theta correspondence with the discrete series representation of O∗

4(R)

with Harish–Chandra parameter ((κ1 + κ2)/2,−(κ2 − κ1)/2 − 1) (for “the admissible

G1
∞-module in the theta correspondence”, see the notation “ρ′1” in Howe [16, Theo-

rem 1A]). Here see Section 3.2.1) for the discrete series of O∗(4). Due to the general

theory on the archimedean local theta correspondence by Howe [16, Theorem 1A], the

admissible G1-module in the theta correspondence is quasi-simple and has a unique irre-

ducible subquotient. According to Li–Paul–Tan–Zhu [24, Theorem 5.1], such irreducible

subquotient is the discrete series representation of G1
∞ with Harish–Chandra parameter

((κ1 + κ2)/2, (κ2 − κ1)/2 + 1).

Now recall that, as is well-known, the cuspidal spectrum decomposes discretely into

irreducible pieces with finite multiplicities and that the restriction of an irreducible admis-

sible representation of G∞ to G1
∞ is a finite sum of irreducible admissible representation

of G1
∞, in fact, a sum of an irreducible admissible representation and its conjugation

by
(
1 0
0 −1

)
(cf. [23, Lemma 3.5]). The G1

∞-module generated by coefficient functions

of L(f, f ′)(gf∗) with any fixed gf ∈ G(Af ) is (at most) a finite sum of irreducible ad-

missible representations. We therefore see that, when L(f, f ′) �≡ 0, such G1
∞-module

is irreducible and is isomorphic to the discrete series representation mentioned above as

admissible representations of G1
∞ since the K∞-module generated by the coefficient func-

tions is isomorphic to the minimal K∞-type of the discrete series representation (which

occurs with multiplicity one in the discrete series). Next let us consider the admissible

G∞-module generated by the coefficients of L(f, f ′)(gf∗). Its restriction to G1
∞ is the

sum of the discrete series representation above and its conjugation by
(
1 0
0 −1

)
, and we thus

know that such G∞-module is nothing but πλ with λ = ((κ1 + κ2)/2, (κ2 − κ1)/2+1) in

the assertion.

On the other hand, let G = Gc. The proof of the convergence for θκ1,κ2
(g, h, h′)

is similar to the case of G = Gnc. Let us see that θκ1,κ2(g, h, h
′) satisfies the auto-

morphy of Ac
τΛ(D) as a function in g ∈ G(A). Its right G1

∞-equivariance by τΛ with

Λ = ((κ2 + κ1)/2 − 2, (κ1 − κ2)/2 − 2) follows from the decomposition of Hκ1−4 into

irreducible pieces as a Sp∗(2)(R)×H1-module (cf. (3.1)). Its right Kf (D)-invariance and

left G(Q)-invariance are verified by the argument in [30, Section 4]. We next discuss the

convergence of L(f, f ′) for this case. The function

H(A) 	 h �→
∫
R+H′(Q)\H′(A)

(θκ1,κ2
(g, h, h′), f ′(h′))(κ1+κ2)/2−2,(κ1−κ2)/2−2dh

′
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with any fixed g ∈ Gc(A) isW((κ1+κ2)/2−2,(κ1−κ2)/2−2)-valued and its coefficient functions

turn out to be elliptic modular forms of weight κ1 and level D (cf. [15, Section 6], [19,

Section 2.1]), for which note that we have already remarked just before the proposition

that θκ1,κ2
(g, h, h′) satisfies the same automorphy as that of the elliptic modular forms

just mentioned. The convergence of the integral representing L(f, f ′) is thus reduced to

that of the Petersson inner product of an elliptic modular form and an elliptic cusp form,

which leads to the convergence of L(f, f ′) on any compact subset of Gc(A), in fact, on

G1
∞.

For this case note that Sp∗(2) × O∗
4 forms a dual pair in Sp(8). We then remark

that [24, Theorem 5.1] determines the archimedean representation generated by L(f, f ′),
which means another proof of the right G1

∞-equivariance by τΛ mentioned above. �

Remark 3.4. (1) The condition 1 < κ1 < κ2 + 2 (respectively 1 < κ2 + 2 < κ1)

means that the Harish–Chandra parameter ((κ1 + κ2)/2,−(κ2 − κ1)/2−1) of O∗
4(R) and

the parameter ((κ1 + κ2)/2, (κ2 − κ1)/2+1) of Sp(1, 1)(R) (respectively Harish–Chandra

parameter ((κ1 + κ2)/2, (κ1 − κ2)/2− 1) of O∗
4(R) and Sp∗(2)(R)) are regular.

(2) If we consider the theta correspondence between discrete series representations

of G1
∞ = Sp(1, 1)(R) and O∗

4(R) under the assumption that κ1 > κ2 we have to

think of the discrete series representation of O∗
4(R) with Harish–Chandra parameter

((κ1 + κ2)/2, (κ1 − κ2)/2− 1), whose regularity condition means 1 < κ2 + 2 < κ1. How-

ever, according to [24, Theorem 5.1], the theta lift from such discrete series representation

of O∗
4(R) to Sp(1, 1)(R) vanishes.

4. The Jacquet–Langlands–Shimizu correspondence for theta lifts.

In this section we study the automorphic representations generated by theta lifts

from Hecke eigenforms (f, f ′) ∈ Sκ1
(D)×Aκ2

to G(A) and G′(A). We understand them

in terms of the global Jacquet–Langlands–Shimizu correspondence for G′ = GSp(2) and

the inner form G = GSp(1, 1) or GSp∗(2). We also show the coincidence of the global

spinor L-functions for the lifts.

4.1. Conjecture.

We recall that the L-group LG of G is the same as the L-group LG′ of G′, where
LG = LG′ is the direct product of GSp(2)(C) and the Weil group of Q (for the definition

of L-groups, see [22] and [4]). As the choice of the L-morphism between LG and LG′

we can take the identity map. The Langlands principle of functoriality predicts the

following:

Conjecture 4.1 (Langlands). The L-morphism induced by the identity map would

give rise to the natural transfer from equivalence classes of irreducible automorphic repre-

sentations of G(A) to those of G′(A) which preserves L-functions. Namely an L-function

of an irreducible automorphic representation of G(A) is one of some irreducible automor-

phic representation of G′(A).

We shall formulate another kind of the functoriality conjecture for some automorphic

representations of G(A) and G′(A), which was first essentially pointed out by Ibukiyama
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[17].

Let AG and AG′ denote the equivalence classes of irreducible automorphic repre-

sentations of G(A) and G′(A) with trivial central characters, respectively. We recall

that, for a divisor D of dB , we have introduced a maximal open compact subgroup

Kf (D) :=
∏

p�dB/D K1,p

∏
p|dB/D K2,p of G(Af ) = Gnc(Af ) = Gc(Af ) and an open

compact subgroup K ′
f (D) :=

∏
p<∞ K ′

p of G′(Af ) = GSp(Af ) in Section 2.2. Let us

introduce

AG(Kf (D)) :=

⎧⎪⎪⎨
⎪⎪⎩π =
⊗
v≤∞

′
πv ∈ AG

∣∣∣∣∣∣∣∣
πp has a K1,p-fixed vector for p

∣∣∣∣/dBD
and a K2,p-fixed vector for p

∣∣∣∣dBD

⎫⎪⎪⎬
⎪⎪⎭ ,

Anew
G′ (K ′

f (D)) :=

⎧⎨
⎩π′ =

⊗
v≤∞

′
π′
v ∈ AG′

∣∣∣∣ π′
p has a K ′

p-fixed vector for v = p < ∞
which is a paramodular new vector

⎫⎬
⎭ .

Here the levels of the paramodular new vectors above are given by Np in Section 2.2. We

now formulate the conjecture as follows:

Conjecture 4.2. The transfer in Conjecture 4.1 would map π ∈ AG(Kf (D))

to some π′ ∈ Anew
G′ (K ′

f (D)), and an L-function of π ∈ AG(Kf (D)) is one of π′ ∈
Anew

G′ (K ′
f (D)).

For this conjecture we remark that, as evidence in terms of non-archimedean local

theory, we have [39, Section A.8, Table A.13] and the table of irreducible admissible

representations of G(Qp) = Gnc(Qp) = Gc(Qp) and G′(Qp) in Section A.4 of the appen-

dix. We provide “global evidence” of this conjecture with theta lifts to Gnc, Gc and G′

including those introduced in Section 3.2. We will see that the global spinor L-functions

of the lifts coincide with each other.

4.2. Automorphic representations for GL(2) and B×.

For Hecke eigenforms (f, f ′) ∈ Sκ1
(D) × Aκ2

let π(f) be the automorphic repre-

sentation of GL2(A) generated by f and JL(π(f ′)) be the Jacquet–Langlands lift of the

automorphic representation π(f ′) generated by f ′. The Hecke equivariant isomorphism

between Aκ2 and the space spanned by primitive forms in Sκ2+2(dB) sends a Hecke

eigenform f ′ to a primitive form JL(f ′) (cf. [7], [8], [41, Section 6]). The automorphic

representation JL(π(f ′)) is nothing but that generated by JL(f ′). We describe each local

component of the automorphic representations π(f), π(f ′) and JL(π(f ′)).

4.2.1. Local representations at finite places.

Assume that f is primitive, and decompose π(f) into the restricted tensor product⊗′
v≤∞ π(f)v of local representations. Then, for v = p � D, π(f)p is an unramified

principal series representation of GL2(Qp). Let χf,p denote the unramified character of

Q×
p which induces π(f)p. Then the eigenvalue λ(f)p of f for the Hecke operator defined

by the double coset GL2(Zp)
(
p 0
0 1

)
GL2(Zp) can be written as

λ(f)p = p1/2(χf,p(p) + χf,p(p)
−1) (4.1)
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(cf. [5, Proposition 4.6.6]).

Let p|D. Now recall that εp denotes the eigenvalue of the Atkin Lehner involution of

f at p|D (see Proposition 3.3 (1)). Let λ+(f)p (respectively λ−(f)p) be the eigenvalue of f
for the Hecke operator defined by the double coset Up

(
p 0
0 1

)
Up (respectively Up

(
1 0
0 p

)
Up),

where see Section 3.2.1 for Up. It is verified that

λ+(f)p = λ−(f)p = −εp (4.2)

(cf. [27, Theorem 4.6.17 (2)], [29, Section 3.3]), for which note that the conjugation by(
0 1−p 0

)
relates the two double cosets. Let δ′p be the unramified character of Q×

p of order

at most two such that δ′p(p) = −εp. The representation π(f)p is a special representation

of GL2(Qp) given by the irreducible subrepresentation or subquotient of the induced

representation of GL2(Qp) associated with two quasi-characters ν
1/2
p · δ′p and ν

−1/2
p · δ′p,

where νp denotes the normalized p-adic valuation of Qp. Namely, π(f)p is the Steinberg

representation of GL2(Qp) twisted by δ′p.
For a Hecke eigenform f ′ ∈ Aκ2 let π(f ′) be the irreducible automorphic representa-

tion of H ′(A) generated by f ′, and let π(f ′) =
⊗′

v≤∞ π(f ′)v be the decomposition into

the restricted tensor product of local representations.

When p � dB , π(f ′)p is an unramified principal series representation of B×
p �

GL2(Qp). We let χf ′,p be the unramified character of Q×
p inducing π(f ′)p. As in f , the

Hecke eigenvalue λ(f ′)p of f ′ for the Hecke operator defined by GL2(Zp)
(
p 0
0 1

)
GL2(Zp)

can be written similarly as

λ(f ′)p = p1/2(χf ′,p(p) + χf ′,p(p)
−1). (4.3)

When p|dB , π(f ′)p is a unramified character of B×
p of order at most two. Thus we have

π(f ′)p = δp ◦ n

with a unramified character δp of Q×
p of order at most two, where recall that the notation

n stands for the reduced norm of B (cf. Section 2.1). In view of Proposition 3.3 (1),

δp(p) = ε′p = εp (4.4)

is necessary for p|D in order that L(f, f ′) �≡ 0.

We now consider local components of JL(π(f ′)). The non-archimedean local com-

ponent at p � dB is isomorphic to the unramified principal series representation π(f ′)p
and the local component at p|dB is the Steinberg representation twisted by δp.

4.2.2. Local representations at ∞.

We need to review the archimedean local components of π(f) and JL(π(f ′)) for the
proof of Proposition 4.7 (cf. Section 4.4). The archimedean component of π(f) (respec-

tively JL(π(f ′))) is the irreducible admissible representation of GL2(R) square-integrable

modulo center whose restriction to SL2(R) decomposes into the sum of the discrete series

representation of lowest weight −κ1 (respectively −(κ2 + 2)) and its contragredient.
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4.3. The representations generated by L(f, f ′).
We now study locally and globally the representation π(f, f ′) of G(A) =

GSp(1, 1)(A) or GSp∗(2)(A) generated by L(f, f ′). To this end we cite the following

proposition (cf. [36, Theorem 3.1]).

Proposition 4.3. Let G be a reductive algebraic group defined over a number field

F . Denote by A∞ the ring of archimedean adeles of F .

Let φ be a Hecke eigenform on G(AF ) which is square-integrable modulo center and

generates an irreducible admissible representation of G(A∞) at the archimedean compo-

nent (for the meaning of “Hecke eigenform” here, see [36, Theorem 3.1 ii)]). Then the

automorphic representation generated by φ is irreducible.

We then have the following:

Proposition 4.4. Suppose that f and f ′ are Hecke eigenforms and that (2Z≥0)
2 	

(κ1, κ2) satisfies 1 < κ1 < κ2+2 for G = Gnc (respectively 1 < κ2+2 < κ1 for G = Gc).

Then the representation π(f, f ′) of G(A) is irreducible.

Proof. According to Proposition 3.3 (1), the theta lift L(f, f ′) is a Hecke eigen-

form on G(A). The lift L(f, f ′) is square-integrable modulo center. In fact, when G = Gc

this is obvious and when G = Gnc, L(f, f ′) is cuspidal as is remarked in the proof of

Proposition 3.3 (2). The assertion is thus a consequence of Proposition 3.3 and Proposi-

tion 4.3. �

Let (f, f ′) be Hecke eigenforms and f be primitive. We can therefore decompose

π(f, f ′) into the restricted tensor product
⊗′

v≤∞ πv and are able to determine each local

component πv, for which we note that the archimedean local component π∞ has been

already determined in Proposition 3.3 (2).

When p � dB let φ, φ′ and φ′′ be the Hecke operators for G(Qp) defined by the dou-

ble cosets K1,p diag(p, p, p, p)K1,p, K1,p diag(p, p, 1, 1)K1,p and K1,p diag(p
2, p, p, 1)K1,p,

which form generators of the Hecke algebra with respect to K1,p � GSp(2)(Zp). For

p|dB let {ϕi, ϕ′
i} denote the generators of the Hecke algebra with respect to Ki,p with

i = 1 or i = 2 (cf. Section A.2). As a consequence of [30, Theorem 5.1] and the formulas

(4.1)∼(4.4) we have the following:

Lemma 4.5. Let the notation be as above.

(1) Let p do not divide dB. The Hecke eigenvalues πp(φ0) of πp for Hecke operators

φ0 = φ, φ′, φ′′ are given by

πp(φ) = 1,

πp(φ
′) = p3/2(χf,p(p) + χf,p(p)

−1) + p3/2(χf ′,p(p) + χf ′,p(p)
−1),

πp(φ
′′) = p2(χf,p(p) + χf,p(p)

−1)(χf ′,p(p) + χf ′,p(p)
−1) + p2 − 1.

(2) Let p divide dB. When p|D, the Hecke eigenvalues πp(ϕ) of πp for ϕ = ϕ1, ϕ′
1 are

given by
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πp(ϕ1) = εp, πp(ϕ
′
1) = −εp(p+ 1).

When p|dB/D, the Hecke eigenvalues πp(ϕ) of πp for ϕ = ϕ2, ϕ′
2 are given by

πp(ϕ2) = εp, πp(ϕ
′
2) = p3/2(χf,p(p) + χf,p(p)

−1) + (p− 1)εp.

Following the notation of the appendix, let ξ be the non-trivial unramified character

of Q×
p of order two for p|dB . We further note that, in the appendix, the notation χ1B�σ

is used for the induced representation of GSp(1, 1)(Qp) defined by two quasi-character

χ and σ of Q×
p when p|dB . On the other hand, with three unramified quasi-characters

χ1, χ2 and σ of Q×
p , χ1 × χ2 � σ denotes a unique irreducible subquotient with a

GSp(2)(Zp)-fixed vector for the unramified principal series representation of GSp(2)(Qp)

induced from these characters. This representation is referred to as “type I” on the table

of Section A.4 of the appendix.

Proposition 4.6. Let the notation be as above.

(1) Let v = p � dB. Then πp is an irreducible admissible representation of type I given

by (χf ′,p · χ−1
f,p)× (χ−1

f ′,p · χ
−1
f,p)� χf,p.

(2) Let v = p|dB. When v = p|dB/D, πp is isomorphic to the irreducible representation

of GSp(1, 1)(Qp) � GSp∗(2)(Qp) of type IIa with σ = χf,p and χ = χ−1
f,p · δp. When

v = p|D and δp is trivial (respectively non-trivial), πp is isomorphic to the irreducible

representation of GSp(1, 1)(Qp) � GSp∗(2)(Qp) of type Va with σ = ξ (respectively σ =

1). Here, for the representations of GSp(1, 1)(Qp) � GSp∗(2)(Qp) of type IIa and Va,

see Section A.4 of the appendix.

Proof. For every finite prime p, πp is a spherical representation of Gp =

GSp(1, 1)(Qp) or GSp(2)(Qp) in the sense of Section A.2 of the appendix. As is pointed

out there, πp is uniquely determined by the Hecke eigenvalues. To be precise, up to the

conjugation of the Weyl group, such values determine the unramified characters inducing

a principal series representation that has πp as a composition factor.

When a finite prime p does not divide dB , πp is an irreducible admissible rep-

resentation with a GSp(2)(Zp)-fixed vector and is therefore of type I. In view of the

first assertion of Lemma 4.5, we see that πp is of type I with the explicit characters

(χ1, χ2, σ) = (χf ′,p · χ−1
f,p, χ

−1
f ′,p · χ

−1
f,p, χf,p).

Let p divide dB . Compare the formulas in Lemma 4.5 with the Hecke eigenvalues

of the spherical vector for the induced representation χ1B � σ (cf. Section A.2 of the

appendix). We can then explicitly determine the representation type of πp by the table

of spherical representations of Gp in Section A.4 of the appendix. �

4.4. Theta lifts to cuspidal representations of G′.
Let GO(2, 2) be the reductive Q-algebraic group defined by the orthogonal group

of signature (2, 2) with similitudes. Let (f, f ′) be Hecke eigenforms as in Section 4.2.

Following Roberts [38] and Harris–Kudla [12], we introduce the theta lift from the cus-

pidal representation σ(f, JL(f ′)) of GO(2, 2) associated with (f, JL(f ′)) to a cuspidal

representation π′(f, JL(f ′)) of G′(A).
As well as GO(2, 2) we consider a subgroup GSO(2, 2), the special orthogonal group
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of signature (2, 2) with similitudes. To realize GSO(2, 2) let us introduce a quadratic

space (M2(Q), 2 det). This quadratic space is equivalent to another quadratic space

(Q4, Q′) defined by Q′ =
(

02 w
−w 02

)
with w =

(
0 1−1 0

)
. Consider the action of GL2(Q) ×

GL2(Q) on M2(Q) defined by

h ·X = h−1
1 Xh2 (X ∈ M2(Q), h = (h1, h2) ∈ GL2(Q)×GL2(Q)).

This induces isomorphisms

(GL2(Q)×GL2(Q))/{(z, z) | z ∈ Q×} � GSO(2, 2)(Q).

We now note that there is s ∈ GO(2, 2)(Q) \GSO(2, 2)(Q) such that

s · (h1, h2) = (h2, h1)

modulo {(z, z) | z ∈ Q×}.
The outer tensor product π(f)� JL(π(f ′)) gives rise to an irreducible cuspidal rep-

resentation GSO(2, 2)(A), where note that the central characters of π(f) and JL(π(f ′))
are trivial. Then, assuming κ1 �= κ2 + 2, there is an irreducible cuspidal representation

σ(f, JL(f ′)) of GO(2, 2)(A) such that its restriction to GSO(2, 2)(A) decomposes into a

direct sum of π(f)�JL(π(f ′)) and its conjugation by s, namely JL(π(f ′))�π(f) (cf. [38,

Theorem 7.1] and [13, Section 1]). By π′(f, JL(f ′)) we denote the theta lift from

σ(f, JL(f ′)) to G′(A) as in [38] and [12].

Using the notation in Section A.4 of the appendix, we now state the following propo-

sition:

Proposition 4.7. Let (f, f ′) ∈ Sκ1
(D) × Aκ2

be non-zero Hecke eigenforms and

suppose that f is primitive. Assume that 1 < κ1 < κ2 + 2 or 1 < κ2 + 2 < κ1 as in

Proposition 3.3 (2). Then π′(f, JL(f ′)) is a non-zero irreducible cuspidal representation

of G′(A) and thus has the decomposition into the restricted tensor product π′(f, JL(f ′)) =⊗′
v≤∞ π′

v. Each local component π′
v is determined as follows:

1. For v = p � dB, π
′
p is isomorphic to πp, namely the irreducible admissible represen-

tation of type I for G′(Qp) given by (χf ′,p · χ−1
f,p)× (χ−1

f ′,p · χ
−1
f,p)� χf,p.

2. For v = p|dB/D, π′
p is isomorphic to the irreducible representation of G′(Qp) of

type IIa with σ = χf,p and χ = χ−1
f,p · δp. When v = p|D and δp is trivial (respec-

tively non-trivial), π′
p is isomorphic to the irreducible representation of G′(Qp) of

type Va with σ = ξ (respectively σ = 1). Here, for the representations of G′(Qp) of

types IIa and Va, see Section A.4 of the appendix.

3. For v = ∞, π′
∞ is isomorphic to the representation π′

λ as admissible representations

of G′
∞ with λ = ((κ1 + κ2)/2, |κ1 − κ2 − 2|/2) (for π′

λ see Proposition 2.1).

Proof. Since σ(f, JL(f ′)) is irreducible we can decompose it into the product⊗
v≤∞ σ(f, JL(f ′))v. We now note that each local component of π(f) and JL(π(f ′))

are explained in Section 4.2. In view of Gan–Takeda [9, Theorem 8.2] and Przebinda

[37, Chapter III, Section 3] (see also Harris–Kudla [12, Theorem 5.2.1]) we then see
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that each local component σ(f, JL(f ′))v is involved in a local theta correspondence with

G′(Qv) for v ≤ ∞. We explain the local theta correspondences in detail soon. We further

remark that σ(f, JL(f ′))v is tempered for every v ≤ ∞. By [38, Theorem 8.3] we thus

see that π′(f, JL(f ′)) is a non-zero irreducible cuspidal representation of G′(A).
An explicit description of π′

p for v = p < ∞ is given in the table 2 (d), (e), (f)

of Section 14 or Theorem 8.2 (iv), (v), (vi) of [9], for which note that the theta lifts

from p-components of JL(π(f ′)) � π(f) and π(f) � JL(π(f ′)) are isomorphic to each

other for every finite prime p as is remarked in [9, Theorem 8.2]. The determina-

tion of π′
∞ is due to [37, Chapter III, Theorem 3.3.1] or [12, Theorem 5.2.1]. In fact,

by virtue of Section 4.2.2, the archimedean component of π(f) � JL(π(f ′)) can be re-

garded as the irreducible admissible representation of O(2, 2)(R) given by the discrete

series representation with Harish–Chandra parameter ((κ1 + κ2)/2,−|κ1 − κ2 − 2|/2).
Its image of the theta lift to Sp(2)(R) is the discrete series representation with

Harish–Chandra parameter ((κ1 + κ2)/2,−|κ1 − κ2 − 2|/2). We then know that the

archimedean component of π′(f, JL(f ′)) is the irreducible admissible representation of

G′(R) whose restriction to Sp(2)(R) is the sum of the aforementioned discrete series

and its contragredient. This admissible representation of G′(R) is nothing but π′
λ

with λ = ((κ1 + κ2)/2, |κ1 − κ2 − 2|/2). If we start from JL(π(f ′)) � π(f) instead of

π(f)� JL(π(f ′)) we come to the same conclusion. We are therefore done. �

Remark 4.8. Up to equivalence, the representations of type Va in Propositions 4.6

and 4.7 do not depend on the signature εp. For the case of GSp(2)(Qp) this is remarked

in [9, Theorem 8.2 (iv)]. For the case of the inner form the two representations of type

Va with the different signatures are related by the intertwining operator − Id with the

identity map Id.

4.5. Spinor L-functions for theta lifts.

4.5.1. Spinor L-functions for G.

Recall that, for D|dB , Kf (D) denotes a maximal open compact subgroup of

G(Af ) (cf. Section 2.2). We first define the spinor L-functions for Kf (D)-invariant Hecke

eigenforms on G(Q)\G(A) that are square-integrable modulo center and that generate

irreducible admissible representations at the archimedean place. Let F be such a Hecke

eigenform with the trivial central character and π(F ) the automorphic representation

generated by F . Due to Proposition 4.3, π(F ) is irreducible and thus has the decompo-

sition into the restricted tensor product π(F ) �
⊗′

v≤∞ πv(F ) of local representations.

To define the non-archimedean local factors of the spinor L-function of F we intro-

duce several polynomials defined with Hecke eigenvalues of F .

In [30, Section 5.1] we introduced three Hecke operators T i
p with 0 ≤ i ≤ 2 for

p � dB . Let Λ
i
p be the Hecke eigenvalue of T i

p for F with 0 ≤ i ≤ 2. For p � dB we put

QF,p(t) := 1− p−3/2Λ1
pt+ p−2(Λ2

p + p2 + 1)t2 − p−3/2Λ1
pt

3 + t4.

For this we note that QF,p(p
−s)−1 coincides with the local spinor L-function for an

(irreducible subquotient of) unramified principal series representation of GSp(2)(Qp). In

addition, we remark that πp(F ) is of type I in the table of Section A.4 (cf. appendix).
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On the other hand, in [30, Section 5.2], we introduced two Hecke operators T i
p with

0 ≤ i ≤ 1 for p|dB . Let Λ′i
p be the Hecke eigenvalue of T i

p for F with 0 ≤ i ≤ 1.

According to the table of Section A.4, the representation πp(F ) for p|dB is one of the

following types:

IIa, IVc, Va, Vb, Vc, VIc.

We introduce

QF,p(t):=

{
(1+Λ′0

pp
−1/2t)(1−Λ′0

pp
−1/2t) (πp(F ) is of type Va),

(1−p−3/2(Λ′1
p−(p−1)Λ′0

p)t+t2)(1−Λ′0
pp

−1/2t) (πp(F ) is of the other type).

For this, see Section A.2 of the appendix and note that the triviality of the central

character of F implies (Λ′0
p)

2 = 1. The second one is due to Sugano [45, (3.4)]. We then

define the local spinor L-function Lp(F, spin, s) for v = p < ∞ by

Lp(F, spin, s) = QF,p(p
−s)−1.

We now state the following proposition, which justifies this definition.

Proposition 4.9. For v = p < ∞, Lp(F, spin, s) coincides with the local spinor

L-function of the irreducible admissible representation of GSp(2)(Qp) with the same L-

parameter as that of πp(F ).

Proof. This follows from Section A.2 of the appendix and [39, Section A.6, Table

A.8]. �

Remark 4.10. This proposition tells us that an irreducible spherical representation

with a K2,p-fixed vector has a local spinor L-function of degree three while one with a

K1,p-fixed vector and no K2,p-fixed vector has a local spinor L-function of degree two (see

also Section A.2 and the table of Section A.4), where note that K1,p and K2,p are denoted

by K1 and K2 respectively in the appendix.. There is only one spherical representation

of the latter type, which is enumerated as Va in the table of Section A.4 of the appendix.

This representation may occur as a local factor πp(F ) of the automorphic representation

π(F ) only for p|D.

Let λ = (λ1, λ2) ∈ ΞI (for ΞI see Section 2.3). Let now F be a Hecke eigenform in

Snc
τΛ(D) (respectively Ac

τΛ(D)) with Λ = (λ1, λ2 − 1) (respectively Λ = (λ1 − 2, λ2 − 1)).

We define the global spinor L-function L(F, spin, s) of a Hecke eigenform F in Snc
τΛ(D)

or Ac
τΛ(D) with Λ as above by

L(F, spin, s) :=
∏
v≤∞

Lv(F, spin, s),

where

L∞(F, spin, s) = ΓC

(
s+

λ1 − λ2

2

)
ΓC

(
s+

λ1 + λ2

2

)
.
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For this we remark that the definition of L∞(F, spin, s) is based on the following fact: πλ

and π′
λ have the same L-parameter (cf. Proposition 2.1 (2)) and the local spinor L-

function of π′
λ should be defined as above (cf. [28, Section 1.4]).

4.5.2. Spinor L-functions for theta lifts.

Let F = L(f, f ′) and (f, f ′) be Hecke eigenforms. In view of Proposition 3.3 (2) we

have

L∞(L(f, f ′), spin, s) := ΓC

(
s+

κ1 − 1

2

)
ΓC

(
s+

κ2 + 1

2

)
.

We have the following, which generalizes [32, Proposition 2.9]:

Proposition 4.11. Let (κ1, κ2) be as in Proposition 3.3 (2). Suppose that f is a

primitive form. The spinor L-function for L(f, f ′) decomposes into

L(L(f, f ′), spin, s) = L(π(f), s)L(JL(π(f ′)), s),

where L(π(f), s) (respectively L(JL(π(f ′)), s)) denotes the standard L-function of

π(f) (respectively JL(π(f ′))).

The spinor L-function L(L(f, f ′), spin, s) can be viewed also as the L-function of

π(f, f ′). In fact, we have justified the definition of each local factor of L(L(f, f ′), spin, s)
in terms of the representation type of π(f, f ′)v for v ≤ ∞ (cf. (1)). We can thus denote it

also by L(π(f, f ′), spin, s). This has the analytic continuation and satisfies the functional

equation between s and 1− s since so do L(π(f), s) and L(JL(π(f ′)), s).
On the other hand, we can also consider the spinor L-function L(π′(f, JL(f ′)),

spin, s) of π′(f, JL(f ′)). Since the archimedean local component π′
∞ of π′(f, JL(f ′))

is isomorphic to π′
λ with λ = ((κ1 + κ2)/2, |(κ1 − κ2 − 2)/2|) (cf. Proposition 4.7), the

local factor at v = ∞ coincides with L∞(L(f, f ′), spin, s). In view of Propositions 4.6,

4.7 and 4.9, all the other local factors of L(π′(f, JL(f ′)), spin, s) also coincide with those

of L(L(f, f ′), spin, s). We can state the following:

Corollary 4.12. Under the same assumption in Proposition 4.11 we have

L(L(f, f ′), spin, s) = L(π(f, f ′), spin, s) = L(π′(f, JL(f ′)), spin, s).

4.6. Main theorem.

As we have seen, L(f, f ′) is Kf (D)-invariant, namely π(f, f ′) ∈ AG(Kf (D)). On the

other hand, Proposition 4.7 and [39, Section A.8, Table A.13] tell us that π′(f, JL(f ′))
has a paramodular newform of level dBD, namely, π′(f, JL(f ′)) ∈ Anew

G′ (K ′
f (D)).

As a consequence of Propositions 3.3, 4.6, 4.7, 4.9 and Corollary 4.12 we are able to

state our main theorem, which provides evidence of Conjecture 4.2.

Theorem 4.13. Suppose that two even integers (κ1, κ2) satisfy 1 < κ1 < κ2 + 2

when G = Gnc (respectively 1 < κ2 + 2 < κ1 when G = Gc). For any given primitive

form f ∈ Sκ1
(D) and Hecke eigenform f ′ ∈ Aκ2

, the map
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AG(Kf (D)) 	 π(f, f ′) �→ π′(f, JL(f ′)) ∈ Anew
G′ (K ′

f (D))

satisfies the coincidence of the global spinor L-functions (cf. Corollary 4.12) and the

compatibility with the local Jacquet–Langlands correspondence for G and G′ = GSp(2) at

any place v ≤ ∞ (for the correspondence at v = p < ∞, see Section A.4).
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Appendix: The spherical representations of GSp(1, 1).

by Ralf Schmidt

A.1. Induced representations for GSp(1, 1).

Let F be a non-archimedean local field of characteristic zero with the normalized

valuation ν. Let B be the non-split quaternion algebra over F , and let x �→ x̄ be its

standard involution. Let G = GSp(1, 1) be the algebraic group with F -points

G(F ) = {g ∈ M(2× 2, B) : tḡJg = λ(g)J, λ(g) ∈ F×}, where J =

[
1

1

]
.

Then G has a unique proper parabolic subgroup P = MN , where

M =

{[
a

λā−1

]
: a ∈ B×, λ ∈ F×

}
∼= B× × F×,

and

N =

{[
1 x

1

]
: x ∈ B, x+ x̄ = 0

}
.

We consider the normalized parabolic induction from P to G. Let (π, Vπ) be a finite-

dimensional smooth representation of B×. Let σ be a character of F×. Then the standard

space of the parabolically induced representation π � σ consists of smooth functions

f : G(F ) → Vπ with the transformation property

f

([
a ∗
λā−1

]
g

)
= ν

(
δP

([
a ∗
λā−1

]))1/2
σ(λ)π(a)f(g), a ∈ B×, λ ∈ F×, g ∈ G(F ),

where

δP

([
a ∗
λā−1

])
= (λ−1n(a))3

with the reduced norm n(a) of a ∈ B×. Note that the central character of π�σ is ωπσ
2,

where ωπ is the central character of π. In particular, if χ is a character of F×, then the

central character of χ1B× � σ is χ2σ2.
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It is easy to see that the trivial representation is contained in ν−3/21B× � ν3/2, and

hence is a quotient of ν3/21B× � ν−3/2. In fact, the reducibility points of the induced

representations π � σ are known by [11, Proposition 5.3]. The result is as follows.

Proposition A.1. Let π be an irreducible, admissible representation of B×(F ),

and let σ be a character of F×.

1. Assume that dim(π) > 1. Then π � σ is irreducible unless π = ν±1/2π0, where π0

has trivial central character. In this case there is a short exact sequence

0 −→ δ(ν1/2π0, ν
−1/2σ) −→ ν1/2π0 � ν−1/2σ −→ L(ν1/2π0, ν

−1/2σ) −→ 0,

with an irreducible, square-integrable representation δ(ν1/2π0, ν
−1/2σ), and an ir-

reducible non-tempered representation L(ν1/2π0, ν
−1/2σ).

2. Assume that dim(π) = 1. Then π � σ is irreducible unless one of the following

holds.

• π = ν±1/2ξ1B× , where ξ2 = 1, ξ �= 1. In this case there is a short exact

sequence

0 −→ δ(ν1/2ξ1B× , ν−1/2σ) −→ ν1/2ξ1B× � ν−1/2σ −→ L(ν1/2ξ1B× , ν−1/2σ)

−→ 0,

with an irreducible, square-integrable representation δ(ν1/2ξ1B× , ν−1/2σ), and

an irreducible non-tempered representation L(ν1/2ξ1B× , ν−1/2σ).

• π = ν±3/21B× . In this case there is a short exact sequence

0 −→ σStGSp(1,1) −→ ν3/21B× � ν−3/2σ −→ σ1GSp(1,1) −→ 0,

where StGSp(1,1) is the Steinberg representation of G(F ).

A.2. Spherical representations.

Let oB be a maximal order in B(F ), and let pB be the unique maximal ideal of oB .

Let

K1 =

{
g ∈ G(F ) ∩

[
oB oB
oB oB

]
: λ(g) ∈ o×

}
,

K2 =

{
g ∈ G(F ) ∩

[
oB pB
p−1
B oB

]
: λ(g) ∈ o×

}
.

Then K1 and K2 are maximal compact subgroups of G(F ), and every maximal

compact subgroup is conjugate to either K1 or K2. In fact, the classification of the

maximal compact subgroups is reduced to that of maximal lattices in the sense of [42,

Section 2.3]. We see from [42, Propositions 3.7 and 3.9] that, up to G(F )-conjugate,

there are two maximal lattices t(oB⊕oB) and
t(oB⊕p−1

B ), whose corresponding maximal

compact subgroups are K1 and K2 respectively.
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It is known that the Hecke algebra H(G,Ki) consisting of compactly supported left

and right Ki-invariant functions on G(F ) is commutative; see [40]. Therefore the formal

reasoning of [6] 4.4 applies, and we see:

• If (π, V ) is an irreducible representation such that the space V Ki of Ki-invariant

vectors is non-zero, then dimV Ki = 1.

• In this case, the action of H(G,Ki) on a non-zero vector of V Ki defines an alge-

bra homomorphism H(G,Ki) → C. This algebra homomorphism determines the

equivalence class of π.

• Given an algebra homomorphism H(G,Ki) → C, there exists an irreducible, ad-

missible representation (π, V ) such that the algebra homomorphism comes from

the action of H(G,Ki) on a non-zero vector of V Ki as above.

Let �B be a prime element of oB . For i = 1 or i = 2 let

ϕi = characteristic function of Ki

[
�B

�B

]
Ki

and

ϕ′
i = characteristic function of Ki

[
1

�F

]
Ki.

Then

H(G,Ki) = C[ϕi, ϕ
−1
i , ϕ′

i].

For z ∈ B, let z− = (z − z̄)/2, and for a subset A of B, let A− denote the image of A

under the map z �→ z−. Then, by [30, Section 8],

K1

[
1

�F

]
K1

=
⊔

b∈o−
B/�F o−

B

[
1 b

1

][
�F

1

]
K1 �

⊔
c∈(p−1

B −oB)−/o−
B

[
1 c

1

][
�B

�B

]
K1 �
[
1

�F

]
K1

and

K2

[
1

�F

]
K2

=
⊔

b∈p−
B/�F p−

B

[
1 b

1

][
�F

1

]
K2 �

⊔
c∈(oB−pB)−/p−

B

[
1 c

1

][
�B

�B

]
K2 �
[
1

�F

]
K2.

On the other hand, according to [43, Theorems 5.9 and 5.13], we have the following

lemma.

Lemma A.2. (1) #oB/pB = #p−1
B /oB = q2.

(2) tr(oB) = oF and tr(p−1
B ) = oF or equivalently tr(pB) = pF .
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We obviously have

#o−B/�F o
−
B = p−B/�F p

−
B = q3

and, in view of the lemma above, we verify

#(p−1
B − oB)

−/o−B = q2 − 1, #(oB − pB)
−/p−B = q − 1.

Let χ and σ be unramified characters of F×. For i = 1 or i = 2 let fi denote the

Ki-invariant vector in π = χ1B× � σ, normalized such that fi(1) = 1. Using the above

double coset decompositions and the cardinalities of the four cosets just mentioned, it is

easy to check that

π(ϕi)fi = Λifi, Λi := (χσ)(�F ),

and

π(ϕ′
1)f1 = Λ′

1f1, Λ′
1 = q3/2(σχ2)(�F ) + (q2 − 1)(σχ)(�F ) + q3/2σ(�F ),

and

π(ϕ′
2)f2 = Λ′

2f2, Λ′
2 = q3/2(σχ2)(�F ) + (q − 1)(σχ)(�F ) + q3/2σ(�F ).

As we will see in A.4, G(F )-representations of types J=IIa, IVc, Va, Vb, Vc and

VIc in the table therein exhaust all spherical representations. We define

QJ(t) = (1 + Λ1q
−1/2t)(1− Λ1q

−1/2t)

for J=Va and

QJ(t) = (1− q−3/2(Λ′
2 − (q − 1)Λ2)t+ Λ2

2t
2)(1− Λ2q

−1/2t)

for the other J’s. Then we verify by a direct calculation that QJ(q
−s)−1 is the local

spinor L-function for a GSp(4, F ) representation of type J (see [39, Table A.8]). For

instance, with ξ being the non-trivial, unramified, quadratic character of F×,

QVa(q
−s)−1 = L(s, χσν1/2)L(s, ξχσν1/2),

which is the local spinor L-function for a GSp(4, F ) representation of type Va, and

QIIa(q
−s)−1 = L(s, χ2σ)L(s, σ)L(s, χσν1/2),

which is the local spinor L-function for a GSp(4, F ) representation of type IIa.

A.3. The intertwining operator.

Let χ be the non-trivial, quadratic, unramified character of F×. The induced rep-

resentation ν1/2χ1B× �σν−1/2, has a one-dimensional space of K1 invariant vectors and

also a one-dimensional space of K2-invariant vectors. We will now use an intertwining

operator to determine how these spaces are distributed amongst the two irreducible con-
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stituents of ν1/2χ1B× � σν−1/2. Let B0 be the space of all trace-zero quaternions. For

f in the standard model of π � σ as above, let

(Mf)(g) =

∫
B0(F )

f

([
1

−1

][
1 x

1

]
g

)
dx, (A.1)

provided this integral converges. A straightforward calculation shows that Mf is an

element of π̃ � ωπσ, where ωπ is the central character of π, and π̃(a) = π(ā−1). Hence

we get an intertwining operator

M : π � σ −→ π̃ � ωπσ. (A.2)

In particular, for a character χ of F×, we get an intertwining operator

M : χ1B× � σ −→ χ−11B× � χ2σ. (A.3)

Let s be a complex parameter, and consider χνs � σν−s. In the following we normalize

the Haar measure on B0(F ) such that B0(F )∩ {vB(x) ≥ 0} has volume 1. We will need

the following result.

Lemma A.3.

vol
(
B0(F ) ∩ {vB(x) = −m}

)
=

{
q3m/2(1− q−1) if m is even,

q(3m+1)/2(1− q−2) if m is odd.

Proof. We will prove

vol
(
B0(F ) ∩ {vB(x) ≥ 2t}

)
= q−3t (A.4)

and

vol
(
B0(F ) ∩ {vB(x) ≥ 2t+ 1}

)
= q−3t−1, (A.5)

from which our assertion follows. Equation (A.4) is true for t = 0 by our normalization

of Haar measure. For other values of t we obtain (A.4) by multiplication with powers of

�F . By a similar argument, it suffices to prove (A.5) for t = 0. By Lemma A.2 (2) we

get short exact sequences

0 −→ B0 ∩ oB −→ oB −→ oF −→ 0

and

0 −→ B0 ∩�BoB −→ �BoB −→ pF −→ 0,

and hence

0 −→ (B0 ∩ oB)/(B0 ∩�BoB) −→ oB/�BoB −→ oF /pF −→ 0.

By Lemma A.2 (1), #oB/�BoB = q2. It follows that #(B0∩oB)/(B0∩�BoB) = q, and
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hence vol(B0 ∩�BoB) = q−1. This is the statement (A.5) for t = 0. �

Calculation for K1.

Let f1 be the K1-invariant vector in νsχ1B× � σν−s. We calculate, for Re(s) large

enough,

(Mf1)(1) =

∫
B0(F )

f1

([
1

−1

][
1 x

1

])
dx

=

∫
B0(F )∩{vB(x)≥0}

f1

([
1

−1

][
1 x

1

])
dx

+

∫
B0(F )∩{vB(x)<0}

f1

([
1

−1

][
1 x

1

])
dx

=

∫
B0(F )∩{vB(x)≥0}

f1

([
1

−1

])
dx+

∫
B0(F )∩{vB(x)<0}

f1

([
1

x 1

][
1

−1

])
dx

=

∫
B0(F )∩{vB(x)≥0}

dx+

∫
B0(F )∩{vB(x)<0}

f1

([
1

x 1

])
dx

= 1 +
∞∑

m=1

∫
B0(F )∩{vB(x)=−m}

f1

([
1 x−1

1

][
−x−1

x

][
1

1

][
1 x−1

1

])
dx

= 1 +

∞∑
m=1

∫
B0(F )∩{vB(x)=−m}

f1

([
−x−1

x

])
dx

= 1 +

∞∑
m=1

∫
B0(F )∩{vB(x)=−m}

q−m(s+3/2)χ(�F )
m dx.

Splitting the sum into even and odd m’s, and using Lemma A.3, one obtains, after a

short calculation,

(Mf1)(1) =
(1 + χ(�F )q

1/2−s)(1− χ(�F )q
3/2−s)

(1 + χ(�F )q−s)(1− χ(�F )q−s)
.

Assume that χ is the non-trivial, quadratic, unramified character of F×. Then χ(�F ) =

−1, and we see that (Mf1)(1) = 0 for s = 1/2. This means that Mf1 = 0 for s = 1/2.

Hence f1 lies in the unique subrepresentation δ(ν1/2χ1B× , ν−1/2σ) of ν1/2χ1B×�σν−1/2.

Calculation for K2.

Let f2 be the K2-invariant vector in νsχ1B× � σν−s. We have

f2

([
1

−1

])
= f2

([
�−1

B

�̄B

][
�B

−�̄−1
B

])
= q3/2+sχ(�F )

−1.

Using this, a similar calculation as above shows that
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(Mf2)(1) = q1/2+sχ(�F )
(1 + χ(�F )q

−s−1/2)(1− χ(�F )q
−s−3/2)

(1 + χ(�F )q−s)(1− χ(�F )q−s)
.

Assume that χ is the non-trivial, quadratic, unramified character of F×. Then χ(�F ) =

−1, and we see that (Mf2)(1) = 0 for s = −1/2. This means that Mf2 = 0 for s =

−1/2. Hence f2 lies in the unique subrepresentation L(ν1/2χ1B× , ν−1/2σ) of ν−1/2χ1B×�

σν1/2.

The result of the calculations in this section is that δ(ν1/2χ1B× , ν−1/2σ) contains

a one-dimensional space of K1-invariant vectors, and L(ν1/2χ1B× , ν−1/2σ) contains a

one-dimensional space of K2-invariant vectors. For all other spherical representations of

G(F ) these dimensions are obvious; we summarize the results in the table below.

A.4. Local Langlands parameters for GSp(4).

To every irreducible, admissible representation of GSp(4, F ) there is attached an

L-parameter, which is a certain homomorphism from the Weil–Deligne group W ′
F to the

dual group GSp(4,C). The assignment of parameters to representations was carried out

in [39, Section 2.4], for the non-supercuspidal representations of GSp(4, F ), and in [10]

in general. The dual group of G = GSp(1, 1) is also GSp(4,C), but the Borel and Siegel

parabolic subgroup of GSp(4,C) are irrelevant. This means that any parameters whose

image lies in (a conjugate of) the Siegel parabolic subgroup should be ignored for the

local Langlands correspondence. The complete correspondence was achieved in [11]; for

the non-supercuspidal representations one can also apply the reasoning of [39, Section

2.4].

The following table lists all irreducible, admissible representations of G(F ) which

are constituents of representations of the form χ1B× � σ, where χ and σ are characters

of F×. The table also lists all the irreducible, admissible representations of GSp(4, F )

supported in the Borel subgroup, using the notations and classification scheme of [39].

Representations with the same L-parameter W ′
F → GSp(4,C) appear in the same row;

this is nothing but the Langlands functorial transfer from GSp(1, 1) to GSp(4) coming

from the natural inclusion of dual groups. The actual L-parameters can be found in

[39, Table A.7].

The columns labeled K1 and K2 indicate, in the case when the inducing charac-

ters are unramified, the dimension of the space of K1 resp. K2 invariant vectors in a

representation of G(F ).
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GSp(1, 1) GSp(4) K1 K2

I — χ1 × χ2 � σ (irreducible)

a χ1B× � σ χStGL(2) � σ 1 1
II

b — χ1GL(2) � σ

a — χ� σStGSp(2)III
b — χ� σ1GSp(2)

a σStGSp(1,1) σStGSp(4) 0 0

b — L(ν2, ν−1σStGSp(2))IV
c σ1GSp(1,1) L(ν3/2StGL(2), ν

−3/2σ) 1 1

d — σ1GSp(4)

a δ(ν1/2ξ1B× , ν−1/2σ) δ([ξ, νξ], ν−1/2σ) 1 0

b L(ν1/2ξ1B× , ν−1/2σ) L(ν1/2ξStGL(2), ν
−1/2σ) 0 1

V
c L(ν1/2ξ1B× , ξν−1/2σ) L(ν1/2ξStGL(2), ξν

−1/2σ) 0 1

d — L(νξ, ξ � ν−1/2σ)

a — τ(S, ν−1/2σ)

b — τ(T, ν−1/2σ)
VI

c ν1/21B× � ν−1/2σ L(ν1/2StGL(2), ν
−1/2σ) 1 1

d — L(ν, 1F× � ν−1/2σ)

For the IIa type representation, χ is such that χ2 �= ν±1 and χ �= ν±3/2. For the

representations in group V, the character ξ is assumed to be non-trivial and quadratic.
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