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Abstract. Consider a codimension 1 submanifold Nn ⊂ Mn+1, where
Mn+1 ⊂ R

n+2 is a hypersurface. The envelope of tangent spaces of M along
N generalizes the concept of tangent developable surface of a surface along a
curve. In this paper, we study the singularities of these envelopes.

There are some important examples of submanifolds that admit a vector
field tangent to M and transversal to N whose derivative in any direction of
N is contained in N . When this is the case, one can construct transversal
plane bundles and affine metrics on N with the desirable properties of being
equiaffine and apolar. Moreover, this transversal bundle coincides with the
classical notion of Transon plane. But we also give an explicit example of a
submanifold that does not admit a vector field with the above property.

1. Introduction.

Consider a surface M ⊂ R
3 and let γ : I →M be a smooth curve, where I ⊂ R is an

interval. Under some general hypothesis, one can find a unique, up to scaling, vector field

ξ tangent to M along γ such that ξ′(t) is tangent to M , for any t ∈ I. The developable

surface

ODγ(t, u) = γ(t) + uξ(t), t ∈ I, u ∈ R,

is called the tangent developable of M along γ and has been extensively studied. Among

the scalar multiples of ξ, we can also choose a particular one, also denoted ξ, unique up

to signal, such that ξ′(t) is tangent to the curve γ, for any t ∈ I. The natural Darboux

frame to consider here is {γ′(t), γ′′(t), ξ(t)}, where the parameterization γ(t) satisfies

γ′′′(t) tangent to M . Writing ξ′(t) = −σ(t)γ′(t), we have that, from the point of view

of singularity theory, the behavior of the ODγ in a neighborhood of u = σ(t)−1 depends

basically of the number of vanishing derivatives of σ ([4], [5]).

In this paper, we want to generalize this construction to arbitrary codimension 1

submanifolds Nn ⊂Mn+1, whereMn+1 ⊂ R
n+2 is a hypersurface. As we shall see, under

general hypothesis there exists a vector field ξ tangent to M along N such that DXξ is

tangent to M , for any X tangent to N (Proposition 2.2). The direction determined by

ξ is unique and we call it the (osculating) Darboux direction. The hypersurface

ETN (p, u) = p+ uξ(p), p ∈ N, u ∈ R,
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generalizes the tangent developable surface of a surface along a curve and we shall call

envelope of tangent spaces of M along N . We shall verify that ETN is smooth when u is

not the reciprocal of a non-zero eigenvalue of the shape operator associated with ξ. The

singularities of ETN are also studied: We show through Examples 3.5, 3.6 and 3.7 that

all simple singularities are realizable.

For a fixed vector field ξ in the osculating Darboux direction, we can define a met-

ric g = gξ on N and a distinguished transversal plane bundle σ = σ(ξ), the affine

normal plane bundle ([8]). It is natural to consider a basis {ξ, η} of σ such that

[X1, . . . , Xn, η, ξ] = 1, where {X1, . . . , Xn} is a gξ-orthonormal basis of TN . But this

condition does not determine uniquely the vector η. In fact, any η̄ = η + λξ does the

same job.

The main difficulty here is to choose a good vector field ξ in the Darboux direction.

In the case of curves, we can choose a vector field ξ in the Darboux direction such that

DXξ is tangent to N , for any X tangent to N . We shall refer to this latter property by

saying that ξ is parallel. On the other hand, when M is non-degenerate, we can choose

ξ such that gξ coincides with the restriction of the Blaschke metric of M to N and the

affine Blaschke normal belongs to the affine normal plane bundle. But this choice of ξ is

parallel only in very special cases.

The metric gξ and the affine transversal plane bundle σ(ξ) have more desirable

properties when ξ is parallel. Denote by ω = ω(gξ) the volume form on N determined

by the metric gξ and by ∇ = ∇(ξ) the connection determined by σ. The pair (∇, g)(ξ) is

equiaffine if ∇(ωg) = 0. We can also define the cubic form C2 and the metric h2 relative

to the vector field η = η(ξ). We say that (C2, h2) is apolar if trh2C2(X, ·, ·) = 0, for any

X tangent to N . We shall verify that the properties (∇, g) equiaffine and (C2, h2) apolar

are both equivalent to the parallelism of ξ.

Consider now hyperplanes H containing the tangent space TpN at a point p ∈ N .

The intersection of H with M determine a codimension 1 submanifold of the hyperplane

H and thus we can consider its Blaschke normal vector η(H)(p). When we vary H, the

vector η(H)(p) describes a 2-plane called the Transon plane of TpN with respect to M

(see Theorem 6.2). In the case of curves, this is a very classic result of A. Transon ([10]),

see [6] for a modern reference. We shall verify that the Transon plane coincides with the

affine normal plane if and only if ξ is parallel (Theorem 6.6).

The latter two paragraphs show that the condition of ξ parallel is very significant.

So it is natural to ask whether, for a given immersion N ⊂ M , a parallel vector field ξ

exists or not. There are several examples of immersions N ⊂ M that admit a parallel

vector field: Curves in surfaces, submanifolds contained in hyperplanes, visual contour

submanifolds, submanifolds contained in hyperquadrics. But there are also examples

of immersions that do not admit parallel vector fields, and we give explicitly such an

example. We prove also that the existence of a parallel vector field is equivalent to the

flatness of the affine normal bundle of the immersion N ⊂M .

The paper is organized as follows: In Section 2 we discuss the generalization of

the osculating Darboux direction and tangent developable surfaces to codimension 2

submanifolds contained in hypersurfaces. In Section 3, we study the singularities of

these hypersurfaces. In Section 4, we recall the constructions of the affine metric and

the affine normal plane bundle associated with a vector field ξ in the osculating Darboux
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direction. In Section 5 we define the parallelism condition of ξ and show the equivalence

of this property and the equiaffinity of (∇, g) and the apolarity of (C2, h2). We also

give some important examples of immersions N ⊂ M with parallel vector fields. In

Section 6 we recall the notion of Transon planes and prove that it coincides with the

affine normal plane if and only if ξ is parallel. Finally in Section 7 we show an example

of an immersion N ⊂ M that does not admit a parallel vector field and prove that the

existence of a parallel vector field is equivalent to the flatness of the affine normal bundle

connection.

2. Darboux directions and the envelope of tangent spaces.

Consider a codimension 1 immersion Nn ⊂Mn+1, where Mn+1 ⊂ R
n+2 is a hyper-

surface.

2.1. Basic equations.

Fix vector fields η transversal to M and ξ tangent to M transversal to N . For X,Y

vector fields tangent to N , we write

DXY = ∇XY + h1(X,Y )ξ + h2(X,Y )η, (1)

where ∇XY is tangent to N . It is straightforward to verify that ∇ is a torsion-free

connection on N and hi, i = 1, 2 are bilinear symmetric forms. For a given frame

{X1, . . . , Xn} of TN , write

∇Xi
Xj =

n∑
k=1

Γk
ijXk, 1 ≤ i, j ≤ n, (2)

where Γk
ij are the Christoffel symbols of the connection.

The derivatives of η and ξ can be written as

DXξ = −S1X + τ11 (X)ξ + τ21 (X)η,

DXη = −S2X + τ12 (X)ξ + τ22 (X)η,
(3)

where Si, i = 1, 2, are (1, 1)-tensors of N called shape operators and τ ji are 1-forms on

N .

2.2. Osculating Darboux direction.

In this section, we generalize the notion of osculating Darboux direction from curves

γ ⊂M to codimension 1 submanifolds N ⊂M . Given a local frame {X1, . . . , Xn} of TN ,

we say that the immersion N ⊂M ⊂ R
n+2 is non-degenerate if the matrix h2(Xi, Xj) is

non-degenerate.

Lemma 2.1. The non-degeneracy condition is independent of the choice of the local

frame {X1, . . . , Xn} of TN , of the vector field ξ tangent to M and of the transversal vector

field η.

Proof. Suppose we fix ξ and η and let {Y1, . . . , Yn} be a local frame of TN . Then
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we can write

Yi =

n∑
j=1

aijXj

for a certain invertible matrix A = (aij). It is not difficult to verify that
(
h2(Yi, Yj)

)
=

A
(
h2(Xi, Xj)

)
At, thus proving that the non-degeneracy condition is invariant by a

change of basis of TN . If we change ξ by ξ̄ satisfying

ξ =
∑

bkXk + βξ̄,

then h̄2(Xi, Xj) = h2(Xi, Xj) and so the non-degeneracy condition is invariant by the

choice of the vector ξ. Finally if we write

η =
∑

bkXk + βξ + γη̄,

then h̄2(Xi, Xj) = γh2(Xi, Xj), thus completing the proof of the lemma. �

Proposition 2.2. Assume that the immersion Nn ⊂ Mn+1 ⊂ R
n+2 is non-

degenerate. There exist a unique direction ξ tangent to M along N and transversal

to N such that DXξ is tangent to M , for any p ∈ N and X ∈ TpN . We shall call this

direction the osculating Darboux direction of N ⊂M .

Proof. We first remark that if DXξ is tangent to M for any X ∈ TpN , the same

holds for λξ, for any λ : N → R. Take any ξ1 tangent to M and write

ξ =

n∑
j=1

αjXj + ξ1.

Then the component of DXiξ in the direction η is
∑n

j=1 αjh
2(Xi, Xj) + τ21 (Xi). Thus

we have to solve the system

n∑
j=1

αjh
2(Xi, Xj) + τ21 (Xi) = 0, 1 ≤ i ≤ n,

which admits a unique solution by the non-degeneracy hypothesis. �

Remark 2.3. In the case of curves, the non-degeneracy hypothesis is equivalent to

γ′′(t) �∈ Tγ(t)M , i.e., the osculating plane of γ does not coincide with the tangent plane

of M .

Next example shows that the non-degeneracy hypothesis is necessary:

Example 2.4. Consider M given by ψ(u, v) = (u, v, uv) and N given by γ(v) =

(0, v, 0). Any tangent vector field along γ can be written as B(v) = a(1, 0, v) + b(0, 1, 0).

Thus B′(v) = (a′(v), b′(v), a(v)+ a′(v)v). We conclude that B′(0) = (a′(0), b′(0), a(0)) is
tangent to M if and only if a(0) = 0. But then B is tangent to γ.
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Remark 2.5. The hypersurface M ⊂ R
n+2 is called non-degenerate if the (n +

1)× (n+ 1) matrix (h(Xi, Xj)) is invertible, where

DXi
Xj = ∇̃Xi

Xj + h(Xi, Xj)η,

∇̃Xi
Xj is tangent to M and Xn+1 = ξ. In this case, the osculating Darboux direction ξ

is h-orthogonal to the tangent space of N . In fact, since h(X, ξ) = 0, for any X ∈ TN ,

we have that DXξ = ∇̃XXn+1 is tangent to M .

Remark 2.6. To define the osculating Darboux direction ξ we need only to know

the tangent space to M at each point of N . Thus, instead starting with a codimension

2 submanifold N contained in a hypersurface M , we could also have started with a

codimension 2 submanifold N together with a hyperspace bundle containing the tangent

space of N , without explicitly mentioning M .

2.3. Envelope of tangent spaces of M along N .

Consider a curve γ ⊂M where M is a surface in R
3. The surface

ODγ(t, u) = γ(t) + uξ(t) (4)

is called the developable tangent surface of M along γ and has been studied by many

authors ([4], [5]).

We can generalize the above definition to arbitrary dimensions. Let φ : U ⊂ R
n →

R
n+2 be a parameterization of N and define the envelope of tangent spaces of M along

N by

ETN (t, u) = φ(t) + uξ(t) (5)

for t ∈ U and ξ(t) in the osculating Darboux direction.

Denote by {X1, . . . , Xn} the local frame of N given by Xi = Dtiφ. The hypersurface

ETN can be studied by considering F : U × R
n+2 → R defined by

F (t, x) = [X1(t), . . . , Xn(t), ξ(t), x− φ(t)] . (6)

Observe that F = 0 is the equation of the tangent space of M at a point of N . The

discriminant set or envelope of F is defined by

DF = {x ∈ R
n+2|F (t, x) = Ft1(t, x) = · · · = Ftn(t, x) = 0, for some

t = (t1, . . . , tn) ∈ U}. (7)

Next lemma justifies the name envelope of tangent spaces given to ETN .

Lemma 2.7. The envelope DF of F coincides with the hypersurface defined by

Equation (5).

Proof. Observe that
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Fti(t, x) = ai(t)F (t, x) +

n∑
l=1

h2(Xi, Xl) [X1, . . . , η, . . . , Xn, ξ, x− φ(t)] , (8)

where ai = τ11 (Xi) +
∑n

l=1 Γ
i
il, and η is placed at coordinate l of the bracket. Since

the matrix (h2(Xi, Xj)) is non-degenerate, F = Ft1 = · · · = Ftn = 0 if and only if

F = G1 = · · · = Gn = 0, where

Gl = [X1, . . . , η, . . . , Xn, ξ, x− φ(t)] . (9)

This implies x− φ(t) = uξ, for some u ∈ R, thus proving the lemma. �

The regression points of F are points of its discriminant set where its Hessian DttF

is degenerate.

Lemma 2.8. The regression points of F correspond to points where u is the recip-

rocal of some non-zero eigenvalue of S1.

Proof. We may assume that [X1, . . . , Xn, η, ξ] = 1. At a point of the discriminant

set of F , we have F = G1 = · · · = Gn = 0. Using that the matrix (h2(Xi, Xj)) is non-

degenerate, it is not difficult to see that, at D(F ), the matrix (Ftitj ) is degenerate if and

only if the matrix ((Gi)tj ) is degenerate. Differentiating Equation (9) we obtain that, at

D(F ),

(Gi)tj = − [X1, . . . , η, . . . , Xn, S1(Xj), x− φ(t)] + [X1, . . . , η, . . . , Xn, ξ,−Xj ]

where η is placed in coordinate i. Thus, at these points,

(Gi)tj = usij − δij

where sij is the (i, j)-entry of the matrix of S1 in basis {X1, . . . , Xn}. We conclude that

the matrix ((Gi)tj ) at D(F ) is exactly uS1 − Id, thus proving the lemma. �

Next corollary gives condition for the smoothness of ETN :

Corollary 2.9. If u is not the reciprocal of a non-zero eigenvalue of S1, the

hypersurface ETN is smooth.

Proof. Consider the map G : U × R
n+2 → R

n+1 given by

G(t, x) = (F (t, x), Ft1(t, x), . . . , Ftn(t, x)) .

Then ETN = G−1(0) and we shall verify that 0 is a regular value of G. But

DG =

[
0 Fx

Ftt Ftx

]
.

By the above lemma, Ftt is non-degenerate. On the other hand, by considering derivatives

in the direction η one easily verifies that Fx �= 0. This shows that 0 is a regular value of

G, thus proving the corollary. �
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3. Singularities of the envelope of tangent spaces.

In this section we study the singularities of ETN . We begin with the case of curves,

where a complete classification is given. For the general case, we show by examples that

any simple singularity can occur.

3.1. Singularities of the tangent developable surface.

Let M ⊂ R
3 be a surface and γ : I →M a smooth curve. Denote S1γ

′(t) = σ(t)γ′(t)
and S2γ

′(t) = μ(t)γ′(t), where η(t) = γ′′(t). We may assume that [γ′(t), η(t), ξ(t)] = 1,

for any t ∈ I, which implies that τ11 + τ22 = 0. The Frenet equations are then⎧⎪⎨
⎪⎩
(γ′)′ = η

η′ = −μγ′ − τ11 η + τ12 ξ

ξ′ = −σγ′ + τ11 ξ.

Next proposition is proved in [4] using Euclidean invariants. We give here a proof using

affine invariants.

Proposition 3.1. Let γ : I → M be a smooth curve and t0 ∈ I with σ(t0) �= 0.

For u0 = σ−1(t0), we have that, at ODγ(t0, u0),

1. OD(γ) is locally diffeomorphic to a cuspidal edge if [σt − στ11 ](t0) �= 0.

2. OD(γ) is locally diffeomorphic to a swallowtail if [σt − στ11 ](t0) = 0 and [σt −
στ11 ]t(t0) �= 0.

Remark 3.2. We shall see in Section 5.1 that it is possible to parameterize γ

such that τ11 = 0. With such a parameterization, the formulas of the above proposition

become much simpler.

We shall need a well-known result from singularity theory ([3], [4]).

Lemma 3.3. Let F : I×Rr → R denote an r parameter unfolding of f(t) = F (t, x0).

Assume that f(t) has an Ak-singularity at t = t0. The unfolding F (t, x) is R-versal if

the k × r matrix jk−1Fx has rank k, where jkg denotes the k-jet of g.

Now we can prove Proposition 3.1.

Proof. In the case of curves, F : I × R
3 → R is given by

F (t, x) = [γ′(t), ξ(t), x− γ(t)] . (10)

Then Ft = G+ τ11F , where

G(t, x) = [η(t), ξ(t), x− γ(t)] .

Thus F = Ft = 0 at t = t0 if and only if x = γ(t0)+λ(t0)ξ(t0). Moreover Gt = H−1−μF ,

where
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H(t, x) = σ(t) [γ′(t), η(t), x− γ(t)] .

Thus F = Ft = Ftt = 0 at t = t0 if and only if σ(t0) �= 0 and λ(t0) = σ−1(t0).

Differentiating again we obtain

Ht =
σt

σ
H − τ11H + τ12σF. (11)

Thus F = Ft = Ftt = 0 and Fttt �= 0 at t = t0 if and only if x = γ(t0) + σ−1(t0)ξ(t0) and

σt− τ11σ �= 0. In this case, F has an A2 singularity. Differentiating once more we obtain,

at points where F = Ft = Ftt = Fttt = 0,

Htt(t0, x) = (σt − στ11 )tσ
−1(t0).

We conclude that F = Ft = Ftt = Fttt = 0 and Ftttt �= 0 at t = t0 if and only if

x = γ(t0) + σ−1(t0)ξ(t0), [σt − στ11 ](t0) = 0 and [σt − στ11 ]t(t0) �= 0. In this case, F has

an A3 singularity.

To complete the proof, we must prove that F is an R-versal unfolding of f . Observe

that Fx(t, x0) = γ′(t)× ξ(t), where × denotes vector product. For an A2 point we write

j1Fx(t0, x0) =

[
γ′(t0)× ξ(t0)

γ′′(t0)× ξ(t0)

]
,

which has rank 2. For an A3 point we write

j2Fx(t0, x0) =

⎡
⎢⎣

γ′(t0)× ξ(t0)

γ′′(t0)× ξ(t0)

σ(t0)γ
′(t0)× γ′′(t0)

⎤
⎥⎦ .

Since σ(t0) �= 0, this matrix has rank 3. By Lemma 3.3, F is a versal unfolding of a point

Ak, k = 2, 3. �

3.2. Realization of simple singularities of ETN .

In this section, we give several examples of singularities that occur in ETN . Through

these examples, we show that any simple singularity can appear in ETN . We recall that

any simple singularity is R-equivalent to Ak, k ≥ 2, Dk, k ≥ 4, E6, E7 or E8 (see

[3, Chapter 11]).

Consider M ⊂ R
n+2 given by the graph of f(t, y), t = (t1, . . . , tn). Then M is given

by

ψ(t, y) = (t1, . . . , tn, y, f(t, y)) .

Thus

ψti = (ei, 0, fti) ; ψy = (0, 1, fy) ,

where ei = (0, . . . , 1, . . . 0) with 1 in the component i. We shall assume that f = fti =

fy = 0 at the origin, for any 1 ≤ i ≤ n. Let N be the submanifold y = g(t) and assume
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that gti = 0 at t = 0, i.e., the tangent space of N is generated by {ei}, 1 ≤ i ≤ n.

Let x = (x1, . . . , xn+2) and write the vector field ξ as

ξ(t) =
n∑

i=1

ai(t)ψti + ψy.

Then F (t, x) = det (ψt1(t), . . . , ψtn(t), ξ(t), x− ψ(t)) can be written as

F (t, x) = det (ψt1(t), . . . , ψtn(t), ψy(t), x− ψ(t)) .

We conclude that

F = f − xn+2 +

n∑
i=1

fti(xi − ti) + fy(xn+1 − g),

where f, fti , fy are taken at (t, g(t)).

Lemma 3.4. Assume that (ftitj (0)) is the identity matrix and fyti(0) = 0, for any

i. Then ψy is the Darboux direction at 0. Moreover, the shape operator S1 at the origin

is given by (ftitjy(0)).

Proof. First observe that ψyti(0) = 0, for any i. This implies that ψy is the

Darboux direction at the origin. Moreover

ξtj =

n∑
i=1

(ai)tjψti +

n∑
i=1

aiψtitj + ψytj .

Since these vectors are tangent to M and ψtitj , ψytj are parallel and transversal to M ,

we obtain

ξtj =

n∑
i=1

(ai)tjψti . (12)

This implies that

n∑
i=1

aiftitj + fytj = 0. (13)

Observe that ai = 0 at 0. Differentiating Equation (13) and taking t = 0 we obtain

(ai)tj (0, 0) = −ftitjy(0). Now Equation (12) implies the second part of the lemma. �

Lemma 3.4 explicitly provides the Darboux direction and calculates the shape opera-

tor S1 at the origin, thus indicating the way to find the realization of simple singularities

of the envelope of tangent spaces of M along N . We shall now describe examples of

functions f(t, y) and g(t) such that the corresponding families F (t, x) given by Equation

(6) are versal unfoldings of functions F (t, x0), x0 = (0, . . . , σ−1, 0) ∈ ETN , with singular

points of type Ak, k ≥ 2, Dk, k ≥ 4, E6, E7 and E8 at t = 0. In each of the following

examples, σ is eigenvalue of S1, simple in case of Ak and double in cases of Dk and Ek.
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To simplify the formulas we have taken sometimes σ = 1.

Example 3.5. (1) Let

f(t, y) =
t2

2
+

1

6
t3 +

σ

2
t2y

and g(t) = 0. Then, close to (0, σ−1, 0),

F (t, x1, x2 + σ−1, x3) = −1

3
t3 +

σ

2
t2x2 +

(
1

2
t2 + t

)
x1 − x3,

which is a versal unfolding of an A2 point.

(2) Let

f(t, y) =
t2

2
+

1

24
t4 +

σ

2
t2y

and g(t) = 0. Close to (0, σ−1, 0),

F (t, x1, x2 + σ−1, x3) = −1

8
t4 +

σ

2
t2x2 +

(
1

6
t3 + t

)
x1 − x3,

which is a versal unfolding of an A3 point.

(3) Let

f(t1, t2, y) =
1

2
(t21 + t22) +

σ

2
t21y + t31t2.

For σ = 1, choose g = −t31 − 3t1t2. Then, close to (0, 0, 1, 0),

F = t51 −
1

2
t22 + (t1 − t41)x1 + (t31 + t2)x2 +

1

2
t21x3 − x4,

which is a versal unfolding of an A4 point.

(4) For general k ≥ 3, let σ = 1, t = (t1, . . . , tk−2), i.e., n = k − 2,

f(t, y) =
1

2
|t|2 + 1

2
t21y +

k−2∑
j=2

tj+1
1 tj ,

and

g(t) = −tk−1
1 −

k−2∑
j=2

(j + 1)tj−1
1 tj .

Then, close to (0, . . . , 1, 0),

F = tk+1
1 − 1

2

k−2∑
j=2

t2j + x1(t1 − tk1) +

k−2∑
j=2

xj(tj + tj+1
1 ) +

1

2
t21xk−1 − xk,
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which is a versal unfolding of an Ak point.

Example 3.6. (1) Let

f(t1, t2, y) =
1

2
(t21 + t22) +

σ

2
(t21 + t22)y + t31 + t1t

2
2

and g = 0. Then

F = −2(t31 + t1t
2
2)− x4 + x1(t1 + 3t21 + t22) + x2(t2 + 2t1t2) +

σ

2
(t21 + t22)x3

which is a versal unfolding of a D4 point.

(2) For a general k ≥ 4, take

f =
1

2
|t|2 + y

2
(t21 + t22) + tk−1

1 + t1t
2
2 +

k−2∑
j=3

tj1tj +

k−2∑
j=3

tj−2
1 t22tj

and g = −∑k−2
j=3 jtjt

j−2
1 . Long but straightforward calculations show that, close to

(0, . . . , 1, 0),

F = (2− k)tk−1
1 − 2t1t

2
2 −

1

2

k−2∑
j=3

t2j − xk +
1

2
(t21 + t22)xk−1

+

k−2∑
j=3

xj(t
j
1 + tj−2

1 t22 + tj) + x2

⎛
⎝t2 + 2t1t2 +

k−2∑
j=3

(2− j)tj−2
1 t2tj

⎞
⎠

+ x1

⎛
⎝t1 + (k − 1)tk−2

1 + t22 +

k−2∑
j=3

(j − 2)tj−3
1 t22tj

⎞
⎠ ,

which is a versal unfolding of a Dk point.

Example 3.7. (1) Consider

f =
1

2
|t|2 + 1

2
(t21 + t22)y + t31 + t42 + t1t2t3 + 2t1t2t3y + t1t

2
2t4 + 3t1t

2
2t4y

and g = 0. Then

F = −2t31 − 3t42 −
1

2
(t23 + t24)− x6 + x4(t1t

2
2 + t4) + x3(t1t2 + t3)

+ x1(t1 + 3t21 + t22t4 + t2t3) + x2(t2 + 4t32 + t1t3 + 2t1t2t4)

+ x5

(
1

2
(t21 + t22) + 2t1t2t3 + 3t1t

2
2t4

)

which is a versal unfolding of an E6 point.

(2) Let
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f =
1

2
|t|2 + 1

2
(t21 + t22)u+ t31 + t1t

3
2 + t1t2t3 + 2t1t2t3u+ t21t2t4 + 3t21t2t4u+ t22t5 + 2t22t5u

and g = 0. Then

F = −2t31 − 3t1t
3
2 −

1

2
(t23 + t24 + t25)− x7 + x5(t

2
2 + t5) + x4(t

2
1t2 + t4) + x3(t1t2 + t3)

+ x1(t1 + 2t1t2t4 + t32 + 3t21 + t2t3) + x2(t2 + 3t1t
2
2 + 2t2t5 + t1t3 + t21t4)

+ x6

(
1

2
(t21 + t22) + 3t21t2t4 + 2t1t2t3 + 2t22t5

)
,

which is a versal unfolding of an E7 point.

(3) Let

f =
1

2
|t|2 + 1

2
(t21 + t22)u+ t31 + t52 + t1t2t3 + 2t1t2t3u

+ t1t
2
2t4 + 3t1t

2
2t4u+ t32t5 + 3t32t5u+ t1t

3
2t6 + 4t1t

3
2t6u

and g = 0. Then

F = −2t31 − 4t52 −
1

2
(t23 + t24 + t25 + t26) + x4(t1t

2
2 + t4) + x3(t1t2 + t3) + x5(t

3
2 + t5)

+ x6(t1t
3
2 + t6) + x1

(
t1 + 3t21 + t22t4 + t2t3 + t32t6

)
+ x2

(
t2 + 5t42 + t1t3 + 2t1t2t4 + 3t22t5 + 3t1t

2
2t6

)
+ x7

(
1

2
(t21 + t22) + 2t1t2t3 + 3t1t

2
2t4 + 4t1t

3
2t6 + 3t32t5

)
− x8,

which is a versal unfolding of an E8 point.

4. Affine metrics and normal plane bundles.

4.1. Affine metric of a vector field.

Fix a vector field ξ in the osculating Darboux direction. For a local frame

{X1, . . . , Xn} of TN and X,Y ∈ TN , define

Gξ(X,Y ) = [X1, . . . , Xn, DXY, ξ].

It is proved in [8] that

gξ(X,Y ) =
Gξ(X,Y )

detGξ(Xi, Xj)
1/(n+2)

(14)

is a metric in N (see also [9, Chapter 6]). Assuming [X1, . . . , Xn, η, ξ] = 1, we get

that Gξ(Xi, Xj) = h2(Xi, Xj). Thus the non-degeneracy hypothesis of the matrix

(h2(Xi, Xj)) implies that the metric gξ is also non-degenerate.
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4.2. Affine normal plane bundle.

Assume for the moment that we have chosen a transversal bundle σ1 generated by

{ξ, η̄1}. Take a gξ-orthonormal frame {X1, . . . , Xn} of the tangent space of N and change

the basis of σ1 by writing η1 = μη̄1 + λξ. By choosing a suitable μ, we may assume that

[X1, . . . , Xn, η1, ξ] = 1. Note that λ remains arbitrary and h2(Xi, Xj) = δij .

Now we shall make a particular choice for the transversal bundle. Write

η = η1 −
n∑

k=1

τ22 (Xk)Xk.

Direct computations show that DXi
η is tangent to M , for 1 ≤ i ≤ n, and so DXη is

tangent to M , for any X tangent to N . The transversal bundle σ generated by {ξ, η} is

called the affine normal plane bundle.

It is proved in ([8, Propositions 3.5 and 3.6]) that the affine normal plane bundle

σ is independent of the choice of the initial bundle σ1 and the gξ-orthonormal basis

{X1, . . . , Xn} of the tangent space of N . Thus σ depends only on the choice of the

vector field ξ. We shall denote it by σ = σ(ξ). The results of this section are summarized

in next proposition:

Proposition 4.1. Given a codimension 1 submanifold N ⊂ M of a hypersurface

M ⊂ R
n+2 and a vector field ξ in the osculating Darboux direction, Equation (14) defines

a metric gξ in N . There exists a vector field η transversal to M such that

[X1, . . . , Xn, η, ξ] = 1, (15)

h2(Xi, Xj) = δij , (16)

for any gξ-orthonormal frame {X1, . . . , Xn} of N , and

τ21 = τ22 = 0. (17)

The transversal vector field η satisfying Equations (15), (16) and (17) is not unique. In

fact, any vector field η̄ of the form

η̄ = η + λξ, (18)

for some scalar function λ, also satisfies these equations. Conversely, any vector field

η̄ satisfying Equations (15), (16) and (17) is given by Equation (18), for some scalar

function λ.

4.3. Blaschke metric and affine normal.

In this section we assume that M ⊂ R
n+2 is non-degenerate (see Remark 2.5).

Denote by ζ the affine Blaschke vector field of M ⊂ R
n+2 and by h the Blaschke metric

of M ([7]). We shall investigate the conditions under which ζ belongs to the affine normal

plane (see [9, Theorem 5.15]).
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Lemma 4.2. Assume that ξ is a vector field in the osculating Darboux direction

and let ζ be the affine Blaschke vector field of M ⊂ R
n+2. Let {X1, . . . , Xn} be an

h-orthonormal local frame of TN . The following conditions are equivalent :

1. h(ξ, ξ) = 1.

2. {X1, . . . , Xn, ξ} h-orthonormal local frame of TM .

3. [X1, . . . , Xn, ζ, ξ] = 1.

4. {X1, . . . , Xn} gξ-orthonormal local frame of TN .

5. The metric gξ is the restriction of the Blaschke metric of M to N .

6. ζ is contained in the affine normal plane bundle.

Proof. It is easy to verify the equivalence between items 1,2 and 3. It is also easy

to verify the equivalence of 3 and 4, while the equivalence between 4 and 5 is obvious.

Finally, since Equations (16) and (17) always hold, item 6 is equivalent to Equation (15),

thus to item 3. �

5. Parallel vector fields.

Consider a vector field ξ in the osculating Darboux direction of N ⊂ M . We say

that ξ is parallel if DXξ is tangent to N , for any X tangent to N .

5.1. Darboux frames for curves.

Consider a smooth curve γ ⊂M , where M ⊂ R
3 is a surface. We shall assume that

the osculating plane of γ does not coincide with the tangent plane of M .

Let γ(t), t ∈ I, be a curve contained in a surface M . We say that the parameteriza-

tion is adapted to M if γ′′′(t) ∈ Tγ(t)M , for each t ∈ I. Observe that when γ is contained

in a hyperplane, the affine parameterization γ(s) satisfies γ′′′(s) = −μ(s)γ′(s), where
μ(s) is the affine curvature of γ, and so this parameterization is adapted to M .

Lemma 5.1. Assume that γ′′(s) �∈ Tγ(s)M , for each s ∈ I, i.e., the osculating plane

of γ does not coincide with the tangent plane of M . Then γ admits a unique, up to linear

changes, adapted re-parameterization.

Proof. Let t be a new parameter with the change of variables given by s = s(t).

Then

γt = γsst,

γtt = γsss
2
t + γsstt,

γttt = γssss
3
t + 3γssststt + γssttt.

Let ν be a co-normal vector field of M , i.e., ν(Z) = 0, for any Z tangent to M . Then

γttt ∈ Tγ(t)M if and only if ν(γttt) = 0, which is equivalent to solve the following

differential equation
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ν(γsss)s
3
t + 3ν(γss)ststt = 0.

Since st > 0, this equation is equivalent to

As2t + 3Bstt = 0,

where A = ν(γsss) and B = ν(γss). Since B �= 0 by hypothesis, the lemma follows. �

Assume now that γ(t) is an adapted parameterization of γ and let ξ be a multiple

of ξ0 satisfying [γ′(t), γ′′(t), ξ(t)] = 1. Differentiating this equation we obtain that ξ′(t)
is tangent to γ, and so ξ is parallel. We shall call the frame {γ′(t), γ′′(t), ξ(t)} the affine

Darboux frame of γ ⊂M . The structural equations of this frame are given by⎧⎪⎨
⎪⎩

(γ′(t))′ = γ′′(t),

(γ′′(t))′ = −μ(t)γ′(t) + τ(t)ξ(t),

ξ′(t) = −σ(t)γ′(t).

5.2. Equiaffine transversal bundles.

Fix a vector field ξ in the osculating Darboux direction and let σ = σ(ξ) be the affine

normal transversal bundle described in Section 4. Then the corresponding connection ∇
given by Equation (1) depends also on the choice of ξ. Thus we write ∇ = ∇(ξ).

Consider the volume form ωg induced by the metric g = gξ. We say that the pair

(∇, g) is equiaffine if ∇(ωg) = 0. Let {X1, . . . , Xn} be a g-orthonormal local frame of

TN . Since

∇Xi
ωg = −

n∑
j=1

ωg(X1, . . . ,∇Xi
Xj , . . . , Xn) = −

n∑
j=1

Γj
ij ,

where Γk
ij are the Christoffel symbols of the connection, we conclude that (∇, g) is

equiaffine if and only if

Γ1
i1 + Γ2

i2 + · · ·+ Γn
in = 0, 1 ≤ i ≤ n. (19)

Proposition 5.2. The pair (∇(ξ), gξ) is equiaffine if and only if ξ is parallel.

Proof. Differentiating [X1, . . . , Xn, η, ξ] = 1 in the direction Xi we obtain

n∑
k=1

Γk
ik + τ11 (Xi) = 0.

Since ξ is parallel if and only if τ11 (Xi) = 0, for 1 ≤ i ≤ n, the proposition is proved. �

5.3. The apolarity condition.

The cubic forms are defined as

C1(X,Y, Z) = (∇Xh1)(Y, Z) + τ11 (X)h1(Y, Z) + τ12 (X)h2(Y, Z),

C2(X,Y, Z) = (∇Xh2)(Y, Z) + τ21 (X)h1(Y, Z) + τ22 (X)h2(Y, Z).
(20)
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One can verify that the cubic forms are symmetric in X,Y, Z.

Take any η in the affine normal plane described in Section 4.2. In this case, h2

coincides with gξ and the cubic form C2 can be written as

C2(X,Y, Z) = (∇Xh2)(Y, Z). (21)

The cubic form C2 is apolar with respect to h2 if

trh2C2(X, ·, ·) = 0, (22)

for any vector field X ∈ TN .

Consider a gξ-orthonormal basis {X1, . . . , Xn}. Then the apolarity condition for

(C2, h2) is equivalent to Equation (19). Thus we conclude the following proposition:

Proposition 5.3. The following statements are equivalent :

1. The cubic form C2 is apolar with respect to h2.

2. The pair (∇, g) is equiaffine.

3. The vector field ξ is parallel.

5.4. Examples.

We now give some examples of submanifolds N ⊂ M that admit a parallel vector

field ξ.

Example 5.4. When n = 1, the vector field ξ defined in Section 5.1 is parallel. As-

sume that γ(t) is an adapted parameterization. Then γ′(t) is gξ-unitary and {ξ(t), γ′′(t)}
is a basis for the affine normal plane σ(ξ).

Example 5.5. Hyperplanar submanifolds. Assume N = M ∩ H, where H is a

hyperplane. Fix a point p0 ∈ N and let ξ(p0) be a vector in the osculating Darboux

direction at p0. We can extend ξ to a vector field along N in the osculating Darboux

direction such that ξ(p) = ξ(p0) + e(p), where e(p) ∈ H, for any p ∈ N . Then DXξ ∈
H ∩ TpM = TpN . The metric gξ defined by Equation (14) coincides with the Blaschke

metric of N ⊂ H and the affine Blaschke normal ζ of N ⊂ H belongs to the affine normal

plane.

Example 5.6. Visual contour submanifolds ([2]). Suppose that all lines ξ0 meet

at a point O. Then we can choose ξ = λξ0 such that ξ(p) = O − p. Differentiating we

obtain −S1X+ τ11 (X)ξ = −X. We conclude that S1 = Id and τ11 = 0. Thus ξ is parallel.

Example 5.7. Suppose M is a hyperquadric and N ⊂ M is arbitrary. Using the

notation of Remark 2.5, we have that h(ξ,X) = 0, for any X ∈ TpN . Take ξ such that

h(ξ, ξ) = 1. Differentiating and using that the cubic form C of M ⊂ R
n+2 is zero we get

h(∇̃Xξ, ξ) = 0. Thus ∇̃Xξ ∈ TpN and so ξ is parallel. It is not difficult to see that in

this case the affine normal Blaschke vector field is contained in the affine normal plane

bundle and the metric gξ is the restriction of the Blaschke metric of M to N (see [7]).
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5.5. Blaschke metric and the parallelism condition.

In this section we shall assume that M ⊂ R
n+2 is non-degenerate (see Remark 2.5).

Denote by ζ the affine Blaschke vector field of M ⊂ R
n+2 and by h the Blaschke metric

of M . We shall also assume that ξ is parallel and look for conditions under which ζ

belongs to the affine normal plane.

Proposition 5.8. Let ξ be a parallel vector field along N and assume that h(ξ, ξ) =

1 at a certain point p0 ∈ N . The conditions of Lemma 4.2 hold if and only if C(X, ξ, ξ) =

0, for any X ∈ TN .

Proof. Assume that h(ξ, ξ) = 1. Differentiating this equation in the direction

X ∈ TN and using that ξ is parallel we obtain C(X, ξ, ξ) = ∇̃(X, ξ, ξ) = 0, for any

X ∈ TN . Conversely, if C(X, ξ, ξ) = 0 we obtain X(h(ξ, ξ)) = 0, for any X ∈ TN . Thus

h(ξ, ξ) = 1 at N . �

Example 5.9. Consider the surface M ⊂ R
3 graph of

f(x, y) =
1

2
(x2 + y2) +

c

6
(x3 − 3xy2),

where c �= 0. Let γ = N be the intersection of M with the plane y = 0. Take ξ parallel as

in Section 5.1. Then the affine plane is generated by {ξ, η}, where η is the affine normal of

γ (see Example 5.4). Since η(0, 0) = (−c/3, 0, 1), ξ(0, 0) = (0, 1, 0) and ζ(0, 0) = (0, 0, 1),

where ζ denotes the affine Blaschke normal of M , we conclude that, if c �= 0, ζ does not

belong to the affine normal plane.

6. Transon planes.

6.1. Transon planes for curves.

The following theorem is a very old result ([10], [6]):

Theorem 6.1. Given a surface M ⊂ R
3, a point p0 ∈M and a vector T ∈ Tp0

M ,

consider sections of M by planes H containing T and passing through p0. Then the affine

normal vectors η = η(H) of these sections at p0 belong to a plane. This plane is called

the Transon plane of p0 ∈M in the direction T .

The statement of this theorem needs an explanation: A parameterization γ(s) of

γ = M ∩H by affine arc-length is defined by the condition [γ′(s), γ′′(s), ξ0] = 1, for some

constant vector field ξ0. Then the affine normal at p0 = γ(s0) is just γ
′′(s0). We remark

that, instead of a constant vector field ξ0, we may also consider here a vector field ξ in

the osculating Darboux direction of γ ⊂M such that ξ(p) = ξ(p0) + e(p), e(p) ∈ H, for

any p ∈ γ, where ξ(p0) is any vector in the osculating Darboux direction of γ ⊂M at p0.

6.2. Transon planes in arbitrary dimensions.

Let M ⊂ R
n+2 be a hypersurface, p0 ∈ M and T an n-dimensional subspace con-

tained in Tp0
M . For a hyperplane H containing T , consider the vector field ξ along

N = M ∩H given by ξ(p) = ξ(p0) + e(p), e(p) ∈ H, as in Example 5.5. The metric gξ
in N is, up to a constant, the Blaschke metric of N , and if we choose the unique η ∈ H
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satisfying Equations (15), (16), (17) and (18), then η is the affine Blaschke normal of

N ⊂ H.

Next theorem says that, as in the case of curves, this affine normal plane at p0 is

independent of the hyperplane H, and we shall keep the name Transon plane for it.

Theorem 6.2. Given a hypersurface M ⊂ R
n+2, a point p0 ∈ M and an n-

subspace T ⊂ Tp0M , consider sections of M by hyperplanes H containing T and passing

through p0. Assume that one section H0 ∩M is non-degenerate in the sense of Section

2.2. Then H ∩M is non-degenerate for any H and the affine normal vectors η = η(H)

of these sections at p0 belong to a plane.

Proof. Assume that p0 is the origin, the tangent to M is the plane z = 0 and

that H0 is the hyperplane y = 0. The non-degeneracy hypothesis implies that we can

find a local coordinate system such that M is given by

z =
1

2
(x2

1 + · · ·+ x2
n + ay2) + P3(x) + yP2(x) + y2P1(x) + P0y

3 +O(4)(x, y), (23)

where a ∈ R, Pk(x) is homogeneous of degree k in x = (x1, . . . , xn) and O(4)(x, y)

denote terms of degree ≥ 4 in (x, y). Consider the hyperplane Hλ of equation y = λz.

The projection of these sections in the xz-hyperplane is given by

z =
1

2
(x2

1+ · · ·+x2
n+aλ2z2)+P3(x)+λzP2(x)+λ2z2P1(x)+P0λ

3z3+O(4)(x, z), (24)

where O(4)(x, z) denote terms of degree ≥ 4 in (x, z). This curve can be re-written as

z =
1

2
(x2

1 + · · ·+ x2
n) + P3(x) +O(4)(x), (25)

where O(4)(x) denotes terms of degree ≥ 4 in x. This implies that the projection of the

affine normal vector does not depend on λ. �

6.3. Transon planes for general submanifolds.

Lemma 6.3. Let N̄ be the image of N by the projection π : R
n+2 → H in a

hyperplane H along the constant direction ξ(p0). The Blaschke affine normal η̃ of N̄ at

p0 belongs to the Transon plane.

Proof. We may assume that N is defined by y = P2(x, z)+O(3). Then the same

argument as above proves the proposition. �

Denote by η̄ the vector field along N̄ such that η̄(π(x)) = η(x) and by X̄ = π∗(X)

the projection of X in H. Let η be the transversal vector field along N in the affine

normal plane bundle such that η is parallel to H.

Lemma 6.4. We have that

1. h̄2(X,Y )(p0) = h2(X,Y )(p0), for any X,Y tangent to N .

2. ∇̄(h̄2)(X,Y, Z)(p0) = ∇(h2)(X,Y, Z)(p0), for any X,Y, Z tangent to N .
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Thus η is apolar if and only if η̄ is apolar.

Proof. Write π(p) = p+ λ(p)ξ(p0). Then π∗X = X +X(λ)ξ(p0), which implies

that X(λ)(p0) = 0. Differentiating again we obtain

DY π∗X = DY X + Y X(λ)ξ +X(λ)DY ξ.

This implies that h̄2(X̄, Ȳ ) = h2(X,Y ) for any p and ∇̄Ȳ X̄ = ∇Y X at p0. If

{X1, . . . , Xn} is an h2-orthonormal frame, then {X̄1, . . . , X̄n} is an h̄2-orthonormal frame.

Thus

∇̄X̄k
h̄2(X̄i, X̄j) = −h̄2(∇̄X̄k

X̄i, X̄j)− h̄2(∇̄X̄k
X̄j , X̄i)

is equal, at p0, to

∇Xk
h2(Xi, Xj) = −h2(∇Xk

Xi, Xj)− h2(∇Xk
Xj , Xi),

thus proving the lemma. �

Next lemma is a general result concerning codimension 1 immersions:

Lemma 6.5. Let S ⊂ R
n+1 be a hypersurface, p0 ∈ S, and let ζ be a transversal

vector field such that DXζ at p0 is tangent to S, for any vector field X tangent to S. If ζ

is apolar at p0, then ζ(p0) is a multiple of the affine normal vector. Conversely, if ζ(p0)

is a multiple of the affine normal vector, then ζ is apolar at p0.

Proof. Let ζ̃ denote the affine Blaschke normal vector field and

ζ =
n∑

l=1

alXl + δζ̃.

Writing

DXi
Xj = ∇Xi

Xj + h(Xi, Xj)ζ = ∇̃Xi
Xj + h̃(Xi, Xj)ζ,

we conclude that h̃(Xi, Xj) = δh(Xi, Xj) and

Γ̃l
ij = Γl

ij + h(Xi, Xj)al.

Moreover, since DXk
ζ is tangent to S at p0, we conclude that, at p0,

Xk(δ) = −δ
n∑

l=1

alh(Xk, Xl).

Choose a basis {X1, . . . , Xn} h-orthonormal. Then

C̃(Xk, Xi, Xi) = Xk(δ)− 2δΓ̃i
ik, C(Xk, Xi, Xi) = −2Γi

ik.

Since C̃ is apolar,
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0 =

n∑
i=1

C(Xk, Xi, Xi)− (n+ 2)δak.

Thus C is apolar at p0 if and only if ak(p0) = 0, for 1 ≤ k ≤ n, which is equivalent to ζ

multiple of ζ̃. �

Theorem 6.6. The affine normal plane coincides with the Transon plane if and

only if ξ is parallel.

Proof. By Proposition 5.3, ξ is parallel at p0 if and only if η is apolar at p0. By

Lemma 6.4, η is apolar at p0 if and only if η̄ is apolar at p0. From Lemma 6.5, η̄ is a

multiple of η̃ at p0 if and only if η̄ is apolar at p0. Finally η̃ belongs to the Transon plane,

by Lemma 6.3. �

7. Existence of parallel vector fields.

7.1. Submanifolds that admit parallel vector fields.

In this section we characterize the submanifolds N that admit a parallel vector field

ξ. We begin with the following lemma:

Lemma 7.1. There exists a parallel vector field ξ if and only if τ11 is exact.

Proof. Fix a vector field ξ0 in the osculating Darboux direction and look for λ

such that ξ = λξ0 is parallel. Differentiating this equation we obtain

DX(ξ) = X(λ)ξ0 + λ
(−SX + τ11 (X)ξ0

)
= −λSX + (X(λ) + λτ11 (X))ξ0.

Then X(λ) + λτ11 (X) = 0, for any X ∈ TpN , if and only if τ11 = −d(log(λ)). �

Since DXξ is tangent to M , we can write

DXξ = −S1X +∇⊥Xξ, (26)

where ∇⊥Xξ = τ11 (X)ξ is the affine normal connection.

Consider the normal bundle connection ∇⊥ defined by Equation (26). The normal

curvature R⊥ is defined as

R⊥(X,Y )ξ = ∇⊥Y∇⊥Xξ −∇⊥X∇⊥Y ξ +∇⊥[X,Y ]ξ.

We say that the normal bundle is flat if R⊥ = 0, for any X,Y ∈ TpN , ξ = λξ0 (see

[1, Chapter 6]).

Proposition 7.2. There exists a parallel vector field ξ if and only if the normal

bundle is flat.

Proof. Observe that ∇⊥Xξ0 = τ11 (X)ξ0. Thus

∇⊥Y∇⊥Xξ = Y τ11 (X)ξ0 + τ11 (X)τ11 (Y )ξ0.
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Now straightforward calculations shows that

R⊥(X,Y )ξ0 =
(
Y τ11 (X)−Xτ11 (Y ) + τ11 ([X,Y ])

)
ξ0 = dτ11 (X,Y )ξ0.

Using Lemma 7.1 we prove the proposition. �

7.2. Example: A submanifold without a parallel vector field.

We now give an explicit example of an immersion N ⊂ M that does not admit a

parallel vector field.

Example 7.3. Take M to be the graph of

f(x1, x2, y) =
1

2

(
x2
1 + x2

2 + y2
)
+

1

2

(
k1x

2
1y + k2x

2
2y
)

and N given by the intersection of M with y = x1x2. Thus N can be parameterized by

φ(x1, x2) = (x1, x2, x1x2, f(x1, x2, x1x2)) .

Let X1 = φx1 and X2 = φx2 . Then the vector field ξ(x1, x2) = (ξ1, ξ2, ξ3, ξ4),

ξ1 = k22x
3
2 − k2x1x

2
2 − 2k1k2x

2
1x2 − k1x1 − x2

ξ2 = k21x
3
1 − k1x

2
1x2 − 2k1k2x1x

2
2 − k2x2 − x1

ξ3 = 1 + 2(k1 + k2)x1x2 + 3k1k2x
2
1x

2
2

ξ4 = −1

2

(
k1x

2
1 + 2x1x2 + k2x

2
2

)
+ (k21 − k1k2)x

3
1x2 + (k22 − k1k2)x1x

3
2

+
1

2
k1k2x

2
2x

2
1

(
k1x

2
1 + 2x1x2 + k2x

2
2

)
is tangent to M and DXi

ξ ∈ TpM , for i = 1, 2. Moreover,

τ11 (X1)(x1, x2) = x1 + (3k1 + 2k2)x2 +O(3)

τ11 (X2)(x1, x2) = (2k1 + 3k2)x1 + x2 +O(3).

We conclude that dτ11 (X1, X2)(0, 0) = k1 − k2 �= 0 and thus τ is not a closed form.
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