(©2017 The Mathematical Society of Japan
J. Math. Soc. Japan

Vol. 69, No.3 (2017) pp. 1105-1156

doi: 10.2969/jmsj/06931105

Modules over quantized coordinate algebras and PBW-bases

By Toshiyuki TANISAKI

(Received Feb. 13, 2015)
(Revised Sep. 27, 2015)

Abstract. Around 1990 Soibelman constructed certain irreducible mod-
ules over the quantized coordinate algebra. A. Kuniba, M. Okado, Y. Yamada
[8] recently found that the relation among natural bases of Soibelman’s ir-
reducible module can be described using the relation among the PBW-type
bases of the positive part of the quantized enveloping algebra, and proved this
fact using case-by-case analysis in rank two cases. In this paper we will give
a realization of Soibelman’s module as an induced module, and give a unified
proof of the above result of [8]. We also verify Conjecture 1 of [8] about certain
operators on Soibelman’s module.

1. Introduction.

1.1. Let G be a connected simply-connected simple algebraic group over the com-
plex number field C with Lie algebra g. The coordinate algebra C[G] of G is a Hopf
algebra which is dual to the enveloping algebra U(g) of g. So we can naturally define
a g-analogue C4[G] of C[G] as the Hopf algebra dual to the quantized enveloping al-
gebra U,(g). This paper is concerned with the representation theory of the quantized
coordinate algebra C,[G].

Since the ordinary coordinate algebra C[G] is commutative, its irreducible modules
are all one-dimensional and are in one-to-one correspondence with the points of G; how-
ever, the quantized coordinate algebra C,[G] is non-commutative, and its representation
theory is much more complicated. In fact, Soibelman [12] already pointed out around
1990 that there are not so many one-dimensional C,[G]-modules and that there really
exist infinite dimensional irreducible C,[G]-modules.

Let us recall Soibelman’s result more precisely. He considered the situation where
the parameter ¢ is a positive real number with ¢ # 1. In this case C,[G] is endowed
with a structure of -algebra, and we have the notion of unitarizable C,[G]-modules.
Soibelman showed that one-dimensional unitarizable C,[G]-modules are in one-to-one
correspondence with the points of the maximal compact subgroup H¢p of the maximal
torus H of G. Denote the one-dimensional C,[G]-module corresponding to h € Hept by
Cp. On the other hand infinite-dimensional irreducible unitarizable C,[G]-modules are
constructed as follows. In the case G = SLy Vaksman and Soibelman [14] constructed
an irreducible unitarizable C,[SLs]-modules F with basis {m, }nez n>0 using an explicit
description of C,4[SLs]. For general G denote by I the index set of simple roots. For each
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i € I we have a natural Hopf algebra homomorphism 7; : C4[G] — C,,[SLs], where g; is
some power of ¢. Via m; we can regard F as a C,[G]-module. Denote this C,[G]-module
by F;. Let W be the Weyl group of G. For w € W we denote the length of w by ¢(w).
Take w € W and its reduced expression w = s;, - i, (i, € I) as a product of simple
reflections. Soibelman proved that the tensor product F;, ® - - - ® F;, (w) 152 unitarizable
irreducible Cy[G]-module. Moreover, he showed that F;, ® --- ® J;,,, depends only
on w. So we can denote this C,[G]-module by F,,. It is also verified in [12] that any
irreducible unitarizable C4[G]-module is isomorphic to the tensor product F,, ® Cy, for
weW, he Hepy.

As for further development of the theory of C,[G]-modules we refer to Joseph [4],
Yakimov [15].

Quite recently the above work of Soibelman has been taken up again by Kuniba,
Okado, Yamada [8]. Let wy € W be the longest element. Note that for each reduced
expression wg = §;, - Sig () of wy we have a basis

Bis,. vty = {Mny @ - @My, | M1y M) = 0}

of Fuy, = Fi, @+ -®F;,,,, parametrized by the set of £(wo)-tuples (11, ..., Ny (w,)) of non-
negative integers. On the other hand, by Lusztig’s result, for each reduced expression
wo = s, Siy,, of wo we have a PBW-type basis th___,il(wo) of the positive part
U,(n") of U,(g) parametrized by the set of £(wy)-tuples of non-negative integers. Kuniba,
Okado, Yamada observed in [8] that for two reduced expressions wy = s;, -

and Bj, .

" Sigwg)

S5 Suwe) of wp the transition matrix between B;, . coincides

3ol (wg) and B‘;—lauwjé(wo)
factor. They proved this fact partly using a case-by-case argument in rank two cases.

In the present paper we give a new approach to the results of Soibelman [12] and
Kuniba, Okado, Yamada [8]. We work over the rational function field F = Q(¢); however,
our arguments also hold in a more general situation (see Section 8 below). Let g =
nt @h@®n~ be the triangular decomposition of g. Let N* and B* be the subgroups of G
corresponding to n* and h @ nT respectively. For each w € W we define a C4[G]-module
M, as the induced module from a one-dimensional representation of a certain subalgebra,
Cy[(N"NwNTw=H\G] of C4[G]. We will show that M,, is an irreducible C,[G]-module
and that for each reduced expression w = s;, T Sy, WE have a decomposition M, =2
Fiy ® - ® Fiy,, nto tensor product. This gives a new proof of Soibelman’s result. We
will also show that there exists a natural linear isomorphism

SJe(wg)
up to a normalization

Ste(wg)
with the transition matrix between Bj

My 2 Uy(nt Nwn™), (1.1)

where U, (n™ Nwn™) is a certain subalgebra of U,(g) defined in terms of Lusztig’s braid
group action (see De Concini, Kac, Procesi [2], Lusztig [10]). From this we obtain (in the
case w = wp) the result of Kuniba, Okado, Yamada described above. As in [8] a certain
localization of C4[G] plays a crucial role in the proof. More precisely, for each w € W we
consider the localization C,[wNTB~] of C4[G], which is a g-analogue of ClwN*tB~]. In
addition to it, we use the Drinfeld pairing between the positive and negative parts of the
quantized enveloping algebra in constructing the isomorphism (1.1). A crucial difference
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between Soibelman’s approach and our approach is that, instead of the decomposition
C,[G] = C,[G/NTIC,[G/N™]
used by Soibelman, we utilize the g-analogue of the decomposition
C|[B~wyB™| 2 C[B wyB~/B7]®@ C[N"\B wyB™|
in the case w = wg, and

ClwNTB™] = C[(wNTw ' NnN7)] @ C[(wNTw ' n N wB™]
Cl(wNtTw NN @ C[(wNTw NN )\wNTB7],

Il

for general w, which is more natural from geometric point of view. As a consequence
of our approach, we can also show easily a conjecture of Kuniba, Okado, Yamada [8,
Conjecture 1] concerning the action of a certain element of C,[wN*B~] on M,,.

We finally note that our results hold true for any symmetrizable Kac—-Moody al-
gebra (see Section 8 below). We hope this fact will be useful in the investigation of
3-dimensional integrable systems, which was the original motivation of [8]. After writing
up the first draft of this paper Yoshiyuki Kimura pointed out to me that Proposition
2.10 below in the Kac-Moody case is not an obvious fact which is stated as a conjecture
in Berenstein and Greenstein [1, Conjecture 5.5]. In the present manuscript we have
included a proof of Proposition 2.10 which works for the Kac—Moody case. We heard
that Kimura also proved it by a different method (see Kimura [6]).

After finishing this work we heard that Yoshihisa Saito [11] has obtained similar
results by a different method.

1.2. We use the following notation for Hopf algebras throughout the paper. For
a Hopf algebra H over a field K we denote its multiplication, comultiplication, counit,
antipode by mg : Hx H - H, Ay : H - H®x H, ey : H - K, Sy : H - H
respectively. The subscript H is often omitted. For left H-modules Vg, ..., V,, we regard
Vo ®k - - - @k Vi, as a left H-module via the iterated comultiplication A,, : H — H®™+1,
We will occasionally use Sweedler’s notation for the comultiplication

A(h) = Zh(o) & h(l) (h S H),
(h)

and the iterated comultiplication

Ap(h) =) ho) @ @hmy (b€ H).

1.3. I would like to thank Masato Okado and Yoshiyuki Kimura for some useful
discussion.
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2. Quantized enveloping algebras.

2.1. Let G be a connected simply-connected simple algebraic group over the com-
plex number field C. We take Borel subgroups B+ and B~ such that H = BT N B~ is
a maximal torus of G, and set N* = [B*  B*]. The Lie algebras of G, B*, H, N* are
denoted by g, b*, b, n* respectively. We denote by P the character group of H. Let
AT and A~ be the subsets of P consisting of weights of n* and n™ respectively, and
set A = AT UA~. Then A is the set of roots of g with respect to h. We denote by
II = {«a; | i € I} the set of simple roots of A such that AT is the set of positive roots.
Let Pt be the set of dominant weights in P with respect to II, and set P~ = —P*. We
set

Q=) Zai, Q" =) Zsoai,

iel i€l

where Z>( denotes the set of non-negative integers. The Weyl group W = N¢(H)/H
naturally acts on P and @. By differentiation we will regard P as a Z-lattice of h* in the
following. We denote by

(,):h"xph"=C

the W-invariant non-degenerate symmetric bilinear form such that (o, ) = 2 for short
roots . For o € A we set a¥ = 2a/(a, ). As a subgroup of GL(h*) the Weyl group W
is generated by the simple reflections s; (i € I) given by s;(A\) = A — (A, ) )a; (X € b*).
We denote by ¢ : W — Z>( the length function with respect to the generating set
{si | i € I} of W. The longest element of W is denoted by wg. For w € W we set

Iy, = {(ilw-wil(w)) € Il(w) | W = 8, "'Sie(w)}'

2.2. Forn € Z we set

For m € Z>q we set

[m]q! = [m]q[m - 1]q T mq'
For m,n € Z with m > 0 we set

R T

€Zg.q "]

For i € I we set ¢; = ¢(®»®)/2 and for 4,j € I we further set a;j = (o, o).

We denote by U = U,(g) the quantized enveloping algebra of g. Namely, it is an
associative algebra over F = Q(q) generated by the elements k:iil, e, fi (1 € I) satistying
the defining relations
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ikt =k 'k =1 (i €1),
k‘ikj = k‘jk‘l (Z,] S I),
kiejki ' = g¢;7e; (i,j € 1),
kifjk;lzqz'_aijej (i7j€‘[)a
ki — k! o
6ifj*fj€i:5ijﬁ (i,5 € I),
i i
lfaij
S (—nmelt T e el™ = 0 (i,j € I,i # §),
m=0
1—a1~j
S (nym gt g =0 (i,j € 1i#j),
m=0
where
m _ L om m_ 1 m z
€; [m]qi!ez ’ fz [m]qz'fz (me 20)'

We endow U with the Hopf algebra structure given by

ARTY) =k @k, Ale) =e;@1+ki®e;, Afi)=f;ok ' +1 f;,
5(k?:1):17 e(e;) = e(fi) =0,
Sk = kT, S(e;) = —k; e,  S(fi) = —fik.

We define subalgebras U° = U,(h), Ut = U,(nT), U~ = Uy(n™), U=0 = U,(b"),
Us0 =U,(b™) by

U= liel), Ut=(eliel), U ={(fi|liel),
U0 = (ke liel), USC=(k, filiel),

respectively. Then U°, UZ% U<? are Hopf subalgebras. The multiplication of U induces
isomorphisms

U2UTeU@U - 2U UUT,
U2~ oUut2Ut U, USV > '@ U- U~ o U°.
REMARK 2.1. In this paper ®p is often written as ®.

For v =", micy € Q we set
ky =[] #i € U°.
il

Then we have U° = @yeQ Fk., and hence UY is isomorphic to the group algebra of Q.
For v € Q" we define Uit,y by
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UL, = {ue UF | kuk " = ¢& " Vu (i € 1)},
Then we have U+ = D co+ Uitn/.
2.3. There exists a unique bilinear map
T: U2 xUSY 5 F (2.1)

characterized by the properties:

(T@7T)(A(x),y2 ®y1) = T(7,y192) (€ U= 1,2 € USO), (2.2)
(1@ 7) (21 ® 2, A(y)) = T(x122,y) (21,22 € UZC, y € USY), (2.3)
T(ei, kx) =7(kx, fi) =0 iel, Ae@), (2.4)
T(k)\, ku) = q(A’H) ()\,[L € Q)a (25)
1 .
T(ei, fi) = 5iji (i,j €1). (2.6)
We call it the Drinfeld pairing. It also satisfies the following properties:
7(Sx,Sy) = 7(x,y)  (z € U=,y e U=Y), (2.7)
T(kae, kuy) = 7(x, y)g ™ (reUt,yeU), (2.8)
+ _
1EQ Y A6 — Tl =0, (2.9
veEQT = T|U;r><U: is non-degenerate. (2.10)

2.4. For a U%-module M and )\ € P we set

(\e)

My={meM|km=yg m (i €1)}.

We say that a U%-module M is a weight module if M = Drecp M.
For a U-module V we regard V* = Homp(V,F) as a right U-module by

(v u, vy = (v, uv) (weV,v* eV uel).

Denote by Modg(U) (resp. Mod((U)) the category of finite-dimensional left (resp. right)
U-modules which is a weight module as a U%module. Here, a right U%module M is
regarded as a left U%-module by

tm := mt (me M,teU%.

If V € Mody(U), then we have V* € Modg(U). This gives an anti-equivalence Mody(U) 3
V= V* € Mod((U) of categories.

For A € P~ we denote by V() the finite-dimensional irreducible (left) U-module
with lowest weight A. Namely, V()\) is a finite-dimensional U-module generated by a
non-zero element vy € V() satisfying fivx = 0 (¢ € I). Then Mody(U) is a semisimple
category with simple objects V(X)) for A € P~ (see Lusztig [10]). For A € P~ we set
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V*(A) = (V(X))*, and define v} € V*(A) by (v}, va) = 1.
The following well known fact will be used occasionally in this paper (see e.g. [13,
Lemma 2.1]).

PROPOSITION 2.2. Lety e Q™.
(i) For sufficiently small X € P~ the linear map U 3 x +— zvx € V(X)a1 is bijective.

(ii) For sufficiently small X € P~ the linear map U_, > y = v3y € V*(A)xyy is
bijective.

REMARK 2.3. In this paper the expression “for sufficiently small A € P~ ...” means
that “there exists some y € P~ such that for any A e p+ P~ ...7.

2.5. Fori e I and M € Mody(U) we denote by T;,7; € GL(M) the operators
denoted by T} and T}’ ; respectively in [10]. We have also algebra automorphisms 77,

T; of U satisfying

foru e U, m € M € Mody(U). They are given by

— fiki (j=1)
Do el (G #1),

—k; te; (j=1)

Ti(fj) =8 & e
U= S2 (Cayromrgros—r om0 g,

r=0
—fiki (=1
Tl(e) == —ai;— T . .
TS yrgrelm el (5 #),
r=0
7](31'61' (] = Z)

Ti(f) =42, s —(—as—r) p(—as;—r) 5 o(r o,
(f) Z(_l) aij rqi( ij )fz( ij )fjfz() (] #2)7

r=0
Tz(kv) = Tz(k7> = ks,y-

By [10] both {T}}ie; and {T;}ic; satisfy the braid relation, and hence we obtain the
operators {Ty, }wew, {Tw}wew given by

Tw=T; T Tw="T, Tiyo (1, i) € Tw).

To(w)?

By the description of 77, T; as automorphisms of U we have
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e(Tw(u)) = e(Tp(u) =e(u)  (weW,uel). (2.11)

For w € W and M € Mod}j(U) we define a right action of T}, (resp. T,,) on M by

(mTy,m*) = (m, Tym*) (resp. (mT, m*) = (m, Tym*))

for m € M, m* € M*. We can easily check the following fact.

LEMMA 2.4. Let w € W. Then as algebra automorphisms of U we have T, =
S—T,S.
Let we W and @ = (i1,...,4m) € L. Forr=1,...,m set
kir:ks 8 Qg
’ 1 tr—1tr

:TZ1T%~ l(eir)’ f :TH .i'r l(fi'r‘)
esz;} Tt (e), o =TT (),

tm

€r=1Tj T (e, fi,r =TT, (fi.)

By [10} we have éi,r; éi,r, éi,r S U+7 fiﬂn, fiﬂ«, fiﬂn cU~. Forn e ZZO set

(Ti") - El e ﬂr—l (6»:0), f'L(77L*) lm “+1 (fl(Tn))’

(
é;"r) =T, T (el(f)),

Tr—1
and for n = (n1,...,ny) € (Z>0)™ set
-(") ("m) -(n1) (M N, 1
€; €im €1 &= rim - fits
~n __ =n ~n F(n) _ "1) F(nm)
€ = 6111"'67:,%’ f f fz,: )
"(n) — "(nrn) "(nl) rn _ £, niy
€ = Cim €1l i *fi,;%"'fi,r

PROPOSITION 2.5 ([9]). Letw € W and 4 € Z,,. Then we have

L(w)
~(n) n
(& fit) = Onw H cq,, (1),

where
cq(n) _ [n]!qfn(nfl)/Z(q _ qfl)fn.
The following result will be used frequently in this paper.

PROPOSITION 2.6 ([7], [9], [10]). We have

A(Ty) =(T; @ Ty) exp,, ((a: — a; ") fi @ ;) = exp,, (@ — a; "k "ei ® fika)(Ti @ Th),

where
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e qn(n—l)/2

equ(x) = Z Tm”

COROLLARY 2.7. Forw € W and i = (i1, ...,im) € Ly we have

A(Tw) = (Tw & Tw) equil (Xl) T equim (Xm)
= eXinl (Yl) e equim (Ym)(Tw 02y Tw)7
AT, ") = expy—1(=Xm) - expys (~X0)(T, ' @ T, )

= (T, @ T,")exp, (=Yim) - expy-1(=Y1),

-1
where
Xr = (qi, — q;l)fi,r ® €4, Y, = (¢, — qi:l)ki_,,l.éi,r @ firkinr
LEMMA 2.8. Forw € W we have

A(T,(UT)) cU @ (Tu(UT)U°,  A(T,HU) C (T, (UT)U° e U,

A(T,(U7) c (T NU U, AT, (U") cU (T, (UH))U.

PROOF. We only show the first formula since the proof of other formulas are
similar. To show the first formula we need to show that for y € T, U" we have (T;! ®
T, (A(y) e U U=,

For each A € P~ take vyyn € V(M) woa \ {0}. Then for u € U we have u € UZ0 if
and only if u(M ® vyyx) C M & vyex for any A € P~ and M € Mody(U) (see the proof
of [3, Proposition 5.11]). By this fact together with [3, Proposition 5.11] it is sufficient
to show that for My, My € Mody(U) and A € P~ the element

(d@A{(T;' T HNAW) e U U U

sends My ® My ® vya to itself. As an operator on the tensor product of two integrable
modules we have

(T,' @ T (AW) = (T, @ T, o (Ay) o (T @ To).
Take ¢ = (i1,...,%m) € Z,,. By Corollary 2.7 we have
T,®T,=AT,)0Z Y, Z= exp,, (X1) -+ -expg, (Xm),
where X7,...,X,, are as in Corollary 2.7. Hence we have
(15" @ T o (Aly)) o (T ® Tu) = Z o AT (y)) 0 27,
Therefore, our assertion is a consequence of Tgl(y) eUT,and X, e U~ @UT. O

For w € W set
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UT[T,)=U"NT,(U=%, UT[T,]=U"NT,(U=Y), (2.12)
U [T =0"nT;}U=%, U =0"nT; Y (U=Y), (2.13)
U™ [Ty =U NT,(UZ%),  UT[T,]=U"NT,U=°). (2.14)

We can easily show the following using Lemma 2.4.
LEMMA 2.9. Forw e W, i = (i1,...,1m) € L, we have
ST = f1
Hence we have

T, S(U[TL]) = UT[T,1.

The following well-known result is an easy consequence of the existence of the PBW-
type base of U*. Here, we give another proof which works for the quantized enveloping
algebra of any symmetrizable Kac-Moody Lie algebra.

PROPOSITION 2.10.  The multiplication of U induces the isomorphisms

Ut = UF[T,] @ (U NTw(UF)) = (UF NT,(UY)) @ U [T, (2.15)
U* = U0 U NT, (UF) = (U N T, (UF)) @ UL, (2.16)
Ut = U1, @ (U NT,(U) = (U NT,(UF)) @ U [T,]. (2.17)

PrROOF. We first note that (2.17) follows easily from (2.15) and Lemma 2.4. Con-
sider the ring involution

a:U—=U (qu_la kAHk)Tla €i|—>—k'i_1€i, le_flkl))
and the ring anti-involution
b:U—=U (¢g—q " kx= k' e fiy fir e).

By 0T, = T,,b and b(U") = U~ the statements for U~ are consequences of those for U™.
By aTya =11 and a(U}) = kYU (v € QT) the statements for T, are consequences
of those for T,,—1. Hence we have only to show

Ut = U, @ (U NT,U)), (2.18)
Ut = (UtNT,(UY) @ U T,]. (2.19)

We first show (2.18). Note that the injectivity of
Ut[T,] @ (Ut NT,(UT) = Ut (2.20)
is clear from

UtT,]) @ (Ut NTu(UY)) C Tw(U=0) @ Ty (UT)
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and US" @ Ut =2 U. Hence we have only to show the surjectivity of (2.20).

For 4 = (i1,...,im) € T, denote by U*t[T,;4] the subalgebra of UT generated by
€ils-- -, €im. By astandard property of T; we have U*[T,;i] C Ut[T,]. Hence we have
only to show

Ut [Ty d)(Ut NT,(UT) =UT. (2.21)

We note that our assertion is already known for w = s;. Namely, we have
Ut = UM Te UTNT,UY)),  UTL] =Flel, (2:22)
U-=U [L]e U NnT(U)), U~[T}) = F[fi] (2.23)

(see [10, Chapter 38]).

Now we are going to show (2.21) by induction on ¢(w). Assume that we have xs; > x
for x € W and i € I. By the above argument we need to show (2.21) for w = xs; assuming
(2.15), (2.16), (2.21) for w € W with ¢(w) < £(x). Take ¢ = (i1,...,im) € Z;, and set
i = (i1,...,im,i) € Lys,. To show our assertion Ut [Ty, ;4'|(UT N Ty, (UT)) = U™, it is
sufficient to show

UrNT;HUT) =Fle, (U nT;(UN)NT;HUT)). (2.24)
Indeed assuming (2.24) we have

Ut NT(UY) = T, (U NI, Y UY)) = F[Tu(e)](UT N T (UF) N T, (U))
c F[Tw<ei)](U+ N TwSi(U-‘r)),

and hence

Ut = U134 (UT NTR(UY) € U [Ty d]F[T(e)|(UT N Tys, (UT))
C Ut T3 41 (U N T, (UT)).

To verify (2.24) we first show the following.

UrnT; YU ={uecU' |7(u, U (U [T, | NKer(e : U~ = F))) = {0}}, (2.25)
U NT YU )={ucU | 7(UNUTT; ] NnKer(e: Ut = F)),u) = {0}}. (2.26)

For simplicity set

VE = {ue Ut | r(u, U (U [T;Y) nKer(e))) = {0}},
V™= {ueU™ | 7(UH(UTT5Y NKer(e)), u) = {0}).

By (2.9) we have
(U NT YU, U [T NnKer(e)) = {0}.

Hence by Lemma 2.8 and (2.2) we have UT N T;Y(U*) ¢ V*. By a similar ar-
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gument we have also U™ N T;l(U*) C V7. On the other hand by the hypoth-
esis of induction we have U = U* [T, '] @ (UF N T, (U*)), and hence U =
(UENT; Y (U*))@ U (UF[T;']NKer(e)). Since T is non-degenerate, we obtain injective
linear maps V* — (UF N T Y (U¥F))*. Comparing the dimensions of weight spaces we
obtain

dim(UE, N T, 1 (U*)) < dimVE, < dim(UZ, nT,1(UT))

for each v € QT. This gives (2.25) and (2.26).
By a similar argument we have also

UrNT(UY) ={ue Ut | 7(u, U [Tx)NKer(c: U~ = F))U”) ={0}},  (2.27)
U NT (U )={ueU | 7(UT[Tx]NKer(c: Ut - F))UT,u) ={0}}.  (2.28)

Now let us show (2.24). Take v € Ut NT;1(U™), and decompose it as

U:Ze?un (u, € U NTH(UY))

(see (2.22)). Then it is sufficient to show u, € T, ' (U™T), which is equivalent to
T(Un,vz) =0 (veU™, ze U [T, ] NKer(e)) (2.29)

by (2.25). Let v € U, z € U~ [T '] NKer(g). By our assumption we have 7(u,vz) = 0.
On the other hand we have

7(u,vz) :Z (el up, vz2) Z Z ei' V(0)2(0))T (Un, V(1) 2(1))
n (2),(v)

= Z Z T(Un, v(1)2)
by Lemma 2.8 and (2.9). Consider the case
v = fi(T)U/ (W' eU™ NT;(U)).

Then we have

u ’UZ Z Z —s(r— s) afi(T‘_S)UEO))T(UTL?kz (r— s)f(s) 1 Z)

n s=0

Z S(T 7 eglafi(T_S))T(Unafi(S)vlz)

by Lemma 2.8, (2.8), (2.9). By u, € Ut NT;(U™T) and (2.27) we have
T(un, f;U~) = {0}. (2.30)

Hence
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T(u,vz) = ZT(G?, fi(r))T(un,v’z) =7(ef, fi(r))T(uT, v'z2).

Hence by 7(el, fi(r)) # 0 we obtain
7(Up,v'z) =0 (ze U™ [T NKer(e),v e U NTy(U™)) (2.31)
for any n. By (2.30), (2.31)
T(tn, flv'2) =0  (ze U [T NKer(e),v e U NTy(U™),r > 0).

The proof of (2.18) is complete.
It remains to show (2.19). Similarly to the above proof of (2.18) it is sufficient to
show

UrnT; Y UN) = U nT;(UT) T Y UT))Fle]. (2.32)
This follows from (2.24) as follows. We can easily show
yeQT, uelU'™n TZ(U;') = ue; — ql(% g )eiu ceUtN Ti(U'*') (2.33)

using [10, Proposition 38.1.6]. Hence in view of (2.24) it is sufficient to show that for
ueUT ﬂT.i(Uj) NT;(UT) we have ue; — qzh’ai Jeu € T7Y(U™). This is obvious since
To(ei) e UT. 0

REMARK 2.11.  Proposition 2.10 holds true for various Z[q, ¢~ ']-forms of U*. To
show thib it is sufficient to verify (2.22) over Z[g, ¢~ !]. In the case of the De Concini-Kac
form U [ ,1], this follows if we can show that (UD[K fl] N U"‘[T])(UZ[EQK[IJr 0N T,(U))
is stable under the right multiplication of e; for any j € I. If j # 4, this is obvious. If
j =1, this follows from (2.33). The argument for the case of the Lusztig form UZ[’q 1]
is similar. Finally, (2.22) over Z[q, ¢~ '] for the De Concini—Procesi form defined by

Uy = e U | (U, g) € Zlaa™ '),

Uéj[(fqil] ={ueU | T(UZL[;;Z,I],U) € Zlq,q ')},

is a consequence of that for the Lusztig form by duality.
By our proof of Proposition 2.10 we also obtain the following.
PrRoOPOSITION 2.12. Letw € W and ¢ € T,,.

(i) The set {fI* | n € (Zso)™} (resp. {égn) | n € (Zs0)™}) forms an F-basis of U~ [T,
(resp. Ut[T),]).

(ii) The set {f(n) | n € (Z>0)™"} (resp. {€F | n € (Z>0)™}) forms an F-basis of
U~[T,"] (resp. UT[T,M).
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(iii) The set {f[ﬁ | n € (Zso)™} (resp. {égn) | € (Zso)™}) forms an F-basis of U~ [T},

(resp. UT[Ty])-

For w € W and v € Q" we have

U1 NUE, = U N Ty (krw-1,UL, 1), (2.34)
Ui [Tujl] N Uzzl:t’y = Ui N Tgl(k:l:w’YU::i'::w'y) (235)

by Proposition 2.12 and the explicit description of T;.

3. Quantized coordinate algebras.

3.1. We denote by C,[G] the quantized coordinate algebra of U (see, for example,
[4], [5], [13] for the basic facts concerning C,[G]). It is the F-subspace of U* spanned by
the matrix coefficients of U-modules belonging to Mody(U). Namely, for V' € Mody(U)
define a linear map

VRV U (vVV@v Pyrgy) (3.1)
by
(Pyrgu, u) = (v, uv) (uwel).
Then we have

ClGl= > Im(V'e@V-U)cCU. (3.2)
VE€Modo (U)

It is endowed with a Hopf algebra structure by mc ) = Ay, Ac,q) = ‘my. Moreover,
(3.2) induces

ClG1= P vy eV, (3.3)
AeP—
We set
Cy[B*] = Im(Cy[G] = (UZ%)"),  C4[B~] =1Im(C,y[G] — (U=)"),
Cy[H] = Im(C,[G] — (U°)").

For A € P we denote by x : U’ — F the algebra homomorphism given by x» (k) = g
for v € Q. Then we have

C4[H] = @D Fxa. (3.4)

AeP

Note that C4[G] is a U-bimodule by

(urpug, uy = (@, uguuy) (p € Cq[Gl,u1,uz,u € U).
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For ,1 € C4[G] and u € U we have

u(py) :Z(U(O)SD)(u(l)T/)),
(u)

(pY)u = Z(SDU(O))(1/)U(1))-
(u)

1119

(3.5)

(3.6)

ExaMpPLE 3.1. Consider the case where g = sly and G = SLy. In this case

U = U,(sly) is the F-algebra generated by the elements k*1, e, f satisfying

k—k!
9—q

kk~ Y=k 'k =1, kek™'=q%, kfk '=q%f, ef—fe=
Let V = Fuvy & Fu; be the two-dimensional U-module given by
kvo = quo, kvi=q 'v1, evg=0, evi=uvy, fug=wv1, fv1=0,
and define a,b, ¢, d € C,[SLs] by

uvg = (a,u)vy + {c, u)vy, uvy = (b, u)vg + {d, u)vy (ueU).

Then {a,b, ¢, d} forms a generator system of the F-algebra C,[SL,] satisfying the funda-

mental relations

ab = gba, cd=qdc, ac=qca, bd=qdb, bc=cb,
ad — da = (¢ — ¢~ Y)be, ad — qbc = 1.

Its Hopf algebra structure is given by

Ala) =a®a+b®c, Ab)=a®b+b®d,
Al)=c@a+d®c, Ald)=cob+dod,
ela) =e(d) =1, e(b) =e(c) =0,

d S(b) = —q b, S(e) = —qc, S(d) = a.

3.2. Forwe W and A € P~ set
Vi =0Tt € VE (N,
and define oy € C,[G] by
(oX,u) = (vpr,uva)  (w€U).

Then we have

w __w

w o _w_w _ __w —
oy =1, oNo,/ =00 =0}, (A, we P7).

Set
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Sw={o) | Axe P} C C4[G].

PROPOSITION 3.2 ([4]).  The multiplicative subset Sy, of C4|G] satisfies the left and
right Ore conditions.

It follows that we have the localization S;;'C,[G] = C,[G]S,*. In the rest of this
section we investigate the structure of the algebra S, 'C,[G]. In the course of the argu-
ments we give a new proof of Proposition 3.2.

3.3. In this subsection we consider the case w = 1.
Set

UH* = @ (U, cU.
yeQF

LEMMA 3.3.  We have
CylG) c (UN* @ CylH]@ (U)X c (UM) ® (U°) @ (U)" C U™,
where the embedding (UT)* @ (U°)* @ (U~)* C U* is given by

(W@ x® g aty) = (Y, z)(x, 1) (¥, y)
WeUh, xe U, oc (U ), zecUT, tecU’ yecU).

PROOF. It is easily seen that for any ¢ € C,[G] we have
ploo € CoH),  plus € (UF)*.
Hence the assertion is a consequence of

(.aty) = Y () 2) ) {pe),y)  (eUttelU%yelUn)
()2

for ¢ € C4[G]. O

Note that U* is an F-algebra whose multiplication is given by the composite of

UreUrc (UaU)” "2, U* and that C,4[G] is a subalgebra of U*. We will identify
(U%)*, (U*)* with subspaces of U* by

UH* = U (¢ [ty = (@, z)e(t)e(y)),
U = U*  (x— oty —e(@)(x, t)e(y)]),
UT) =0 (¢ [aty = e(@)e(){p, y)]),

where z € Ut, t € U, y € U~. Under this identification we have
xa=o0y (AeP). (3.8)

Hence
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Si={xa|AXeP}CC,H] C (U cU". (3.9)
LEMMA 3.4.  Fory € (UT)*, x € (U%)*, ¢ € (U)* we have

W’X%xtw = <1/J,£E><X,t><(p,y> (y eU™, te UO? T € U+)

PROOF. By the definition of the comultiplication of U, for x € U™, y € U~ we
have
Ay =1ey+y, (eidy)=
Alz)=zx1+72, (id®e)(2') =
Hence
(Wxpaty) = > ($20)t0Y0) 06 T0tmYm) e 2ot ye)
(%)2,(t)2,(y)2

()2

LeEMMA 3.5.  For A\, u € P we have XXy = Xatu-

PrROOF. We have

Ooxm@ty) = Y (s )t ¥0) (X Ty Ea)y))
().0-(v)

= g(x)e(y) Z(X,\,t(o)><th(l)>
(t)

= e(@)e(y) (ntur 1) = (Xatus 2tY)- O
LEMMA 3.6. The subspaces (UT)*, (U~)* of U* are subalgebras of U*.

PrOOF. For ¢, ¢’ € (U™)* we have

(o aty)y = > (o, 20ty (¢ xtmya)
(®),(t),(y)

=e(z) Y (e touo) @ taa)
(®).(y)

= e(2)e(t) > (@, y0) (¢’ yn)) = e(@)e(t){p¢’, y).
(v)

The statement for (U1)* is proved similarly. O
LEMMA 3.7. (i) For+ € (UF)*, X € P we have xA = gMhys.
(ii) For o € (UZ,)*, A € P we have xx¢ = g oy,

Proor. Forz € U,j,, y €U, t€U° we have
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O, aty) = Z oo Tyt 0)Y0)) (s 2ty Y1)
(2),(t),(y)

=3 0t byt o)) (0, ot 1yy) = e(t@)e)dry D (X kyrto) (¥, )
(t) (t)

= e(y)0y.1 (X0, By t) (10, ) = ¢ MV e(y) (4, ) (X, 1).

By a similar calculation we have

<7/}X)\7 xty) = E(y)<¢7 1'> <X)\7 t>

The statement (i) is proved. The proof of (ii) is similar. O

LEMMA 3.8. (i) Let ¢ € (U™)*. For sufficiently small A € P~ we have
xXaes exa € GGl

(ii) Let v € (UT)*. For sufficiently small X € P~ we have x\,xx € C4[G].

PrOOF. (i) We may assume ¢ € (UZ,)*. By Proposition 2.2 there exists v €
V(M) at~ such that

(p,y) = (vyy,v)  (yelU).

Then

(Pugou, 2ty) = (Vxty, v) = (@) (xr: (P, y) = g, 2ty)-
Hence yxp = ¢MVopxy = ®,1 90 € Cy[G]. The proof of (ii) is similar. O

COROLLARY 3.9. Let f € (UT)XC,[H|(U™)*. Then we have x»f, fxx € C4[G]
for sufficiently small A € P~ .

PrOOF.  We may assume f = vx, ¢ (¢ € (UF)*,v € P,p € (UZ5)*). By Lemma
3.8 we have xx, ¥, Xas¢ € C4[G] when A1, A3 € P~ are sufficiently small. Take Ay € P~
such that Ao + v € P~ and set A = Ay + Ay + A3. Then we have

22237 (0 3, 0) X as 4 (X2a @) € ClG-

Xaf =gl
The proof for fx, is similar. O
PROPOSITION 3.10. Let f € C4[G], A € P~.
(i) If o3 f =0, then f = 0.
(ii) If fox =0, then f =0.

PrOOF. In the algebra U* the element ai = X is invertible, and its inverse is
given by x_x. O

We set
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CqlG/NT]={f € ClG | yf =<(y)f (y € UT)} = C[GIN(U)*C,[H],  (3.10)
CyINT\G] = {f € C,[G] | fr =ce(x)f (x €UT)} = C,[GINC,[H|(UT)*.  (3.11)
They are subalgebras of C,[G].
ProPOSITION 3.11.  Assume that A € P~.
(i) V¢ € Cy[G/N7] 3u € P~ s.t. oy € Cy|G/N~ o3, Yo, € 03Cy[G/N7].
(ii) Vo € Cy[NT\G] 3u € P~ s.t. 0,0 € Co[Nt\Gloy, po,, € 0)Cy[G/N].
(iti) Vf € Cy[G] Fu € P~ s.t. o, f € CylGloy, fo,, € 0,CylG].
PrROOF. (i) By Lemma 3.7 we have
o3 € oy (UF)¥Cy[H] € (UT)*Cy[H]o.

By Corollary 3.9 we have 03, ¥ € C4[G/N~]o} for some v € P~. Similarly, we have
Yoy, € 03Cy[G/N~] for some v/ € P~.
The statements (ii), (iii) are proved similarly. O

By Proposition 3.10 and Proposition 3.11 we have the following.

COROLLARY 3.12.  The multiplicative set Sy satisfies the left and right Ore condi-
tions in all of the three rings C4[G/N~], C4[N1T\G], C,[G].

It follows that we have the localizations

STIC[G/N] = Cy[G/NTIST (3.12)
STICINT\G] = C [N\GIS (3.13)
S;iC,[G) = ¢, [G)ST (3.14)

The following result is a special case of [15, Theorem 2.6].

PROPOSITION 3.13. (1) The subset (UT)*C,[H|(U)* of U* is a subalgebra of
U*, which is isomorphic to Sy *Cy[G].

(ii) The subset (UT)*C,[H] of U* is a subalgebra of U*, which is isomorphic to
S;C[G/NT].

(iii) The subset C,[H|(U™)* of U* is a subalgebra of U*, which is isomorphic to
STICy[NT\GI.

PROOF. (i) Since S; consists of invertible elements of U*, we have a canonical
homomorphism ¥ : S;'C,[G] — U* of F-algebras. Since C,[G] — U* is injective, ¥ is
injective by Proposition 3.10. Hence it is sufficient to show that the image of ¥ coincides
with (UT)*C,[H](U~)*. For any A\ € P we have

XaCqlG] CXaA(UNXCGH(U)* = (UF)XC,[H](UT)*,
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and hence Im(¥) C (UT)*C,[H](U~)*. Another inclusion Im(¥) > (UT)*C,[H|(U)*
is a consequence of Corollary 3.9.
The proofs of (ii) and (iii) are similar. O

By Proposition 3.13 we obtain the following results.
PROPOSITION 3.14.  The multiplication of S; *C4[G] induces the isomorphism
SICY[G/NT] ®c, ) St 'Co[N\G] = S7C,[G].
PROPOSITION 3.15.  For any f € C,4[G] there exists some A\ € P~ such that
oxf fox € Cg[G/NTICG[NT\G].

3.4. In this subsection we investigate the localization of C,[G| with respect to S,,
for w e W.

As aleft (resp. right) U-module, C4[G] is a sum of submodules belonging to Mod(U)
(resp. Modg(U)). Hence we have a left (resp. right) action of T}, on C,[G].

LEMMA 3.16. For w € W we have

(Twe,u) = <<pTw7T1;1(u)>, <@Tw7u> = <Tw‘Pva(u)>
for ¢ € C4|G], ue U.
PrOOF. We may assume that ¢ = ®,+g,. Then we have

(Twp,u) = (v, ul o) = (0* T, (T, (w)0) = (¢T0, Ty (w).
The second formula follows from the first. 0
Setting v = 1 in Lemma 3.16 we obtain the following.
LEMMA 3.17.  For w € W we have
e(¢Tw) =e(Twp) (¢ € CylG)).
In the rest of this section we fix w € W.
LemMA 3.18. (i) 0T ' = 0oy for A€ P~.
(i) CqlG/NTIT," = C4[G/NT].
(iil) Co[N\GIT, " = {9 € CglG] | pu=e(u)p (u e Tu(UT))}.

PROOF. The statements (i) and (ii) are obvious. The remaining (iii) is a conse-
quence of

(ST, (Tw(w) = (fu)T," (f € CylGlue )

and (2.11). O
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LEMMA 3.19. (i) (fR)T, = (FT (WY  (he CINT\G], f e C,lG)).
(i) (oI = (FI51)oy  (f € C4lG)).
(ili) (o3 f)Tw— € FXoX(fT1) (f € CylG)).

PROOF. The statement (i) follows from (3.6) and Corollary 2.7. The statement
(ii) is a special case of (i). Since V*(A)yx is one-dimensional, we have v}, € F*viT,,-1.
Hence (iii) also follows from Corollary 2.7. (]

COROLLARY 3.20.  The linear map Co[NT\G] 3 ¢ — ¢T,;' € C,[G] is an algebra
homomorphism. Hence Ci[NT\G|T,;! is a subalgebra of C,[G].

PROPOSITION 3.21.  Let f € C4[G] and A € P~.
(i) If fo' =0, then f =0.
(i) If o f =0, then f =0.
Proor. By Lemma 3.19 we have
fox = (TNl = ((FTw)o) Ty,
oXf =0 (T, L Tyr) € F* (0x (ST, 1)) L1
Hence the assertion follows from Proposition 3.11. O
By Proposition 3.11 and Corollary 3.20 we have the following.

PROPOSITION 3.22.  For any ¢ € C,[NT\G|T,;" and \ € P~ there exists some
p € P~ such that oo € (Co[INT\G|T,; Yoy and oy € o} (Co[NT\GIT, ).

The following result is proved similarly to [13, Proposition 3.4].

PROPOSITION 3.23.  For any ¢ € C,[G/N~] and A € P~ there exists some j1 € P~
such that o}/ € Cy[G/N~]oy and Yo, € oY Cy[G/N™].

LEMMA 3.24. For any f € C4[G] there exists some A\ € P~ such that fo} €
ColG/NTN(CY[N\GIT ).

PROOF. By Proposition 3.15 there exists some A € P~ such that (fT},)o} €
C4|G/N™]Cy[NT\G]. Hence by Lemma 3.19 we have

fo¥ = (ITw)od)T, "t € (CiIG/NTICINT\GDT, ! = Cy[G/NT](CIN\GIT, ). D

PROPOSITION 3.25.  For any f € C4[G] and X\ € P~ there exists some p € P~
such that o f € C,4[Gloy and fo,; € oY Cy[G].

PROOF. We can take v € P~ with fo? € C,[G/N~](C,[N*T\G]T;') by Lemma

3.24 . By Proposition 3.22 and Proposition 3.23 we have fo, , = oYC,[G] when
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p' € P~ is sufficiently small. Similarly we have o7, fo’ = Cy[Gloy, . when p” € P~ is
sufficiently small. Then we have o', f = C,[G]oy by Proposition 3.21. O

W

By Proposition 3.21, Proposition 3.22, Proposition 3.23, and Proposition 3.25 we
have the following.

COROLLARY 3.26.  The multiplicative set S, satisfies the left and right Ore condi-
tions in all of the three rings C4[G/N~], C4.[NT\G|T,,*, C,[G].

It follows that we have the localizations

S, 'CylG/N™] = C,[G/N7]S, ", (3.15)
Sy (CINT\GITY) = (CINT\GIT, 1S, (3.16)
S;1C,[G] = C,[G)S, . (3.17)

For A € P define o € S;;'C,[G] by

oV = (o) tow (A A2 €PT, A=A — Ay, (3.18)
and set
Sw=A{o} | Xe P}, F[S,|=EPFoy CS,'C,llG. (3.19)
AeP

Note that S,, is naturally isomorphic to P as a group.

PROPOSITION 3.27.  We can define a bijective linear map

F, :S;'C,[G] — S;'C,[G] (3.20)
by
Fu(f(e3)™h) = (FT7D(@) ™ (A€ P, f € CylG),
PROOF.  Assume f(03)""' = f'(o,)"" (A, ue P~, f,f" € CyG]). Then we have
fo, = f'o}, and hence we have (fTJl)aZf = (f'T;")o% by Lemma 3.19(ii). Tt follows
that (f7,)(0y) ™t = (fT;;") (o) ™. The bijectivity is obvious. O

LEMMA 3.28. (i) We have

Fu(S7Cg[G/NT]) = 8,'C4[G/N 7,
Fu(ST'Cq[NT\G)) = 8, (C4[NT\GIT, ).

(i) The linear map Sy Cy[NT\G] 3 f — Fu(f) € S5 C,[NT\G|T;; ") is an algebra
isomorphism.

(iii) For ¢ € §;'Cy[G/N~] and ¢ € S; 'C,[NT\G] we have F,(pb) = Fyp(¢)Fu(1).
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Proor. The statements (i) and (ii) are obvious. The statement (iii) is a conse-
quence of Lemma 3.19. (|

By the above arguments we obtain the following results.
ProproSITION 3.29.  The multiplication induces

Sy CylG/NT] @pis,1 S (CINT\GIT ) = S,1C,[G.
PROPOSITION 3.30.  For any f € C,[G] there exists some A € P~ such that

oN f. fo} € CylG/NT(Cy[NT\GIT, ).

3.5. Set

Cq[Nu\G) = {p € C[G] | py = e(y)p (y € U™ [Tu])}. (3.21)

Note that
0y € C4[G/NTINCy[N,\G] (A€ Ph).

PROPOSITION 3.31.  The subspace C4[N,\G| of C4[G] is a subalgebra of C,4[G].

PROOF.  Let ,v € C[N,\G]. Fory € U~[T,,]NU_, with v € Q" we have
(eP)y =D _(py(0) Wy)) = (o) (k_y) = (y) ot
)
by Lemma 2.8. Hence p9) € C4[N,\G]. O

LEMMA 3.32. Lety € Qt andy € U™ [T, |NUZ,. Then for ¢ € C4[G], X € P~
we have

(po¥)y = a7 (py)ay.
Proor. By Lemma 2.8 we have
(po)y = (py)(oXk—y) = 4“2V (py)oy. O
By Lemma 3.32 we have the following.

LEMMA 3.33. For ¢ € C4[G], A € P~ we have ¢ € C4[N,\G] if and only if
poy € Cq[N, \G].

PRrOPOSITION 3.34.  The multiplicative set Sy, satisfies the left Ore condition in
Cq[Ny\Gl.

PrOOF. Let f € C4[N,\G|, A € P~. Then we can take f' € C4[G] and pp € P~
satisfying o7/ f = f'o}. Then by Lemma 3.33 we obtain f’ € C,[N,\G]. O
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We will show later that S,, also satisfies the right Ore condition in C4[N, \G] (see
Proposition 3.43 below).
By Proposition 3.34 we have the left localizations

Sy CaIN\Gl, S (Cq[G/NTIN T[N \G)).
PROPOSITION 3.35.  The multiplication of S, 'C,[N,\G] induces the isomorphism
i CqN\G] = 8,1 (Cy[G/N ] NCIN,\G)) @i, Sun (Co[N\GIT, ).

PROOF. It is easily seen that C,[N*\G|T;' C C,[N,;\G]. Let us show that
S, (C,[INT\GIT, 1Y) is a free left F[S,]-module. In the case w = 1 this is a consequence
of Proposition 3.13. For general w this follows from the case w = 1 and Lemma 3.28.
Take a basis {1;}je s of the left free F[S,,]-module S;*(C,[NT\G]T;; ). We may assume
that ¢; € C,[NT\G|T,;".

Let f € S, 'C,[G]. By Proposition 3.29 we can uniquely write

F=Y¢its  (p; €8, CJG/NT]),
Jj€Jo
where Jj is a finite subset of J. Then we need to show
f€S,ICYN,\G] <= ¢; € Sy (C[G/NTINCYN,\G]) (Y € Jo).

Assume that p; € S 1(C,[G/N~]NC,[N,\G]) for any j € Jy. We can take A € P~
such that o{¢; € C4[G/N~]1NCy[N,\G] for any j € Jy. Then from

oV =" (o) € Cy[N,\G]
Jj€Jdo
we obtain f € §;'C,[N, \G].
Assume that f € S;'C,[N,\G]. Taking A € P~ such that o¥¢; € C,[G/N~] for
any j € Jy, we have

oXf =Y (o¥e);  (o¥p; € CG/NT]).

Jj€Jo

By f € §,'C,[N, \G] we may assume that ¥ f € C,[N, \G]. Then by Lemma 2.8 we
have

e f = (¥ Ny =Y ((o¥e))w;  (yeU [Tu)).

Jj€Jo

By (oV¢;)y € C4[G/N~] we have (cV¢;)y = e(y)(cVy;) for any j € Jy, and hence
o¥p; € Co[G/NT]NCy[N,\G]. Tt follows that ¢; € S;;*(Cy[G/N~] N Cy[N,\G]) for
any j € Jy. O

3.6. By Proposition 3.13 we have
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STIC[G/NT] = (UN)* ® Cy[H].

Hence the linear isomorphism F,, : S; 'C,[G/N~] — S;'C,[G/N~] induces an isomor-
phism

Su'ClG/NT]= Fu(UN)*) @p FISu]  (fo} ¢ f@0Y) (3.22)

of vector spaces.
In this subsection we are going to show the following.

ProposITION 3.36.  We have
S (Cy[G/NTINCY[NN\G)) = {Fu(UT)*) N 8, Cy [N, \GT} @ FIS,)-

Let ¢ € (UT)*. Then for any sufficiently small A € P~ there a unique v* € V*(\)
such that

(v",203) = (p,2) (2 €UT)
by Proposition 2.2. We denote this v* by v*(¢p, A).

LEMMA 3.37.  Let o € (UT)*. Then for sufficiently small X\ € P~ we have
Fy(p) = ‘I)U*(%A)T;l@m (Jf)_l
ProOF. Forz e Ut,t € U%y e U™ we have
(Pos (o0 @0s, 1Y) = (07 (@, A), wtyvr) = (07 (@, ), zoa)xa(t)e(y) = (¢, 2)xa()e(y)-

Hence we obtain ®,-(, xygv, = ¢Xa, OF equivalently, ¢ = D, \ygvy (xa)~1. It follows
that

Fu(9) = {Pu (o @un Tu HOX) T = @yt (0X) O
COROLLARY 3.38.  Fi,(UT)*) = Uyep-{Pogu, (0¥) 7 | v* € V¥(N)}.
LEMMA 3.39.  For pu € P we have o F,, (UT)*) = F, (UT)*)oy.
PROOF. We may assume that pn € P~. For A € P, v* € V*(\) we have

O—qu)v*@v,\ = (Dv;)“(@'u“q)v*@v,\ = (I)(U;W(@v*)@(v”@v)\)v
‘I)u*®m(7;f = (I)v*®vxq)v1’g“®vu = (I)(v*®v;“)®(vx®vu)'
Let
PV () @V A) = Vi A+p), p V)@V (k) = V(A +p)

be the homomorphisms of right U-modules such that p(vy ® vj;) = v}, p'(v), ® v}) =
034, Then by [13, Lemma 3.5] we have
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P(0n @V (Naty) = VA + wptasy =0/ (VI (N)ary @03,

for v € QF if A € P~ is sufficiently small. Hence the assertion follows from Corollary
3.38. 0

LEMMA 3.40. Let 7,6 € Q*, and let ¢ € (U)*, y € U [T,] N UZ,. Take
z € ij717 such that y = Ty (k_u-1,2) (see (2.34)), and define ¢* € (U+)* by

(p%,2) = (p.zm)  (z€U).
If X € P~ is sufficiently small, then we have Fy,(p)oy € C,[G/N~], and
(Ful)a )y =~ O, (9%)o).

Proor. If A € P~ issufficiently small, then we have F,(p)o}y = @ €

Cy|G/N~]. For x € Ut we have

v* (0, \) T ' @va

<’U*(§D,>\)Z,£L'U)\> = <’U*(<,0,)\),Z:L"U)\> = <90,Z£C> = <(pz,m>

and hence v*(p, A)z = v* (%, A). It follows that

(Fu(p)oy)y = (I)v*(go)\)’fq;l@v)\y = ‘I’m(w,x)kw,lwzml@m

(=1 5 C(w— v Ats
=4q (o™t )(Dv*(%ﬁzJ\)TJl@w)\ =4q (WAt )Fw(gpz)oﬂku O

Let us give a proof of Proposition 3.36. By (3.22) any f € S, 'C,[G/N~] is uniquely

written as

F=3 Fulpa)oy € S,'C[GINT] (pa € (UT)).
AEP

We need to show that f € S, (C,[G/N~] N Cy[N,\G)) if and only if F,(py) €
S, C,[N,\G] for any X € P. By Lemma 3.33 we have
f € SLHCYG/NTINCy[N;\G))
<= Jv e P st.0.f € Ci[G/NTINCy[N,\G]
< v e P st.o)f€ClG/NT], o) fo; € Cy|G/N™]NCy[N,\G]
= fo € 8,1 (Cy[G/NT]NCy [N, \G])

for any p € P~. Hence we may assume from the beginning that f is written as

=Y Fulpr)od  (pr€(UT)*).

AEP—

If Fiu(pr) € Sy'Cy[N,\G] for any A\ € P, there exists some p € P~ such that
0 Fy(pr) € Co[G/NT]NCy[N,;\G] for any A € P~. It follows that
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o f = Y (0,Fulpr))o} € ColG/NT]NCyIN,\G]

AEP—

by Lemma 3.33, and hence f € S;'(C,[G/N~]NC,[N,\G]).

It remains to show that if f € S,1(C,[G/N~] N Cy[N,\G]), then F,(p)) €
Sy lCy[N,\G] for any X € P~. So assume that f € Sy (C,[G/N~] N Cy[N,;\G]).
Take 1 € P~ which is sufficiently small. Then we have o}/ f € C[G/N~] N C,[N;\G].

By Lemma 3.39 we can write

o Ful(px) = Fu(@\)oy € C[G/N™] (A€ P7, ¢\ € (UN)*),
and hence
ol f =Y Ful@h)owin,  Ful@h)ohi, € CG/NT] (A€ P7).
AepP-

Let v € QT \ {0} and y € U~ [T,,]N UZ,. By o,/ f € C4[N;\G] we have (0} f)y = 0. On
the other hand we have

Oy fy= > (Ful@h)okiy= > ¢ (Fulph)or)y)oy.

AeEP— AeP—

By Lemma 3.40 we have

for some ¢4 € (U*)*, and hence

Z q (w)\,'y SQA)O.)\-F,U, =0.
AEP—

By (3.22) we obtain Fi,(¢Y) = 0 for any A € P~. It follows that
(0 Fu(ea))y = (Ful@h)oy)y = Fu(@)oy = 0.

We obtain F,(px) € Sy'Cy[N,\G] for any A € P~. The proof of Proposition 3.36 is
complete.

3.7. Set
Juw={ e UN*|v*=c(x)y (2€UT[T;")}
= {¥ € UN* | Ylker v+ 751 smu+ = 0F-
In this subsection we are going to show the following.
PROPOSITION 3.41.  F,(UN)*)NS,;1C,[N;\G] = Fou(Tw)-

We first show the following result.
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LEMMA 3.42. Let v € QY, v € J N (US)* and p € P. Then we have
q(u”\/)Fw(d))O’:f = UﬁFw(w)

PrOOF. We may assume p € P~. When A € P~ is sufficiently small, we have
Fu(¥) = @ g2yt oo (o)1, and hence it is sufficient to show
q(#a’Y)(I) wo_ a,’f(I)

v (N T L @va Tp 0¥ (1, T ' @0y *

We have

R e N (U VE Sl S IO

=

. w — .
DT @ua T = Lo (AT @oa

=& P

0’w<b h—1 h—1 1
BTt (P, Ty Q@ua viTw Quu ~ v* (¥, ATy @ua

(v; Tt @v* (Y. \) T )@ (v, @vx )

*

;. 1s the lowest weight vector we have

Since v

v (Y, NI ® v:TUjl = (W (Y, \) ® v;)Tujl.
On the other hand by ¥ € 7, we have

v (Y, N)z = e(2)v* (¢, N) (ze UYT;Y),
and hence

Ty @ vt (Y, Tyt = (v @™ (1, A) T,
Therefore, we have only to show

GV (M@ B0 @) = los@ue (AT @ (o 0n)-
Let
prVI )@V () = VA +p), pVH () @VIA) = V(A +p)

be the homomorphisms of U-modules such that p(vi®v};) = v}, , and p'(v,®v}) = v} .
The our assertion is equivalent to

g pu* (¥, A) @ vj) = ¢ (0, A+ p) = pl (v), @ v (¥, N)).
This follows from
<(U*(¢, >‘) & ’U;)x, vy & v,u> = <U*(1/), )‘)I ® U:a (Y Ult> = <¢a ‘T>7
(v, @V (1, \)x, v @ va) = (V3 ky @ V™ (Y, Nz, v, @ 0y) = g (), x)
forzeUT. O

Let us give a proof of Proposition 3.41. Assume that ¢ € (U)X satisfies F,,(¢) €
S, Cy[N,\G]. When p € P~ is sufficiently small, we have o1 Fy,(¢) € C4[N, \G]. By
Lemma 3.39 we have
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0V Fu(p) = Ful¢)o®. (3.23)

By Lemma 3.40 we have
(') =ez)¢ (2 UTT,),

namely ¢’ € J,,. Hence (3.23) and Lemma 3.42 implies ¢ € 7.

Assume conversely that ¢ € 7,. Then by Lemma 3.40 and Lemma 3.42 we have
Fu(p) € S Cy[N,\G].

The proof of Proposition 3.41 is complete.

3.8. By Proposition 3.35, Corollary 3.26, Proposition 3.36, Proposition 3.41, and
Lemma 3.42 we obtain the following.

PROPOSITION 3.43.  The multiplicative set S, satisfies the right Ore condition in
Cq[Ny\Gl.

Set

UHT, > = Y WFIT I n Ut < (UFIEST)) (3.24)
yeQt
In view of (2.16) we can define an injective linear map
i UP[T, 1> = (UT)* (3.25)
by
(i (), m122) = (p,ur)e(uz)  (x1 € UF[T,Y], 22 € UT NI, H(UT)).

PROPOSITION 3.44. (i) The multiplication of (UT)* (as a subalgebra of U*)
induces an isomorphism

i (UT[T' %) @ T = (UN)*
of vector spaces.
(i) For ¢ € Ut[T;'*, ¢ € Joy we have
Fu(ib(0)) = Fulis (@) Fu(W) (v € UTT,Y*, ¢ € Tu).

ProOF. (i) For ¢ € Ut[T ' *, o € T, x € UH[T,'], 2/ € Ut NT,'UZ° we
have

(i ()0, ") = Z <i$(80)a$(0)$z0)><¢,$(1)99/(1)>-
(), (")

Hence by Lemma 2.8 we obtain

(i (0) 0, 22") = (i (), ) (¥, ).
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(ii) Take A € P~ such that i} (¢)x» € C4[G/N~]. Then we have x3 ' ¢x» = ¢’ € Ty
Take p € P~ such that ¢'x, € C4[G/N~]. We may assume that ¢'x,, = ®y+g,, and

vz =e(z)v" (z e UT[T;Y)).
Then we have

Fu (i (9)%) = Ful(i5(0)x0) (' X)X 1)
= {5 () ) W %)Y Hok,)
= {(i ()T HEW )T H o) ™
= {Fu(if, () oX HPw (¥ Hoxy,) ™ = Fulis (9) Fu (¥).

Here, the last equality is a consequence of Lemma 3.42. 0

4. Induced modules.

4.1. We fix w € W in this section.
By Proposition 2.12, Corollary 2.7 and (3.6) we have

(e0)Tw = (¢Tw)(WTw) (v € CylGl 4 € C4[N,\G)). (4.1)
Define n,, : C4[N,, \G] — C,[H] by
(1 (0),t) = (pTw, 1) (= (Twp. Tu(t)  (t€T?)
(see Lemma 3.16).

LEMMA 4.1.  The linear map 1., is an algebra homomorphism. Moreover, for \ €
P~ we have n},(cy) = xa € C4[H]*.

PROOF. For ¢, € C4[N,\G],t € U° we have

(il (p0), ) = ()T t) = {(¢T0) (W T0), 1)

= (T t0)) W try) = (0 (D)1l (), 8)
(t)

by (4.1). For A € P~ and t € U° we have
(11, (0%),t) = (0¥ T, t) = (05, t0a) = (xa, ). 0
Hence we obtain an algebra homomorphism
Mo + 84 Cy[ Ny \G] = Cy[H] (4.2)
by extending 7.,

DEFINITION 4.2.  Define an (S, 'C,[G], C,[H])-bimodule M,, by
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My = 8, 'C,[G] ®szre, o\ CalHl, (4.3)
where S 'C,[N,, \G] — C,[H] is given by 1.
By
8 CqlG] = C4lG] ®¢, (nz\a) S Cal Ny \G]
we have
Mo = Cy[G] ®¢ v\ CalHI- (4.4)
For ¢ € S;'C,[G] and x € C,[H] we write
PHRX =R X E My,. (4.5)
Then we have
pox kx =@xxax (9 €8, CylG], A € Px € Cg[H)). (4.6)

By (4.4) M,, is generated by {¢ x 1 | ¢ € C,4[G]} as a C,[H]-module.

4.2.  Set
U=°IT, Y = (UL, YU c U=°.
Define an injective linear map
UHT,'1* @ Cq[H] — Homs(UZ°[T,'L,F)  (F @ X+ cron)

by

(craxat) = (f.o)(x.t)  (ze UM, teU?),
and denote its image by UZ°[T:>']*. Then we have an identification

U [T, 2 UMD * @ ColH] (eran « F@X) (4.7)

of vector spaces. Since UT[T;']* @ C,[H] is naturally a right C,[H]-module by the
multiplication of C,[H], UZ°[T,!]* is also endowed with a right C,[H]-module structure
via the identification (4.7). Then we have

(t)

(f € UZIT,T*, x € C[H), = € UF[T, Y], t € UP). (4.8)
4.3. We construct an isomorphism

O 1 My, — UZ[T >
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of right C,[H]-modules. We first define 0/, : C,[G] — UZ°[T,;']* by
(0L (9),u) = (¢Tw,u) (¢ € CglG], ue UZ[T,1).
Losva 43, €),(p0) = 0L ) (¢ € ClGL, 6 € CIN,\GI).

PROOF. Let y € Qt, zc U[T;']N U, t e U° Then we have

<@/w(<p),.%'t> = <(,0Tw,.%'t> = <50Tw(x)Twat>-
Similarly,

(01, (p), 2t) = ({(¢¥) T ()} T, ).

By (2.35) we can write Ty (%) = yk_wy, (y € U [TW]N Uy,)- Thus by Lemma 2.8 and
1 € C4[N, \G] we have

(o) (T () = (Z(@ym))(wu))) kwry = {(2Y) (Wkun)} kwry = (o(T(2)))-
()

Hence by (4.1) we have

(0, (pv), 2t) = ({(p(Tu (@)} T t) = (9T (@) Tw) (WT). 1)

= (p(Tw(@) T, t0)) (¥ T t(1) = > (0, (), t o)) (0l (), (1))
(t) (t)

= (00, (), (), xt). O
Hence regarding UZ°[T;']* as a right C,[N, \G]-module via 7/, : C,[N;\G] —

C4[H], ©,, turns out to be a homomorphism of right C,[N,, \G]-modules. Moreover, the
right action of the elements of S,,(C C,4[N, \G]) on UZ°[T,;1]* is invertible. Hence ©/,

w
induces

01, 84, Cq[G] = CylG] @, (no\¢) S Cal[ Ny \G] —= UZ[T,1T*.
Then we have
07, (pv) = OL(P)nu(¥) (¢ € S;1C4[G], ¥ € S;1Cy[N,\G]). (4.9)
Therefore, we obtain a homomorphism
O : My — UZO[T > (4.10)
of right C,[H]-modules by
Oulp*x) =OL()x (€S8, CylG], x € CylH]).

PROPOSITION 4.4.  The linear map
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Yo : UHTT* @ Co[H] = My (@ x = Fulif(9) *x)
is bijective.
PROOF. By Proposition 3.29 and (3.22) we have
Su'CylG = Fu(UM)*) @ 8,1 (CIN\GIT, ).
On the other hand by Proposition 3.35, Proposition 3.36, Proposition 3.41 we have
S ' Co[NG\G] = Fu(Ju) ® S (CINTAGIT).
Hence by Proposition 3.44 we have
iy ' CqlG] = Fu (i, (UM T, 11*)) ® S, ' Cy [N, \G.
It follows that M,, = UT[T,']* @ C,[H]. O

PROPOSITION 4.5.  We have ©,,0Y,, = id under the identification (4.7). Especially,
O 1s an isomorphism of right C,[H|-modules.

PROOF. Let ¢ € UT[T; Y%, x € C,[H], x € UT[T;'], t € U°. Then for A € P~
which is sufficiently small we have

((Ouw 0 Tu)(p ® X), at) = (Ou(Fu(iy(9)) * X), at)
= (Ow (P (1 (o) N7 0y (OX) LX), wt)
= (Ou(® v (i (0), N g Loy, X X— AX), Tt)
<9 (@ v* (i (0), N\ T ®vx)(Xf)\X)7 xt)

Z v (i (0) M) @ox 0 TEO)) (X =AX5 E1))

P||1

) (X, E0)) (X=ar t)) (X E)) = (0, 2) (X 1)

= <P®x,fv® t).

4.4. In this subsection we consider the special case where g = sly and G = SLs.
We follow the notation of Example 3.1. The Weyl group consists of two elements 1 and s.
We give below an explicit description of the (C4[G], C,[H])-bimodule M,. For n € Z>q
define m(n) € M; by

<@(m(n))7 en/ki> = 6n,n’ (n/ S Zzo,i S Z)

Then we have
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LEMMA 4.6.  The action of C4[G] on My is given by

am(n) = x(qg — ¢ g 'm(n — 1), bm(n) = x " ¢"m(n),
em(n) = — xq"M'm(n), dm(n) = —x"Y¢[n + 1lm(n + 1).
Proor. By Corollary 2.7 we have
()T, e"k") Z Zq 2rie(p,n, ) (T fP) ke (0T, e TP R
r=0 p=0

for ¢, € C4[G], where

c(p,n,r) = "V (g — g7y m :

By a direct calculation we have
aly =c, olsf =a, aTSf(z) =0.

Hence for ¢ € C4[G] we have

n oo

(ap) T e™h) = 305 a2 p,m,r){ad, S0, K Hier) (o, o iy
r=0 p=0

q—QTiC(O’ n, ’I“) <C, kn—r+ier> <</7T37 en—rki>

pnqs

i
I
<

+ 3 g 2ie(1,m, v, KT (), TR
=0

= ¢(1,n,0)¢" T (T, e" 1KY
= ¢'(¢—q )" (¢Ty, e" K.

Taking @; € Cy[SLy| such that m(n) = 37, ¢; * x’ we have

(Oam(n)), e k') = 3 (O(ag; * x;),¢" k')
= i((awg—)Ts, kg7 =q'(a—a7"g" Y (T e TR
= (;— a1 D (O X, e R ]
=(¢— qfl)qnl<(;(m(”))x’ ") = (g = ¢71)q" Gnmr 1 (X, k)
= (g—q¢ ")g" (O(m(n —1))x,e" k).

Hence am(n + 1) = x(¢ — ¢~ 1)¢"m(n). The proof of other formulas are similar.
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4.5. Let us return to the general situation where g is any simple Lie algebra.
PropPOSITION 4.7.  We have
Moy 2 8;1Cy[G/NT] ®s-1(c,1a/n-1nc,(va ey CalH]
= Go[G/N™] &, (a/n-1nc, vo\a) CalH]-
ProoF. By (3.22), Proposition 3.36, Proposition 3.41, Proposition 3.44 we have
Su'CqlG/NT] 2 Fy (i (UT [T, 1%)) © 83 (C4[G/NT] N Cy [N \G)).
Hence we obtain
S CylG/NT1 @521 1a/n-1nc, Vo \ap) CalH] 2 UT[T,'T* @ Cy[H] = M,

by Proposition 4.4. The second isomorphism is a consequence of

Sal(cq[G/Ni} = (Cq [G/Ni] ®(Cq[G/N*]m<Cq[N;\G] Sil(cq [G/Ni] N Cq[NJ\G])~ O

We regard C,[H] as a subalgebra of C,[B~] via the Hopf algebra homomorphism
U<0 — U° given by ty — e(y)t (t € U%,y € U~). Define an action of W on C,[H] by

(wx.t) = (6T, (1)  (weW,x € CH],te U
For w € W we define a twisted right C,[H]-module structure of C,[B~] by
pouwx = (Swx)y  (peCy[BT], x € CylH]). (4.11)

We denote by C,[B~]** the F-algebra C,[B~] equipped with the twisted right C,[H]-
module structure (4.11).
We are going to construct an embedding

Zu : My, = Cy[B7]*

of right C,[H]-module.
We first define

2! C,[G/N7] = Cy[B]

by
(E(9),u) = (Twep, Su) (9 € C4[G/N"],u e U).

LEMMA 4.8.  The linear map Z!, is an algebra anti-homomorphism. Moreover, for

X € P~ we have Z,(0%) = x—wx € Cq[B7]*.
PROOF. For ¢, € C4[G/N~], u € USC we have

(=1 (0),u) = (Tw(p¥), Su) = ((Twe)(Tw), Su)
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= (Twp, Sua)) (T, Su)) =Y (E0,(#), u)) (B4, (%), u(o))
(u) (u)

=(ELW)E,(#), u).

Here, the second equality is a consequence of Corollary 2.7. For A€ P~,t ¢ U%, y € US°
we have

(E, (o), ty) = (T, U&”,(Sy)(St»:( T, ((Sy)(St)Twva)
= (5, AT, (SYHT, (St Yoa) = e(T, (Sy)) (xas Ty ' (S1))
= () (X—wr ) = (X—wr, tY)- O

o~ o~

Hence Z/, induces an algebra anti-homomorphism
2 Sy lCy[G/NT] — Cy[B7]. (4.12)
LEMMA 4.9.  For ¢ € S, (Cy[G/N™]NCy[N,; \G]) we have ZL1,(p) = Sw(ny,(¢)).

PrROOF. We may assume ¢ € C,[G/N~]NC,[N,\G]. By (2.15) the multiplication
of U= induces an isomorphism

US>~ s~ YU~ NT(U) @U@ S~ YU [T])
of vector spaces. Let y; € U™ [Ty], yo € U NTW(U™), t € U°. Then we have

(Z0 (), (S 'yt (S~ ) = (Twe, 11 (St)ya) = (yoTwipyr, St)
= (T, (T_ (y2))y1, St) = e(y1)e(y2)(Twep, St)
= e(y1)e(y2) (T, Ty 'S(1)) = (nu(9), Ty ' (St))e(y1)e(y2)

(
(Sw(mn(9)), (S™1y2)t(S ™)) R

By Proposition 4.7, Lemma 4.8 and Lemma 4.9 we obtain a homomorphism
Ew: My — Cy[BT]® (4.13)

of right C,[H]-modules given by

=

Ew(e*xX) =Zh(p)ewx (€S, Cy[G/N7],x € Cy[H]).

"

Since Z7)

is an algebra anti-homomorphism, we have
Eu(pp*1) = Eu(* DEu(p*1) (0 € 5, Cy[G/NT)). (4.14)
4.6. By (2.17) and Lemma 2.9 we can define an injective linear map

Q : U2 > — C,[B7]*™ (4.15)

by
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Qo (f), tyayn) = (y2) (f, T S(tyr))
(feU2T; %,y e U [Ty, y2€ U NTL,U™, t € U°).

LEMMA 4.10.  The linear map S, is a homomorphism of right C,[H]-modules.

PROOF. Let f € UZO[T;'* and x € C,[H]. Fory; € U™ [T,], yo € U NT, U,
t € U° we have
<Qw(f) ®w X ty2yl> = <(SwX)Qw(f)7 ty2y1>

Z (Swx, t0yy20)Y1(0)) (Qw () t)Y21)¥1(1))
(y1):(y2),(¢)

= (Swx, t0)) (s (f), t1)y211)

= Z £(y2) (Swx, o)) (f, Tils(tu)yl»
(t)

=D ) 6 T S o)) (F AT S () HTL 'S (tay)h)
®

= e(y2) (fx. {1, " S HT, ' S(1)})
=e(y2) (X, T, 'S (tyn))
= (Qu(fx), tyatyr). O

LEMMA 4.11. Q,00, =Z2
PrOOF. By Proposition 4.7 we have only to show
(QwoOu)(pxx) =Eulp*xx) (v €CyG/NT], x € Cy[H]).
By the definitions of ©,,, Z,, and Lemma 4.10 it is sufficient to show
(0 0,)(p) =Z,(9) (v € Cy[G/NT)).
Let y; € Uf[’f’w], y2 €UZ, NT,U~, § € Q. Then we have
(R 0 07,)(9), ksyayr) = e(y2) (0}, (), Ty ' S(ksyr))
= e(y2) (9T, T, ' S(ksyn)) = e(y2)(Twip, S(ksyn)),
(E0(9)s ksyayr) = (Twp, (Sy1)(Sy2)k—s)
~eT, w: (S1)k-s(Sp2)) = TO((Sy2)Twsp, (Sy1)k-s)

_(”‘S)< w(TS(y2))e, (k5y1)>
= ¢ T (ST, (y2)) e, S (ksyn)) = e(y2)(Twip, S(ksyn)). O

We define a C,[H]-submodule A,, of C,[B~]** by

w={p€CyB ] py=0 (yeU NT,(U))}
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Note that we have an isomorphism
(U)X @Cg[H] = Co[BT]*  (f@x ¢ dray) (4.16)
of right C,[H]-modules given by

(diox.ty) = (Swx, t){f,y) (€U’ yelU).
Set

UT[L,]* = @ (U [Tu]nUZ)" € (U [Tu])" (4.17)
yeQt
By (2.17) we have an injective linear map
in U™ [T)* — (UT)* (4.18)

given by
(iw()y'y) =) fy)  (weU [Tuly €U NTu,(U)).
Under the identification (4.16) we have

(U [Tu]*) ® Cy[H] = A,

by
PROPOSITION 4.12.  The linear map =, is injective and its image coincides with

Ay .

Proor. Note that O,, is bijective and €,, is injective. Hence by Lemma 4.11 we
see that =, is injective and its image coincides with Im(€2,,). Moreover, by the definition
of ,, the image of Q,, coincides with A,,. O

5. The decomposition into tensor product.
5.1. For i € I define a Hopf subalgebra U(i) of U by
U(i) = (ki e, i) 2 F @q(q,) Uy (s12) € U.
Define subalgebras U(i) (b = 0,4, > 0, < 0) by

UG = (&), UG =(e), UG~ =(f),
Ui)2" = (kf' es), UG = (k' fi).

We denote the quantized coordinate algebra of U(i) by C,[G(i)] (= F ®qq,)
Cq[SL2]). As an algebra it is generated by elements a;, b;, ¢;, d; satisfying the funda-
mental relations

aib; = qibja;, cid; = qidic;,  a;c; = gqicia;,  bid; = qid;b;,
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—1
bic; = c;b;, aid; — dia; = (Qi —4q; )bici, a;d; — g;bic; = 1

(see Example 3.1).
We have a quotient Hopf algebra C,[H ()] of C4[G(i)] corresponding to U(i)°. Then
we have

Denote by
1) © CalG] = C4[G(0)] (5.1)
the Hopf algebra homomorphism corresponding to U(i) C U.
5.2. Consider the (C4[G(i)], C4[H (4)])-bimodule
M =F ®q(q,) M2, (5.2)

where s; is the generator of the Weyl group of U (i), and MiLQ is the C4[G]-module M,,
for G = SLs, ¢ = q;, w = s;. We have an isomorphism

i s M; = (U(1)=)*
of right C,[H (7)]-modules given by

(Oi(p*x),wt) = (oTy, 2t (o)) (X, t(1))
(t)
(v € CiG(i)], x € Cy[H(i)],z € U(i)*,t € U(4)°).

Define p;(n) € M; by
(©i(pi(n)), e k) = Sns (=1)"q [n],
By Lemma 4.6 we obtain the following.

PROPOSITION 5.1.  The set {p;(n) | n € Z>o} forms a basis of the C4[H (i)]-module
M;. Moreover, we have

aipi(n) = (1 — ¢")xipi(n — 1), bipi(n) = x; "q}'pi(n),
cipi(n) = — xiq? 'pi(n), dipi(n) = x; 'pi(n +1).

We will regard M; as a (C4[G], C,[H ()])-module via rg(i).
5.3. Let w e W with {(w) = m. We set

2y = Siy 1 Sirse " Sim (r=0,...,m), (5.3)

ColH(2)] = Cq[H(i1)] @ - - - @ Cy[H (ir)]. (5-4)
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For ¢ € Z,, consider the (C,[G]®*,C,[H (4)])-bimodule M;, ® ---® M;, . Via the
iterated comultiplication A;_1 : C4[G] — C,4[G]®" and the algebra homomorphism

A; : Cy[H] — C,[H(3)] (5.5)
given by

Ai(X) = Y zax©@lu)e @ @ zimX(m-1) (im0
(X)Tn—l

we can regard M;, @ --- @ M, as a (C4[G],C,[H(%)])-bimodule or a (C,[G],C,[H])-
bimodule.
Define a linear map

Fi - My —=M;; @ @M

by

(01, ® - ®6;,)(Fi(m)),u1 @+ @ up) = (Ou(m), (12, (w) - (I, (um)))

Zi,1 Zi,m

(m € My, u; € U(i;)=0).
In this subsection we will show the following.

THEOREM 5.2.  The linear map F| is a homomorphism of (C4[G],C,[H])-
bimodules, and it induces an isomorphism

Fy : My @c, 1) Co[H(E)] = My, @ - @ M (5.6)

of (C4[G], Cy4[H (2)])-bimodules, where C4[H| — C4[H (2)] is given by A;.
We first note the following.

LEMMA 5.3. Let ¢ € C4[G], w,w1,...,wy € W. Then we have
Ag(Ty) = Z(Tujllw(O)Tw) ® (TJ21¢(1)Tw1) Q- (Tq;klcp(k—l)kafJ ® (‘p(k)ka)'
(2

PrROOF. By induction we may assume that k£ = 1. Set z = w;. We may also
assume that ¢ = ®,xg, (v € V,v* € V*) for some V € Mody(U). Let {v;} be a basis of
V and let {v]} be its dual basis. Then we have

A(¢’U*®’U) = Z <I>v*®vj ® q)v;f®v.

J

Since the dual basis of {7 'v;} is {vj’-‘Tx}, we have for ug,u; € U that

(A(P T ), uo @ u1) = (W Ty, uguyv)
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Z (v] Tm,ulv v Tw,uoT vj) = Z(@ T ®<I) viTy o U0 @ U1)
J
= Z T <I> V*RU; w) (4 (@v;®va),uO ®U1>. D
J

LEMMA 5.4. For ¢ € C[G] and u, € U(i,)=° (r = 1,...,m) we have

m

(Oulpx1), (15 (wr)) - (15" (wn))) = D [1(00 (rEiy (1) x 1) ur).

(@)m—17=1

Proor. By Lemma 5.3 we have

Amfl(@Tw) = Z (Tzzll (O)Tzi,o) ® (Tz_iﬁlgsp(l)TZi,l) @ Q® (Tz_iylmgo(mfl)TZi,m—l)'
(@)m
Hence
(Oulp* 1), (T2 (1)) - (T} (um)))
= (T, (T35 (1)) - (T (um)))
= (A1 (), (T3} (w) @ - @ (T2, (um)))
= Z H<th TSD(T' 1)T27, r— 13Tzzlr(u7’)>
(P)m—1 =1
= Z < P(r— 1)Tz,a >
(P)m-1 \r=1
= Z (0, (rg(ir) ((p(r—l)) * 1), up)
(P)m—1 7=1
by Lemma 3.16. (]

Now we give a proof of Theorem 5.2.

We first show that F} is a homomorphism of right C,[H]-modules. For m € M,,
zj € Uliz)}, air X € Cy,H ] we have

(01, ® - ®60;, )(F{(mx)), x1kl* @ -+ @ wpn k™)
= (O (mx), (T} (@1 k1)) -+ (T2} (@mkl™)))

= qMOu(m), (T2 (1) -+ (T (@RI, ook )

= MO (m), (T () - (T ()KL oo B2 YOG, ok )
= (@u(m), (T (k) -+ (1), (BN 06 KA, oK)

= (04 ® - @Oy, ) (Ff(m), 21k} ®xmkpm><x,kp£; bR )

= ({(0s, ®--- ©6;, ) (F;(m)}As(x), 21k} @ -+ @z}
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= (04 ® - ®06;, ) (F;(m)Ai(X)), 11k]} @ --- @ k™),

where

m—1

_ -1 . —1 . —1 .
A= prlz i, ez g iy o+ Cmzg 0,
r=1

Hence F} is a homomorphism of right C,[H]-modules.

We next show that F} is a homomorphism of left C,[G]-modules. It is sufficient to
show F}(¢m) = ¢F}(m) for ¢ € C4[G], m € M,,. Since F] is a homomorphism of right
C,4[H]-module, we may assume that m =t 1 (¢p € C4[G]). Then we have

(0, @+ ®6;,)(Fi(§*1)),u1 @+ @ )
= (Ou (¥ * 1), (T2} (w)) -+ (12} (um)))
= Z H<@i7‘ (Tg(ir)(w(r—l)) * 1)7 u?">'
(WP)m—17=1
Hence
Fipx1)= > (r&uyWe)*1) @@ (r&;. ) (m=1)) * 1).
(Y)m—1

It follows that

Fi(pm) = Fi(px1)

= Yo 0Guneot) * D)@ @ (& ) (Pm-1)¥m-1) * 1)
(‘p)mflv(w)m—l

= Z (Tg(il)(w(o)) * 1)@ ® (Tg(im)(z/)(m—n) * 1) = pFi(m).
(¥)m—1

Therefore, F} is a homomorphism of left C,[G]-modules.
Since F} is a homomorphism of (C,[G], C4[H])-bimodules, it induces a homomor-
phism
F; - My, A, [H] Cq[H(’i)] MR- M, (a & x — Fi/(a)x)
of (C4[G], C4[H (1)])-bimodules. It remains to show that F; is bijective. Via ©,, we have
M ®c, ) Co[H(8)] = (UL, ']* © Cy[H]) @c, () Cq[H (3)]
= UH[T, > ® Cg[H(9)],

and via ©;, ® --- ® ©;, we have

Tm

1

{(U(i)")* @ Cg[H(i1)]} @ - @ {(U (im) ") * @ Cq[H (im)]}
= {(U(i) ) @ ® (Ulim)")*} @ ColH(3)].

M;, @M

Tm
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Hence the assertion follows from

U@ )* @+ @ (Ulim) ") * = UTT, >
(1@ @z & T (11) @ DTS ().

Zi,m

The proof of Theorem 5.2 is complete.

6. Basis elements.

6.1. Let we W with {(w) =m, and fix 2 = (i1,...,%m) € Zy.
For n = (n1,...,nm) € (Z>9)™ we denote by p;(n) the element of M,, ®c, )
C4[H ()] corresponding to

pi, (M) @ - @ pi,, (Nn) € My, @--- @ M,

under the isomorphism (5.6).
By (4.7) we have

U=°[T3, "% @c, ) CqlH(4)] =UT [T, 1> @ Cy[H (i)].

w

Hence ©,, induces an isomorphism
O : My B, CalH(E)] = UH[I ' @ C,[H ()] (6.1)

of right C,[H(i)]-modules. We will regard U*[T;']* ® C,[H(i)] as a subset of
Homp(U [T, '], C,4[H (2)]) in the following.
Forr=1,...,mand n € (Z>q)™ set

-1
ﬁi,r = Zir Qips Yion,r = n?"-f—lﬁ‘i,'f‘-‘rl + -+ nmﬂi,vm (6'2)

PROPOSITION 6.1.  We have

m

~n’ Ny Ny Bzv Vi, 5, msYi,n,m
(Ou,i(ps(n)), &) = bn {H(—n g [nr}%!} B g g y P timm)
r=1
PrOOF. Define a € M,, by
(O0(a),ER't) = Opme(t) (0 € (Zs)™,t € U°).

Then we have

(0, @ ®0;, )(Fila® 1)), Zlkr]l Q- @ermkin)
= (05, ®+ ®0;, ) (Fj(a), el k! @ - @ elmkim)

- —1 (Mo 1.dm
< ( ) Zi, 1( :Lll kill) T Tzi,nz (€Z:ZL ki?n )>

A/ (__) "”I’L, jl j'm
a),er k', - k™
q < w( )7 * %41 Xiq Zi,m%im
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= 5nn’qA
== 5nn/ H(qur)<61 rYin T>a
r=1
where
m—1 m—1
A= Z <jrﬂi,r7 '7i,n,r+l>a A= Z <jrﬁi,r; 'Y'i,,n’,r+1>-
r=1 r=1
On the other hand we have
(B, ® - ®0;,)(piy (n1) @+ @ pi, (), € kah Qe "kaﬁ
H npn nr [nT} - 6"’"/ H( 1) qz [ T] ' D
r=1 r=1

6.2. We rewrite Proposition 6.1 using Z,, instead of ©,,. Note that the isomor-
phism (4.16) induces

Cy[B7]* @c, 1) ColH (3)] = (U™)* @ C4[H(4)] (C Homg (U™, Cy[H(3)])) .
Hence =, induces an injection
B t Moy @c, () CqlH(3)] = (U™)* @ Cy[H(4)] (C Homp(U ™, Cy[H(3)])) .

Recall that { fl" }n forms a basis U~ [T},] and the multiplication induces an isomorphism
(U~ NT,U")® U~ [T, = U~ (see Proposition 2.12, (2.17)).

PROPOSITION 6.2. Forye U™ NT,U~ we have

_ T, (B 1.m) (BY i ¥m)
<:w,z(p'b(n))7yf:l > :E(y)én,n’ {H( 1) qu,,‘[ ]Qir!}Xil e ®®X o .

Tm
r=1

PrROOF. Let

Qug : UM, * @ ColH(4)] — (U7)* @ CylH(3))

)

be the homomorphism of rlght Cq[H (4)]-modules induced by €,,. For f € U H[T1* the
element of UZ°[T;1* ®c, g JH C4[H (2)] corresponding to f ® 1 € UT[T;11* @ C,[H ()]
is written as f ® 1, where f E Uzo [T 1% is given by

(f.at) = (f.x)e(t)  (weUT[T,'],teU’).
Then for y; € U‘[Tw], yo € U™ NT,U~, t € U° we have
(Qu(f) tyaun) = () (F. T ' S(tn)) = e(at) (£, T ' S(1)) (L' S(yn) € UT[T,1)).

Namely, the element of (U~)* ® C,[H(3)] corresponding to f ® 1 is written as fol,
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where f € (U~)* is given by

<f7 y2y1> = €(y2)<fv TJIS(yl» (yl S U_[Tw]ﬂy2 cU™ mTwU_)'

Hence for y € U~ NT,, U~ we have

Ay ’

(Bw,i(pi(n)), ufi*) = e()(Ouw,i(pi(n)), & ). O
6.3. Set
U=°[T,) = UT[T,,JU° c U=° (6.3)
and define
W, : U2°[T,,] = C,[B7] (6.4)

by
(U (@), u) =7(x,u)  (z€U2Ty],ue US0).

By Proposition 2.5 ¥,, is an injective algebra homomorphism and its image is contained
in A,,. Hence there exists a unique injective linear map

Ty : UZ0T,] = My, (6.5)
such that 2, 0", = ¥,,.
THEOREM 6.3. We have
i im

pi(n) = di(mLu(E™) @ i) @ o L

where
di(n) = [[ di. (), din) = "™ D2(g7! = g)".

ProOOF. Fory e U~ NT,U~ we have

EwTw@™) @ 1Lyfl¥) = e(y) (W, (&™), f7'y = em)r @™, f)

= €(y)6nn’ H cqi,, (nt)a
t=1
where
cq(n) = [n)lg "2 (g — g7y O

6.4. Set mo = £(wp). In this subsection we consider the case w = wy.

LEMMA 6.4. Leti e I and define i € I by woo; = —ayr. Then we have
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Lyylei) = —
PrRoOOF. It is sufficient to show

I _ w w —
2 :wo((a—(‘l]ﬂ-/ei)(g—ow‘/) ! * 1)

Yuo(ei) = 72 : 1

Set v* = Tl v = Tyov—w,, so that v* € V*(~wy)w,, v € V(~w@)w, with

(v*,v) = 1. F:r,t EOUO, yeU~ OTSiU_, p > 0 we have
(Zio (02 €0), ty fT) = (T (022, €5), S(ty f1))
= <in /Two €is (tyfp)Twov—w /> = <’U*6i, S(tyflp)l»
= X—a; () (v7ei, S(f1)S(y)v) = —X—w; ()e(y)dp1 (v es, fikiv)
= — X—w: (D)e(y)dp1gi(v"ei, fiv)

* ki — k;l
== X-w; (1)e(¥)0p1qi ( v*, ———F5V ) = —X—w, (£)e(¥)dp1 ;.

Hence
(Buo (0%, ,€) (0% )T o+ 1), 1y fT) = (Xao Bigy (022, €0), ty fT)
= X (b)) (=X, (t(1))E(W)0p10i) = —(8)(y)Fp16i-

On the other hand by (2.8) and Proposition 2.5 we have
1

(W (e3), ty fF) = 7(es, ty ff) = ————e(t)e(y)dop
qi — 4q;
forteU° yeU NT, U, p>0. O

PROPOSITION 6.5.  Fori € Ly, 1 € I, n € (Z>o)™ write
A(n Z c,m/e .

Then we have

o, e, ) bt

1—g;
dl(n) / <ﬁ;/, v'Yi,n,l_'Yi,n/,1> (6«2/,m yYi,m,mog ~Vi,n/ m >
:ZCnnlmpi(n) Xi, ! ®"'®Xim0 0 ° )
n/

where ' is as in Lemma 6.4.

PROOF. Set ¢ = (1/(1-¢2))(o v i) (o )7t € S,ICY[G/N™] so that

—wi/

Luy(ei) = ¢« 1. For n' € (Zxg)™ take ¢n € S, Cy[G/N~] such that T, (ég"/)) =
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@n * 1. Then we have

B (99 % 1) = Zug (@ % 1)Zup (9% 1) = By (T (657))Zng (T (€4))
= Wiy (&)W (€5) = Va6 er) = 3 crumr Wiy (657)

nl
= Z Cnns B (Lwg (égn ))) = Z Cnn By (Prr * 1).
n’ n’

Hence

Ppn*x1 = Z Crnn/ Pn * 1.

n/

It follows that

’wo é n chn’rwg n )
Therefore, the assertion is a consequence of Theorem 6.3. O

7. Specialization.

7.1. We denote by Hom,s(Cy[H],F) the set of algebra homomorphisms from
C4[H] to F. Tt is endowed with a structure of commutative group via the multiplica-
tion

(6162)( Zel X0)02(x)) (01,0 € Homao(Cy[H],F), x € C,[H]).
The identity element is given by ¢, and the inverse of 6 is given by 6 o S.
For § € Hom,,(C4[H],F) we denote by Fg = Fly the corresponding left C,[H]-

module. For § € Hom,o(Cy[H],F) and w € W we define an S, 'C,[G]-module M,
by

M8 = My, @c, 1) Fo.
Set 19 = (1x1)® 15 € M?. We have
M, = 8,7C[G) @z ivava) F = ColGl ¢, vz F

where S;;'C,[N,, \G] — F is given by 0 o n,,.
Note that we have a decomposition

Cq[N,\Gl = P Cy[N,; \Gl

AEP

with

Cq[Np\Glx = {9 € Cg[NZ\G] [t = xa(t)e  (t €U}
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We have

(0 0mw)(p) =e(Tw)0(x2) (A€ Pp € Cy[N,\G). (7.1)
Indeed, for t € U° we have

(N (@), t) = (¢Tw, t) = ((te)Tw, 1) = xa(t)e(9Tw),

and hence 1,,(¢) = £(¢Tw)xx. Therefore, (6 0ny)(¢) = e(©Tw)0(x2)-

The C,[H]-module Fy can also be regarded as a C,[G]-module via the canonical
Hopf algebra homomorphism r$ : C,[G] — C,[H]. We denote this C,[G]-module by
F§ =F1§.

PROPOSITION 7.1.  Assume that we are given two algebra homomorphisms 6; :
Cy[H] = F (i =1,2). Then as a C4[G]-module we have

01~ g 40 e
My = MG Qr Fg (9,08)-

Here, the right side is regarded as a Cq4[G]-module via the comultiplication A : C4[G] —
CylGl @ CyG]-

PROOF. Let A€ P, ¢ € Cy[N,\G]x. Foru e U, t € U° we have
(Alp)u@t) = (g, ut) = (tp,u) = xa(t){p, u),
and hence (id ®@r%)(p) = ¢ @ xa. It follows that
@192 @ 1§ (p,08)) = (9122) © (X216 (gy08))
= e(Tw)02(x2)(01(02 0 5)) (x\)1%2 @ 151(0205)

e(pTw) (6261 (62 © S)) (XA) 12 @ 1§ (4,05
= e(pTw)01 (x2)192 ® 13'1(0205) = (61 070) ()12 ® 101(0205)

Hence there exists uniquely a homomorphism Fg; s MO — M2 R Fg(ezoS) of C,[G]-
modules sending 19 to 172 ®19 (0205)" Similarly, we have a homomorphism Fgf MOz
M ®]FIF92(9103 of C,4[G]-modules sending 1% to 1916{)192 (6108)" Applying (e )®]FIF§;1(9203)
to Fgf we obtain a homomorphism

6 62
F? == F)* @ F91(92OS) M @p Fal(azoS) — M4

of C,[G]-modules sending 1% @ 1‘9 (9205) 1O 1%, Tt remains to show Fgf o Fg; =id and
Fg; o Fgf = id. The first identity is a consequence of (Fgf o Fg; )(191) = 1% The second
one follows by applying (e) ®p Fg;l(gws) to Fg; o Fgf =id. d

7.2. In view of Proposition 7.1 we only consider the S,;'C,[G]-module

My = M, (7.2)
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in the following. For ¢ € S, 'C,[G] we denote by % € M,, the image of ¢ * 1 under
My — My, Define 7, : S;;'Cy[N,; \G] — F as the composite € o 1,,. Then we have

My, =2 8,'Cy[G) ®szic,iva\a) F = ColGl ®c, (vova Fs
where S 'C,[N,,;\G] — F is given by 7,,. Moreover, ©,, induces a linear isomorphism
Oy My, — U [T N>
given by
(©u(@®@),2) = (¢Tuww) (¢ € CglGlw € UT[T)).
By the direct sum decomposition

UL, > = D UL, Uy

w
YEQTN(—w~1QT)

we have a direct sum decomposition

M, = &P My -, (7.3)

YEQTN(~w=1QT)
where
My = (0.,) (UHTINUD)) (veQFn(—w QM)

Note that

M0 = F1.
LEMMA 7.2.  Form € M~ and A\ € P we have c¥Ym = ¢~ *M)m.

PROOF. We may assume A € P~. Take ¢ € C,[G] such that ¥ = m. By Corollary
2.7 we have T\, (0¥ p) = (T,,0¥)(T\y¢), and hence for x € UT[T;1]* we have

(Ou(oym), @) = (T (0}¢), Tu(2)) = (Two}) (Twp), Tu(z)).

Assume x € UH [T, '] NU; with § € Qt N (—w~1Q"), and set y = T, (). Then we have
y € (Uys)k—ws by (2.35). Hence

<@w(g§\”m)’ T) = Z<Tw0§\l}» y(0)><Tw90» y(1)> = <Tw‘775\07 k7w5><Tw‘Pv )
(v)
= q_()\"é) <@w(m)ax> U

THEOREM 7.3.  The C,[G]-module M,, is irreducible.

PROOF. For any C,[G]-submodule N of M,, we have
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N = b (NN My)

YEQTN(—w=1QT)

by Lemma 7.2. Since M, ¢ is one-dimensional and generates the C,[G]-module M,,, it
is sufficient to show N N M, o # {0} for any non-zero C,[G]-submodule N of M,,. By
definition the projection M,, — M, o with respect to (7.3) is given by m + (0,,(m), 1)1,
and hence it is sufficient to show that for any m € M,, \ {0} there exists some ¢ € C,[G]
such that (0, (¢m),1) # 0. Take ¢ € C,[G] such that p =m. For 2 € UT and A € P~
we have

(Ou((208)m), 1) = {(z08)} T, 1).
Write

AT, = (T, ®Tw)2uj_ ®uj'
J

(see Corollary 2.7). Then we have
Ou((z0¥)m), 1) =Y (zo¥Twuy , 1) (eTyu], 1)

=Z<v§uj_, 20x) (Ou (M), uf) = (viyz, va)

with y = >, (@w(m),ujﬂu; € U~ \ {0}. Hence it is sufficient to show that for any
y € U™ there exists some A € P~ and z € U" such that (viyz,v\) # 0. If X € P~
is sufliciently small, then we have viy # 0. Then the assertion is a consequence of the

irreducibility of V*(\) as a right U-module. O
7.3. For i € I we define a C,[G]-module M; by
M; = M; ®c, (1) Fe- (7.4)
It is an irreducible C,[G]-module with basis {p;(n) | n € Z>o} satisfying
a;p;(n) = (1 —q;")p;(n — 1), bips(n) = q4;'pi(n),
cipi(n) = — 47 pi(n)i, dip;(n) =ps(n + 1).

Fix w € W, and set {(w) = m. For i = (i1,...,im) € Z,, the isomorphism (5.6)
induces an isomorphism

1%

My 2 M, @@ M (7.5)

of C4[G]-modules. For n = (n1,...,7n) € (Z>0)™ we denote by p;(n) the element of
M., corresponding to

ﬁil(nl) ®®pzm(nm) € Mil ®®Ml

m
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via the isomorphism (7.5).
By Theorem 6.3 we have the following.

THEOREM 7.4. For 1,3 € I, we have
~ ~(n' — d',n,
) = Yl > ) = a2 ),
nl

where d; y, is as in Theorem 6.3.

REMARK 7.5. Theorem 7.4 for w = wqp is the main result of Kuniba, Okado,
Yamada ([8, Theorem 5]).

By Proposition 6.5 we have the following.

PROPOSITION 7.6.  Fori €Z,,, i €I, n € (Z>o)™ write
e = Y
n/
Then we have

1 w w _ —
([t e, b = e
n/

dl(n) — /
di(n’)pi(n )7

where i’ is as in Lemma 6.4.

REMARK 7.7. Proposition 7.6 is a conjecture of Kuniba, Okado, Yamada (]8,
Conjecture 1]).

8. Comments.

8.1. In this paper we worked over the base field F = Q(q); however, almost all of
the arguments work equally well after minor modifications even when F is an arbitrary
field of characteristic zero and ¢? # 1 for any i € I. The only exception is Theorem 7.3,
which states that M,, is irreducible. For this result we need to assume that g is not a
root of 1.

8.2. Let us consider generalization of our results to the case where g is a sym-
metrizable Kac-Moody Lie algebra. We take C,[G] to be the subspace of U, (g)* spanned
by the matrix coefficients of integrable lowest weight modules (see [5]). Then C,[G] is
naturally endowed with an algebra structure. A problem is that the comultiplication
A Cy[G] — Cy[G] ® C4[G] is not defined. Indeed A(yp) for ¢ € C4[G] turns out to be
an infinite sum which belongs to a completion of C,[G] ® C,[G]. However, since we only
consider the tensor product modules of type M;, ®---® M
the homomorphism of the form

what we actually need is

tm >

("G ® @78 (1,)) © Am—1 : Cg[G] = Cg[G(in)] @ -+ ® Cq[Gim)]. (8.1)
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We can easily check that (8.1) is well-defined even in the Kac—-Moody setting by showing
that (Tg(il) ® - ® rg( ) © A1 sends any element of Cy[G] to a finite sum inside

im

CqlG(i1)] @ - ® C4[G(ir,)]. It is easily seen that all of the arguments in this paper also
work in the setting where g is a symmetrizable Kac-Moody Lie algebra.
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