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Abstract. We discuss the value distribution of Borel measurable maps

which are holomorphic along leaves of complex laminations. In the case of

complex lamination by hyperbolic Riemann surfaces with an ergodic harmonic
measure, we have a defect relation appearing in Nevanlinna theory. It gives

a bound of the number of omitted hyperplanes in general position by those

maps.

We first consider general cases. Let (M,L, S) be a ( possibly singular) complex

lamination in a compact Polish space M with M ⊂ N where N is a complex manifold. S

denotes a set of singular points of the lamination such that (M,L) is a smooth complex

lamination with M = M \ S. We also write (M,L) for (M,L, S) when S = ∅.
We assume that leaves of the lamination are complex manifolds with Hermitian

metrics and their complex structure is compatible with N , but we do not assume complex

structure of M and M . We assume some dependence of the metric and its derivatives

of all orders along leaves on M (They should be measurable or continuous on M as

mentioned later). We also assume that the leafwise Ricci curvature defined from the

metric is bounded on M .

We note the cases when S = ∅ include the cases of minimal sets of a singular holo-

morphic foliation and Levi-flat surfaces. When S 6= ∅, a typical example is a holomorphic

foliation generated by holomorphic vector fields on M = N .

We say a Borel measurable map f from M to Pm(C) is leafwise holomorphic if f is

holomorphic along leaves.

In this paper we discuss intersection of the image of leaves by such maps with

hypersurfaces in Pm(C). We see this property of the lamination from measure theoretical

and probabilistic points of view. Harmonic measure introduced by L.Garnett ([17]) is

an essential tool. Harmonic measures defined by Garnett are associated with Laplace–

Beltrami operator defined from a Riemann metric on leaves. Instead of these measures

we use harmonic measures associated with a complex Laplacian defined from a Hermitian

2010 Mathematics Subject Classification. Primary 32H30; Secondary 58J65.
Key Words and Phrases. Nevanlinna theory, complex lamination, value distribution theory, holo-

morphic diffusion.
The author was partly supported by the Grant-in-Aid for Scientific Research (C) 24540192, Japan

Society for the Promotion of Science.

http://dx.doi.org/10.2969/jmsj/06920477


478 A. Atsuji

metric. We call such a measure A-harmonic measure where A is a complex Laplacian

(see Section 1 for precise definition).

Let m be an A-harmonic probability measure on the lamination. We say some

property holds for almost all leaves (abr. a.a. leaves) if there exists a saturated set

G ⊂ M such that m(G) = 1 and the property holds for all leaves included in G. We

remark that the notion of A-harmonic measure coincides with harmonic measure in the

sense of L.Garnett in the case of dimCL = 1 (L ∈ L). We also note that an A-harmonic

measure always exists if M is compact (cf. [6], [17]).

When S = ∅, we first have the following results:

Theorem 1. Let (M,L) be a compact complex lamination with a leafwise Hermit-

ian metric whose derivatives of all orders along leaves depend continuously on M . Let m

be an A-harmonic measure and f : M → Pm(C) be a nonconstant leafwise holomorphic

map. For a.a. L ∈ L, f(L) intersects almost all hyperplanes in Pm(C) with respect to

the measure defined from Fubini–Study metric on Pm(C)∗.

This can be strengthened as follows:

Theorem 1′. Under the assumption of the above theorem, for a.a. L ∈ L, f(L)

intersects q.e. algebraic hypersurfaces in Pm(C).

Here “q.e.” means quasi-everywhere with respect to a capacity defined by Molzon

([22]).

The above theorems generally hold even when S 6= ∅ if we have an A-harmonic

probability measure. In singular case Fornæss and Sibony ([14]) showed that there

exists a harmonic measure when M = P2(C) and S is hyperbolic. It is well-known that

smooth Levi flats and minimal sets do not exist in Pn(C) (n ≥ 3) ([20], [28]). So the

singular case is much important while the problem is still open in case of n = 2.

Next let us consider a rather special case that the leaves are of one dimensional,

namely, Riemann surfaces. We say that an open Riemann surface is hyperbolic if its

universal covering is equivalent to a unit disc. Otherwise the Riemann surfaces are called

parabolic. Remark that this usage is different from the classical theory of Riemann

surfaces. For a lamination by hyperbolic Riemann surfaces each leaf has a Hermitian

metric form defined from the Poincaré metric on the unit disc. Let this form be denoted

by ωP and let ω be the Hermitian metric form on each leaf induced from N . These two

metrics play important roles in our results.

In singular case we also use harmonic currents on the laminations. It is known that a

positive harmonic current corresponds to a harmonic measure of some complex Laplacian

([11], [14]). Let T be a positive harmonic current on (M,L, S). Then mP := T ∧ ωP is

a harmonic measure. Under this setting we can see the following result.

We say a point a ∈ S is linearizable if there exists a holomorphic coordinate around

a such that leaves are integral curves of the vector field

V =

n∑
j=1

λjzj
∂

∂zj
,
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where λj are non-zero complex numbers. We say S is linearizable if all points of S are

linearizable. It is known that there exists a positive harmonic current T on (M,L, S)

and T ∧ ωP gives a finite harmonic measure if S is linearizable ([5], [11]). We denote

this measure by mP := T ∧ ωP .

Theorem 2. Let (M,L, S) be a singular complex foliation by hyperbolic Riemann

surfaces and f : M → Pm(C) be a nonconstant leafwise holomorphic map. Assume that

S is linearizable and let T be a positive harmonic current on (M,L, S). For a.a.L ∈ L
with respect to mP , f(L) intersects q.e. algebraic hypersurfaces in Pm(C).

In some singular cases we can see more precise feature for intersection with hyper-

planes if the harmonic measure is ergodic.

We say a leafwise holomorphic map f is degenerate along a.a. leaves if f(L) is

contained in a hyperplane for a.a. L ∈ L with respect to mP . Our main theorem is the

following.

Theorem 3. Let (M,L, S) be a singular complex foliation by hyperbolic Riemann

surfaces and f : M → Pm(C) a nonconstant leafwise holomorphic map. Assume that S

is linearizable and there exists a positive harmonic current T on (M,L, S) such that mP

is ergodic. Let α :=
∫
M
T ∧f∗ω1 (≤ ∞) where ω1 is the Fubini–Study metric on Pm(C).

If H1, . . . ,Hq are hyperplanes in Pm(C) in general position and

q > m+ 1 +
m(m+ 1)

4πα
,

then for a.a. L ∈ L with respect to mP ,

f(L) ∩ (H1 ∪ · · · ∪Hq) 6= ∅,

or f is degenerate along a.a. leaves.

In the above we set m(m + 1)/4πα = 0 when α = ∞. More precisely, we obtain

a defect relation for f as classical Nevanlinna theory: If f is non-degenerate along a.a.

leaves, then we have

q∑
i=1

δ(Hi) ≤ m+ 1 +
m(m+ 1)

4πα
, (0.1)

where δ(Hi) is a defect satisfying 0 ≤ δ(Hi) ≤ 1 and δ(H) = 0 if f omits H.

We note Fornæss and Sibony ([14]) showed that mP is an ergodic harmonic measure

when M = P2(C), S is hyperbolic and there are no algebraic leaves in L.

Remark that if L is parabolic and f is non-degenerate, the bound of the number of

omitted hyperplanes by f(L) is m + 1. This is just a consequence of value distribution

theory of holomorphic curves due to H. Cartan (cf. [15], [24], [26]). We can get a more

refined result than the above theorem using Fujimoto’s calculus with our method as

mentioned in Section 3.

We also note that Feres and Zeghib ([13]) discussed existence and non-existence of



480 A. Atsuji

nonconstant continuous leafwise holomorphic functions on compact laminations. They

obtained some results including Liouville type theorems for leafwise holomorphic func-

tions. If leaves are Kähler, then a holomorphic function is a harmonic function along

leaves. Liouville type theorem along a.a. leaves follows from Garnett’s fundamental

lemma which says that any bounded leafwise harmonic function must be constant along

leaves ([17]). It seems natural to think that we could obtain some results on more precise

value distribution of leafwise holomorphic maps.

We use Nevanlinna theory with some leafwise diffusion processes on the lamination

to show these results. We first introduce a suitable leafwise diffusion process for our

problem and see its basic properties in the next section. In Section 2 we remark a

relationship between Nevanlinna theory and our diffusion process, and give a proof of

Theorem 1, 1′ and 2. Our probabilistic setting also works in the proof of Theorem 3.

Namely it enables us to link the traditional Nevanlinna theory with leafwise holomorphic

maps and to use ergodic theorems. Then we can obtain the defect relations as mentioned

above and give the proof of Theorem 3 in the last section.

We would note that we owe our basic idea using a Dirichlet form to [11]. The author

would thank Professor Nessim Sibony for indicating [11] and their related works to him

and for giving valuable comments on the first draft.

1. Leafwise holomorphic diffusions.

We first assume each leaf L is equipped with a Hermitian metric. We first assume

that the metric is smooth along L and continuous on M , and its derivatives of all orders

depend continuously on M . If we take the induced metric from N as the Hermitian

metric on L, these properties are satisfied. We note that this continuity assumption can

be relaxed to Borel measurability for our purpose as mentioned later. We also assume

that the Ricci curvature of leaves is uniformly bounded on M . If M is compact, this

assumption is automatically satisfied.

We introduce some class of diffusion processes called holomorphic diffusions. As for

basic properties of these diffusion process, see [18], [19] (Kähler case), [25] (complex

Brownian motion and stochastic calculus) and [27]. Let g = (gα,β) be the Hermitian

metric on L. We have a diffusion process (Xt, Px) on each L whose generator

A = 2gα,β
∂2

∂zα∂zβ
: complex Laplacian with respect to g, (1.1)

where (gα,β) = g−1. Px denotes the law of Xt with X0 = x. We note that if g is a Kähler

metric, then A = ∆L/2 where ∆L denotes the Laplace–Beltrami operator defined from

the Riemannian metric. In this case the associated diffusion is called a Brownian motion

on a Kähler manifold L. In general Hermitian case A = ∆L/2 + b for some vector field b.

We emphasize that conservativeness of (Xt, Px), which is called stochastic complete-

ness in Kähler case, is much important rather than geodesic completeness in our method.

Proposition 4. (Xt, Px) is a conservative diffusion process on each leaf. Namely

Px(Xt ∈ Lx ∀t > 0) = 1.
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This follows from the boundedness of Ricci curvature on leaves.

It is known that

Proposition 5 (cf. [19], [25]). If f : L → P1(C) is a holomorphic map, then

f(Xt) is a time-changed Brownian motion on P1(C) associated with Fubini–Study metric.

We call a diffusion process satisfying the above property a holomorphic diffusion.

Precisely, a diffusion process Xt is a holomorphic diffusion if Xt is a holomorphic mar-

tingale, that is, Xt satisfies the following property: for any open set U ⊂ L and a

holomorphic function f on U , Ref(Xt) is a local martingale while Xt stays on U . In our

case holomorphic martingale property comes from ARef = 0 if f is holomorphic.

Let Lx denote the leaf through x. We immediately have the following.

Corollary 6. Let D be the zeros of a non-constant holomorphic function f on

Lx. Then D is a polar set for Xt starting at x if x /∈ D. Namely if x /∈ D,

Px(Xt /∈ D (∀t > 0)) = 1.

Proof. f(Xt) is a time-changed complex Brownian motion on C (cf. [18]). 0 ∈ C

is a polar set for complex Brownian motion starting at a different point from 0 (cf. [19],

[25]). �

Throughout this paper the expectation by Px is denoted by Ex. Namely, for f a

bounded measurable function on Ω(L) := C([0,∞)→ L)

Ex[f ] =

∫
Ω(L)

f(ω)dPx(ω).

(Xt, Px) defines a Markov semigroup acting on bounded continuous function on M

by

Dtu(x) := Ex[u(Xt)] for u ∈ Cb(M).

Candel showed that Dt is a diffusion semigroup on C(M) if M is compact ([6], [8]).

It is easy to see that Dt can be extended to a diffusion semigroup on the space of

bounded Borel measurable functions. From this fact we can see that x 7→ Px(B) is Borel

measurable on M if B ∈ B(Ω(M)): a collection of natural Borel sets of Ω(M) where

Ω(M) = C([0,∞)→M). Thus (Xt, Px) can be regarded as a diffusion process on M .

Candel [6] (see also [8]) associated these diffusions with harmonic measures. We say

a function is leafwise C2 (resp. C2
o ) if it is continuous on M (resp. in Co(M)), twice

differentiable along leaves and all of its derivatives are continuous on M . C2
L(M) (resp.

C2
L,o(M)) denotes the set of all leafwise C2 (resp. C2

o ) functions. By assumption Au is

continuous on M for u ∈ C2
L(M).

We define A-harmonic measure ( simply called harmonic measure if there is no fear of

confusion) m if m is a probability measure on M and∫
M

Au(x)dm(x) = 0
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for all u ∈ C2
L,o(M).

If M is compact, A-harmonic measure always exists ([6], [17]).

It is known ([6], [8], [17]) that

Proposition 7. If m is an A-harmonic measure, then m is an invariant measure

of Dt (equivalently, of (Xt, Px)).

When M is noncompact, these arguments may not be available. But we can obtain a

leafwise diffusion satisfying the same properties as above in the case of singular complex

laminations by hyperbolic Riemann surfaces. Dinh–Nyugen–Sibony ([11]) constructed

a diffusion semigroup in this case and we can also construct a desired diffusion process

directly under the situation of [11]. Let D denote the unit disc and φa : D→ La be the

covering map such that φa(0) = a.

We take a Poincaré metric ω̃P of curvature −1 on D:

ω̃P =
4

(1− |z|2)2

i

2
dz ∧ dz.

φa pushes ω̃P to a Hermitian metric ωP on La. It is known that ωP is Borel measurable

on M(cf. Proposition 3.1 of [11]) and in some case it is continuous on M ([7], [9]).

Let Zt be the Brownian motion starting from o associated with the Poincaré metric

ω̃P on D. Zt is defined by the diffusion process whose generator is half of hyperbolic

Laplacian ∆hyp:

∆hyp = (1− |z|2)2 ∂2

∂z∂z
=

(1− |z|2)2

4
∆R2 ,

where ∆R2 is the Laplacian associated with standard Euclidean metric on R2. Define

(Xt, Pa) by Xt = φa(Zt) and Pa is the law of Xt, namely Pa(Xt ∈ A) = Po(φa(Zt) ∈ A)

for A ∈ B(M) where Po is the law of Zt with Z0 = o. Remark that Zt is conservative.

Note that the universal covering map is unique up to an automorphism on D and the

Poincaré metric is invariant under the action of automorphisms on D. From this property

we have for C ∈ B(D)

Pu(Zt ∈ C) = Po(αo,u(Zt) ∈ C), (1.2)

where αo,u ∈ Aut(D) with αo,u(o) = u. It is clear that the above definition of (Xt, Pa) is

independent of the choice of φa.

Proposition 8. For any leaf L, (Xt, Pa) (a ∈ L) is a conservative holomorphic

diffusion staying on L.

Proof. Conservativeness follows from that of Zt. From the definition it is clear

that (Xt, Pa) is a holomorphic martingale on leaves, namely Ref(Xt) is a local martingale

for suitable stochastic intervals (cf. [12], [25]) for any holomorphic function f defined

locally on each leaf. We have only to note Markov property of Xt. We have to show

Px({Xt+s ∈ A} ∩B) = Ex[PXs(Xt ∈ A) : B]
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for any A ∈ B(M) and B ∈ Fs := σ(Xt : 0 ≤ t ≤ s), where Ex[f : B] =
∫
B
fdPx. By

Markov property of Zt

Px({Xt+s ∈ A} ∩B) = Po({Zt+s ∈ φ−1
x (A)} ∩B) = Ex[PZs(Zt ∈ φ−1

x (A)) : B].

On the other hand, by (1.2) we have

Pu(φx(Zt) ∈ A) = Po(φx ◦ αo,u(Zt) ∈ A)

= Po(φφx(u)(Zt) ∈ A)

= Pφx(u)(Xt ∈ A).

Then, taking u = Zs, we have

PZs(Zt ∈ φ−1
x (A)) = PXs(Xt ∈ A) Px- a.s.

Let a, b ∈ M and U be a small neighborhood of a involving b. Take Ũ ⊂ φ−1
a (U)

and b̃ ∈ Ũ such that 0 ∈ Ũ and φa(b̃) = b. Then b̃ → 0 as b → a. Since φb = φa ◦ α0,b̃,

with (1.2)

Pb(Xt ∈ A) = Po(φb(Zt) ∈ A) = Po(φa ◦ αo,b̃(Zt) ∈ A) = Pb̃(φa(Zt) ∈ A).

Since Zt has strong Feller property, Pb(Xt ∈ A)→ Pa(Xt ∈ A) as b→ a. This shows the

strong Feller property of Xt and consequently strong Markov property of Xt. �

We have to check that we can regard (Xt, Pa) (a ∈ M) as a diffusion on M . To

do this we employ another construction of a holomorphic diffusion and we will identify

them.

We here introduce a positive harmonic current T on (M,L, S). The differentials and

differential forms appearing below are differential and forms on leaves parameterized on

transversals. We say T is of bidegree (p, p) or dimension l−p if T acts leafwise (l−p, l−p)
differential forms where l = dimCL (L ∈ L). For details about currents on laminations,

see Sullivan [29]. T is a harmonic current if i∂∂T = 0. If T is of bidegree (p, p), this

means ∫
M

i∂∂φ ∧ T = 0

for any leafwise smooth (l − p− 1, l − p− 1) form φ.

We note that for a complex lamination (M,L, S), there exists an open covering {U}
of M such that U is homeomorphic to B × T, which is called a flow box, where B is a

domain of Cn and T is a topological space. Take an arbitrary flow box U ∼= B × T. It

is known that T is a positive harmonic current on (M,L, S) if and only if T has a local

expression as

T = h(a, b)[B× {b}]dµ(b), (1.3)

where [B× {b}] is a current of integration on B× {b}, dµ is a measure on T and h(a, b)

is a positive harmonic function in a for µ-a.e. b. If S is locally pluripolar on N , then a
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positive harmonic current exists ([5]).

In [11], they use a bilinear form:

E(u, v) = −i
∫
M

v∂∂u ∧ T (u, v ∈ C2
L,o(M)), (1.4)

where T is a positive harmonic current on (M,L, S). Let mP := T ∧ωP . Define ∆Pu by

Radon–Nikodym derivative 2i∂∂u ∧ T/dmP . We also write

E(u, v) = −2π

∫
M

vddcu ∧ T (u, v ∈ C2
L,o(M)),

where dc denotes (i/4π)(∂ − ∂).

Theorem 9. E(u, v) defines a regular Dirichlet form (E ,H1(T )) on L2(mP ), where

H1(T ) is the completion of C2
L,o(M) by the norm || · ||H1 defined by

||u||2H1 = 2π

∫
M

du ∧ dcu ∧ T +

∫
M

u2dmP .

Remark 10. i) While this is essentially due to [11], we remark that this holds

for the more general cases. We need the existence of positive harmonic current and the

uniform boundedness of leafwise Ricci curvature as the following arguments. Thus the

assumption on S may be able to be relaxed.

ii) ωP is Borel measurable, so we do not use here continuity assumption about metrics

and its derivatives mentioned in the beginning of this section.

We first note an elementary fact:

Lemma 11. C2
L,o(M) is dense in L2(mP ) and Co(M).

Proof. We can localize the problem. Let {U} be a covering of M and take a flow

box U ∼= B × T. Set C̃o(B × T) = {f(x)g(y)|f ∈ C2
o (B), g ∈ Co(T)}. Then C̃o(B × T)

is dense in Co(B× T). In fact, C̃o(B× T) is subalgebra of Co(B× T) satisfying that C̃o
separates points and there exists f ∈ C̃o such that f(x) 6= 0 for any x ∈ B × T. Then

Stone–Weierstrass theorem implies the denseness on Co(B × T). As for L2 it is easy by

the previous fact. �

Proof of Theorem 9. Note that this form is not symmetric in general since T

is not necessarily closed. We will remark that their bilinear form (1.4) defines a regular

Dirichlet form as follows. Let

Ẽ(u, v) := 2π

∫
M

du ∧ dcv ∧ T (u, v ∈ C2
L,o(M)).

Then Ẽ is a symmetric bilinear form on C2
L,o(M) and E(u, u) = Ẽ(u, u) since ddcu2 =

2uddcu+ 2du∧ dcu and T is harmonic. Then E is positive definite. We first note that Ẽ
is closable on L2(mP ). We can obtain a symmetric operator S such that (Su, v)L2(mP ) =

−Ẽ(u, v). We can see S takes the form of S = ∆P + V for a vector field V on C2
L,o(M).
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Note that V comes from dT since

d(udcv ∧ T ) = du ∧ dcv ∧ T + uddcv ∧ T + udcv ∧ dT (u, v ∈ C2
L,o(M)).

Let (1, 0)-form τ such that ∂T = τ ∧ T . τ can be written as τ = ∂h/h locally where h is

a positive harmonic function appearing in the local expression (1.3) of T . Since each leaf

is of constant curvature, by Yau’s gradient estimate ([30]) we can see that τ is bounded

uniformly. Namely we have

iτ ∧ τ ∧ T ≤ const.ωP ∧ T, (1.5)

equivalently V is bounded. The coefficients of ∆P is locally bounded since ωP is so

(Proposition 3.1 of [11]). Thus the coefficients of S belong to L2
loc(mP ). Hence Ẽ is

closable as seen in (1.1.3) of [16].

From (1.5) and Cauchy–Schwarz inequality, we have that for u, v ∈ C2
L,o(M)

|E(u, v)− Ẽ(u, v)| ≤ const.||u||L2(mP )Ẽ(v, v)1/2.

From this it is easy to see that E(u, v) satisfies the weak sector condition: there exists a

constant C > 0 such that

|E1(u, v)| ≤ CE1(u, u)1/2E1(v, v)1/2 (u, v ∈ H1(T )).

As we mentioned above,

||u||2H1 = E1(u, u),

where E1(u, u) = E(u, u) + (u, u). We also note that C2
L,o(M) is dense in Co(M). These

observations imply that (E ,H1(T )) is a regular Dirichlet form. Obviously it is also local.

Then by the theory of Dirichlet forms (cf. [21]) we have a diffusion process corresponding

to (E ,H1(T )). �

Remark 12. The above argument is available for general leafwise holomorphic

diffusion on noncompact complex lamination with complete Kähler leaves under the as-

sumption that the leafwise Ricci curvature is uniformly bounded from below if we have

an appropriate harmonic measure. Namely we can construct a leafwise holomorphic dif-

fusion process corresponding to a regular Dirichlet form

E(u, v) = −
∫
M

Au · vdm,

where A is a complex Laplacian and dm is an A-harmonic measure.

Proposition 13. The diffusion process defined by (E ,H1(M)) coincides with

(Xt, Px) on Ly for mP -a.e. y. Namely the diffusion process starting at x defined as

the above stays in Lx a.s. and its distribution coincides with the one of (Xt, Px).

Proof. Let φy : D→ Ly be a universal covering map. We will see
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∆hyp(u ◦ φy) = (∆Pu) ◦ φy on D (1.6)

for u ∈ C2
L,o(M). This implies that the generator of Xt is ∆P /2. Take a flow box

U ∼= B× T. Then T has a local expression as in (1.3)

T = h(a, b)[B× {b}]dµ(b),

where [B×{b}] is a current of integration on B×{b}, dµ is a measure on T and h(a, b) is

a positive harmonic function in a for µ-a.e. b. Then we can check (1.6) on φ−1(B× {b})
with y in this plaque. Let v ∈ C∞o (D). Recall φ∗yωP = ω̃P . In fact,∫
φ−1(B×{b})

v(x)φ∗yh(x,b)∆hyp(u◦φy)(x)ω̃P = 2i

∫
φ−1(B×{b})

v(x)φ∗yh(x,b)∂∂(u◦φy)

= 2i

∫
φ−1(B×{b})

v(x)φ∗yh(x,b)φ∗y(∂∂u)

=

∫
φ−1(B×{b})

v(x)φ∗yh(x,b)(∆Pu)◦φy(x)φ∗yωP .

Let us consider a heat equation:

∂u

∂t
=

1

2
∆Pu, u(0, x) = φ(x),

where φ ∈ Co(M). When one consider this equation on Lx, he has a unique bounded

solution u(t, x) = Ex[φ(Xt)] since Xt is conservative. On the other hand, u(t, x) can

be written as u(t, x) = Êx[φ(X̂t)] on M where (X̂t, P̂x) is the diffusion process uniquely

corresponding to (E ,H1(M)). �

From this lemma (Xt, Px) can be regarded as a diffusion process on M . In particular,

the map x 7→ Px(A) is Borel measurable on M for A ∈ B(Ω(M)). Since there is no fear

of confusion for our application, we use (Xt, Px) for (X̂t, P̂x).

It is known that if S is linearizable, mP is a finite measure (Proposition 4.2 of [11]).

∆PmP = 0 follows by definition. Then we have

Proposition 14. If S is linearizable, mP is a harmonic measure in our sense,

namely mP is the finite invariant measure of (Xt, Px).

The following ergodic theorems are powerful tools for our proofs. We say an A-

harmonic probability measure m is ergodic if m(B) = 0 or 1 for any saturated measurable

set B.

Lemma 15 ([6], [8], [17]). Let m be a A-harmonic measure.

1) If f ∈ L1(m),

1

t

∫ t

0

Ex[f(Xs)]ds −−−→
t→∞

∃f∗(x) m-a.e. x,

where f∗ is constant along leaves and
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M

f∗(x)dm(x) =

∫
M

f(x)dm(x).

2)

Px

(
1

t

∫ t

0

f(Xs)ds −−−→
t→∞

f∗(x)

)
= 1

m-a.e. x.

3) Moreover if m is ergodic, f∗(x) =
∫
M
f(x)dm(x).

2. Nevanlinna theory with leafwise holomorphic diffusions.

In this section we introduce Nevanlinna theory for leafwise holomorphic maps using

holomorphic diffusions introduced in the previous section. We first introduce a formula

similar to the first main theorem of Nevanlinna theory. As the previous section we assume

(Xt, Px) is conservative and there exists an A-harmonic measure m which is an invariant

measure of (Xt, Px).

Let σ be a holomorphic section of degree d on a complex line bundle on Pm(C) and

f : M → Pm(C) a nonconstant leafwise holomorphic map. Set

uσ(x) := log
||f(x)||d

|σ ◦ f |(x)
, (2.1)

where ||x|| = (|x0|2 + · · · + |xn|2)1/2 if x = (x0, . . . , xn) in a homogeneous coordinate.

Let D denote the divisor defined from zeros of σ. We use the same notation D as the

support of divisor D if no fear of confusion. If the line bundle is hyperplane bundle, then

D is regarded as a hyperplane H in Pm(C). In this case we write uH for uσ.

Definition 16 ([2]). Let x ∈M such that |σ ◦ f(x)| 6= 0. Assume f(L) 6⊂ D. For

a stopping time T with T <∞ a.s., we define

m̃x(T, uσ) := Ex[uσ(XT )]

Ñx(T, uσ) := lim
λ→∞

λPx

(
sup

0≤s≤T
uσ(Xs) > λ

)
T̃x(T ) :=

1

d
Ex

[∫ T

0

Auσ(Xs)ds

]
,

where A denotes the generator of (Xt, Px), provided that these quantities make sense.

Note that uσ is plurisubharmonic on L \ f−1(D) and then Auσ ≥ 0 on L \ f−1(D).

Hence
∫ t

0
Auσ(Xs)ds makes sense for t > 0 since f−1(D) ∩ L is a polar set for Xt.

Since A log |σ ◦ f | = 0 locally outside f−1(D) and f−1(D) ∩ L is a polar set, T̃x(T ) is

independent of D and d.

Since the Ricci curvature of leaves is bounded, by Proposition 8 in [2] we can see

that if T is deterministic or the first exit time from a relatively compact domain,
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Ñx(T, uσ) = 0 if f(Lx) ∩D = ∅,

provided that T̃x(T ) <∞.

We note an expression of T̃x(T ) in a special case: laminations by hyperbolic Riemann

surfaces. We introduce uniformization functions.

Definition 17. Define a function η by

ηωP = ω, (2.2)

where ω is the induced metric from N .

If N = Pn(C), we can take the Fubini–Study metric form on Pn(C) as ω given by

ω = ddc log ||z||2 =
i

2π
∂∂ log ||z||2. (2.3)

η is called an uniformization function of (M,L, S) (cf. [7], [9], [11]). It is known that

η and ωP are Borel measurable on M ([11]). Candel and Gomez-Mont showed that η

is positive on M and continuous on Pn(C) with η = 0 on S if N = M = Pn(C), S is

hyperbolic and linearizable ([9]).

To see the following expression of our characteristic function we introduce an energy

density ζ of f with respect to ω defined by

ζω = f∗ω1, (2.4)

where ω1 is the Fubini–Study metric on Pm(C).

Proposition 18. Let (M,L, S) be a singular complex foliation by hyperbolic Rie-

mann surfaces. Let (Xt, Px) be the holomorphic diffusion associated with ωP and η the

uniformization function defined in (2.2). Then

T̃x(T ) = πEx

[∫ T

0

ζ · η(Xs)ds

]
.

Proof. In this case Au = ∆Pu/2 = i∂∂u ∧ T/dmP . Then

1

2
∆P log ||f || = i∂∂ log ||f || ∧ T/dmP

= πf∗ω1 ∧ T/dmP

= πζω ∧ T/dmP

= πζη

outside φ−1(D). �

We have an analogy to the first main theorem of Nevanlinna theory:

Proposition 19. Assume |σ ◦ f |(x) 6= 0 and f−1(D) ∩ L is a polar set for Xt.
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For any stopping time T with T̃x(T ) <∞,

m̃x(T, uσ)− uσ(x) + Ñx(T, uσ) = T̃x(T ).

We remark that from this first main theorem we immediately have a Casorati–

Weierstrass type theorem using the following leafwise zero-one law under general situa-

tions.

Define θt : Ω(M)→ Ω(M) by (θtω)(s) = ω(t+ s) and I := {A ∈ B(Ω(M))|1A ◦ θt =

1A a.s. ∀t > 0}, called θ-invariant σ-field.

Lemma 20. For A ∈ I, Px(A) = 0 or 1 (∀x ∈ L, a.a.L).

Proof. Note that x 7→ Px(A) (A ∈ I) is A-harmonic on each L and Borel mea-

surable on M . It is easy to see that a Garnett’s theorem (Theorem 1(b) of [17]) holds

for A-harmonic case. From this Px(A) is constant along a.a.leaves. Set c = Px(A) on

Lx. ∃An ∈ Fn := σ(Xs; s ≤ n) ⊂ B(Ω(M)) s.t. An → A with Px(An4A)→ 0 (n→∞).

Then Px(An ∩A)→ c (n→∞).

Px(An ∩A) = Ex[1An1A]

= Ex[1AnEx[1A|Fn]]

= Ex[1AnEx[1A ◦ θn|Fn]]

= Ex[1AnEXn [1A]] (by Markov property)

= cPx(An)→ c2.

Hence c2 = c. �

Proof of Theorems 1, 1′ and 2.

In Theorems 1 and 1′ we assume that M is compact and the leafwise Hermitian

metric is leafwise smooth and continuous on M . Then Candel’s argument in [6] based

on Hahn–Banach theorem for existence of A-harmonic probability measure is available.

Since S is linearizable in Theorem 2, then we have a harmonic probability measure

as mentioned before. In both cases we have A-harmonic probability measure. Since

the argument in the previous section is also available under the assumptions of these

theorems, then we can construct a holomorphic diffusion whose generator is A and its

invariant measure is A-harmonic measure. Thus Theorems 1, 1′ and 2 can be reduced to

the following theorem. �

Theorem 21. Let (M,L) be a (possibly singular) complex lamination which sup-

ports a leafwise holomorphic diffusion with its invariant probability measure m and

f : M → Pm(C) be a nonconstant leafwise holomorphic map. For a.a.L ∈ L with

respect to m, f(L) intersects q.e. algebraic hypersurfaces in Pm(C).

Here “q.e.” means quasi-everywhere with respect to a capacity defined by Molzon

([22]).

Proof. By Lemma 20 there exists a measurable saturated setG ⊂M with µ(G) =
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1 such that Px(A) = 0 or 1 for A ∈ I and ∀x ∈ G. Suppose f(Lxo) omits K: a set of

σ of positive capacity in the sense of Molzon for xo ∈ G. Then it is known ([22]) that

there exists a probability measure ν on K such that

UK(x) :=

∫
K

uσ(x)dν(σ)

is bounded on Lxo . Let Dn ⊂ Lxo (n = 1, 2, . . . ) be an exhaustion of Lxo and τn =

inf{t > 0|Xt /∈ Dn}. Note that conservativeness of Xt implies τn ↑ ∞ (n → ∞) a.s.

Since Ñxo(t ∧ τn, uσ) = 0, by Proposition 19 and Fubini’s theorem

Txo(t ∧ τn) =

∫
K

m̃xo(t, uσ)dν(σ)−
∫
K

m̃xo(0, uσ)dν(σ)

= Exo [UK(Xt∧τn)]− UK(xo).

Letting n → ∞, we see that Txo(t) is bounded in t. Since Pm(C) is a compact Kähler

manifold, limt→∞ Txo(t) <∞ implies that for any Kähler form k on Pm(C)∫ ∞
0

k(df(Xs), df(Xs)) <∞ Pxo-a.s.

By martingale convergence theorem on manifolds (cf. [1], [10], [12]), this implies that

limt→∞ f(Xt) exists in Pm(C), Pxo-a.s. Since limt→∞ f(Xt) is I-measurable and xo ∈ G,

Lemma 20 implies that this limit point is a constant point of Pm(C) Pxo-a.s. Let this

point be denoted by zo. Take σo such that σo(zo) = 0. Proposition 19 implies that

m(t, uσo) is bounded. Letting t → ∞, uσ(Xt) → ∞ a.s. By Fatou’s lemma this leads a

contradiction. �

3. Proof of Theorem 3.

In this section we consider a singular complex lamination (M,L, S) by hyperbolic

Riemann surfaces as mentioned in the introduction.

As mentioned in Section 1, we can take the Hermitian metric ωP defined from

the Poincare metric on the unit disc. It is known to be measurable on M under the

assumptions of the main theorem (cf. [11]) and the uniformization function η is also

measurable. We consider the Laplacian ∆P associated with ωP as introduced in Section

1. Let φx be the covering map from the unit disc D to Lx such that φ(o) = x and (Xt, Px)

the holomorphic diffusion whose generator is ∆P /2 . Recall that

Xt = φx(Zt) and Px(Xt ∈ B) = Po(φx(Zt) ∈ B),

for B ∈ B(M) where (Zt,Pz) is the hyperbolic Brownian motion on D defined in Section

1.

Let T be a positive harmonic current on (M,L, S) and mP = T ∧ ωP . Under the

assumption of Theorem 3 mP is a finite measure. We assume that mP is an ergodic

probability measure. Recall that mP is the invariant measure of (Xt, Px).

Let f be a leafwise holomorphic map, namely f is a Borel measurable map from M
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to Pm(C) and is holomorphic along leaves. We first look at the degeneracy of f .

Lemma 22. Let f be a leafwise holomorphic map from M to Pm(C). If mP is

ergodic, then f is degenerate along a.a. leaves or nondegenerate along a.a. leaves.

Proof. We first note that f is a degenerate holomorphic map on a leaf L if and

only if the Wronskian of f defined on L vanishes on L. We remark that the Wronskian is

measurable on M since all derivatives of f are Borel measurable on M thanks to Cauchy’s

theorem and measurability of f . The set of leaves where f is degenerate coincides with

the set of leaves where the Wronskian vanishes mP -a.e. Then the former set is measurable

and by ergodicity this set has full measure or null measure. �

Thus from now on we assume that f is nondegenerate along a.a.leaves in this section.

Regarding f ◦ φx as a holomorphic map from D to Pm(C), we consider the value

distribution of f ◦ φx. We borrow a technique of Nevanlinna theory on holomorphic

curves due to Fujimoto ([15]). We give a small modification adjusting his second main

theorem to the case of holomorphic map from the unit disc.

We introduce some notations. For the sake of simplicity of notation we often write

φ for f ◦ φx from now on in this section. Let k-th derived curve of φ from D be denoted

by φk and Φk be the map in CNk+1 associated to φk such that φk = π∗kΦk where

πk : CNk+1 \ {0} → PNk(C) is the canonical projection and Nk =

(
m+ 1

k + 1

)
− 1. Set

Ωk := ddc log ||Φk||2 on {Φk 6= 0} and define hk by Ωk = hkdd
c|z|2.

Let H1, . . . ,Hq be hyperplanes in Pm(C) in N -subgeneral position.

Definition 23. We assume that φ(o) /∈ ∪Hj for simplicity. Define

T kφ (r) =

∫ r

0

dt

t

∫
|z|≤t

hkdd
c|z|2 (k = 0, 1, . . . , n). (3.1)

Let {ζj} be the zeros of 〈φ,H〉 for hyperplane H. We define

Nφ(r,H)[m] =
∑
j

log
r

|ζj |

counting with multiplicity up to m times.

In the above definition we write simply Tφ(r) = T 0
φ(r) when k = 0 and Nφ(r,H) =

Nφ(r,H)[∞] when m =∞. We also note that

Tφ(r) = T̃x(τr), and Nφ(r,H) = Ñx(τr, uH)

defined in Definition 16, where τr = {t > 0|Xt /∈ φx({|z| < r})}.

Remark. In the above definition the assumption that φ(o) /∈ ∪Hj is not impor-

tant, differently from the case of holomorphic curve from C. When φ(o) ∈ ∪Hj , this

contributes only O(1) term in the following second main theorem while it gives O(log r)
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term in the case of holomorphic curve from C (cf. [15]). So it is harmless in our case.

We have the following.

Proposition 24. Let H1, . . . ,Hq be hyperplanes in Pm(C) in N -subgeneral posi-

tion and let w(j) and θ be Nochka weights and a Nochka constant respectively for these

hyperplanes where q > 2N − m + 1. Then for every ε > 0, δ > 0 there exists a set

E ⊂ (0, 1) with
∫
E

1/(1− r) <∞ such that for r ∈ (0, 1) \ E,

θ(q− 2N +m− 1− ε)Tφ(r)≤
q∑
j=1

w(j)Nφ(r,Hj)
[m] +

m(m+ 1)

2
(1 + δ) log

1

1− r

+O(logTφ(r)). (3.2)

If H1, . . . ,Hq is in general position, we can take N = m,w(j) = θ = 1. Then (3.2)

becomes

(q −m− 1− ε)Tφ(r) ≤
q∑
j=1

Nφ(r,Hj)
[m] +

m(m+ 1)

2
(1 + δ) log

1

1− r
+O(log Tφ(r)).

To show Proposition 24 we need some lemmas. Let ω̃P denote the Poincaré metric as in

Section 1 defined by

ω̃P =
4

(1− |z|2)2

i

2
dz ∧ dz =

4π

(1− |z|2)2
ddc|z|2.

We say that a function u has mild singularities on D (cf. [15]) if there exists a countable

set {ζj} ⊂ D without accumulation points inside D such that u is smooth on D \ {ζj},
and on a neighborhood of each ζj u takes such a form as

|u(z)| = |z − ζj |σv(z)

l∏
k=1

| log |gk(z)||τk

with some real numbers σ, τj , nonzero holomorphic function gj and positive C∞-function

v. For this function we define

N(r, u) =

∫
D
gr(o, z)dνu,

where

νu =
∑
j

πσδ(ζj) (3.3)

with δ(ζ) : Dirac mass on ζ and gr(w, z) is the Green’s function of ∆R2 on Dr with

Dirichlet boundary condition. It is known

gr(o, z) =
1

π
log

r

|z|
(3.4)
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Let τr = inf{t > 0 : |Zt| > r} and Ex denote the expectation by Px (the law of Zt).

Lemma 25. Let u be a function on D with mild singularities defined as above.

Assume that x /∈ {ζj} and gj(x) 6= 0. Then

Ex[log |u|(ZT )]− log |u|(x) +Nx(T, log |u|) =
1

2
Ex

[∫ T

0

∆hyp log |u|(Zs)ds

]
, (3.5)

for any stopping time T such that the right hand side is finite, where

Nx(T, v) = lim
λ→∞

λPx
(

sup
0≤s≤T

v+(Zs) > λ

)
− lim
λ→∞

λPx
(

sup
0≤s≤T

v−(Zs) > λ

)
with v+ = max{0, v} and v− = min{0, v}.
In particular, if T = τr and x = o, we have

Eo[log |u|(Zτr )]− log |u|(o) +N(r, u) =
1

2

∫
D
gr(o, z)∆hyp log |u|(z)ω̃P (3.6)

= 2π

∫
Dr
gr(o, z)dd

c log |u|(z).

Proof. We first remark that {ζj} and zeros of gj are polar for Zt. Thus

∆hyp log |u|(Zs) makes sense for all s > 0 with probability 1.

As the case of Proposition 19 we apply Ito formula and Tanaka formula (cf. [25]) to

log+ |u| and log− |u|. Then we have

Ex[log+ |u|(ZTn)]− log+ |u|(x) +Nx(Tn, log+ |u|)

=
1

2
Ex

[∫ Tn

0

(∆hyp log |u|)+(Zs)ds

]
+ Ex[LTn ]

− Ex[log− |u|(ZTn)] + log− |u|(x)−Nx(Tn, log− |u|)

= −1

2
Ex

[∫ Tn

0

(∆hyp log |u|)−(Zs)ds

]
− Ex[LTn ],

where Lt is a local time at 0 of the semimartingale log |u|(Zt) (cf. [25]) and Tn is a

stopping time such that Tn ↑ T a.s. and Ex[LTn ] <∞. Adding the above equations side

by side and letting n→∞, we have (3.5). As for (3.6), we only note that ∂2/(∂z∂z) =

∆R2/4 and the Green’s function of ∆hyp with respect to ω̃P coincides with gr. Also note

(cf. [3]) that

N(r, u) = No(τr, log |u|). �

The following lemma is a hyperbolic version of the basic lemma often used in Nevan-

linna theory originally due to Borel.

Lemma 26. Let u be a nonnegative, locally integrable function on D. Assume u is

bounded on a neighborhood of o. For any δ > 0 there exists a set E ⊂ [0,∞) of finite
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Lebesgue measure such that

Eo[u(Zτr )] ≤ 2δ−(1+δ)2
(

r

1− r2

)δ (
Eo
[∫ τr

0

u(Zs)ds

])(1+δ)2

for ρ := log (1 + r)/(1− r) 6∈ E.

Note that ρ is the hyperbolic length from o to z (|z| = r).

Proof. This can be shown by simple calculations as follows. By the assumption

on u, the right hand side makes sense for r ∈ [0, 1). Noting that πddc|z|2 gives Lebesgue

measure on D and by coarea formula

Eo
[∫ τr

0

u(Zs)ds

]
=

∫
Dr
gr(o, z)u(z)ω̃P

= π

∫
Dr
gr(o, z)u(z)

4

(1− |z|2)2
ddc|z|2

=
1

π

∫ r

0

log
r

t

∫ 2π

0

u(teiθ)dθ
4t

(1− t2)2
dt.

Set

G(r) : =
1

2π

∫ r

0

log
r

t

∫ 2π

0

u(teiθ)dθ
4t

(1− t2)2
dt,

V (r) : =

∫ r

0

M(t)
4t

(1− t2)2
dt,

M(r) : =
1

2π

∫ 2π

0

u(reiθ)dθ.

And also G̃(ρ) := G(r), Ṽ (ρ) := V (r) and M̃(ρ) := M(r) with ρ = log (1 + r)/(1− r).
It is easy to see

G(r) =

∫ r

0

V (t)

t
dt.

Then

G̃′(ρ) = G′(r)
dr

dρ
=

1− r2

2r
V (r).

For δ > 0 there exists E ⊂ (0,∞) of finite Lebesgue measure such that for ρ /∈ E

Ṽ ′(ρ) ≤ Ṽ (ρ)1+δ and G̃′(ρ) ≤ G̃(ρ)1+δ.

Also

Ṽ ′(ρ) = V ′(r)
1− r2

2
= M̃(ρ)

4r

(1− r2)2

1− r2

2
= M̃(ρ)

2r

1− r2
.
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Combining these equations, for ρ /∈ E with ρ = log(1 + r)/(1− r) we have

M̃(ρ)
2r

1− r2
≤ Ṽ (ρ)1+δ =

(
2r

1− r2
G̃′(ρ)

)1+δ

≤
(

2r

1− r2

)1+δ

G̃(ρ)(1+δ)2 . �

From this we have an estimate of T kφ (r).

Lemma 27. For any δ > 0 there exists a set E ⊂ (0, 1) with
∫
E

1/(1 − r)dr < ∞
such that

T kφ (r) ≤ Tφ(r) + Cδ log
1

1− r
+O(log Tφ(r))

Proof. From Theorem 3.2.2 in [15] with Lemma 26 we have that for any δ > 0

there exists a set E ⊂ (0, 1) with
∫
E

1/(1− r)dr <∞ such that

T k−1
φ (r)− 2T kφ (r) + T k+1

φ (r) ≤ δ log
1

1− r
+O(log T kφ (r))

for r /∈ E. By the argument of Proposition 3.2.8 in [15] we have the desired result. �

Proof of Proposition 24. We follow the proof by Fujimoto in [15] with some

modification adjusting to our case. We here pick up only the modified points. For

a hyperplane H, a vector v corresponds to H such that H is given by the equation:

〈w, v〉 = 0. We identify v with H and we use the same notation H for v. Namely the

hyperplane H is given by the equation 〈w,H〉 = 0. Set Φk(H) := 〈Φk, H〉 and

ϕk(H)(z) :=
||Φk(H)||2(z)

||Φk||2(z)
.

Let

ϕ =
|W (φ0, . . . , φm)|

||Φ(H1)||w(1) · · · ||Φ(Hq)||w(p)
,

where W (φ0, . . . , φm) is the Wronskian of φ. We define functions ĥ and h∗ as follows.

Choose a holomorphic function gk such that νgk = ν|Φk| (cf. (3.3) and set Φ̃k :=

Φk/gk (k = 0, 1, . . . ,m). Set

ĥ =

∏n−1
k=0 ||Φ̃k||2ε∏m−1

k=0

∏q
j=1 log2w(j)(a/ϕk(Hj))

for ε > 0, a > 0. Define h∗ by

ddc log ĥ = h∗ddc|z|2.

Corollary 2.5.5 in [15] says that for every ε > 0, taking suitable a > 0,
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(h∗)m(m+1)/2 ≥ C ||Φ0||2θ(q−2N+m−1)||Φn||2ĥ
||Φ̃0||2ε · · · ||Φ̃n−1||2ε

∏q
j=1 ||Φ(Hj)||2w(j)

for some positive constant C. Taking expectation Eo of both sides after taking log of

both sides, we have (3.2.15) in [15]:

θ(q − 2N +m− 1)Tφ(r) +N(r, ϕ)− ε(T 0
φ(r) + · · ·+ Tm−1

φ (r)) +
1

2
Eo[log ĥ(Zτr )]

≤ m(m+ 1)

2

1

2
Eo[log h∗(Zτr )] +O(1).

Let us estimate Eo[log h∗(Zτr )].

Eo[log h∗(Zτr )]

= Eo[log(1− |Zτr |2)2h∗(Zτr )] + 2 log
1

1− r2

≤ logEo[(1− |Zτr |2)2h∗(Zτr )] + 2 log
1

1− r2
(by Jensen’s inequality)

≤ (1 + δ)2 logEo
[∫ τr

0

(1− |Zs|2)2h∗(Zs)ds

]
+ (2 + δ) log

1

1− r2
(by Lemma 26)

= (1 + δ)2 logEo
[∫ τr

0

∆hyp log ĥ(Zs)ds

]
+ (2 + δ) log

1

1− r2
+O(1)

= (1 + δ)2 log+ Eo[log ĥ(Zτr )ds] + (2 + δ) log
1

1− r2
+O(1) (by Lemma 25)

for r /∈ E1 ⊂ (0, 1) with
∫
E1

1/(1− r)dr <∞. The last equality comes from N(r, ĥ) = 0

by definition of ĥ. By Lemma 3.2.13 in [15] note that

Nφ(r, ϕ) ≥ −
q∑
j=1

w(j)Nφ(r,Hj)
[m].

Eo[log ĥ(Zτr )] is bounded from below so that log+ Eo[log ĥ(Zτr )] − const.Eo[log ĥ(Zτr )]

is bounded from above. We also note that by Lemma 27 there exist a set E2 and C > 0

such that

εT kφ (r) ≤ εTφ + Cεδ log
1

1− r

except for r ∈ E2 with
∫
E2

1/(1 − r)dr < ∞. Taking E = E1 ∪ E2 and writing δ again

for δ/2 +mCεδ, we have the desired conclusion. �

Finally we apply the ergodic theorem to the Second main theorem. Let η be the

uniformization function, ρt = log (1 + |Zt|)/(1− |Zt|) and τ̃ρ = inf{t > 0 | ρt ≥ ρ}. This

is the first exit time from Dr when ρ = log (1 + r)/(1− r). Namely

τ̃ρ = τr.
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Recall that η is independent of choice of the universal covering map φx. As mentioned

at Proposition 18,

Tφ(r) = T̃x(τ̃ρ) = πEx

[∫ τ̃ρ

0

ζ · η(Xs)ds

]
= πEo

[∫ τr

0

ζ ◦ φx(Zs)η ◦ φx(Zs)ds

]
,

where ζ is the energy density of f with respect to ω defined in (2.4). We use the following

lemma:

Lemma 28. i) ρt/t→ 1/2 (t→∞) a.s.

ii) τ̃ρ/ρ→ 2 (ρ→∞) a.s. and in L1(Pz) (z ∈ D).

Proof. i) Set k(z) = 2 log 1/(1− |z|2). Then 1
2∆hypk(z) = 1. By Ito formula

k(Zt)− k(Z0) = Mt + t, (3.7)

where Mt = b(at) with at =
∫ t

0
||∇k||2hyp(Zs)ds and bt is one-dimensional standard Brow-

nian motion. By direct calculation ||∇k||2hyp(z) = 4|z|2 ≤ 4. From law of iterated loga-

rithm of Brownian motion (cf. [25]) |Mt| ≤ 2
√
t log log 4t for large t a.s. Thus k(Zt)/t→ 1

a.s.

ii) i) implies that τ̃ρ/ρ→ 2 (ρ→∞) a.s.

By (3.7)

2ρ− 4 log(1 + |Zτ̃ρ |)− k(Z0) = Mτ̃ρ + τ̃ρ.

Taking expectation of both sides,

Ez[τ̃ρ] = 2ρ+O(1),

since Ez[Mτ̃ρ ] = 0.

On the other hand ∣∣∣∣ τ̃ρρ − 2

∣∣∣∣ ≤ M∗τ̃ρ
ρ

+
4 log 2 + k(Z0)

ρ
,

where M∗τ̃ρ = sup0≤t≤τ̃ρ |Mt|. By Burkholder inequality (cf. [25])

Ez[M∗τ̃ρ ] ≤ const.Ez[τ̃
1/2
ρ ] ≤ O(

√
ρ).

Hence

Ez
[∣∣∣∣ τ̃ρρ − 2

∣∣∣∣] ≤ O( 1
√
ρ

)
. �

Let

ξ := ζ · η. (3.8)

If ξ is integrable with respect to mP , by the ergodic theorem (Lemma 15) there exists a



498 A. Atsuji

measurable set G ⊂M such that mP (G) = 1 and for any x ∈ G

1

t

∫ t

0

ξ(Xs)ds −−−→
t→∞

ξ∗(x) Px-a.s. (3.9)

with a leafwise constant function ξ∗ satisfying∫
M

ξ∗(x)dmP =

∫
M

ξdmP . (3.10)

Then

τ̃ρ
ρ
· 1

τ̃ρ

∫ τ̃ρ

0

ξ ◦ φx(Zs)ds −−−→
ρ→∞

2ξ∗(x) Po-a.s..

Take x ∈ G and φx. We first consider the case when ξ is bounded. We note∣∣∣∣∣ τ̃ρρ · 1

τ̃ρ

∫ τ̃ρ

0

ξ ◦ φx(Zs)ds− 2ξ∗(x)

∣∣∣∣∣
≤

∣∣∣∣∣ τ̃ρρ · 1

τ̃ρ

∫ τ̃ρ

0

ξ ◦ φx(Zs)ds− 2
1

τ̃ρ

∫ τ̃ρ

0

ξ ◦ φx(Zs)ds

∣∣∣∣∣+

∣∣∣∣∣2 1

τ̃ρ

∫ τ̃ρ

0

ξ ◦ φx(Zs)ds− 2ξ∗(x)

∣∣∣∣∣
≤ sup
x∈M

ξ ·
∣∣∣∣ τ̃ρρ − 2

∣∣∣∣+ 2

∣∣∣∣∣ 1

τ̃ρ

∫ τ̃ρ

0

ξ ◦ φx(Zs)ds− ξ∗(x)

∣∣∣∣∣ .
Since ξ is bounded and τ̃ρ/ρ→ 2 in L1(Po), by dominated convergence theorem we

have

1

log 1/(1− r)
Tφ(r) −−−→

r→1
2πξ∗(x). (3.11)

From this with Proposition 24 we have the following defect relations.

Define

δφ(H)[m] := lim inf
r→1

(
1− N(r,H)[m]

Tφ(r)

)
and

δφ(H) := lim inf
r→1

(
1− N(r,H)

Tφ(r)

)
.

Obviously δφ(H) ≤ δφ(H)[m]. Then a defect relation for the former implies the defect

relation (0.1) for the latter mentioned in the introduction.

Theorem 29. Assume (M,L, S), T and f satisfy the assumption of Theorem 3

and assume φx : D → Lx is the universal covering map with φ(o) = x and φ = f ◦ φx.

Let H1, . . . ,Hq with q > 2N −m + 1 be hyperplanes in Pm(C) located in N -subgeneral

position and ξ be defined in (3.8). If ξ is integrable with respect to mP ,
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q∑
j=1

w(j)δφ(Hj)
[m] ≤ m+ 1 +

m(m+ 1)

4πξ∗(x)
,

where w(j) (j = 1, . . . q) are Nochka weights and ξ∗(x) is a leafwise constant function

appearing in (3.9). In particular, if H1, . . . ,Hq are in general position,

q∑
j=1

δφ(Hj)
[m] ≤ m+ 1 +

m(m+ 1)

4πξ∗(x)
. (3.12)

Proof. If ξ is bounded, this follows immediately from Proposition 24 and (3.11).

When ξ may be unbounded, we set ξl = min{ξ, l} (l = 1, 2, . . . ) and define

T
(l)
φ (r) = Ex

[∫ τ̃ρ

0

ξl(Xs)ds

]
.

By the above argument, there exists a leafwise constant function ξ∗l (x) such that

1

log 1/(1− r)
T

(l)
φ (r) −−−→

r→1
2πξ∗l (x)

for mP -a.e. x. Obviously ξ∗l (x) ≤ ξ∗l+1(x) ≤ ξ∗(x) (l = 1, 2, . . . ) so that liml→∞ ξ∗l (x) ≤
ξ∗(x). By (3.10) and monotone convergence theorem∫

M

ξ∗(x)dmP =

∫
M

ξ(x)dmP = lim
l→∞

∫
M

ξl(x)dmP =

∫
M

lim
l→∞

ξ∗l (x)dmP .

These imply liml→∞ ξ∗l (x) = ξ∗(x) mP -a.e. x. Nochka weight satisfies (cf. [15, p. 71])

q∑
j=1

w(j) = θ(q − 2N +m− 1)m+ 1,

if q > 2N −m+ 1. From Proposition 24 with this, we have

q∑
j=1

w(j)

(
1− Nφ(r,Hj)

[m]

Tφ(r)

)
≤ m+ 1 +

m(m+ 1)

2
(1 + δ) log

1

1− r
/T

(l)
φ (r) +O(log Tφ(r))/Tφ(r).

Hence we have

q∑
j=1

w(j)δφ(Hj)
[m] ≤ m+ 1 +

m(m+ 1)

4πξ∗l (x)
.

Letting l→∞, we have the desired inequality. �

The above theorem looks much better than Theorem 1 if ξ∗(x) > 0. Under the

assumption of Theorem 1 it may happen that η∗(x) = 0 for some points of positive
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measure. Ergodicity of harmonic measure ensures this property.

Corollary 30. Assume the assumption of Theorem 3. The defect relation (3.12)

holds with

ξ∗(x) =

∫
M

ξdmP > 0.

If
∫
M
ξdmP =∞,

q∑
j=1

δφ(Hj)
[m] ≤ m+ 1.

Proof. We note that if
∫
M
ξdmP =∞,

lim
r→1

1

log 1/(1− r)
Tφ(r) =∞.

In fact,

lim inf
r→1

1

log 1/(1− r)
Tφ(r) ≥ lim

r→1

1

log 1/(1− r)
T

(l)
φ (r) = 2π

∫
M

ξldmP .

Let l→∞. Together with Proposition 24, we have the last assertion. �

Theorem 3 is shown immediately from these defect relations with noticing that if φ

omits H, δφ(H)[m] = 1 and
∫
M
ξdmP = α.

Remark. 1. Noguchi gave a simplified proof to Cartan–Nochka second main

theorem for holomorphic curves ([23]). We may be able to use his method instead of

Fujimoto’s. He used a lemma of logarithmic derivative due to Vitter. We remark that

we can obtain a lemma of logarithmic derivative for holomorphic maps from unit disc

using our method.

2. We may also be able to improve the above theorems in the case when the image of

f is degenerate using a method for degenerate holomorphic curves developed by Min Ru

[26]. We can modify his method similarly to this note. The key point is to use Lemma

26 and the ergodic theorem.
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