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Abstract. In a previous work, the authors introduced the notion of
‘coherent tangent bundle’, which is useful for giving a treatment of singularities
of smooth maps without ambient spaces. Two different types of Gauss—Bonnet
formulas on coherent tangent bundles on 2-dimensional manifolds were proven,
and several applications to surface theory were given.

Let M™ (n > 2) be an oriented compact n-manifold without boundary
and TM™ its tangent bundle. Let £ be a vector bundle of rank n over M™,
and ¢ : TM™ — £ an oriented vector bundle homomorphism. In this paper,
we show that one of these two Gauss—Bonnet formulas can be generalized to
an index formula for the bundle homomorphism ¢ under the assumption that
¢ admits only certain kinds of generic singularities.

We shall give several applications to hypersurface theory. Moreover, as
an application for intrinsic geometry, we also give a characterization of the
class of positive semi-definite metrics (called Kossowski metrics) which can be
realized as the induced metrics of the coherent tangent bundles.

1. Introduction.

Let M™ be an oriented closed n-manifold and (€, (, ), D) an oriented vector bundle
of rank n having inner product (, ) and a metric connection D, that is

X (&1,&) = (Dx&1,&2) + (61, Dx&e2)

holds, where & (i = 1,2) are sections of M"™ into £ and X is a vector field of M™. A
bundle homomorphism

p:TM" = (£,{,),D)
is called a coherent tangent bundle if it satisfies

Dx(Y) — Dyp(X) = o([X,Y]) (1.1)
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for any two vector fields X,Y on M™. When n = 2, the authors proved in [19] and [20]
that the two different types of Gauss-Bonnet formulas (x. is the Euler characteristic of
the oriented vector bundle &)

1 A 2 2 —
Xe = (% /MdeAW :) X(M_Q—X(Z\l_)—kS;'—SW7 (1.2)
2y (M?) = KdA, + 2/ Ky dT,, (1.3)
M?2 S,

under the assumption that the singular set of ¢ consists of As-points and As-points, where
K is the Gaussian curvature of the induced metric ds?o = ¢*(, ), the two subsets M3 are
defined in (2.23), d7,, is the length element on the ¢-singular set with respect to dsi7 and
S:; are the numbers of positive and negative As-points of o, respectively. If f : M? — R?
is a wave front, and (¢ :=)df : TM? — £ is the bundle homomorphism induced by f,
then As-points (resp. As-points) correspond to cuspidal edges (resp. swallowtails). The
precise definition of Ay or As-points are given in Section 2. The authors gave several
applications of this formula in [23] and [24] for surfaces in R>.

We remark that the second formula (1.3) depends on the metric connection D, but
the first formula (1.2) does not need information about the inner product. So it is
natural to expect that one can extend the formula (1.2) to higher dimensional cases.
The purpose of this paper is to accomplish this for even dimensional manifolds without
assuming condition (1.1) as follows: let ¢ : TM™ — £ be a homomorphism between the
tangent bundle TM™ and an oriented vector bundle £ of rank n on M™. Suppose that
¢ admits only Ag-singular points (the definition of Aj-singular points (k = 2,...,n) is
given in Section 2). We denote by 2y (k = 2,...,n) the set of Ag-singular points. When
k is odd, we can define the positivity and negativity of Ag-points (see Section 3). We
denote by 2 (resp. by 21, the set of positive (resp. negative) Aj-singular points. When
n = 2m is an even number, the Euler characteristic x¢ of the vector bundle £ satisfies
the following formula

Xe = (Mn )+ Z 2]+1 (mgj+1)) ) (1.4)
j=1

where x(M?Y) (resp. x(M™)) is the Euler characteristic of the subset M7} (resp. M)
of M™ at which the co-orientation induced by ¢ is (resp. is not) compatible with the
orientation of TM™ (cf. (2.23)), the number X(QlQJ_H) (resp. x(A3;41)) is the Euler
characteristic of Ql;jﬂ (resp. A, ;). In particular, X(23,, 1) (resp. x(A5,,.1)) is equal
to the number #Ql;rmﬂ (resp. #2U5,,,1) of positive (resp. negative) As,,1-points (cf.
Definition 2.2). For example, the formulas for n = 2, 4 are given by

Xe = X(M3) — x(M?) + #2435 — #23, (1.5)
Xe = X(ME) = x (M%) + x(AF) — x(A3) + #AT — #25. (1.6)

Formula (1.5) is a generalization of (1.2). As pointed out by Saeki and Sakuma in
[18], any closed orientable 4-manifold with vanishing signature admits C'*°-maps into
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R having only fold or cusp singularities. The Zs-version of our formula (1.4) was given
by Levine [11] (see [17, Remark 3.12]). If we set ¢ to be the derivative of a Morin map
f i+ M™ — N™ then we get (6.1), which is proved by Nakai [15] and Dutertre-Fukui
[4]. Index formulas in Zs-coefficients for globally defined Morin maps f : M™ — NP
(n > p) are given by Fukuda [6] and Saeki [17], and formula (1.4) is a generalization
of them. Our proof is independent of those in [15] and [4]. More precisely, we apply
the Poincaré—Hopf index formula for sections of oriented vector bundles. (In [15] and
[4], Viro’s integral calculus [25] is applied.) Our index formula does not rely on ambient
spaces, and we can give applications even for a case without ambient space (cf. Section
7).

In fact, one of the important applications of (1.4) is for a certain class of positive
semi-definite metrics. We define a class of positive semi-definite metrics on manifolds
called ‘Kossowski metrics” which was originally defined by Kossowski [10] for 2-manifolds.
The induced metrics of wave fronts in R""" which admit only Ay -singularities (k =
1,...,n) are all Kossowski metrics. Conversely, Kossowski [10] showed that germs of real
analytic generic Kossowski metrics on 2-manifolds can be realized as the first fundamental
forms of wave fronts in R>.

Let (£,¢,(, ), D) be a coherent tangent bundle over an n-manifold M™ then the
pull-back of {, ) by ¢ gives a Kossowski metric on M™ whenever ¢ admits only non-
degenerate singular points (Proposition 7.7). The converse assertion for n = 2 was proved
in [7]. In this paper, we generalize this for n > 3, namely, we show that each Kossowski
metric ds? induces a coherent tangent bundle (€, ¢,(, ), D) such that ds?> = p* ()
and the pull-back of the connection D by ¢ coincides with the Levi—-Civita connection on
the regular set of ¢ (cf. Theorem 7.9). We then get an index formula (cf. Corollary 7.12)
for Kossowski metrics on compact manifolds admitting only Aj,1-singularities (k =
1,...,n).

To give other applications of formula (1.4), the case of £ = TM™ is important. An
arbitrarily given bundle automorphism ¢ : TM™ — TM™ can be identified with the set
of (1,1)-tensors on M™ (n = 2m), and (1.4) reduces to the following identity:

2x(MZ) = Z (X(Ql;rj'+1) - X(Q[;j+1)> . (1.7)

Jj=1

In Section 6, we give several applications of (1.4) and (1.7) for geometry of hypersurfaces.
The paper is organized as follows: in Section 2, we give a precise definition of Ay-
singularities. In Section 3, the well-definedness of the positivity and negativity of odd
order Agi,i-singular points is shown. Moreover, we define characteristic vector fields
with respect to the homomorphism ¢ : TM"™ — £ and show the existence of such a
vector field X defined on M™. It is well-known that the sum of all indices of zeros of
a generic section Y of £ is equal to the Euler characteristic xz of the oriented vector
bundle £. Since the section Y := ¢(X) of £ has finitely many zeros, it holds that

Xe= > indy(Y)+ > indy(Y)+---+ Y ind,(Y), (1.8)

peEMm\En—1 pEUs PEAyn 11
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where
yrol— Ao U - UApiq

is the singular set of ¢. Using this, we prove (1.4) in Sections 4 and 5. In Section 6,
we prove Theorems 6.3 and 6.6. Several other applications are given in Section 6 and
Section 7.

2. Preliminaries.

Let M™ be an oriented m-manifold and ¢ : TM"™ — £ a bundle homomorphism
between the tangent bundle TM™ and a vector bundle & of rank n on M™. Then a point
p € M™ is called a singular point if the linear map ¢, : T, M" — &£, has a non-trivial
kernel, where &, is the fiber of £ at p. Since M™" is oriented, we can take a non-vanishing
n-form € defined on M™ which is compatible with the orientation of M™. We call Q an
orientation of M™.

On the other hand, £ is locally oriented, that is, there is a non-vanishing section
1 of the determinant line bundle of the dual bundle £* of £ defined on a neighborhood
U(C M™) of a given point p € M™. We call u a local orientation of &.

Then there is a (unique) C*°-function A : U — R such that

= AQ, (2.1)

on U, where ¢* 1 is the pull-back of i by ¢. A point ¢ € U is a singular point if and only
if A(¢) = 0. A singular point ¢ € M™ is called non-degenerate if the exterior derivative
dA does not vanish at ¢g. The bundle homomorphism ¢ is called non-degenerate if all the
singular points are non-degenerate. If ¢ is non-degenerate, the singular set

"= {g € M"; Ker(pg) # {01}

is an embedded hypersurface of M", where Ker(y,) is the kernel of the linear mapping
pg : TaM™ = &,.

DEFINITION 2.1. Let U be an open subset of M™. A function i : U — R is called
a p-function if there exists a C*°-function o : U — R\ {0} such that

h=o\ (2.2)
on U, where A is the function as in (2.1).

Needless to say, A itself is a p-function. However, A depends on the choice of €2 and
1, and this ambiguity is just corresponding to the choice of p-functions. In the following
discussion, we may replace A by an arbitrarily fixed p-function.

Suppose that ¢ is non-degenerate. Then the kernel of ¢ at each singular point
p € X" ! is of dimension 1. In particular, there exists a smooth vector field 7 defined on
a sufficiently small neighborhood U(C M™) of p such that the restriction

n:= ﬁ‘UﬁZ"—l
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has the property that 7, is the generator of the kernel of ¢, for each ¢ € U N E"~1. We
call  a null vector field and 7 an extended null vector field (cf. [21, p.733]). For a given
extended null vector field 7, we often denote by 1 the restriction of 7 to X"~*. We set

A= dA@), A= 07 = d(N) (), (2.3)
and

PN =d(F*N)@H) (k=0,1,2,...), (2.4)
inductively. As a convention, we set 79\ := \.

DEFINITION 2.2.  Let ¢: TM™ — £ be a non-degenerate bundle homomorphism
and X" ! its singular set. A point p € "~ ! is an Ay q-point (1 < k < n) if

(1) AMp) =7A(p) =+ =7"""A(p) = 0, i1*A(p) # 0, and

(2) the Jacobi matrix of the R*-valued C'*°-function
A= (\7A, 7N
is of rank k at p.
We denote by k11 the set of Ayy1-points on M™.

Suppose that ¢: TM"™ — £ is a non-degenerate bundle homomorphism. If k& =
1 (namely, for As-points), then dA = dX\ and the condition (2) of Definition 2.2 is
automatically satisfied. Moreover, if k = 2, the condition (2) also follows from (1). In
fact, the two differential forms dA and d(f\) are linearly independent at p, since dA(p) #
0, 7IA(p) = 0 and 72A(p) # 0. In other words, the second condition of Definition 2.2
comes into effect only for k£ > 3 if ¢ is non-degenerate.

Let ¢ : TM™ — &£ be a bundle homomorphism. Suppose that ¢ : TM™ — & is
non-degenerate and the singular set "~ ! is non-empty. Then the map

T 5 &= o(TM"|sn-1) (2.5)
is induced.

PRrROPOSITION 2.3.  In this situation, & is a vector bundle of rank n — 1 on X771,
and ¢ : TE" ™1 — £ is a bundle homomorphism.

We call ¢ the reduction of ¢. By Proposition 2.3, £ is a subbundle of codimension
one of £.

ProOF. We fix a point p € X"~ ! arbitrarily. It is sufficient to show the existence
of linearly independent local sections s1, ..., s,_1 of € defined on a neighborhood of p in
¥"~1, Since ¢ is non-degenerate, there exists an extended null vector field 7 defined on a
local coordinate neighborhood (U;x1,...,x,) centered at p. Without loss of generality,
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we may assume that n = 9/0z,, holds at p. Since the kernel of ¢ is one dimensional,
sj = (0/0z;) (j =1,...,n— 1) has the desired property. O

The following two assertions (cf. Theorems 2.4 and 2.5) gives fundamental properties
of the reduction homomorphism.

THEOREM 2.4.  Let X" be the singular set of a non-degenerate bundle homomor-
phism @ : TM"™ — E. Let A\ : U — R and 1 be a p-function and an extended null vector
field defined on an open subset U(C M™), respectively. Then the following assertions
hold:

1) The singular set X" 2N U of ¢|u satisfies
2

YPNU={qeX" 'nU; i, e T,X" '} ={ge X" 'nU; A=\ =0}.

(2) A is a p-function defined on X1 NU.

PROOF. It can be easily checked that 7, € T,%" ! if and only if ¢ € ¥"~2 for each
g € "1 NU. Thus, we get the equality

YPNU={qex" 'nU; i, €T, '} ={qge ="' nU; iAq) = 0},

proving the assertion (1).

If ¢ has no singular points on X"~!' N U, then 7, ¢ T,X""! for all ¢ € X" ' NU,
and thus A has no zeros, so the assertion (2) is trivially true. So we may assume that
the singular set ¥""2 N U of ¢ is not empty.

We now fix a point p € "2 NU, and take a local coordinate system (V;yi,...,¥n)
centered at p such that V' C U. Since ¢ is non-degenerate, we may assume that O\/Jy; #
0 at p. By the implicit function theorem, there exists a function y1(ya, ..., y,) such that
y1(0,...,0) =0 and

)‘(y1<y27"'ayn)?y2a--~7yn) =0.
If we set
T =N, T =Y (j=2,...,n), (2.6)

then (W;x1,...,2,) gives a new local coordinate system at p if we choose W(C V)
sufficiently small. We can write

=00+ ;0 (2.7)
j=2

on X" NW, where we set
0; = 0/0x; (j=12,...,n).

Then we have that
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b(g) =7Nq)  (geX"'nW). (2.8)

Since 7A(p) = 0 and 7j(p) # 0, we may assume that co(p) # 0 without loss of generality.
If we set e; :== p(0;) (i =1,2,...,n), then

€y = ——e| — Z fjej (29)

holds on X"~! NW for a sufficiently small W. We fix an inner product { , ) on £. We
can take a local unit section u of £ defined on X"~' N W such that u is orthogonal to
e1,...,en. Then & defined by (2.5) is equal to the subbundle of £ which is orthogonal
to w. Let pu be a local orientation of £ on W. It is obvious that u, e, es, ..., e, are
linearly independent on X"~ N W and so we may assume that

0:=u(u,er,es,...,e,)

is a positive valued function on "' N W. Since £ is the subbundle of & which is
orthogonal to u,

(o1, .., vp1) = (g, U1, ..., V1) (v1,..., V1 € f:'q, qgew)

gives a local orientation of £, and a p-function AW = Rof € is given by

Ai=ji(eq,...,e,) = plu,eq, ... e,)

A o
= _llu/(ua €1,€3,..., en) = _777)‘7
C2 C2
which proves the assertion (2), since p is an arbitrarily fixed point of "1 N U. O

Moreover, the following assertion holds.

THEOREM 2.5.  Let k be an integer satisfying 1 < k <n. Under the same assump-
tions as in Theorem 2.4, p € U is an Ayy1-point of ¢ if and only if p (is a non-degenerate
singular point of ¢ and) is an Ag-point of ¢, where Aq-points mean regular points.

The restriction of the null vector field 77 to "' is not tangent to X"~ ! in general.
To prove Theorem 2.5, we now construct an extended null vector field f as a modification
of 77 as follows: as in the proof of Theorem 2.4, we fix a point p. Let (W;xq,...,2,) be
the local coordinate system centered at p given in the proof of Theorem 2.4. By (2.7)
and (2.8),

n

C=1i— (AN [ = ;0 (2.10)

=2

gives an extended null vector field of ¢ on X"~ N W. Let uy,...,u, be fixed smooth
functions on W. For two C'*°-functions f, g on W, we write
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f=g mod (... ur)
if there exist C°°-functions h, ..., h, defined on W such that
f—g=hipr+ -+ hrpr.

The following lemma is obvious:

LEMMA 2.6. If f =g mod (u1,..., ), then it holds that

if =ng mod (pr, ..., (i1, -« ).
We prove the following assertion.
PROPOSITION 2.7.  The equalities
PHAX= (A mod (A, ..., 7PN (G=1,...,k—1) (2.11)

hold on W.

Proor. We prove the assertion by induction on j. If j = 1, we have that (cf.
(2.10))

CN) = (7= (3X)91) (7A) = 7(7A) = TAIN) e, =7°X mod (7).
So we now assume that (2.11) holds and consider the case of j + 1. It holds that
@A) = C(E (@A) = A (1A) = M (A, -
In particular
MmN = (V) mod (7). (2.12)

On the other hand, applying Lemma 2.6 to (2.11), we have

(¢ N) =A@ A mod (A, TN, (2.13)
By (2.12) and (2.13), we get the assertion for j + 1. O

PROOF OF THEOREM 2.5. By (1) of Theorem 2.4, p € X" ! is an Ap-point if and
only if 7A(p) # 0. By (2) of Theorem 2.4, 7 is a @-function, and thus 7A(p) # 0 if and
only if p is a regular point of ¢. This proves the assertion for k = 1. So we now consider
the case that & > 2. We set A1 := 7\. Since k > 2, we have

Ap) = Mi(p) = 0. (2.14)
Under this assumption (2.14), p satisfies (1) of Definition 2.2 if and only if

iAi(p) = =7""2Ai(p) =0, 7 A (p) #0. (2.15)
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By Proposition 2.7, this is equivalent to the condition

Oulp) == F ) =0, FIn(p) #0. (2.16)
On the other hand, we can take a local coordinate system (1, ...,x,) centered at p such
that (cf. (2.6))
(1) Azy(p) # 0 and Ap, (p) = -+ = Ae, (p) = 0,
(2) (z2,...,7,) gives a local coordinate system of ¥"~1 at p.

The existence of this coordinate system yields that p satisfies (2) of Definition 2.2 if and
only if the Jacobi matrix of the R*~!-valued C*°-function

Ay = (A7) = (AL AAL L 3TN
is of rank k£ — 1 at p. By Proposition 2.7, A; has the same rank as the function
A= (A, O, 2N
at p. Together with (2.16), we get the assertion. O
For the sake of simplicity, we denote 7\ as in (2.3) by A, and
A=0XA A:=a2A ..., AR =gk (2.17)

from now on.

Let p be an Aj41-point of a non-degenerate homomorphism ¢ : TM™ — £. We
fix an extended null vector field 77 defined on a neighborhood U of p. Then for each
j=1,...,k—1, it holds that (cf. Definition 2.14)

(1-5) A(p) = A(p) =--- = AU"D(p) =0, and
(2-7) the Jacobi matrix of the R7-valued C®-map A := (A, A, ..., A\U=D) is of rank j at
P.

By the implicit function theorem, there exists a neighborhood V;(C U) of p and an
(n — j)-dimensional submanifold S™~7 such that

S"I ={qeV;; Mq) = Mg) = --- = A\U7Y(g) = 0}. (2.18)
So we set V := ﬂ?zl V.

LEMMA 2.8.  The restriction |y : TV — E|v of ¢ induces the j-th non-degenerate
reduction homomorphism

()P TRy — €9 (=1, k)
such that the singular set E?;jfl of (¢lv)Y) satisfies

ey = gl (2.19)
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and \9) : V — R gives a (p|v)9) -function, where £ is the singular set of (p|y )=,

PrOOF. When j = 1, Theorem 2.4 implies the assertion. We show the assertion
inductively. We assume that the (j — 1)-th reduction (p[y)0~D : TS 7+ - 61
exists and the equality

wy =g (2.20)

holds and AU=Y is a (p|y ) ~V-function. Since p is an Ay i-point, Theorem 2.5 yields
that p is an Ay_; o-point of (¢|y)¥~Y. Since k > 4, the reduction

(¢ly)9) ;ngﬂ' —EW,

is non-degenerate if we choose a sufficiently small V', where E(}fj s the singular set of
(@)@, Then (1) of Theorem 2.4 implies that

ST =g ey g, € TRV
Since 7, € T, %17 holds if and only if
A (g) = dA\T™D (ng) =0,
we have that
Sy = {ee sy n, e LIV = {ge 2777 AV (g) = 0.
Moreover, by (2.20),
ST = {ae Sy A (q) =0} = {ge M AV () =0} = 57T (2.21)

We fix a (p|y)¥)-function A, : 2777 — R. Since we have shown that (¢]y)) is non-
degenerate, d\; # 0 on E?;jfl. By (2.21), the zeros of AU) coincide with those of Aj.
Then the division property of C'*°-functions yields that there exists a C*°-function germ
o on X777 such that

A9 =g,

Since dAU)(p) # 0 by (2) of Definition 2.2 we have o(p) # 0, namely AU) is also a
(¢|v)¥)-function. Thus we proved the j-th step of the induction procedure. O

Since the singular set of the j-th reduction ¢) does not depend on the choice of A
and 77, we get the following assertion.

PROPOSITION 2.9.  Let p be an Agy1-point of a non-degenerate homomorphism
@ : TM"™ — &, and 1 an extended null vector field defined on a neighborhood U of p.
Then there exists a neighborhood V(C U) of p such that

E?/_j ={qeViXNg)=--= )\(j_l)(q) =0}
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—j+1 . = —j+1 <
={qgexy 7T N, e T} (j=1,...,k)

is an (n — j)-dimensional submanifold of V.. Moreover, each E’&fj does not depend on
the choice of A and 7). Furthermore, the following equalities hold

A NV =0 I\ SE 2 NV =S5 A\ sn ko NV =337k
where W11 (j=1,...,k) is the set of Ay-points of ¢.

In this paper, we mainly discuss on bundle homomorphisms having only Ajyi-
singularities (1 < k < n), so we give the following definition.

DEFINITION 2.10. A non-degenerate homomorphism ¢ : TM"™ — £ is called a
Morin homomorphism if the set of singular points of ¢ consists of Ag-points for k =
2,3,...,n+ 1. A Morin homomorphism ¢ is called of depth k if Ayy1-points exist but
there are no Ay yo-points on M™.

The following assertion follows immediately from the definition of Morin homomor-
phisms.

ProrosiTION 2.11.  Let ¢ : TM™ — & be a non-degenerate homomorphism and
p € M™ an Agy1-point. Then there exists a neighborhood U of p such that the restriction
of ¢ into U gives a Morin homomorphism.

ProOF. Take an extended null vector field 7 defined on U. Since p is an Ay41-
point, there exists a neighborhood U of p such that

e \¥) £0on U, and
e the Jacobi matrix of A as in Definition 2.2 is of rank k on U,

where )\ is a local ¢-function defined on U. Let ¢ € U be a singular point of ¢. Then
there exists a positive integer j(< k) such that

AO(>g) =-.. = AU=N(g) = 0, A9 (q) # 0.
Then ¢ is an Aj41-point, proving the assertion. O
Moreover, as a corollary of Theorem 2.5, we get the following assertion.

PROPOSITION 2.12.  Let ¢ : TM™ — £ be a Morin homomorphism of depth k(> 2).
Then its reduction ¢ : T~ — &€ is a Morin homomorphism of depth k — 1.

Suppose that ¢ : TM™ — £ is a Morin homomorphism of depth k. By Proposition
2.9,

S i={pe M™; Ap)=---=AU"D(p) =0}  (j=1,....k)

does not depend on the choice of a p-function A and the extended null vector field 7,
that is, it is well-defined as an (n — j)-dimensional submanifold of M™, and
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Ap =T TIN\D2 L, W =D\ 9y =R
In this case, we give the following conventions
Wppjr1 =2" "I =0 (1<j<n—k).

We now consider the case that £ is orientable. Then, there is a non-vanishing section
w of the determinant line bundle of the dual bundle £* of £ defined on M™. We call p
an orientation of £. In this case, there is a unique C*°-function A : M"™ — R such that

O =AQ, (2.22)

where € is an orientation of M™. We call X the ¢-function associated to p and €2 defined
on M™. We set

M} :={pe M"; X(p) > 0}, M" :={pe M"; X\p) <0}. (2.23)
Then X"~ ! coincides with the boundary dM? = dM".

DEFINITION 2.13. Let ¢ : TM™ — £ be a non-degenerate bundle homomorphism
and A\ a ¢-function associated to p and Q. A @-function 7 : U — R defined on an open
subset U(C M™) is called an oriented p-function if there exists a positive valued function
o€ C®(U) such that 7 =0 on U.

Our definition of Morin homomorphisms is motivated by the existence of the fol-
lowing two typical examples: Let m, n be two positive integers. Two differentiable
map germs f;: (R™,p;) = (R",q;) (i = 1,2) are right-left equivalent if there exist dif-
feomorphism germs #: (R™,p1) — (R™,p2) and ¥ : (R",q1) — (R",q2) such that
Vo fi=faod.

DEFINITION 2.14. The Morin-k-singularities (1 < k < n) are map germs which
are right-left equivalent to

f('rla ... 7xn) = (xlxn + $2(xn)2 + -+ xk—l(xn)kil + (xn)kJrla Tlyen- 7xn—1)
at the origin. The Morin-0-singularities mean regular points.

EXAMPLE 2.15. Let M™ and N be oriented n-manifolds, and let f: M™ — N"
be a C°°-map having only Morin singularities. Then the differential df of f canonically
induces a Morin homomorphism (cf. Appendix of [21])

p=df :TM" — & == f*TN".

Let wps» and py» be the fundamental n-forms of M™ and N™, respectively. Then there
exists a C°°-function A on M™ such that f*uy» = Awpsn, which gives an oriented ¢-
function. The set MY (resp. M™) coincides with the set where A > 0 (resp. A < 0).
The sign of A coincides with the sign of the Jacobian of f with respect to oriented
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local coordinate systems of M™ and N™. In this case, Morin-k-points of the map f are
Aj41-points of the homomorphism ¢ = df (see [21, Theorem A1]). When (N, ds?) is a
Riemannian manifold, then the pull-back bundle f*T"N™ on M™ has a canonical coherent
tangent bundle structure (cf. [24]).

DEFINITION 2.16.  The Ajy1-type singularity (or Ag4i-front singularity) is a map
germ defined by

k k
X | b+ DtF 24> (= Py, —(k + 25 = "t lay, Xy (2.24)
j=2 j=2
at the origin, where X = (¢, zo,...,x,) and X; = (z2,...,z,). Its image coincides with

the discriminant set {F = F; =0} C (R"";up,...,u,) of the versal unfolding
F(t,ug,. .. up) = t"2 fupth + - ugt + uo. (2.25)

By definition, Aj-front singularities are regular points. A 3/2-cusp in a plane is an
As-front singularity and a swallowtail in R® is an As-front singularity.

EXAMPLE 2.17. Let f : M™ — R™"! be a wave front which admits only A -
type singularities (k = 1,...,n). Suppose that f is co-orientable, that is, there exists
a globally defined unit normal vector field v along f. Let f*TR""" be the pull-back
of TR™"! by f, and consider the subbundle & of f*TR""" whose fiber &, at p € M™
is the orthogonal complement of v,. Then the differential df of f induces a bundle
homomorphism

pp=df :TM" 3 v+—df(v) € &

called the first homomorphism of f as in [22, Section 2], which gives a Morin homomor-
phism (cf. Appendix of [21]). Consider the function

Ai=det(foy,. oy fons V),

where f,, :==0f/0x; (i =1,...,n)and (z1,...,x,) is an oriented local coordinate system
of M™. Then A is an oriented ¢-function of £, and the set M} (resp. M) coincides
with the set where A > 0 (resp. A < 0). Moreover, Aj1-front singular points of the map
f are Aj41-points of the homomorphism ¢ = df (see [21, Corollary 2.5]). As in the case
of the previous example, £; has a canonical coherent tangent bundle structure (cf. [24]).

REMARK 2.18. Asseen in Examples 2.15 and 2.17, our definition of Ag-points gives
a unified intrinsic treatment of singularities of both Morin maps of the same dimension
and the Aj-singularities appearing in hypersurfaces in R"*1. In this intrinsic treatment,
the usual k-th singular points for Morin maps and the Aj1-points for wave fronts are
both regarded as Ay, 1-points of bundle homomorphisms. In other words, the order of
singularities of Morin maps is not synchronized with the order of singularities of the
corresponding bundle homomorphisms. For example, a fold (i.e. a Morin-1-singularity)
and a cusp (i.e. a Morin-2-singularity) induce an As-point and an As-point of bundle
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homomorphism, respectively.

3. Characteristic vector fields.

We fix a Morin homomorphism ¢ : TM"™ — £, where M™ is an oriented compact n-
manifold. We now suppose that £ is oriented, and fix an oriented ¢-function A : M™ — R.
Then the singular set "7 (j = 0,...,n) of the (j — 1)-th reduction =) defined in
the previous section is an orientable submanifold of M™, unless it is empty.

PROPOSITION 3.1.  Ifk (2 < k < n) is even, then the sign of the function \*) does
not depend on the choice of the extended null vector field 7).

PRrROOF. Even if we change the extended null vector field 77 to —7, the sign of the
function A®) on the set "% does not change, since k is even. O

Hence, for each even integer k (2 < k < n), we can set
s = {pexnh AW (p) >0}, 2= {pexnh AW (p) <0}

As a convention, we define ¥ = M} and X" = M", where MY are as in (2.23). Also,
the following assertion holds:

PROPOSITION 3.2.  Let k be an odd positive integer, and p an Agyi-point. Then
the scalar multiple \¥)n) of the null vector field n along X"~ % points toward the domain
Ziﬁk“ at p, where X" := M".

PrROOF. We now take a Riemannian metric ds? on M™. We denote by dsfkkJrl the
Riemannian metric of ¥ #*1 induced by ds?>. Then the hypersurface ¥"* embedded
in X" ~#+1 can be characterized as the level set A\(*~1) = (. Then we have that

ds? i (p, grad AE7D),) = da(F=D (77,) = AP (p),

where “grad” denotes the gradient of the function with respect to the metric dsfl_ ot
Thus ds?_, . (A®7, grad(A~1))) is positive at p. Since grad(A*~V) gives a normal
vector field along "% pointing toward Zi_k"'l, the assertion is proven. O

DEFINITION 3.3. Let ¢ : TM™ — £ be a Morin homomorphism and p an Aoy, 1-
point. Since the sign of A(2¥) (p) does not depend on the t-ambiguity of the choice of
extended null vector field 7 (cf. Proposition 3.1), we call p a positive Agj11-point (resp.
a negative Agjy1-point) if \2*)(p) is positive (resp. negative).

The set of positive (resp. negative) Agk1-points is denoted by Ql;rkﬂ (resp. 2Asy 1)
Then the equalities

Ay = {0 € Anpyn s AW (p) > 0} = X2\ X2t

3.1
pey o= {p € Wapy1; APH(p) < 0} = £ 72\ mnm2ht 1)

hold. If n = 2 and f : M2 — R? is a wave front, then positive (resp. negative) As-points
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as in Example 2.17 correspond to positive (resp. negative) swallowtails.
Let X be a vector field of M™ which vanishes at p € M™. Take a local coordinate
system (U;z1,...,2,) at p and write
0 0
X =& — 4. v
51 8.’1)1 + + gn Oz

n

Then a zero p of X is called generic if the Jacobian of the map

Usqr— (&(q),....&(q) € R”

does not vanish at ¢ = p. A vector field X defined on M™ is called generic if all its zeros
are generic.

DEFINITION 3.4. Let ¢: TM™ — £ be a Morin homomorphism of depth k (k =
1,...,n). A C*®-vector field X defined on M™ is called a characteristic vector field of ¢
if it satisfies the following three conditions.

(i) X is a generic vector field on M™ which does not vanish at any point of X" ~1.

(ii) For each j =n —k,...,n — 1, there exists a generic tangent vector field X; of %7
such that the equality ¢(X) = ¢(X;) holds on %7 and X has no zeros on ¥/ 71

(iii) For each A;y1-point p (I = 1,...,k) (namely, p € X"\ X"~1=1) satisfying p(X,) =
0, there exists a neighborhood U of p of M™ such that the restriction of X to
U N ¥~ coincides with X, ;41 on U N X"+ (cf. Figure 1). Moreover, if [ is
odd, X points into X! at p € B

REMARK 3.5. Let X be a characteristic vector field on M™. If k = n, then ¢(X)
must vanish at each A, 1-point. (In fact, since any null vector fields are tangent to :*
at each A, y1-point p, the property (ii) yields that X; points in the null direction at p,
and X = X; near p on X! by (iii).)

In this section, we shall construct a characteristic vector field, which will play a
crucial role in proving formula (1.4) in the introduction:

PROPOSITION 3.6.  Let M™ be a compact oriented manifold, and ¢ : TM"™ — £ a
Morin homomorphism. Suppose that £ is oriented. Then, there exists a characteristic
vector field defined on M™ associated to .

To prove the assertion, we prepare the following:

LEMMA 3.7.  Let M™ be a compact orientable manifold, and ¢: TM™ — & (n > 1)
a Morin homomorphism of depth k (k > 1) and X a generic vector field on X"~ such
that it does not have any zero on a compact subset C(C X"~1). (Here we are not assuming
that & is orientable.) Then there exists a vector field X satisfying the following properties:

(1) X is a generic vector field on M™ which has no zeros on £~ 1.

(2) o(X) = @(X) holds on X"~ 1.
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(3) X=X onC.

Proor. We fix a Riemannian metric on M™. Since M™ is orientable, we can take
n as a normal vector field defined on X"~ !. Taking § to be sufficiently small, there exists
a canonical diffeomorphism

exp : X" x [=6,6] — Nz(En—1)

such that ¢ — exp(g,t) is the normal geodesic of M™ with arclength parameter starting
from each ¢ € ¥"~! in the direction n. Here N5(X"~!) is the -tubular neighborhood of
¥n=tin M™ and N5(Z"—1) is its closure. Then

_ dexp(q, s)

n(q,s) = ———=

(g, 9) s

gives a unit vector field defined on N3(X"~!) as an extension of n. Take an open neigh-
borhood V of C as an open subset of X"~ ! such that the closure V of V is compact and
X has no zeros on V. Without loss of generality, we may assume that the normal vector

n is proportional to the null vector field on X*~1\ V. Let p: "~ — [0, 1] be a smooth
function such that

():{1 (if g € C),
PU=N0 (Gtqev).

Let W be the vector field on Ns(X"~!) obtained via parallel transport of X along each
normal geodesic s — exp(q, s). We set

W(g,s) == Wi(g,s)+ (s>p(q) + (1 — p(q))) Alg, s), (3.2)

which is a vector field on Ns(X"~1). Then W has no zeros on Ns(X" 1) since X has no
zeros on N5(X"~1). We then apply Lemma A.1 in the appendix by setting K = Ns(X7—1)
and get a generic vector field X defined on M such that ¢(X) coincides with ¢(X) on
$7~1 Tt can be easily checked that X is the desired vector field. O

nn!
Zn—l—i—l En_l_l

Figure 1. Proof of Proposition 3.6.

PROOF OF PROPOSITION 3.6. We prove the assertion by induction of the depth
k of the Morin homomorphism. So we firstly consider the case that £ = 1. Suppose that
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n > 2. Then X"~ ! is positive dimensional. We take a generic vector field X on X"~!
and apply the previous lemma by setting C' to be the empty set.

Next we consider the case that n = 1. Let pi,...,pm be As-points on M*'. Then
we can take an extended null vector field 7j; defined on a neighborhood U; of p; which
has no zeros on V;(C U;). We may assume that the V}’s are pairwise disjoint. Applying
Lemma A.1 by setting K = V; U---UV,,, we can get a generic vector field X on M such
that X =7; on Vj for j =1, 2,...,m, which gives the properties (i)—(iii).

We now assume that the assertion holds for £k — 1. We fix an inner product (, ) on
E. As in the proof of Theorem 2.4, we can take a unit section uw such that the induced
bundle € defined by (2.5) is the subbundle of & which is orthogonal to w. Using the
assumption of induction, there exists a vector field X satisfying the properties (i)—(iii)
on X! for £ by taking A to be a ¢-function. Let § be a small positive number such
that X has no zeros on C := N3(X"~2), where Ns(X"2) is a §-tubular neighborhood of
"2 in the Riemannian manifold X"~!. We apply Lemma 3.7 for X (see Figure 1), and
we get the vector field X satisfying the properties (1)—(3). Then X satisfies (i), (ii) and
(iii) by construction. The property (ii) follows from (2). O

4. Adapted coordinate systems and the two dimensional case.

PROPOSITION 4.1.  Let ¢ : TM™ — £ be a Morin homomorphism on an n-manifold
M™. Then there exists a local coordinate system (U;x1,...,x,) centered at an Ag11-point
p € M™ (k > 1) satisfying the following properties:

(1) Foreachj=1,...,k—1, the restriction of {0/0x+1,...,0/0x,} spans the tangent
space of X" at p,
(2) 0/0xy, gives an extended null vector field on U.

The local coordinate system (xy,...,x,) given in Proposition 4.1 is called a -
adapted coordinate system at p.

PrOOF. Let A: U — R be a p-function defined on a local coordinate neighborhood
(U;y1,...,yn) of p. Let 77 be an extended null vector field on U and 7 its restriction to
Y"1 N U. Then by (2) of Definition 2.2, we have that

AN A, ..., A1)
8(y17 cee 7yk)

£0.

By the implicit function theorem, there exist functions y;(yx+1,...,9n) (Jj = 1,...,k)
such that y;(0,...,0) =0 and

AT (@)@, ) =0 (G =1,..k),
where § = (Y11, ---,Yn) and A := X\. So if we set

T =\, Tg = A, col, T = \E=D g =1 (l=k+1,...,n),
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then ¢ := (x1,...,x,) gives a new local coordinate system at p satisfying the property
(1). Then the restriction 7|y« of the null vector field is a tangent vector field of X7 ~++1
along X"~ and can be written as

n
77|Zn—k+1 = E Cjaj,
j=k

where 8; := 9/0x; (j = k,...,n). Since 7 is transversal to £"* at p, the coefficient ¢y,
does not vanish. Let {g;}4<c : V — M™ be the local 1-parameter group of transforma-
tions generated by 77, where V(C U) is a neighborhood of p in M™ and € > 0 is a small
positive number. Then

P : (tl,tz, A ;tk—17tk7tk+17 e ,tn) — gtk(¢(t1,t2, A ,tk_l, U,tk+1, . ,tn))
gives a local diffeomorphism such that the equalities
d®(0/0ty) =n, d®(0/0ot;) = 0/dx (l=k+1,...,n)

hold, and they span the tangent space of X" **! when t; =ty = --- = t;, = 0. Thus the
inverse map ®~! gives the desired local coordinate system. O

Here we prove formula (1.4) for n = 2. Although this formula was proved as a
corollary of the Gauss—Bonnet type formula in [23] and [24], our proof in this section is
new.

Let X be a characteristic vector field associated to a Morin homomorphism ¢ :
TM? — £ of depth at most 2 on a compact oriented 2-manifold, and we assume that £
is oriented. Take a section Y of £ as Y := ¢(X). Then the following assertion holds:

PROPOSITION 4.2. Let Z(Y), Z(X) be the set of zeros on M? of Y and X, re-
spectively, and let Z(X1) be the zeros on X of X1 (as in Definition 3.4). Then it holds
that

Z(Y)n(M*\x') = Z(X), (4.1)
Z(Y)n (S'\ 29 = Z(X;) C A, (4.2)
Z(Y)NX? = As. (4.3)

PRrROOF. SinceY = p(X), property (i) in Definition 3.4 implies that Z(X) C Z(Y').
Since ¢ : T,M? — &, is a linear isomorphism when p € M? \ X!, we have (4.1). Since
Z(X1) N XY is the empty set, property (ii) of characteristic vector field yields

Z(Y)n 2\ 2% = Z(X)).

Since Y = ¢(X;) on X! and X; is proportional to a null vector at each As-point p, we
obtain (4.3). O

When n = 2, (1.8) reduces to
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Xe= Y. indy(Y)+ ) indy(Y)+ > ind, (V). (4.4)
peEM?\X1 pERA2 pERA3

PROPOSITION 4.3.  The first term of the right-hand side of (4.4) satisfies

> indy(¥) = X(M3) — x(M2). (4.5
pEM?2\T1!

PROOF. Let pbein Z(Y)\ X!, and X be an oriented ¢-function on a neighborhood
of p. We denote by sgn(A(p)) the sign of the function A at the point p. Since sgn(A(p)) =1
(resp. sgn(A(p)) = —1) if ¢, : T,M? — &, is orientation preserving (resp. orientation
reversing), we have that

ind,,(Y) = sgn(A(p)) ind,,(X) (pe M*\ ).
We set
MZ(0) = MZ\Ns(XY), MZ2(0):=M2\N5(Z') (6> 0),

where N5(21) is the §-tubular neighborhood of 3! as in the proof of Lemma 3.7, and the
overline means the closure operation. If we choose § sufficiently small, then Z(Y)N(M?\
¥1) is contained in M?(8) U M2 (6) and M3 (6) (resp. M2(4)) has the same homotopy
type as MZ (resp. M?). In particular, the following identity holds

D oidy(Y)= > indy(X)— D indy(X). (4.6)

pEM2\X1 peM? (8) pEM?2 (3)

Here, —X (resp. X) is an outward vector of M?Z(d) (resp. M2(5)) by property (iii)
of Definition 3.4 of the characteristic vector field X. Since the operation X +— —X is
orientation preserving, applying the Poincaré—Hopf index formula (cf. [14]), we have that

X(Mi):X(Mi(é)): Z ind,(—X) = Z ind,(X) = Z ind, (X).

pEM? (9) peEM?2(5) peM?

Similarly, we can also show that

X(2) = 3 ind, (),

peEM?
which proves the assertion. O

PROPOSITION 4.4.  The second term of the right-hand side of (4.4) satisfies
> ind,(Y) =0. (4.7)
pEU2

PRrROOF. We fix pin Z(Y)N (X' \ XY). Then p is an As-point. Let (U;z1,22) be a
p-adapted coordinate system as in Proposition 4.1 (for n = 2 and k = 2) around p which
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is compatible with the orientation of M?. Then by (2) of Proposition 4.1,
77 = 8/8:51

gives an extended null vector field on U. Let u be an orientation (i.e. a non-vanishing
section of the determinant bundle of £* which is compatible with the orientation of £
defined on M?) of £, and set

r () ()

Then ) is an oriented @-function with respect to the orientations of £ and M?2. Since
0/0z1 is an extended null vector field, ¢(0/dz;) vanishes on X! NU = {\ = 0}. Then
by the well-known preparation theorem for C'°*°-functions, there exists a section e; of £
such that ¢(0/0x1) = Aej. On the other hand, we set es := ¢(9/0z3). Then {e, ez}
gives a frame field of £ on U which is compatible with the orientation of £. In fact,

oo () () s i

and hence u(er,es) = 1. We set

0 0
X=86 57— +&— and Y = a1eq + azes.
8x1 33;‘2

Then it holds that

ay = N, ag = &o.

Since A vanishes on ! and since 9/dxy spans T,5! (cf. (1) of Proposition 4.1), we
have A(p) = Ay, (p) = 0, where A\, := 0\/Ox2. In particular, the equality (aq)y, =
Doy /Oy = 0 holds at p. Since the equalities (o), = Ay, &1 = A& also hold at p, we
have that

(a1)s (al)xz>) 3
sgn | det ! =sgn [ A1 (a2,
g ( <(O‘2)w1 (O‘Z)xg g ( gl( 2) 2)
= sgn (}\fl (52)@) = ind,(X7) sgn ()'\51) .
Here, we used the relation ind,(X7) = sgn(€2),,. In fact, by (1) of Proposition 4.1, one
can parametrize X! around p as

SPNU = {(w1,22) = (f(t),1); t € I},

where [ is a sufficiently small interval including 0 and f is a smooth function on I such
that df(0)/dt = 0. That is, ¢ can be taken as a local coordinate system of ¥!. Then
there exists a smooth function £ : I — R such that
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df 9 a>

~d -
Xlzfdﬁf<dtaxl+ax2

The condition (ii) of Definition 3.4 yields that

i, E_doe o
2 dt — dt Oz, = Oxo

Since df (0)/dt = 0, we have

3 0
ind,(X1) = sgn,_ (df) = sgn,, <5f§2> .

Since p € N5(X°) for sufficiently small §, the characteristic vector field X points in
the direction of M? = {\ > 0} at p. So the equality

sgn(&1) = sgn(X)
holds at p. Thus A(p)é;(p) > 0 and
ind,(Y) = ind,(X,).

Since Z(X1) C Ay and x(X!) = 0, applying the Poincaré-Hopf index formula for the
vector field X; on X', we get the assertion. U

By (4.4), Proposition 4.3 and Proposition 4.4, formula (1.4) follows immediately
from the following assertion:

PROPOSITION 4.5.  Let p be an arbitrarily given As-point. Then

1 (if peAd),

) = {—1 (if p € A3).

Proor. We take a g-adapted coordinate system (U;x1,x2) centered at p which
is compatible with the orientation of M?2. In particular, 7j := 0/0x5 is an extended null
vector field on U, and (9/dz2), € T,X'. Let u be a local orientation of £, and let
A= p(p(0/0x1),0(0/0x2)). We set ey := ¢ (0/0x1). Since (1) vanishes on ¥', there
exists a section es of £ on U such that ¢(9/0x2) = () = Aea. Since

A=p (<p (88:c1) P (;@)) = p(er, \e2) = Auler, ez),

we have p(ey, e2) = 1, which implies that {e;, ez} forms a frame field of £ compatible
with the orientation of £. We set

0 0
X = flaixl +£2871:2.

By (iii) and (i) of Definition 3.4, X, € T,%! and X, # 0, and hence we have & (p) = 0
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and &»(p) # 0. We now set
Y = aie; + azes. (48)

Then it holds that a; = &; and ay = A&. By (iii) of Definition 3.4, X is tangent to !
near p. Since A vanishes along X!, it holds that

0=d\X) = A, &1 + A&

on a sufficiently small neighborhood p in !, where we used the fact that A\, = A (cf.
(2) of Proposition 4.1). Since d\(X) vanishes along X! and 9/dxy € TE! at p, the fact
&1(p) = A(p) = 0 yields that the equalities

0= 6d(‘;\(X) = Az12:61 + Asy (fl)xz + )‘52 + )\(52)@
T2

= Aoy (E1)as + A2

hold at p. Since dA(p) # 0 and A, (p) = A(p) = 0, we can conclude that A, (p) # 0. In
particular, we have that

(€1)zs (p) = ===

Using the facts Ay, (p) = A(p) = 0, we have that

(@0 (€)n)
ndy(Y) = sg (d t(Am1<p>52<p> &(pum(p)))

— won [det [ €D (P) (&) (p)
= (dt(Am(p)sz(p) 0 >

~ s (@@)Am(p) (W)) — son (£)70))

Since the sign of an As-point coincides with the sign of 5\, Proposition 4.5 is proved. [

5. The proof of the index formula.

In this section, we prove our formula (1.4) for n-manifolds (n = 2m > 4).

Let M™ be an oriented manifold, and X a characteristic vector field associated to
a Morin homomorphism ¢ : TM™ — £. Suppose that £ is oriented. Let (U;x1,...,zy)
be a g-adapted coordinate system centered at an As-point p € M™ (cf. Proposition 4.1),
which is compatible with the orientation of M™. Suppose that Y := ¢(X) vanishes at p.
Then X has an expression

0 0
X =gt t g (5.1)

n

By a property of p-adapted coordinate systems,
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0

773:87x1

gives a null vector field. By (ii) in Definition 3.4, & # 0 holds. Moreover, the fact
©(X,) = 0 yields that

61(]7) 7é 0, gj(p) =0 (] = 2""7”)' (52>
LEMMA 5.1. It holds that
ind,(Y) = sgn (51 (p)x(p)) ind,(X,_1).

PRrOOF. Let p be an orientation of £, and set

n () o)

which is an oriented @-function on a neighborhood of p. We set

e; = p(0/0x;) (j=2,...,n).

Since 77 = 0/dx is an extended null vector field, by the preparation theorem for C'*°-
functions, we can write p(0/0x1) = Aeq, where ey is a local section defined on a neigh-
borhood of p. Since

/\:M(gp(ﬁil>7...,g&(ain)> = u(er, ... en),

we have u(ey,...,e,) = 1. In particular, {ej,...,e,} gives an oriented frame on the
vector bundle £ around p. So we can write

Y =aje; + - +ape,,  where  aj = {i’fl 8 i 3 (5.3)
We set
J = det(ouj)ijot.ms O = ggj
If J(p) # 0, it holds that
ind, (V) = sgn(J(p)). (5-4)
By (5.2) and (5.3), we have that
(a1)e,(p) = &1(P)Aay (P) # 0, (a1)ay(p) = -+ = (1), (p) = 0. (5.5)

Then (5.5) implies that
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(al):pl 0 . 0
J(p) ~ det (a2):r1 (042):172 oo (02)e,
(n)z, (@n)ay - -+ (),
(@2)z, -+ (a2)z,
= (1)q, det
(O‘n>12 e (an)wn
(52)@ (52)$n
= (aq)4, det ,

(gn)IQ st (gn)rn
because of (5.3). Thus, by (5.2), (5.4) and (5.5), we have that

ind, (V) = sgn(J(p)) = sgn((a1), ) sgn M

= Sgn(gl(p))‘:m (p)) indp(anl)' 0

We now prove the formula (1.4). Let M™ (n = 2m) be a compact oriented n-
manifold without boundary, and ¢ : TM™ — £ be a Morin homomorphism, where £
is an oriented vector bundle. We fix a characteristic vector field X as in the previous
section (cf. Proposition 3.6). Take a section Y of £ as

Y = p(X).

We denote by Z(X) and Z(Y) the set of zeros of X and Y, respectively. The following
assertion can be proved as in Proposition 4.2.

PROPOSITION 5.2. Let Z(X,—;) (j = 0,1) be the set of zeros for X,_;, where
X,, = X. Then it holds that

ZY)n(M™\ "1 = Z(X), (5.6)
Z(Y)n(Z"I\ "2 = Z(X,_1). (5.7)
By (1.8), it is sufficient to show the following assertion.
THEOREM 5.3.  The following identity holds
Z ind,(Y) = X(M?rm) - M2m + Z 2]+1 (Ql53+1)) .
pEM™ j=1

We prove the theorem by induction on the dimension n = 2m. We have already
shown that the formula holds for m = 1 in Section 4. So we now assume that the formula
1.4 holds for m — 1, and will prove the case for m. Let

QTS €
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be the reduction. Then it induces again the second reduction gé : TY"2 — €. Since
£ is oriented, we can take an oriented ¢-function A : M™ — R satisfying (2.22). By

Proposition 3.1, X is an oriented gé-function of € defined on X" 2. Since the restriction
of X to ¥" 2 is a characteristic vector field of £"72, the induction assumption yields
that

> indy (V) =Y (x(@j0) — X(Az50)) -
penn—2 j=1
On the other hand, as in Proposition 4.3, one can prove the following assertion:

PROPOSITION 5.4.  The first term of the right-hand side of (1.8) in the introduction
satisfies

S indy(Y) = x(ME) - x(M). (53)
pEMP\En—1

Now formula (1.4) for the 2m-dimensional case reduces to the following assertion:

PROPOSITION 5.5.  The second term of the right-hand side of (1.8) in the intro-
duction satisfies

> indy(Y)=0. (5.9)

peERn—1\xn—2

PROOF. We fix a point p € X"~1\ £"~2 satisfying Y, = 0 arbitrarily. By property
(iii) in Definition 3.4, there exists a vector field X,,_; on "1 such that Z(X,,_1) =
Z(Y)n (Ln=1\ ¥"72). By Lemma 5.1, it holds that

ind,(Y) = ind,,(X,_,)sgn (X(p)& (p)) -

By (iii) of Definition 3.4, £,0/0x; points into M} at p. Since d/0x; is an extended null
vector field, )'\8/8331 points also into M7 at p (cf. Proposition 3.2). Hence

sen(A(p)éi(p)) >0,
and ind,(Y) = ind,(X,,—1) holds. Since Z(X,_1) = Z(Y)N ("1 \ E"72) and T ! is
odd dimensional, it holds that

> ind, (V)= > indy(X,oq) =x(Z") =0. 0

pEXn—1\xn—2 peEXn—1

6. Applications.

In this section, we shall give several applications of the formula (1.7): recall that
a C®-map f: M?>™ — N?™ between 2m-manifolds is called a Morin map if the corre-
sponding bundle homomorphism ¢ = df as in Example 2.15 admits only Ag-singularities



442 K. Saji, M. UMEHARA and K. YAMADA

for k =2,...,2m +1 (cf. Remark 2.18).

THEOREM 6.1 ([15] and [4]). Let M*™ and N*™ be compact oriented 2m-
manifolds, and let f : M?™ — N2™ be a Morin map. Then it holds that

deg(f)X(N?™) = xX(MF™) = x(M2™) + 3 x(5511) = x(Az551), (6.1)
j=1

where deg(f) is the topological degree of the map f, and M_%_m (resp. M>™) is the set of
points at which the Jacobian of f is positive (resp. negative).

This formula is a generalization of Quine’s formula [16] for Morin maps between 2-
manifolds (see also [5]). It should be remarked that the numbering of Morin singularities
is different from the usual one (cf. Remark 2.18). For example, a fold (resp. a cusp)
singularity is an Ap-singular point (resp. an As-singular point) in (6.1).

PROOF OF THEOREM 6.1. Let & be the pull-back of the tangent bundle TN?™ of
N?™ by f. Then the map f induces a bundle homomorphism ¢y := df : TM?™ — € as
in Example 2.15. Since f is a Morin map, ¢y has only A,-points, and then the formula
follows from (1.4) using the fact that x. = deg(f)x(N?™). O

Next we give applications for immersed hypersurfaces in R*™!. Let M?™ be a

R*™ 1 o wave front. Suppose that there

compact oriented 2m-manifold and f : M?>™ —
exists a unit normal vector field v along f defined on M?™. Then it induces the Gauss

map into the unit 2m-sphere v : M?™ — S?™ and a family of wave fronts
fii=f+tv (te R),

each of which is called a parallel hypersurface of f. The Gauss map of f; is commonly
equal to v for all t € R. The Gauss map v can be considered as the limit lim;_, o, f;/t.

COROLLARY 6.2.  Let M?™ be a compact oriented 2m-manifold and f : M*™ —
R*™ L an immersion. Suppose that the Gauss map v is a Morin map. Then the singular
set of v satisfies identity (1.7) in the introduction, where M?*™ is the set of points at
which the Gauss—Kronecker curvature of [ (i.e. the determinant of the shape operator)
18 negative.

This formula is a generalization of the Bleecker—Wilson formula for Gauss maps of
immersed surfaces in R>.

PROOF OF COROLLARY 6.2.  We apply formula (6.1) for the Gauss map v of the
immersion f. Then we have that

2(degv) = X(Mim) - MQm )+ Z 2]+1 (Ql53+1)) :
j=1

Since f is an immersion, it is well-known that 2(deg v) is equal to y(M?™).
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Next, we show that M2™ (resp. M?™) coincides with the set where the Gauss—
Kronecker curvature is positive (resp. negative): Let ds? be the induced Riemannian

metric on M?™ by the immersion f, and let ey, ..., es,, be an oriented local orthonormal
frame field on M?™ such that

dV(ej):_/u‘jdf(ej) (]Zlaan)v

that is, eq, ..., es, are eigenvector fields of the shape operator of f, and 1, ..., p2, are
principal curvatures. Then we have that

2m
A:=det(dv(er), ..., dv(ean),v) = [ [ 1 = K, (6.2)
j=1

where K := pq - f9,, is the Gauss—Kronecker curvature of f. This A is positive (resp.
negative) if and only if K > 0 (resp. K < 0), which proves the assertion. O

Next, we show the following.

THEOREM 6.3. Let M?™ be a compact oriented 2m-manifold and f : M?*™ —
R>™Y g wave front. Suppose that f admits only Ag-front singularities (2 < k < 2m+1),

as defined in Definition 2.16. Then the singular set of f satisfies the identity

m

2deg(v) = x(M3™) = x(M>™) + > (x(A3;41) — xRAz;41)) - (6.3)

j=1

where deg(v) is the degree of the Gauss map v: M*™ — S*™ induced by f, and x(M3™)
(resp. x(M?2™)) is the Euler characteristic of the subset M2™ (resp. M>™) of M>™ at
which

)\ = det(fl’l""7f$2m7y)

is positive (resp. negative) for an oriented local coordinate system (x1,...,%Tam), where

fu, = 0f 0.

This formula is independent of the index formula for the Gauss map v (cf. Theo-
rem 6.1). In fact, the singular set of f does not coincide with that of its Gauss map in
general.

PROOF OF THEOREM 6.3. We apply (1.4) for the bundle homomorphism
opi=df : TM*™ — &

as in Example 2.17. Then it is sufficient to show that xg, is equal to 2deg(v). Let & be
a vector field on the unit 2m-sphere S?™. By parallel transport, &, (¢ € S*™) can be
considered as a vector in &, for p € v~1(g). Thus, £ induces a section € of € defined on
M?™ . Then the equalities
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Xe, = Y indy(€) =deg(v) > indy(¢) = deg(v)x(5™) = 2deg(v)

peEM?2m qes2m
hold, which proves the identity. O

Next, we give an application to parallel hypersurfaces of strictly convex hypersur-
faces.

THEOREM 6.4.  Let S*™ be the unit 2m-sphere, and let f : S*™ —s R*™! be a
strictly convex immersion, that is, the Gauss map v: S*™ — S*™ is a diffeomorphism.
Lett € R be a value such that the parallel hypersurface

ft . SQm R2m+1

has only Ay-singularities (k= 2,...,2m + 1). Then the singular set of fi satisfies (1.7)
and 1/K; can be extended as a C*°-function on S*™ and gives an oriented o;-function
for or = dfy (cf. Definition 2.1), where Ky is the Gauss—Kronecker curvature of fy.

The corresponding assertion for a convex surface f : §2 — R? is given by Martinez-
Maure [13] under the generic assumption that the Gaussian curvature is unbounded at
the singular set of f;, and proved in [24] for the general case. The above formula is a
generalization of it.

PrOOF OF THEOREM 6.4. We apply Theorem 6.3 for the bundle homomorphism
o = dfy : TS*™ — &,. Since f is convex, the Gauss map v: S?™ — S*™ is of degree
one. Since f = fy is an immersion, and the Gauss map v is common in the parallel
family {f;}+cr, we have that

X(ME™) + x(M2™) = x(8*™) = 2deg(v)

m
= X(Mim) - M2m )+ Z 2g+1 (le_j+1)) )
7j=1

where M3™ = S3™ (resp. M2™ = 52™) is the set where A\; > 0 (resp. A\, < 0). Here,
A = A; is the function as in the statement of Theorem 6.3. Moreover, since v is an
immersion, one can take the Riemannian metric do? on S?™ as the pull-back of the
canonical metric of S>™ by v, and let {ej,...,es,} be an oriented local orthonormal
frame field on S$?™ with respect to do? such that

df(ej) = =(1/pj)dvie;) — (j=1,...,2m),

that is, ey, ..., es,, are eigenvector fields of the shape operator of f. Since

dfi(e;) = df(e;) + tdv(e;) = — (: - t) dv(e;),

the Gauss—Kronecker curvature K; of f; is expressed as
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(i

o1\

-1

On the other hand,

At = det(dft(el), . ,dft(egm), Z/)

1 (1 - t) det(dv(er); .., dv(esm), V)

=1 \HI

1 1
= & det(dv(er).....dvlea).v) = K (Kt> ’

which implies that 1/K; is an oriented ¢;-function, since K is positive because of the
convexity of f, where ¢, = df;. O

Now we consider the singularities of vector fields on M?™. Let D be an arbitrary
linear connection on M?™ and X a vector field defined on M?™. One can apply (1.4)
for the bundle homomorphism

ox : TM?™ 5 v+ D,X € TM*™
if ox admits only Ag-singularities and get (1.7), where M?rm is the set of points where

(Dy, X,...,D,,, X)

V2m
forms a positive frame for a given locally defined positive frame vy, ..., va, on T,M 2m,
In [23], this map was introduced on a Riemannian 2-manifold, and we called the singular
points of ¢x the irrotational points there. However, it would be better to call them
the Ay-singular points of the vector field with respect to the connection D. In fact, the
singular set of ¢ x has no relation with the rotations of the vector fields.

At the end of this section, we give an application for the Blaschke normal maps for
strictly convex hypersurfaces: we fix a strictly convex immersion

f . SZm — R2m+1.

Then there exists a unique vector field £ along f satisfying the following two properties,
which is called the affine normal vector field:

(1) the linear map
S :TS?™ 35 vr— D¢

gives an endomorphism on 7'S?™, that is, S(v) := D, is tangent to f(S*™) for

each v, where D is the canonical affine connection on R*™*!,

(2) there exists a unique covariant symmetric tensor h such that

Dxdf (Y) = h(X,Y)¢
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gives a tangential vector field on f(S?™) for any vector fields X and Y on S?™.
Since f is strictly convex, h is positive definite. Then the 2m-form €2 defined by

Q(X1, ..., Xom) = det(df (X1),....df (Xom), &)

coincides with the volume element associated to h, where Xy, ..., Xs,, are vector

fields on S2™ and “det” denotes the canonical volume form of R*™+!.

The vector field £ induces a map
£:8%M spr— g, € RPTL (6.4)

which is called the Blaschke normal map of f. The following assertion holds as in the
case of m =1 (cf. [23, Lemma 3.1]).

LEMMA 6.5.  The Blaschke normal map & gives a wave front.
Proor. Consider a non-zero section
L: S5 p— (§,vp) € TR = RP™ x (R¥™H)7,

where (R*™"1)* is the dual vector space of R*™ " and v : 5™ — (R*"*1)* is the map
defined by

v() =1, pf(L,5*™)={0}  (pes™),

which is called the conormal map of f. By definition, L induces an isotropic map of
S?™ into the projective cotangent bundle P(T* R*" 1) = R*™*! x P*(R*™"!) with the
canonical contact structure. Take a local coordinate system (z1,...,T2,,) of S*™. Then
we have that

0

th(fx]) - (Da/aﬂﬁz'y)(facj) = %l/

= —v(Dg oz, fx,)

9 0 o 0
= —U (Da/awiij —h (81'1,81']>) +h (81'1781,])

o 0
= — ) 1 = 1 PR 2 .
h (al’l ) 5% > (27.] ) ) m)

(ij) - V(DB/Bxiij)

Since h is positive definite, one can show that v,,,...,v,,, are linearly independent.
Moreover, since v(T,5?™) = {0} for each p € S*™, v,vy,,...,Vy,, are linearly inde-
pendent. In particular, the map L induces a Legendrian immersion, which proves the
assertion. U

The following assertion is a hypersurface version of [23, Theorem 3.2].

THEOREM 6.6.  Let S?™ be the 2m-sphere and f : S*™ — R*™ 1 4 strictly convex
immersion. Suppose that the Blaschke normal map & : ™ — R*™ ! (¢f. (6.4)) admits
only Ag-front singularities for 2 < k < 2m+ 1. Then the singular set of £ satisfies (1.7),
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where M2™ (= S2™) (resp. M2™ (= 52™)) is the subset of S*™ at which the determinant
of the affine shape operator (called the affine Gauss—Kronecker curvature) is positive
(resp. negative), and 2(;;-_’_1 (resp. Ay;,,) is the set of positive (resp. negative) Agji1-
front singular points of & for each 7 =1,...,m.

Proor. If the singular points of £ consist only of Ag-points (2 < k < 2m+1), the
affine shape operator

S:TS* > v+ D& € f* TR
gives a Morin homomorphism. Applying (1.4) for S, we get Theorem 6.6. O

Finally, we give an example which illustrates Theorem 6.6: Consider a plane curve

y(t) = (1 — 2esint) (Sint) (73 <t< g) ,

cost 2~

which lies on the upper-half plane and gives a convex curve if 0 < e < 1/4. Rotating it
around the horizontal axis, we get a rotationally symmetric strictly convex surface in R>.
The left hand side of Figure 2 indicates the curve v for e = 17/80, and the right hand
side of Figure 2 gives the profile curve of the Blaschke normal map £ of the surface for
e = 17/80. As shown in Figure 2 (right), £ has no swallowtails (i.e. it has no As-points),
and our formula implies that the Euler number x(M?2) vanishes. In fact, the set £(M?2)
gives a cylindrical strip if one rotates the profile curve of £ around the horizontal axis.

\\MQ

—t

1
2 2

Figure 2. The curve « (left) and the profile curve of £ (right).

7. Coherent tangent bundles induced by Kossowski metrics.

In this section, we introduce a class of positive semi-definite metrics called Kossowski
metrics describing the properties of wave fronts intrinsically. This class of metrics was
defined by Kossowski [10] for 2-dimensional manifolds. In [7], it was shown that each
Kossowski metric induces a coherent tangent bundle, and the formulas (1.2) and (1.3)
for the metric were proved. Our purpose is to generalize the results of [7] to higher
dimensional cases, that is, we will give an application of the formula (1.4) for Kossowski
metrics.

We now fix an n-manifold M™, and a positive semi-definite metric ds?> on M™. A
point p € M™ is called a singular point of the metric ds? if the metric is not positive
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definite at p. We denote by X the set of smooth vector fields on M™, and by C*(M™)
the set of R-valued smooth functions on M™.

We set (X,Y) := ds?(X,Y). Kossowski [8] defined amap I' : X x X x X — C°(M™)
as

[(X,Y,Z) == (X (Y, Z)+ Y (X, Z) — Z (X,Y)

+(X,Y], 2) = (X, 2],Y) = ([V, 2], X)) - (7.1)

| —

We call T the Kossowski pseudo-connection. (Kossowski [8] called I" the dual connection
of the Levi-Civita connection on M™ \ £"~1 where X"~ is the singular set of ds?.) It
was introduced by Kossowski (cf. [8], [9] and [10]), and plays an important role to show
a realization theorem of generic singularities of Kossowski metrics as first fundamental
forms of wave fronts in R>. If the metric ds? is positive definite, then the equality

I(X,Y,Z) = (VxY,Z2) (7.2)

holds, where V is the Levi-Civita connection of ds?. One can easily check the following
two identities (cf. [10])

X(Y,2)=T(X,Y,2)+ (X, Z,Y), (7.3)
I'(X,Y,2)-T(Y,X,Z) = (X,Y], Z).

The equation (7.3) corresponds to the condition that V is a metric connection, and the
equation (7.4) corresponds to the condition that V is torsion free. The following assertion
can be also easily verified:

PROPOSITION 7.1 (Kossowski [8], [10]). For each' Y € X and for each p € M™,
the map

T,M" x T,M" > (vi,v2) — T'(V1,Y, V2)(p) € R

is a well-defined bi-linear map, where V; (j = 1,2) are vector fields of M" satisfying
v; = Vj(p).

For each p € M™, the subspace
N, = {v € T,M"; ds*(v,w) = 0 for all w € T,M"} (7.5)

is called the null space at p. A non-zero vector which belongs to IV, is called a null vector
at p.

LEMMA 7.2 (Kossowski [8], see also [7]). Let p be a singular point of ds*. Then
the Kossowski pseudo-connection I' induces a tri-linear map

fp T, M"™ x T,M"™ x N, 3 (v1,v2,v3) — I'(V1, V5, V3)(p) € R,

where V; (j = 1,2,3) are vector fields of M™ such that v; = V;(p).
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DEFINITION 7.3. A singular point p of the metric ds? is called admissible® if f‘p
in Lemma 7.2 vanishes. If each singular point of ds? is admissible, then ds? is called an
admissible metric.

DEFINITION 7.4.  An admissible metric ds? defined on M™ is called a frontal metric?
if for each p € M™ there exists a local coordinate system (U;z1,...,2,) and a C°-
function A on U such that

det(gij) = A%, (7.6)

where ds? = szzl gijdz;dz; is a local expression of the metric ds? on U and det(g;;)
is the determinant of the n x n matrix (g;;): j=1,....n-

We remark that the condition (7.6) is independent of the choice of local coordinate
systems. If f: M™ — R™" is a front, then the induced metric ds?(:= df - df) on M" is
a frontal metric (cf. [7, Proposition 2.11]).

DEFINITION 7.5. A singular point p of a given frontal metric is called non-
degenerate or generic (cf. [10]) if its exterior derivative d\ does not vanish at p, where A
is the function as in (7.6). A frontal metric ds? is called a Kossowski metric if all of the
singular points of ds? are non-degenerate.

Since each singular point of a Kossowski metric is non-degenerate, and the singular
set (denoted by X"~ 1) consists of a hypersurface of M™. Moreover, the function A changes
sign across ¥" 1. In particular, a C°°-function \ satisfying (7.6) is uniquely determined
up to the sign.

DEFINITION 7.6 (cf. [7]). Let ds? be a Kossowski metric on M™. A local coordinate
system (U;x1,...,2,) of M™ is called adjusted at a singular point p € U if

Oy, = 0/0z,

belongs to N,. Moreover, if (U;z1,...,z,) is adjusted at each singular point of U, it is
called an adapted local coordinate system of M™.

Since the singular set "1 of a Kossowski metric is a hypersurface in M", one can
easily prove the existence of an adapted local coordinate system at each singular point.
We are interested in the class of Kossowski metrics because of the following fact:

PROPOSITION 7.7.  Let (€,¢,(,), D) be a coherent tangent bundle (see the intro-
duction) on a manifold M™. Then the induced metric ds® := ¢*(,) is a frontal metric.
Moreover, if ¢ admits only non-degenerate singular points, then ds?® is a Kossowski met-
ric on M".

ProOF. The admissibility of the metric follows from the identity

1The notion of admissibility was introduced by Kossowski [10]. He called it d({,))-flatness.
21t is called a discriminant transverse metric in [10].
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D(X,Y,Z) = (Dxp(Y),p(Z)) (X,Y.Z € X).

On the other hand, for each p € M™, one can take an orthonormal frame field (eq, ..., e;)
of £ on a coordinate neighborhood (U;z1,...,z,) of p. Let 61,...,0, be the dual frame
field of (e1,...,e,). Then p:= 601 A--- A6, gives an orientation of £ on U, and there
exists a smooth function A € C*°(U) such that

O = Adxy A Nday,.

If we write ds* = "', g;jdx;dx; on U, then we have that

Al = y/det(gsy). (@.7)

since ¢*u gives a Riemannian volume element on U \ ¥"~!. Thus A\? coincides with
det(g;;), which implies that ds® is a frontal metric. Then the final assertion follows
immediately by comparing the definitions of non-degeneracy of singular points for ¢ and
for ds?. U

ExXAMPLE 7.8. A Riemannian n-manifold (M™, g) (n > 3) is called conformally flat
if for each point p € M™, there exists a neighborhood U(C M™) of p and a C*°-function
o on U such that e2?g is a metric with vanishing sectional curvature. When n > 4,
(M™, g) is conformally flat if and only if the conformal curvature tensor

S,
Wijkt == Rijii + (Birgji — Bugjr + Bjigik — Bjrgir) + TL(Til)(gikgjl —gagjr) (7.8)

vanishes identically on M™, where (z1,...,2,) is a local coordinate system of M™,
n 1 S, Gii
B = Bzd i d i Blzi Ri'—% 79
i]z:l jOT; Q AT; J nQ( J 2(n1)> (7.9)

is called the Schouten tensor, g;j, Rijii, Ri; are the components of the metric g, the
curvature tensor of g, and the Ricci tensor of g respectively, and S, denotes the scalar
curvature. When n = 3, (M3, g) is conformally flat if and only if B in (7.9) is a Codazzi
tensor, that is, VB is a symmetric 3-tensor, where V is the Levi-Civita connection of
(M3,g). (When n > 4, conformal flatness implies that B is a Codazzi tensor because
of the second Bianchi identity.) We denote by (¢*/);;_, the inverse matrix of (g;;)
and set

n
ij=11
D . ia a
B = sz;g Baj%®dxj (710)
which gives a (1, 1)-tensor of M", and it induces a bundle homomorphism
B:T,M" >vw By(v) € T,M" (peM"). (7.11)

Since B in (7.9) is a Codazzi tensor, B satisfies the torsion free condition (1.1) with
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respect to V (cf. [12]), In particular, B : TM™ — (TM",g,V) gives a structure of a
coherent tangent bundle. The pull-back of the Riemannian metric ¢ by B is given by

g = Z BiaijgadeZidaj‘j. (712)

i,5,a,b

It is a remarkable fact that § gives a new conformally flat metric on M™\ £t (cf. [12]).
This new metric g is called the dual metric of g. By Proposition 7.7, g gives an example
of a frontal metric. The points where § is not positive definite correspond exactly to
the singular points of the bundle homomorphism B. We call Aj-points of the bundle
homomorphism B the Aj-points of the dual metric.

As a converse of Proposition 7.7, the following assertion holds.

THEOREM 7.9. Let ds? be a Kossowski metric on an n-manifold M™. Then there
exists a coherent tangent bundle ¢ : TM™ — (E,(,), D) such that ©* (,) coincides with
ds?.

The case of n = 2 has already been proved in [7], and this theorem is a generalization

of it. We fix an adapted local coordinate system (U; a1, ..., x, ) arbitrarily. We now carry
out the Schmidt orthogonalization for the frame
0] 7]
O1:=— ,..., Oy = ,
! 0x1 " ox,,

that is, we set

él = 61, e = é1/|é1|,

j—1
éj :zaj—Z(aj,ei>ei, €; Z:éj/|éj| (j:2,...,n—1).
i=1
Then ey, ..., e,_1 are smooth vector fields on U. Finally, we set
= é
e, =0, — (On,€i) €y, e, = %, (7.13)
where A is a C*°-function on U satisfying (7.7). Then the resulting vector field e,, is
defined only on U \ "7 ! and ey, ..., e, consists of an orthonormal frame on U \ X",

which is called the orthonormal frame field associated to the adapted coordinate system
($17 s 7xn)'

We now set
Wij = Z(evakej,ei> dxy, = ZF((‘)k,ej,ei) dxy, (i,7=1,...,n), (7.14)
k=1 k=1

on U\ X", where V is the Levi-Civita connection of the metric ds? on M™\ "~ ! and
T" is the Kossowski pseudo-connection.
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LEMMA 7.10.  Fach w;; (1,7 =1,...,n) can be extended to a smooth 1-form on U.

Proor. If 1 <i,j < n—1, then w;; is trivially a smooth 1-form on U. So we
consider the case i =n. By (7.13) and (7.14), it holds on M™\ X"~! that

n—1

F(akaejaén) :Awn_](ak) H |él| (k: 17"'3”7 .]: laan_ 1)
=1

Since ds? is admissible, the left hand side vanishes on U N X"~!, there exists a smooth
function ax; € C°°(U) such that

n—1

U (Ok,ej,en) =dag; [[ &l (k=1,....n, j=1,...,n—1).
=1

In particular, we have that w,;(0x) = ax;. We next consider the case j = n. Since
F(akv énv ei) = _F(ak‘u €, én) = 0

on UN X" L one can easily see that w;,(dx) can also be extended as a C*°-function on
U. Finally, w,,, vanishes on U \ ¥"~1  and is trivially extended on U. ]

PROOF OF THEOREM 7.9. Let {(Ug;2§,...,2%)}aeca be an atlas of M™ consisting
of local adapted coordinate systems. Since ds? is a Kossowski metric, there exists a C'*°-
function A\, on U, (a € A) such that

det(g5;) = (Xa)*,

where ds® = 71 gf;dxfdxs.
We fix two indices a,b € A such that U, N U, # 0, and set

(Uszy,... 2p) o= (Uas 2, ..., 27), (Viyt, ooy yn) = (Ub§$?a-~-ax2)

for the sake of simplicity. We denote by e;,...,e, and é1,...,e, the orthonormal
frame fields associated to the adapted coordinate systems (x1,...,2,) and (y1,...,Yn),
respectively. By the previous procedure of orthogonalization, there are upper triangular
matrices 7 and 7 such that

0 0
(61,...,€n): (31'1,781%) T, (715)

_ - 0 0\ 4
(61,...7€n)— (ayl,,ayn> T. (716)

These two matrices 7 and T can be written as

T = <; 2) (7.17)
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T = <(>; Z) , (7.18)

where * means a real valued (or a matrix valued) function which is smooth along ¥"~*
and 0 is the row zero vector in R"~'. On the other hand, d (resp. d) means a ‘divergent
function” which is not smooth along U, N X! but A\,d (resp. )\b(;l) is a C'°°-function on
U, (resp. Up).

Since T and T are upper triangular matrices, one can easily check that

Ao det(T) = x, Ap det(T) = x. (7.19)

On the other hand, there is a matrix valued function J such that the equality

0 0 0 0
_— e, — ==, = 7.20
(ayl’ ’ayn> (89:1’ ’8xn>j (7.20)
holds on U, NU,. Since (x1,...,x,) and (y1,...,y,) are adapted coordinate systems, we
can write
*0
J = (* *>, (7.21)

where 0 is the column zero vector in R"~'. By (7.15), (7.16) and (7.20), we have that
(é1,....8n) = (e1,...,e,)T YIT.
We now compute 717 T using the relations
* % = %, d+x*=d, * X ok = %, dx*=d
on U, and
* ok = %, ci><>s<:d~7 * X ok = sk, dxx=d

on Uy, where x means the usual multiplications of scalars and matrices. These relations
follow from the definitions of divergent terms d and d. Here, d x x might not be divergent
in general. The above convention d x * = d means that d x * can be a divergent term
as a possibility. On the other hand, if the term d x d appears, then it is more dangerous
than the divergent terms, since \d x d is still a divergent term. Fortunately, such a term
never appears in the calculation of 7-177 as follows: the equalities (7.17) and (7.19)

yield that
d *
—1 _
o (®)

Tab *— Tﬁlj,i-a

We now set
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which gives a C*°-function on U, N U, \ ¥~ 1. Since

1 . d* *0 o d*
T j_)\a<0*> (**) _)\a<**>’
dx\ [ * x dd+d % %
=) (00) = () = (1)

since A\, = A\p X *. So we can conclude that 7., can be smoothly extended on U, N Uy.
In particular, the co-cycle condition

we have that

TabTbcTca — id (722)

holds on U, N U, NU,, where id is the identity matrix. Thus there exists a vector bundle
& with inner product ( , ) whose transition functions are {7,,}. Let

wiy .. wiy,
Q=

a
nl -« -

a

w nn

w.

be a matrix valued 1-from on U, according to Lemma 7.10, which gives a connection form
of the Levi-Civita connection of ds? on U, \ X"~ !. In particular, Q¢ takes value in the
set of skew-symmetric matrices. The family of matrix valued 1-form {Q%},ca satisfies
the identity

O = 7! (d7ap) + 75, Q7 (7.23)

on U,NU,\ X"~ 1. Then by continuity, (7.23) holds on U, NUy. Thus, it induces a metric
connection D on €. By the definition of £, the bundle homomorphism

p:TM" — &
is canonically induced so that ¢(ef), ..., p(e%) consists of an orthonormal frame of £ on
U, \ "1, where €{,...,e is the orthonormal frame field associated to (x¢,...,z%).

Then the restriction of the map ¢ into M™ \ "~ ! gives a vector bundle isomorphism
between the tangent bundle of M™\ X"~ ! and &|ym\sn-1, and ¢* (, ) = ds* holds on
Mm™\ "1, Then by continuity, ¢* ( , ) = ds? holds on all M™. On the other hand, the
pull-back connection of D coincides with the Levi-Civita connection of ds? on M™\¥" 1,
In particular, (1.1) holds on M™\ £"~1. Then, by continuity, (1.1) also holds on all of
M™. Thus we get a coherent tangent bundle associated to the Kossowski metric ds?. [

A Kossowski metric is said to be co-orientable if one can choose the chart
{(Ua; Jf%, .. a$2)}aeA

of M™ such that
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W= Agdzi A - Aday,

n

gives a globally defined smooth n-form on M"™. It can be easily checked that the co-
orientability of ds? corresponds to the fact that the induced bundle £ is orientable (cf.
[7, Proposition 2.11]). We remark that each A, (a € A) is a p-function of the induced
coherent tangent bundle.

DEFINITION 7.11. A Kossowski metric ds? on M" is called a Morin metric if its
induced coherent tangent bundle admits only Ay i-points (k=1,...,n).

Then as an application of the formula (1.4), we get the following assertion.

COROLLARY 7.12.  Let ds? be a co-orientable Morin metric defined on an oriented
compact manifold M>™. Then the identity (1.4) holds, where x¢ is the Euler character-
istic of the coherent tangent bundle £ associated to ds?.

This corollary is a generalization of [7, Proposition 3.3]. The following assertion is
the spacial case of this corollary if we set ds? to be the dual metric of the conformally
flat metric as in Example 7.8.

THEOREM 7.13.  Let (M?™,g) be a compact orientable conformally flat manifold
whose dual conformally flat metric § admits only Aj-singularities for 2 < k < 2m + 1.
Then the singular set of the dual conformally flat metric § satisfies (1.7), where Mim
(resp. M2™) is the subset of M*™ at which the determinant of the Schouten tensor is
positive (resp. negative), and Ql;jﬂ (resp. Ay;.4q) is the sevt of positive (resp. negative)
Agji1-points (j =1,...,m) of the bundle homomorphism B.

A. Extension of generic vector fields.

We prove the following assertion, which is needed to prove the existence of a char-
acteristic vector field associated to a given Morin homomorphism:

LEMMA A.1.  Let M™ be a compact manifold and X a C*-vector field defined on
an open subset of M™ containing a compact subset K such that X has no zeros on the
boundary OK of K. Then there exists a C°°-vector field X defined on M"™ such that X
coincides with X on K and has only generic zeros on M™ \ K.

PrOOF. We may assume that X is defined on a neighborhood U of K. Take an
open subset V such that

KcVvcVcU,

where V is the closure of V. Taking U sufficiently close to K, we may assume that X
has no zeros on U \ K°, where K° (possibly empty) is the set of the interior points of K.
Then we can take C*°-functions p; : M™ — [0,1] (j = 1,2) such that p; = 1 on K (resp.
pa=1onV)and py =0on M"\V (resp. po =0 on M\ U). We set X := p, X, which
is a vector field on M™. It is well-known that there exists a sequence of generic vector
fields {Z;};=1,2,3,.. on M™ converging to X with respect to the Whitney C'*°-topology.
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We set,

X;=pX+(1-p)Z;.

Then Xj coincides with X on K, because p; = po = 1 on K. Since X has no zeros on
the compact set V'\ K°, X; has a zero at p € V\ K° if X = (1—p;')Z; holds at p. This
is impossible for sufficient large j, since Z; — X as j — oo and p; € [0,1]. Moreover,
X coincides with Z; on M™\ V, since p; = 0 on the complement of V. Thus it has only
generic zeros on M™\ V. In particular, X ;j has the desired property for sufficiently large
J- O
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