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Rotational beta expansion: ergodicity and soficness

By Shigeki Akiyama and Jonathan Caalim

(Received May 8, 2015)

Abstract. We study a family of piecewise expanding maps on the plane,
generated by composition of a rotation and an expansive similitude of expan-

sion constant β. We give two constants B1 and B2 depending only on the

fundamental domain that if β > B1 then the expanding map has a unique
absolutely continuous invariant probability measure, and if β > B2 then it

is equivalent to 2-dimensional Lebesgue measure. Restricting to a rotation

generated by q-th root of unity ζ with all parameters in Q(ζ, β), the map gives
rise to a sofic system when cos(2π/q) ∈ Q(β) and β is a Pisot number. It is

also shown that the condition cos(2π/q) ∈ Q(β) is necessary by giving a family

of non-sofic systems for q = 5.

1. Introduction.

Let 1 < β ∈ R and ζ ∈ C \ R with |ζ| = 1. Fix ξ, η1, η2 ∈ C with η1/η2 6∈ R. Then

X = {ξ + xη1 + yη2 | x ∈ [0, 1), y ∈ [0, 1)} is a fundamental domain of the lattice L
generated by η1 and η2 in C, i.e.,

C =
⋃
d∈L

(X + d)

is a disjoint partition of C. Define a map T : X → X by T (z) = βζz − d where d = d(z)

is the unique element in L satisfying βζz ∈ X + d. Given a point z in X , we obtain an

expansion

z =
d1

βζ
+
T (z)

βζ

=
d1

βζ
+

d2

(βζ)2
+
T 2(z)

(βζ)2

=
∞∑
n=1

dn
(βζ)n

with dn = d(Tn−1(z)). We call T the rotational beta transformation and d1d2 . . . the

expansion of z with respect to T . We note that the map T generalizes the notions of beta

expansion [8], [18], [19] and negative beta expansion [7], [9], [16] in a natural dynamical

manner to the complex plane C. More number theoretical generalizations had been

studied by means of numeration system in complex bases, e.g., [2], [5], [11], [14]. Since
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T is a piecewise expanding map, by a general theory developed in [3], [6], [12], [13], [20],

[21], [22], there exists an invariant probability measure µ which is absolutely continuous

to the two-dimensional Lebesgue measure1. The number of ergodic components is known

to be finite [6], [12], [20]. An explicit upper bound in terms of the constants in a Lasota–

Yorke type inequality was given by Saussol [20]. However this bound may be large2. By

using the special shape of the map T , we can show that the number is one if β is

sufficiently large. Define the width w(X ) of X as

w(X ) := min {|η1|, |η2|} sin(θ(X )),

where θ(X ) ∈ (0, π) is the angle between η1 and η2. Then w(X ) is the minimum height

of the parallelogram formed by X . Let r(P ) be the covering radius of a point set P ⊆ C,

i.e., r(P ) is the infimum of the positive real numbers R such that every point in C is

within distance R of at least one point in P . Let us define

Bn = max

{
νn(θ(X )),

2r(L)

w(X )

}
(n = 1, 2)

with

ν1(θ(X )) :=


2 if

1

2
< tan

(
θ(X )

2

)
< 2

1 + | cos θ(X )|
2(sin θ(X ) + | cos θ(X )| − 1)

otherwise

and

ν2(θ(X )) := 1 +

√
2

sin θ(X )
√

1 + | cos θ(X )|
= 1 +

1

sin θ(X ) max
{

sin θ(X )
2 , cos θ(X )

2

} .
Note that B1 and B2 do not depend on ξ and are determined only by η1 and η2.

Theorem 1.1. If β > B1 then (X , T ) has a unique absolutely continuous invariant

probability measure µ. Moreover, if β > B2 then µ is equivalent to the 2-dimensional

Lebesgue measure restricted to X .

One can confirm the inequality B1 ≤ B2 in Figure 1. The uniqueness implies

that (X , T ) is ergodic with respect to µ. In the last section, we give a rotational beta

transformation where the number of ergodic components exceeds one, when β is small

(see Example 6.1). It is an intriguing problem to improve the above bounds B1 and B2,

which may not be optimal, see Examples 6.3, 6.4 and 6.5. Hereafter, ACIM stands for

absolutely continuous invariant probability measure.

Remark 1.2. The covering radius r(L) is computed from the successive minima

1For example, we can see this fact by Lemma 2.1 of [20] for some iterate of T .
2Saussol [20] did not aim at giving a good bound of it, but was interested in showing the finiteness of

the number of components. Indeed, when we apply Lasota–Yorke type inequality, these two objectives

(finiteness proof and minimizing the upper bound) are in confrontation.
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Figure 1. Comparison of ν1(θ(X )) and ν2(θ(X )).

of L, which are derived by the ‘homogeneous’ continued fraction algorithm due to Gauss.

The term 2r(L)/w(X ) in Theorem 1.1 is expected to be replaced by a smaller one, since

we may substitute r(L) with r(L + T−n(z)) for a non negative integer n and a point z

in X to obtain the same conclusion. See the proof in Section 2.

Remark 1.3. The beta and negative beta transformations could be understood in

a similar framework in 1-dimension by choosing ζ = ±1 and X = [ξ, ξ+ η) with L = ηZ.

In this case, (X , T ) has a unique ACIM with respect to the 1-dimensional Lebesgue

measure. This result follows from Li–Yorke [15] which reads that every support of an

ACIM contains at least one discontinuity in its interior, and the fact that a neighborhood

of each discontinuity of T is mapped similarly to neighborhoods of two end points of X .

The problem of discontinuities becomes harder in dimension > 1.

Later on, we are interested in the associated symbolic dynamical system over the

alphabet A := {d(z) | z ∈ X}. Let AZ (resp. A∗) be the set of all bi-infinite (resp. finite)

words over A. We say w ∈ A∗ is admissible if w appears in the expansion d1d2 . . . for

some z ∈ X \⋃∞n=−∞ Tn(∂(X ))3. Here ∂(X ) denotes the boundary of X . Let

XT :=
{
w = (wj) ∈ AZ∣∣wjwj+1 . . . wk is admissible ∀(j, k) ∈ Z2 with j ≤ k

}
which is compact by the product topology of AZ. The symbolic dynamical system associ-

ated to T is the topological dynamics (XT , s) given by the shift operator s((wj)) = (wj+1).

We say (XT , s) (or simply, (X , T )) is sofic if there is a finite directed graph G labeled by

A such that for each w ∈ XT , there exists a bi-infinite path in G labeled w and vice versa.

Here is a characterization of sofic systems using the forward orbits of the discontinuities:

3We exclude the null set
⋃∞
n=−∞ Tn(∂(X )), i.e., the set of forward/backward discontinuities to con-

centrate on the essential part of the dynamics.
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Lemma 1.4. The system (X , T ) is sofic if and only if
⋃∞
n=1 T

n(∂(X )) is a finite

union of segments.

Note that the two open segments in ∂(X ), one from ξ + η1 to ξ + η1 + η2 and the

other from ξ + η2 to ξ + η1 + η2, are outside of X . For these segments, the images by T

are defined by an infinitesimal small perturbation, e.g., we take the image of the segment

connecting ξ + η1(1 − ε) and ξ + η1(1 − ε) + η2 for a small positive ε. We prove this

lemma in Section 3.

From the above lemma, we see that for (X , T ) to be sofic, the set of slopes of the

discontinuous segments consisting
⋃∞
n=1 T

n(∂(X )) must be finite. This means that ζ

must be a root of unity. Hereafter, we assume that ζ is a q-th root of unity with q > 2

and ξ, η1, η2 ∈ Q(ζ, β) with η1/η2 6∈ R. We let κ(ξ + η1x + η2y) = ( xy ) be a bijection

from X to [0, 1)2 and consider the analog of T on [0, 1)2.

Since Q(ζ, β) is quadratic over Q(ζ + ζ−1, β), every element of Q(ζ, β) is uniquely

expressed as a linear combination of η1 and η2 over Q(ζ + ζ−1, β). We find ajk, bj ∈
Q(ζ + ζ−1, β) such that

ζ

(
η1

η2

)
=

(
a11 a21

a12 a22

)(
η1

η2

)

and

(βζ − 1)ξ = b1η1 + b2η2.

Let U be the map from [0, 1)2 to itself, which satisfies U ◦ κ = κ ◦ T . We can write

U

((
x

y

))
=

(
β(a11x+ a12y) + b1 − bβ(a11x+ a12y) + b1c
β(a21x+ a22y) + b2 − bβ(a21x+ a22y) + b2c

)
.

This expression suggests an important role of the field Q(ζ + ζ−1) in our problem. In

the following, we give a sufficient condition so that (X , T ) is a sofic system.

Theorem 1.5. Let ζ be a q-th root of unity (q > 2) and β be a Pisot number. Let

η1, η2, ξ ∈ Q(ζ, β). If ζ + ζ−1 ∈ Q(β), then the system (X , T ) is sofic.

In proving this theorem, we give an upper bound on the number of the intercepts of

the segments in
⋃∞
n=1 T

n(∂(X )). The details will be given in Section 4. For q = 3, 4, 6,

since 2 cos(2πp/q) is an integer, we have the following result.

Corollary 1.6. If ζ is a 3rd, 4th or 6th root of unity, then the system (X , T ) is

sofic for any Pisot number β.

On the other hand, we can give a family of non-sofic systems when ζ + ζ−1 6∈ Q(β).

From here on, i denotes
√
−1.

Theorem 1.7. Let ξ = 0, η1 = 1 and η2 = ζ = exp(2πi/5). If β > 2.90332 such

that
√

5 6∈ Q(β), then (X , T ) is not a sofic system.
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Most of the large Pisot numbers satisfy the conditions of Theorem 1.7, e.g., any

integer greater than 2. The proof of Theorem 1.7 suggests that (X , T ) rarely becomes

sofic for general β and ζ. Meanwhile, Example 6.3 shows that there are sofic rotational

beta expansions beyond Theorem 1.5. It is of interest to characterize such quintuples

(β, ζ, η1, η2, ξ), giving an analogy of Parry numbers in 1-dimensional beta expansion (cf.

[1], [8], [18]).

2. Proof of Theorem 1.1.

Let t be a positive real number. We denote by B−t(A) the set of points of A which

have distance at least t from ∂(A). We shall study the n-th inverse image T−n(z) =

{z′ ∈ X |Tn(z′) = z} for n ∈ N and z ∈ X . Put r = r(L), w = w(X ) and θ = θ(X ).

For j = 1, 2, set νj = νj(θ(X )). First we claim that if β > B2, then for all z ∈ X ,⋃∞
n=1 T

−n(z) is dense in X . Note that T−1(z) = ((z + L) ∩ βζX ) /βζ.

MN

LK

ξ′

η1

MN

LK

ξ′

θ

η2

Figure 2. (Left) B−r/β (X ) + L; (Right) Balls B(ξ′, 2r/β), B(K, r/β) and
B(L, r/β).

Consider the region B−r (βζX ). If βw > 2r, then B−r (βζX ) 6= ∅. Moreover, since

this region B−r (βζX ) has no intersection with any ball B(x, r) centered at x ∈ C \ βζX
of radius r, the set (z + L)∩βζX can not be empty and gives an r-covering of B−r (βζX ).

That is, for each z′ ∈ B−r (βζX ), there exists d ∈ L such that z + d ∈ βζX and the

ball B(z + d, r) contains z′. As such, we see that B−r/β(X ) is r/β-covered by T−1(z).

Consequently, B−r/β(X )+L (see Figure 2 (left)) is r/β-covered by T−1(z)+L. Now, we

enlarge the radius r/β to form a covering of the entire space C. To this end, we claim that

extending the radius by a factor of ν2 suffices. From the inequality ν2 > 1 + 1/ sin θ, we

only have to check that a rhombus KLMN in Figure 2 determined by adjacent translates

of B−r/β(X ) is covered. Since ν2 is invariant under θ ↔ π − θ, we prove the statement

for θ ∈ (0, π/2]. Consider the Voronöı diagram of its four vertices K,L,M and N. Then

it can be seen easily that the minimum length required to achieve the goal is given

by the circumradius of the triangles 4KLN and 4LMN, which are the acute triangles

determined by the smaller diagonal of the rhombus. This gives the constant ν2 and

proves the claim. For an obtuse θ, we have to switch to the other angle π − θ. Refer to

Figure 3 below to compare the Voronöı diagrams of two particular rhombuses.

Let β > B2. We show by induction that for all n ∈ N, T−n(z) provides an rn-

covering of B−rn(X ), where rn = rνn−1
2 /βn. Suppose this is the case for all k ≤ n for

some n ∈ N. We note that T−(n+1)(z) = ((T−n(z) + L) ∩ βζX ) /βζ. From β > B2, we

have rn < r. Thus βw > 2rn, implying that B−rn (βζX ) 6= ∅. As T−n(z)+L gives an rn-
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αα
γ

Figure 3. Voronöı diagrams where α ∈ (0, π/2] and γ ∈ (π/2, π).

covering of B−rn(X )+L, we can enlarge rn by a factor of ν2 to obtain a covering of C, and

consequently, of βζX . Now, for all c ∈ C \ βζX , we have B(c, rnν2)∩B−rnν2(βζX ) = ∅.
This implies that (T−n(z) + L) ∩ βζX is an rnν2-covering of B−rnν2(βζX ). From this,

it follows that T−(n+1)(z) is an rn+1-covering of B−rn+1(X ). This finishes the induction

which completes the proof of the claim.

We continue to use the symmetry θ ↔ π − θ and assume that θ ∈ (0, π/2]. In

the course of the above proof, if we choose z = ξ, we can come up with a considerably

finer covering of C. Observe that inside the parallelogram KLMN, there is a point

ξ′ ∈ ξ + L (see Figure 2). The ball centered at ξ′ already covers a significant portion

of the parallelogram. To proceed, we first note that some rectangular strips along the

perimeter of the translates of X can be covered by balls B(x, 2r/β) where x ∈ T−1(ξ)+L
as shown in Figure 4 (left). Therefore, around ξ′, we need to cover a region comprising

of four kite-shaped areas given in Figure 4 (right).

MN

LK

ξ′
MN

LK

ξ′

Figure 4. (Left) Rectangular strips ; (Right) Kites.

Now, if 1/2 < tan(θ/2) < 2, the ball B (ξ′, 2r/β) contains the bases of the two

perpendiculars emanating from M to the lines `1 and `2, where `j is the line parallel to

ηj and passing through ξ′ for j = 1, 2. This means that the kite containing M is covered

by the balls B(ξ′, 2r/β) and B(M, r/β). A similar argument shows that remaining kites

are also covered. Hence, we see that (ξ ∪ T−1(ξ)) + L gives a 2r/β-covering of C.

For the other cases, we have to enlarge the radius a little more. Figure 2 (right)

shows such a case where there is a small remaining region yet to be covered. In Figure 5,

we take a minimum ρ > 1 such that the balls B(ξ′, (ρ+ 1)r/β) and B(M, ρr/β) intersect

on the boundary of the kite.

A small computation yields that if ρ = (1 + cos θ)/(2(−1 + sin θ + cos θ)), C can be

covered by balls centered at the elements of (ξ ∪ T−1(ξ)) + L of radius ρr/β.

We can proceed with the same induction to see that if β > B1,
⋃n
j=0 T

−j(ξ) gives
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M

L

ξ
ξ

Figure 5. Covering the kites.

an rνn−1
1 /βn-covering of B−rνn−1

1 /βn(X ).

We saw that the choice z = ξ makes the radius of the covering smaller. However

ξ is unfortunately on the boundary of X , which is not suitable for the later use. So

we select an appropriate z ∈ X which is very close to ξ. Since all inequalities in the

above proof are open, one may find an ε0 > 0 that the first inductive step works for

every point z ∈ B(ξ, ε0). Let Y := X \ ⋃∞j=−∞ T j(∂(X )) and select z ∈ Y such that

z ∈ B(ξ, ε0ν
n−2
1 /βn−1) for some integer n ≥ 2. This choice of z is possible because⋃∞

j=−∞ T j(∂(X )) is a null set. Then the induction similarly works at least n steps and

we obtain the following statement.

If β > B1, then for any ε > 0 there exist z ∈ Y and a positive integer n such that⋃n
j=0 T

−j(z) is an ε-covering of B−ε(X ).

We are ready to prove the first part of the theorem. Suppose β > B1. The proof

of Theorem 5.2 in [20] implies that the support of each ACIM contains an open ball

where the associated Radon-Nikodym density has a positive lower bound. Any such balls

belonging to different ergodic ACIM’s must be disjoint. Let us assume that µj (j = 1, 2)

are two different ergodic ACIM’s of (X , T ) with corresponding densities hj . Note that

hj(z) > 0 implies hj(T (z)) > 0 for almost all z since hj is a fixed point of the Perron–

Frobenius operator, whose associated Jacobian is positive and constant. Choose open

balls B(xj , s) such that essinfB(xj ,s) hj > 0 for j = 1, 2. From the above result, we can

find z ∈ Y and positive integers mj (j = 1, 2) such that T−mj (z) and B(xj , s) have a

nontrivial intersection. For j = 1, 2, let uj ∈ B(xj , s) ∩ T−mj (z). Then Tmj (uj) = z.

Moreover, for some small balls B(uj , δj) inside B(xj , s), we have

Tmj (B(uj , δj)) = B
(
Tmj (uj), δ

′
j

)
= B(z, δ′j),

where δ′j > 0 is some small radius for j = 1, 2. Therefore, essinfB(z,δ′j) hj > 0, which is a

contradiction. Thus, we see that the number of ergodic components is one, showing the

first statement.

The second statement is subtler than the first one. Let β > B2. For ε > 0, let

Nε = {x ∈ X | essinfB(x,ε) h = 0},
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where h is the density of the ACIM µ and put N =
⋂
εNε. According to Proposition 5.1

in [20], we know µ(N) = 0. We claim that N is contained in
⋃∞
j=−∞ T j(∂(X )). Assume

that z 6∈ ⋃∞j=−∞ T j(∂(X )). Choose B(x, s) ⊂ suppµ with x ∈ X and s > 0 such that

essinfB(x,s) h > 0. Then there is a positive integer n such that T−n(z)∩B(x, s) 6= ∅. This

means that there is a small ball B(w, ε) ⊂ B(x, s) that Tn(w) = z and Tn(B(w, ε)) =

B(z, ε′). However, essinfB(z,ε′) h > 0 shows that z 6∈ N , which shows the claim. The

claim implies m(N) = 0 where m is the 2-dimensional Lebesgue measure4. Now we

assume that S ⊂ X is measurable with m(S) > 0. Since m(S \N) = m(S) > 0, take a

Lebesgue density point z ∈ S \N , i.e.,

lim
t→0

m(B(z, t) ∩ (S \N))

m(B(z, t))
= 1.

Since z 6∈ N , there are positive c and ε0 such that essinfB(z,ε0) h > c. Thus

µ(S) = µ(S \N) =

∫
S\N

hdm >

∫
B(z,ε)∩(S\N)

cdm > 0,

for a small ε ≤ ε0 which shows that m is absolutely continuous to µ. �

3. Proof of Lemma 1.4.

Recall that Y = X \⋃∞n=−∞ Tn(∂(X )). Define the set of predecessors associated to

a point z ∈ Y by

P (z) =
∞⋃
n=1

{
d(z′)d(T (z′)) · · · d(Tn−1(z′)) ∈ A∗ | z′ ∈ T−n(z)

}
,

that is, the set of codings of all trajectories into z ∈ Y of the inverse images of the point

z. Introduce an equivalence relation z1 ∼ z2 by P (z1) = P (z2). It is clear that the

cardinality of equivalence classes in Y/ ∼ is finite if and only if the system is sofic (cf.

[17, Theorem 3.2.10]). By the definition of the map T , it is plain to see by induction

on K, that X \⋃Kn=1 T
n(∂(X )) consists of finite number of open polygons and each end

point of a discontinuity segment must be on another segment of a different slope5. An

open polygon may be cut into two or more pieces by a broken line of TK+1(∂(X )). We

see that any points x and y separated by the broken line are inequivalent, as one of P (x)

and P (y) has at least one more predecessor than the other. Suppose that
⋃∞
n=1 T

n(∂(X ))

is an infinite union of segments. Then as we increase K by 1, at least one open polygon of

X \⋃Kn=1 T
n(∂(X )) is separated by a broken line coming from TK+1(∂(X )). In fact, if not

then TK+1(∂(X )) must be totally contained in Q := ∂(X )∪⋃Kn=1 T
n(∂(X )) and we have

Tm(∂(X )) ⊂ Q for m ≥ K + 1. However there are only finitely many segments whose

end points lie on other segments of different slopes in Q, which shows that the sequence

4The proof of Proposition 5.1 in [20] guarantees µ(N) = 0. The author wrote that this implies that

N is a null set (with respect to µ) but it does not necessarily mean m(N ∩ supp(µ)) = 0.
5If a segment of Tn(∂(X )) falls into ∂(X ), then we discard the segment, because the soficness is defined

over Y.
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(Tm(∂(X ))) (m > K) is eventually periodic, giving a contradiction. Consequently we

always find an additional equivalent class through K → K + 1. This shows that the

system can not be sofic.

For the reverse implication, we consider the partition of X into finitely many disjoint

polygons induced by
⋃∞
n=0 T

n(∂(X )). Taking discontinuities into account, such polygons

may not be open nor closed. Let P1, . . . , Pr be the polygons in the partition. It is clear

that for j ∈ {1, . . . , r}, T (Pj) =
⋃
k∈I Pk for some I ⊆ {1, . . . , r}. This follows from the

fact that the set
⋃∞
n=0 T

n(∂(X )) is T -invariant. For d ∈ A, let

[d] := {z ∈ X |d1(z) = d}.

Suppose Pj ∩ [d] 6= ∅. Since βζ[d] = βζX ∩ (X + d), then the boundary of T ([d]) lies in⋃1
n=0 T

n(∂(X )). Note that

T (Pj ∩ [d]) ⊆ T (Pj) =
⋃
k∈I

Pk

and

βζ(Pj ∩ [d]) = βζPj ∩ βζ[d]

= βζPj ∩ (X + d).

Thus, T (Pj ∩ [d]) =
⋃
k∈I∗ Pk where I∗ ⊆ I. From the partition, we define a labeled

directed graph G. Let

V (G) := {P1, . . . , Pr}

be the vertex set of G. We build the edge set and define the labeling as follows. For

j, k ∈ {1, . . . , r} and d ∈ A, there is an edge labeled d from Pj to Pk if Pk is contained

in T (Pj ∩ [d]). It is clear that G is a sofic graph describing (X , T ). �

Remark 3.1. The sofic shift obtained in the latter part of the above proof is

irreducible if (X , T ) admits the ACIM equivalent to the Lebesgue measure. By con-

struction, the resulting labeled graph is the minimum left resolving presentation of the

irreducible sofic shift. Therefore it is easy to check whether the system is a shift of finite

type or not by checking synchronizing words through backward reading of the graph (see

[17, Theorem 3.4.17]).

4. Proof of Theorem 1.5.

We have to study the growth of
⋃K
n=1 U

n
(
∂
(
[0, 1)2

))
as K increases. Our idea is to

record only the information of the set of lines which include this finite union of segments.

Thus, we are interested in studying the union of the lines containing the segments whose

defining equations are of the form f(X,Y ) = (A,B) (XY )+C, where (0, 0) 6= (A,B) ∈ R2.

We often identify the line and its defining equation. Then the image under U of the line

is given by the defining equation f(X ′, Y ′) = 0 with
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X

Y

)
= β

(
a11 a12

a21 a22

)(
X ′

Y ′

)
−
(
c1
c2

)
where (

c1
c2

)
∈ ∆ :=

{(
bβ(a11x+ a12y) + b1c − b1
bβ(a21x+ a22y) + b2c − b2

)∣∣∣∣ 0 ≤ x, y < 1

}
.

Since ∆ is a bounded set of lattice points, it is a finite set. As multiplication by ζ acts

as q-fold rotation on C, we have(
a11 a12

a21 a22

)−1

=

(
a22 −a12

−a21 a11

)
,

(
a11 a12

a21 a22

)q
=

(
1 0

0 1

)
. (4.1)

Therefore the image of the line under U is

1

β
(A,B)

(
a22 −a12

−a21 a11

)(
X + c1
Y + c2

)
+ C = 0.

Multiplying by β, we obtain a correspondence of the coefficient vectors of the defining

equations: (
A(n), B(n), C(n)

)
→
(
A(n+1), B(n+1), C(n+1)

)
(4.2)

where (
A(n+1), B(n+1)

)
=
(
A(n), B(n)

)( a22 −a12

−a21 a11

)
, (4.3)

C(n+1) = βC(n) +
(
A(n), B(n)

)( a22 −a12

−a21 a11

)(
c1
c2

)
(4.4)

with
(
A(0), B(0), C(0)

)
= (A,B,C). Note that (4.2) is not one-to-one, since we have

many choices for ( c1c2 ) from ∆. Here we introduce an obvious restriction on C(n) that

four values {
A(n)s+B(n)t+ C(n)

∣∣∣ (s, t) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}
}

are not simultaneously positive nor negative, to ensure that the resulting lines intersect

the closure of X . All the same we have to note that the resulting lines may contain

irrelevant ones6 which do not actually contain a segment of
⋃∞
j=0 U

j(∂([0, 1)2)). From

(4.1), (A(n), B(n)) is clearly periodic with period q, and our task is to prove that the set

of all C(n) given by this iteration is finite. We call the set U ⊂ Q(β) of all the C(n)’s

6Therefore the resulting lines are potential discontinuities. In the actual algorithm to obtain the

associated graph of the sofic shift, it is simpler to abandon such irrelevant lines at each step. However
in doing so, we have to record the position of end points of discontinuity segments, which makes the

process involved.
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arising from ∂([0, 1)2), together with 0 and −1, the set of intercepts of U .

Let β1 = β, β2, . . . , βd be the conjugates of β. For k = 1, . . . , d, define σk : Q(β) →
Q(βk) to be the conjugate map that sends β to βk. To demonstrate the finiteness of U ,

we show that σk
(
C(n)

)
is bounded for k = 1, . . . , d. From (4.3), (4.4) and (4.1), we have

C(n+1) = βC(n) +m where m is an element of

M :=

{
(A,B)

(
a22 −a12

−a21 a11

)n(
c1
c2

) ∣∣∣∣∣(A,B)∈{(0,1),(1,0)},n= 0,1,. ..,q−1,

(
c1
c2

)
∈∆

}
.

Here we use the fact that (A,B,C) ∈ {(1, 0, 0), (1, 0,−1), (0, 1, 0), (0, 1,−1)} gives

∂([0, 1)2). By the finiteness of ∆, M ⊂ Q(β) is also a finite set. Taking a common denom-

inator, there is a fixed N ∈ N that C(n) ∈ (1/N)Z[β]. Let ωk := max{1, max
m∈M

{|σk(m)|}}.
Then, if k = 2, . . . , d, we have

∣∣∣σk (C(n)
)∣∣∣ ≤ |(βk)n|+ ωk

n−1∑
j=0

|βk|j ≤
ωk

1− |βk|
.

For k = 1, since the line A(n)X +B(n)Y +C(n) = 0 passes through [0, 1]2, it follows that∣∣∣σ1

(
C(n)

)∣∣∣ =
∣∣∣C(n)

∣∣∣ ≤ max
l=0,1,...q−1

(∣∣∣A(l)
∣∣∣+
∣∣∣B(l)

∣∣∣) .
by the periodicity of A(n) and B(n). �

5. Proof of Theorem 1.7.

Put ω = (1 +
√

5)/2. From ξ = 0, η1 = 1, η2 = ζ = exp(2πi/5) and a trivial relation

ζ2 = (ζ + ζ−1)ζ − 1, we have b1 = b2 = 0 and a11 = 0, a12 = −1, a21 = 1, a22 = 1/ω.

Therefore, we have

U

((
x

y

))
=

(
−βy − b−βyc

β(x+ y/ω)− bβ(x+ y/ω)c

)
.

Clearly,
√

5 6∈ Q(β) is equivalent to Q(β) ∩Q(ω) = Q. Since Q(ω) is a Galois extension

over Q, this implies that Q(ω) and Q(β) are linearly disjoint and there exists a conjugate

map σ ∈ Gal(Q(β, ω)/Q(β)) with σ(β) = β and σ(ω) = −1/ω.

From (4.3) and (4.4) we see,

C(n+1) = βC(n) +
(
Ac

(n+1)
11 +Bc

(n+1)
21

)
c1 +

(
Ac

(n+1)
12 +Bc

(n+1)
22

)
c2 ∈ U

for some ( c1c2 ) ∈ ∆ and c(n)
11 c

(n)
12

c
(n)
21 c

(n)
22

 =

 a22 −a12

−a21 a11

n

.

Consider the case where (A,B,C) = (1, 0,−1). Then,
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C(n+1) = βC(n) + c
(n+1)
11 c1 + c

(n+1)
12 c2.

Applying σ, we get σ
(
C(n+1)

)
= βσ

(
C(n)

)
+ σ

(
c
(n+1)
11 c1 + c

(n+1)
12 c2

)
. It follows that∣∣∣σ (C(n+1)

)∣∣∣ ≥ β ∣∣∣σ (C(n)
)∣∣∣− ∣∣∣σ (c(n+1)

11 c1 + c
(n+1)
12 c2

)∣∣∣
= β

∣∣∣σ (C(n)
)∣∣∣− ∣∣∣σ (c(n+1)

11

)
c1 + σ

(
c
(n+1)
12

)
c2

∣∣∣
≥ β

∣∣∣σ (C(n)
)∣∣∣−D,

where

D := max
n∈N

max
∆

{∣∣∣σ (c(n)
11

)
c1 + σ

(
c
(n)
12

)
c2

∣∣∣}
≤ max

n∈N
max

∆

{∣∣∣σ (c(n)
11

)∣∣∣ |c1|+ ∣∣∣σ (c(n)
12

)∣∣∣ |c2|} .
Direct computation yields

(
σ
(
c
(n)
11

)
, σ
(
c
(n)
12

))
=



(1, 0) n ≡ 0 (mod 5)

(−ω, 1) n ≡ 1 (mod 5)

(ω,−ω) n ≡ 2 (mod 5)

(−1, ω) n ≡ 3 (mod 5)

(0,−1) n ≡ 4 (mod 5).

Hence, D ≤ ωmax
∆
{|c1|+ |c2|} = ω (bβωc+ dβe). Accordingly, for all n ∈ N,∣∣∣σ (C(n+1)

)∣∣∣ ≥ β ∣∣∣σ (C(n)
)∣∣∣− ω (bβωc+ dβe) .

Therefore, if ∣∣∣σ (C(n)
)∣∣∣ > ω (bβωc+ dβe)

β − 1

for some n ∈ N, then
{
σ
(
C(n)

)
|n ∈ N

}
diverges. Now, it is easy to check that(

A(1), B(1), C(1)
)

= (ω−1, 1, (ω−1) b−βc+bβωc−β) gives a line which actually includes

a discontinuity segment. Under the assumption β >
(

13 + 3
√

5−
√

70− 2
√

5
)
/4 ≈

2.90332, we have

|σ ((ω − 1) b−βc+ bβωc − β)| = σ ((ω − 1) b−βc+ bβωc − β)

= −ω b−βc+ bβωc − β,

and

−ω b−βc+ bβωc − β > ω (bβωc+ dβe)
β − 1

.
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We therefore conclude that
{
σ
(
C(n)

)
|n ∈ N

}
is unbounded. Now we have shown that

once we had chosen C(1) as above, for every possible sequence
(
C(n)

)
, its conjugate

sequence
(
σ
(
C(n)

))
(n = 1, 2, 3, . . . ) diverges. This implies that the set of discontinuities

can not be finite. �

6. Examples.

Taking β small, we can find a family of systems (X , T ) with more than one ACIM.

Example 6.1. Let ζ = i and β = 1.039. Set η1 = 2.92, η2 = exp(πi/3) and ξ = 0.

From the distribution of eventual orbits of T of randomly chosen points, it is not difficult

to make explicit the polygons bounded by horizontal and vertical segments within which

restrictions of T are well-defined. This leads us to a rigorous proof of the existence of

two distinct ergodic components. A system is generated by a rectangle E and an octagon

F composed of two rectangles. The ratio of two sides of the rectangle E is 1 : β. By

successive applications of T , the four vertices of E are easily computed:

x+

√
3i

2
, x+ yi, x+

1

β

(√
3

2
− y
)

+ yi, x+
1

β

(√
3

2
− y
)

+

√
3i

2

with x = η1−(
√

3/2)β−1/2 and y = βx−
√

3/2 and the vertices of F in counter-clockwise

ordering are

x+
1

β

(√
3

2
− y
)

+ yi, γ + yi, γ + vi, u+ vi,

u+ v′i, γ + v′i, γ +

√
3i

2
, x+

1

β

(√
3

2
− y
)

+

√
3i

2

with γ = −βy+η1−1/2, u+vi = T 3(γ+
√

3i/2) and u+v′i = T 2(x−1/2). The images

T (F ) and T 2(F ) are similar to F with the ratio β and β2. We readily confirm the set

equation E ∪ F = T (E) ∪ T 3(F ). Hence the restriction of T is well defined on the set

Y := E ∪ F ∪ T (F ) ∪ T 2(F )

and defines a piecewise expanding map. Thus there is at least one ACIM whose support is

contained in Y . The same discussion can be done for a different system which is disjoint

from Y . The resulting supports of ACIM’s are clearly disjoint. The same situation

happens when β and η1 satisfy

√
3

2
β + 1 +

√
3

β
−
√

3

2β3
≤ η1 ≤

1

2
+

√
3

β
+

√
3

2β3

while other parameters are fixed. This example gives an uncountable family of systems

with at least two ACIM’s.

In the following we give some examples of sofic systems.
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Example 6.2. Let ζ = exp(2πi/3) and β = 1 +
√

2. Set η1 = 1, η2 = ζ2 and

(βζ − 1)ξ = 3 − β. From r(L) = 1/
√

3 and w(X ) =
√

3/2 we have β > B2 = 7/3 and

there is a unique ACIM equivalent to Lebesgue measure by Theorem 1.1. We consider

the symbolic dynamical system associated to the map T . The set A is given by{
a = −1− ζ2, b = −ζ2, c = 1− ζ2, d = 2− ζ2, e = −2− 2ζ2, f = −1− 2ζ2,

g = −2ζ2, h = 1− 2ζ2, j = −2− 3ζ2, k = −1− 3ζ2, l = −3ζ2
}
.

1.50.5

2

1.5

1

0.5

0

2

–1 –0.5 0

2

1
5

3
6

8 12
4 7

0.5 1 1.5 2 2.5 3

9

10

11

Figure 6. X and βζX .

In Figure 6, we see that the discontinuity lines are finite and partition the funda-

mental domain X into disjoint components Pn, n = 1, . . . , 12. We also see in the figure

the expanded fundamental region βζX .

It is easy to confirm that the image of Pn under T is given by Table 1. From this

table, we construct the sofic graph (see Figure 7) as described in Section 3.

Example 6.3. This example is a kind of a square root system of the negative

beta expansion introduced by Ito–Sadahiro [7]. Let ζ = i and set η1 = 1, η2 = βi and

ξ = −1− βi. We have

T (x+ yi) = −βy − b−βy + 1c+ βxi.

By taking its square, we can separate the variables:

T 2 (x+ yi) = −β2x−
⌊
−β2x+ 1

⌋
+
(
−β2y − β b−βy + 1c

)
i.

Thus we can study this map Gaussian coordinate-wise by defining
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Table 1.

Pn T (Pn) δ

1 7 b

2 11, 12 b

4, 7, 8 c

3 12 c

4 11 c

4, 7, 8, 12 d

5 9 a

1, 2, 5, 6 b

7, 11, 12 f

4, 7, 8 g

Pn T (Pn) δ

6 9, 10 b

2, 3, 6 c

12 g

7 1, 5 c

11 g

4, 7, 8 h

8 9, 10 c

2, 3, 6 d

12 h

9 9 e

1, 2 f

Pn T (Pn) δ

9 7, 11, 12 j

4 k

10 5, 6, 9, 10 f

2, 3, 6 g

7, 8, 12 k

11 1, 5 g

11 k

4, 7, 8 l

12 9, 10 g

2, 3, 6 h

12 l

1 2 3

4

5

6

7 8

9 10

11 12

Figure 7. Sofic graph for 3-fold rotation.

f(x) = −β2x−
⌊
−β2x+ 1

⌋
,

a 1-dimensional piecewise expansive map from [−1, 0) to itself and

g(y) = −β2y − β b−βy + 1c

defined on [−β, 0). We easily see that f and g give isomorphic systems through the rela-

tion g(βx) = βf(x). Liao–Steiner [16] showed that the unique ACIM of f is equivalent

to the 1-dimensional Lebesgue measure if and only if β2 ≥ (1 +
√

5)/2. Thus the ACIM

of T is equivalent to the 2-dimensional Lebesgue measure if and only if β ≥
√

(1 +
√

5)/2.

In view of the shape of f , one see that if β2 is a Pisot number, then the system (X , T )

is sofic (cf. Theorem 3.3 in [10]). This give examples of sofic rotational beta expansion
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beyond the scope of Theorem 1.5. One can also show that when β is the Salem number

whose minimum polynomial is x4 − x3 − x2 − x+ 1, the system becomes sofic.

This example is essentially 1-dimensional. We do not yet succeed in giving a ‘genuine’

2-dimensional sofic rotational beta expansion beyond Theorem 1.5.

Example 6.4. Let ξ = 0, η1 = 1 and η2 = ζ = exp(2πi/5). Let β = (1 +
√

5)/2.

We describe the symbolic dynamical system associated to given rotation beta transfor-

mation through its sofic graph. Here, we use the map U instead of T . The alphabet

A = ∆ +
(
b1
b2

)
= ∆ is given by{

a =

(
−2

0

)
, b =

(
−1

0

)
, c =

(
−2

1

)
, d =

(
−1

1

)
, e =

(
−2

2

)
, f =

(
−1

2

)}
.

The partition of the fundamental region [0, 1)2 is given in Figure 8. The sofic graph

is described in Table 2. Since the incidence matrix of this graph is primitive, we can

determine the ACIM whose density is positive and constant on each partition. Therefore

the ACIM is equivalent to the Lebesgue measure, although we can not apply Theorem

1.1 for β < 2.

Example 6.5. Let ξ = 0, η1 = 1 and η2 = ζ = exp(2πi/7). Let β = 1 +

0
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38

34

37
39 40

33

Figure 8. 5-fold sofic case.



Rotational beta expansion: ergodicity and soficness 413

Table 2.

Pn U(Pn) δ

1 28, 29 b
2 30, 32, 33 b
3 31, 34, 35 b
4 9, 12, 19, 20, 21, 22 b
5 6, 7, 18 b
6 11 b

2 d
7 37, 40 a

8, 10 b
26, 27, 28, 29 c
1 d

8 36, 38, 39 a
25 c

9 30, 31 c
10 23, 24 a

13, 14, 15, 16 c
11 17, 18 c
12 19 c
13 37 b

Pn U(Pn) δ

14 40 b
26, 27 d

15 36 b
16 38, 39 b

25 d
17 23, 24 b

13, 14 d
18 3, 15, 16 d
19 4, 17 d
20 33, 35 c

5 d
21 32, 34 c
22 20 c
23 21 c
24 22 c
25 28, 29 d
26 30, 32 d
27 33 d
28 35 d

Pn U(Pn) δ

29 31, 34 d
30 19, 20 d
31 6, 18 d
32 9, 21 d
33 11, 12, 22 d

2 f
34 36, 37 c

7, 8 d
35 39, 40 c

10 d
27, 28 e
1 f

36 38 c
25, 26, 29 e

37 30, 31 e
38 23 c

13, 15 e
39 24 c

14, 16 e
40 17, 18, 19 e

0.8

0.6

0.4

0.2

0.5 1.0 1.5

Figure 9. Sofic 7-fold rotation.

2 cos(2π/7) ≈ 2.24698, the cubic Pisot number whose minimum polynomial is x3−2x2−
x + 1. From r(L) = 1/(2 cos(π/7)) and w(X ) = sin(2π/7) we have β > B1 ≈ 2.00272

and there is a unique ACIM by Theorem 1.1, but β < B2 ≈ 2.41964. From Theorem

1.5, we know that the corresponding dynamical system is sofic. Figure 9 shows the sofic

dissection of X by 224 discontinuity segments. The number of states of the sofic graph

is 3292 (!), computed by Euler’s formula. It is possible to show that the corresponding

incidence matrix of the sofic graph is primitive, and consequently the ACIM is equivalent
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to the Lebesgue measure.
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[ 2 ] S. Akiyama, H. Brunotte, A. Pethő and J. M. Thuswaldner, Generalized radix representations

and dynamical systems II, Acta Arith., 121 (2006), 21–61.

[ 3 ] J. Buzzi and G. Keller, Zeta functions and transfer operators for multidimensional piecewise affine

and expanding maps, Ergodic Theory Dynam. Systems, 21 (2001), 689–716.

[ 4 ] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der Math-

ematischen Wissenschaften, 290.

[ 5 ] W. J. Gilbert, Radix representations of quadratic fields, J. Math. Anal. Appl., 83 (1981), 264–274.
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[11] I. Kátai and B. Kovács, Canonical number systems in imaginary quadratic fields, Acta Math.

Acad. Sci. Hungar, 37 (1981), 159–164.
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