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Abstract. In 1955, Gottschalk and Hedlund introduced in their book
that Jones constructed a minimal homeomorphism whose minimal set is con-
nectd but not path-connected and contains infinitely many arcs. However the
homeomorphism is defined only on this set. In 1991, Walker first constructed
a homeomorphism of S1 ×R with such a minimal set. In this paper, we will
show that Walker’s homeomorphism cannot be a diffeomorphism (Theorem 2).
Furthermore, we will construct a C∞ diffeomorphism of S1×R with a compact
connected but not path-connected minimal set containing arcs (Theorem 1)
by using the approximation by conjugation method.

1. Introduction.

In order to examine the dynamical properties of homeomorphisms, compact invariant

sets are keys to consider the asymptotic behavior of orbits. A minimal set is a compact

invariant set which is minimal with respect to the inclusion. The minimal sets play

important roles as cores of compact invariant sets.

In low dimensional dynamical systems, only few topological types of minimal sets

have been found (Problem 1.6 in [4]). In this paper, we consider whether the Warsaw

circle with infinitely many singular arcs (Figure 1) can be a minimal set of a surface

diffeomorphism.

The Warsaw circle is the set obtained from the closure of the graph of

y = sin
1

x
(−1/π ≤ x ≤ 1/π, x �= 0)

by identifying the ends. We call {(0, y) ; |y| ≤ 1} a singular arc. The Warsaw circle is

famous as an example of a connected but not path-connected set. A Warsaw circle with

infinity many singular arcs is obtained by inserting infinity many such singular arcs along

the circle, denoted by X (the precise definition will be given in Section 2).

In 1955, Gottschalk and Hedlund introduced in their book ([6]) that Jones con-

structed a minimal homeomorphism of X (that is, the whole set X is a minimal set).

Although this set X was embedded in S1×R, the homeomorphism is defined only on the

set X. In 1991, Walker ([10]) constructed a homeomorphism of S1×R whose minimal set
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Figure 1. The Warsaw circle with infinitely many singular arcs.

is homeomorphic to X. However, his homeomorphism cannot be differentiable because

the singular arcs keep the vertical directions invariant and the minimality destroys the

differential structure (Theorem 2) in Section 2.

In the latter part of this paper, we will construct a C∞ diffeomorphism of S1×R with

a compact connected but not path-connected minimal set containing arcs (Theorem 1).

This minimal set is an inverse limit of circles. In general, inverse limits of circles are

suitable for constructing minimal diffeomorphisms (for example, a pseudo-circle in [7]).

Here we observe that the minimal set of Theorem 1 is similar to a Warsaw circle with

infinitely many singular arcs but not always homeomorphic to it. The construction is

not adequate to prove that they are homeomorphic or not.

Theorem 1. There is a C∞ diffeomorphism f of S1×R with a compact connected

but not path-connected minimal set containing arcs.

The author would like to thank Shigenori Matsumoto for his helpful comments on

the first manuscript.

2. Difficulty for the construction of diffeomorphisms.

First recall the homeomorphism of Gottschalk and Hedlund, which was introduced

in Section 14 of [6] as an example communicated by Jones.

We parametrize the circle by S1 = R/Z. Let χ0 : S1−{0} → R denote the function

defined by ⎧⎪⎨
⎪⎩
χ0(x) = sin

1

x
if − 1

π
≤ x ≤ 1

π
, x �= 0,

χ0(x) = 0 if
1

π
≤ |x| ≤ 1

2
.
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Then the closure of the graph of χ0 is called the Warsaw circle, denoted by X0.

Let ω be an irrational number. Let Λ = {nω mod Z;n ∈ Z}. We choose a sequence

{cn}n∈Z of positive numbers satisfying
∑

n∈Z cn <∞. We define a function χω : S1−Λ→
R by

χω(x) =
∑
n∈Z

cnχ0(x− nω).

Let graphχω denote the graph of χω. The closure of graphχω is called the Warsaw

circle with infinitely many singular arcs, denoted by X. Let Sm (m ∈ Z) denote the arc⎧⎨
⎩(mω, y) ∈ S1 ×R ; −cm ≤ y −

∑
n∈Z,n �=m

cnχ0(x− nω) ≤ cm

⎫⎬
⎭ ,

which is called a singular arc. For x �∈ Λ, χω is continuous at x ([6]). Thus X consists

of graphχω and singular arcs Sm (m ∈ Z).

The rotation by ω on S1 induces a homeomorphism on graphχω. By [6], this

homeomorphism is uniformly continuous on graphχω, and thus it can be extended on

the closure of graphχω. This is the minimal homeomorphism of X introduced in [6].

We assume that f is a homeomorphism of S1 × R such that X is a minimal set

of f . Then f maps each singular arc onto a singular arc. Let pi (i = 1, 2) denote the

projection to the i-th factor of S1 ×R. Then we can define an induced homeomorphism

ρf : S1 → S1 by ρf (x) = p1f(x, y) for any (x, y) ∈ X.

Theorem 2. Let ω be an irrational number. Let {cn}n∈Z be a sequence of positive

numbers satisfying
∑

n∈Z cn < ∞. Let X denote the closure of the graph of χω. If cn
satisfies that lim supn→∞ (cn+1)/cn ≤ 1 and lim supn→−∞ cn/(cn+1) ≤ 1, then there is

no C1-diffeomorphism f of S1 ×R such that the induced homeomorphism ρf of S1 is a

rotation and X is a minimal set of f .

For the homeomorphism f constructed by Walker, ρf is a rotation and cn = 1/2|n|.
Thus this cannot be of class C1 by Theorem 2.

In the rest of this section, we will prove Theorem 2. We assume that there is a C1

diffeomorphism f of S1×R such that the induced homeomorphism ρf of S1 is a rotation

and X = graphχω is a minimal set for an irrational number ω. In the following, we will

deduce the contradiction.

Let Ω+ = {(x, y) ; y > y0 for any (x, y0) ∈ X}. Since S1 ×R − X consists of two

connected open sets, Ω+ is invariant under f or f2.

Proposition 1. X is a minimal set of f2.

Proof. Suppose that there is a compact subset C of X invariant under f2. Then

C ∪ f(C) is invariant under f , and thus C ∪ f(C) = X. Since C ∩ f(C) is also invariant

under f , either X = C or C ∩ f(C) = ∅ holds. Now X is connected. Thus C ∩ f(C) is

not empty, and thus X = C. Therefore X is a minimal set of f2. �
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Thus we have only to prove Theorem 2 when f(Ω+) = Ω+.

Proof of Theorem 2. Let Sn = p−1
1 (nω) ∩ X. Since f(S0) is a singular arc,

there is n0 ∈ Z such that f(S0) = Sn0 . Thus ρf (0) = n0ω. We choose a universal

covering ρ̃f of ρf so that ρ̃f (0) = n0ω. Then ρ̃f (x) = x+ n0ω for any x ∈ R because ρf
is a rotation. As a consequence, f(Si) = Si+n0 for any i ∈ Z.

We assume that n0 > 0. We can prove the other case similarly.

Let (x, y) be a point of X such that p−1
1 (x) ∩ X consists of one point, i. e. x �∈ Λ.

We take an arbitrary ε > 0 and an arbitrary neighborhood W of (x, y) in S1 × R.

Since p−1
1 (x) ∩X consists of one point, there is a neighborhood U of x in S1 such that

p−1
1 (U)∩X is contained in W . Since lim supn→∞ (cn+1)/cn ≤ 1, there is I > 0 such that

(ci+1)/ci <
n0
√
1 + ε for any i ≥ I. We choose an integer i0 greater than or equal to I

such that i0ω ∈ U . Then Si0 is contained in W . By the mean value theorem, there is zi0
of Si0 such that (∂ (p2 ◦ f)/∂y)(zi0) = (ci0+n0)/ci0 . Now

ci0+n0

ci0
=

ci0+1

ci0

ci0+2

ci0+1
· · · ci0+n0

ci0+n0−1
< 1 + ε.

Thus we conclude that, for any ε and neighborhood W of (x, y), there is a point in

W such that ∂ (p2 ◦ f)/∂y < 1 + ε. Since ε and W can be chosen so small, we obtain

(∂ (p2 ◦ f)/∂y)(x, y) ≤ 1.

The set {(x, y) ; p−1
1 (x)∩X consists of one point} is dense in X. Thus ∂ (p2 ◦ f)/∂y

is less than or equal to 1 on the whole X. Now f(Si) = Si+n0
for any i ∈ Z. Thus

we obtain · · · ≥ c−2n0
≥ c−n0

≥ c0 ≥ · · · . However this contradicts the assumption∑
n∈Z cn <∞. �

3. C∞ construction.

3.1. Inverse limit of circles for the construction.

We will construct an inverse limit of circles which will be a minimal set of the

diffeomorphism of Theorem 1.

Let q1 = 2. We assume that large positive integers qn (n = 1, 2, · · · ) were already

given inductively. Let Ln denote the positive numbers defined by L1 = 3 and

Ln = qn

(
2

L1L2 · · ·Ln−1
− 1

qn

)

for n > 1. Although we need several conditions on qn for our construction, we only assume

here that qn = knqn−1L1L2 · · ·Ln−1 for some positive integer kn. Then Ln = 2knqn−1−1

is an integer, and qn is a multiple of qn−1. Let Xn be an annulus whose coordinate is

given by {(x, y) ; x ∈ R/Z, |y| ≤ 1} for n = 1, 2, · · · and let pi denote the i-th projection

of Xn (i = 1, 2). Let Rθ denote the θ-rotation Rθ(x, y) = (x+ θ, y) in Xn. We define a

simple closed curve Cn : R/LnZ→ Xn by
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Figure 2. Circles Cn.

Cn(t) =

⎧⎪⎪⎨
⎪⎪⎩

(
t, L1 · · ·Ln−1t− 1

2

)
if 0 ≤ t ≤ 1

L1 · · ·Ln−1(
−t+ 2

L1 · · ·Ln−1
,
L1 · · ·Ln−1qn
qn − L1 · · ·Ln

(
t− Ln

qn

)
− 1

2

)
if

1

L1 · · ·Ln−1
≤ t ≤ Ln

qn

and Cn

(
t+

Ln

qn

)
= R1/qnCn(t)(see Figure 2).

Then Cn(0) = (0,−1/2), Cn(1/(L1 · · ·Ln−1)) = (1/(L1 · · ·Ln−1), 1/2), Cn(Ln/qn) =

(1/qn,−1/2) and Cn connects these points by line segments. Let 	n = {Cn(t) ; 0 ≤ t ≤
1/(L1L2 · · ·Ln−1)}. The slope of 	n is L1 · · ·Ln−1, which tends to∞ very fast as n→∞.

Furthermore, the curve Cn is invariant under R1/qn and is contained inR/Z×[−1/2, 1/2].
Let ψn : Xn+1 → Xn denote the map defined by ψn(x, y) = Cn(Lnx). Notice that

ψn(	n+1) = 	n and ψn commutes with R1/qn . The latter implies that ψn commutes with

Rθn if θn is a multiple of 1/qn.

We define a continuous map Ψn : S1 → S1 by Ψn(t) = p1Cn+1(Ln+1t). Then

ψn(Cn+1(Ln+1t)) = Cn(LnΨn(t)) because, for (x, y) = Cn+1(Ln+1t), ψn(x, y) =

Cn(Lnx) = Cn(LnΨn(t)). Thus the following diagram commutes.

S1

�Ψn

��

Cn+1(Ln+1t) �� Xn+1

ψn

��
S1

Cn(Lnt) �� Xn
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We will use the inverse limit (S1,Ψn) as a core for the construction of a C∞ diffeomor-

phism in Theorem 1 (see [1]).

3.2. Overview of the construction.

We give an angle θn ∈ R/Z by θn =
∑n

i=1 1/qi for n = 1, 2, . . .. Since θn is a

multiple of 1/qn, ψn commutes with Rθn . We choose a C∞ embedding ϕn : Xn+1 → Xn

sufficiently near ψn satisfying

(a) Rθn ◦ ϕn = ϕn ◦Rθn ,

(b) ϕn(	n+1) = 	n,

(c) ϕn(Xn+1) ⊂
{
(x, y) ∈ Xn ; |y| < 3

4

}
.

Let Φn = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕn. Then Φ1(X2) ⊃ Φ2(X3) ⊃ · · · , and thus
⋂

n Φn(Xn+1) is a

nonempty compact and connected set. Let X denote
⋂

n Φn(Xn+1). Then X will be the

minimal set of the diffeomorphism in Theorem 1.

The set X contains the arc 	1 because Φn−1(	n) = Φn−2(	n−1) = · · · = ϕ1(	2) = 	1.

Moreover, X is not path-connected, which will be proved in Lemma 2. The idea of

the proof is as follows: Let z1 = (1, 1/2) ∈ X1 and z2 = (1/2,−1/2) ∈ X1. Then z1 and

z2 are points of X. Suppose that there is a path γ from z1 to z2 contained in X satisfying

that γ : [0, 1] → X1 is homotopic to t �→ (1 − (1/2)t, 1/2 − t) with the boundary fixed.

Let N denote the number of the connected components of γ ∩ p−1
2 (−1/4, 1/4) such that

one of the boundary points is contained in p−1
2 (−1/4) and the other boundary points

is contained in p−1
2 (1/4). For an integer n satisfying 2n − 2 > N , we consider the arc

γn+1 = Φ−1
n (γ). By the condition of Φn given later in the precise construction, Φn(γn+1)

is a zigzag curve in X1 passing through n− 1 points near z1 and n points near (0,−1/2)
alternatingly. Then there is at least 2n− 2 connected components of γ ∩ p−1

2 (−1/4, 1/4)
as above. This contradicts the assumption 2n− 2 > N .

We will give a diffeomorphism fn : X1 → X1 satisfying

(d) fn+1 = fn outside Φn(Xn+1) and

(e) fn+1(x, y) = ΦnRθn+1
Φ−1

n (x, y) if (x, y) ∈ Φn(Xn+1)

and Φ−1
n (x, y) ∈

{
(x, y) ; |y| ≤ 3

4

}
.

If we choose fn+1 sufficiently near fn, then we can show that fn converges to a C∞

diffeomorphism f of X1 as n → ∞. The proof is based on the comparison of fn and

fn+1 in the middle part. Thanks to the condition Rθn ◦ ϕn = ϕn ◦ Rθn , the equation

fn−1 = Φn−1RθnΦ
−1
n−1 can be written as ΦnRθnΦ

−1
n , while fn = ΦnRθn+1

Φ−1
n . The

crucial point is that we can choose the number qn+1 after the construction of Φn. Letting

|θn+1 − θn| small enough compared with Φn, we get the desired convergence.

For θn = jn/qn, the integers jn and qn are assumed to be relatively prime (see

Section 3.3 (7)). Thus Rθn permutes the sets {(x, y) ∈ Xn ; i/qn ≤ x ≤ (i+ 1)/qn}
(i = 0, 1, 2, . . . , qn − 1) transitively. By using this property, we will show that X is a

minimal set in Lemma 1.

In the following, we will give the precise construction of f and will show in detail

that X is a connected but not path-connected minimal set of f containing the arc 	1.
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3.3. Precise construction.

Let Xn (n = 1, 2, · · · ) be an annulus whose coordinate is given by {(x, y) ; x ∈
R/Z, |y| ≤ 1}. Let d denote the metric of Xn induced from the Euclidean metric, and

let diamF denote the diameter of a set F . We define the rotation Rθ : Xn → Xn by

Rθ(x, y) = (x+ θ, y).

Let q1 = 2 and θ1 = 1/q1. We define f1 : X1 → X1 by f1(x, y) = Rθ1(x, y) for

x ∈ R/Z and |y| ≤ 1. Let L1 = 3. We define a simple closed curve C1 : R/L1Z → X1

by

C1(t) =

⎧⎪⎪⎨
⎪⎪⎩

(
t, t− 1

2

)
if 0 ≤ t ≤ 1(

−t+ 2,
q1

q1 − L1

(
t− L1

q1

)
− 1

2

)
if 1 ≤ t ≤ L1

q1

and C1(t+(L1/q1)) = R1/q1C1(t) for any t ∈ R/L1Z (see Figure 2). Then L1 is the length

of p1 ◦ C1 and C1 is invariant under R1/q1 . Let 	1 denote the segment {(t, t− 1/2) ; 0 ≤
t ≤ 1}.

Figure 3. ϕ1 : X2 → X1.
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We define ϕn and fn inductively as follows: We assume that ϕi, ψi (i = 1, 2, . . . , n−2)
if n > 2 and 	i, qi, θi fi, Li, Ci, (i = 1, 2, . . . , n − 1) for n ≥ 2 satisfying the following

conditions have already been given:

There is kn−1 ∈ Z+ = {n ∈ Z ; n > 0} such that qn−1 = kn−1qn−2L1 · · ·Ln−2

(∈ Z+).

Ln−1 = qn−1

(
2

L1L2 · · ·Ln−2
− 1

qn−1

)
∈ Z.

Cn−1 : R/Ln−1Z→ Xn−1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cn−1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
t, L1 · · ·Ln−2t− 1

2

)
if 0 ≤ t ≤ 1

L1 · · ·Ln−2(
−t+ 2

L1 · · ·Ln−2
,

L1 · · ·Ln−2qn−1

qn−1 − L1 · · ·Ln−1

(
t− Ln−1

qn−1

)
− 1

2

)

if
1

L1 · · ·Ln−2
≤ t ≤ Ln−1

qn−1

Cn−1

(
t+

Ln−1

qn−1

)
= R1/(qn−1)Cn−1(t) for any t.

	i =

{(
t, L1 · · ·Li−1t− 1

2

)
; 0 ≤ t ≤ 1

L1 · · ·Li−1

}
(i = 2, 3, . . . , n− 1).

ϕn−2|	n−1 = ψn−2|	n−1 (in particular, ϕn−2(	n−1) = 	n−2).

θn−1 =

n−1∑
i=1

1

qi
.

Since the integer qi+1 is a multiple of qi (i = 1, 2, . . . , n− 2). qn−1θn−1 is an integer.

We define ψn−1 : Xn → Xn−1 by ψn−1(x, y) = Cn−1(Ln−1x). Then ψn−1 maps Xn

onto the curve Cn−1. Furthermore,

ψn−1R1/qn−1
(x, y) = Cn−1

(
Ln−1x+

Ln−1

qn−1

)
= R1/qn−1

Cn−1(Ln−1x)

= R1/qn−1
ψn−1(x, y).

Let 	n denote the segment {(t, L1L2 · · ·Ln−1t − 1/2) ; 0 ≤ t ≤ 1/(L1 · · ·Ln−1)}. Then

ψn−1(	n) = 	n−1. We choose a C∞-embedding ϕn−1 : Xn → Xn−1 along the curve Cn−1

satisfying

(1) d(ϕ1 · · ·ϕn−2ϕn−1(x, y), ϕ1 · · ·ϕn−2ψn−1(x, y)) < 1/2n+2 for any (x, y) ∈ Xn, In

particular, diam{ϕ1 · · ·ϕn−1(x, y) ; |y| ≤ 1} < 1/2n+1 because {ψn−1(x, y) ; |y| ≤
1} consists of one point.

(2) ϕn−1 ◦ R1/qn−1
= R1/qn−1

◦ ϕn−1. Since qn−1θn−1 is an integer, we have ϕn−1 ◦
Rθn−1 = Rθn−1 ◦ ϕn−1.
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(3) ϕn−1|	n = ψn−1|	n. In particular, ϕn−1(	n) = 	n−1, ϕn−1(0,−1/2) = (0,−1/2)
and ϕn−1(1/(L1 · · ·Ln−1), 1/2) = (1/(L1 · · ·Ln−2), 1/2), where ϕ1(1/L1, 1/2) is

assumed to be (1, 1/2).

(4) ϕn−1(Xn) ⊂ {(x, y) ; |y| < 3/4}.
Let Φn−1 = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕn−1 for n > 1 (Φ0 = id). We choose a large integer qn
satisfying that

(5) There is kn ∈ Z+ such that qn = knqn−1L1 · · ·Ln−1. In particular, qn >

L1 · · ·Ln−1. Further we assume that qn > 2n for n > 1.

(6) If z1, z2 ∈ Xn and d(z1, z2) ≤ n/qn, then d(Φn−1(z1),Φn−1(z2)) < 1/2n.

(7) For θn =
∑n

i=1 1/qi, qnθn and qn are relatively prime. For example, if qn =

kqn−1
2 and θn = (1/qn) + (j/(qn−1)) for some integers k and j, then θn =

(1 + kjqn−1)/kqn−1
2. Thus qnθn = 1 + kjqn−1 and qn = kq2n−1 are relatively

prime.

Here we remark that ϕn−1 has already been given independent of the choice of qn.

We choose a smooth increasing function ηn : [3/4, 1] → R so that ηn(3/4) = θn,

ηn(1) = θn−1 and ηn is constant on neighborhoods of 3/4 and 1. We define a C∞

diffeomorphism fn : X1 → X1 by

fn(x, y)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
fn−1(x, y) outside Φn−1(Xn)

Φn−1Rηn(|t|)Φ
−1
n−1(x, y) if (x, y) ∈ Φn−1(Xn) and

3

4
≤ |p2Φ−1

n−1(x, y)| ≤ 1

Φn−1RθnΦ
−1
n−1(x, y) if (x, y) ∈ Φn−1(Xn) and |p2Φ−1

n−1(x, y)| ≤
3

4
,

where fn is well-defined by (2). We further assume that qn is so large that fn is assumed

to be 1/2n-closed to fn−1 in the Cn-topology.

Let Ln denote the integer defined by Ln = qn (2/(L1 · · ·Ln−1)− 1/qn). Then

1

L1 · · ·Ln−1
<

(
1

L1 · · ·Ln−1
− 1

qn

)
+

1

L1 · · ·Ln−1
by (5)

=
2

L1 · · ·Ln−1
− 1

qn

=
Ln

qn
.

Thus 1/(L1 · · ·Ln) < 1/qn. As a consequence, we have

(8) 0 <
1

L1 · · ·Ln
<

1

qn
<

1

L1 · · ·Ln
+

1

qn
<

2

qn
< · · · < 1.

We define a simple closed curve Cn : R/LnZ→ Xn by



236 H. Nakayama

Cn(t) =

⎧⎪⎪⎨
⎪⎪⎩

(
t, L1 · · ·Ln−1t− 1

2

)
if 0 ≤ t ≤ 1

L1 · · ·Ln−1(
−t+ 2

L1 · · ·Ln−1
,
L1 · · ·Ln−1qn
qn − L1 · · ·Ln

(
t− Ln

qn

)
− 1

2

)
if

1

L1 · · ·Ln−1
≤ t ≤ Ln

qn

and Cn(t+Ln/qn) = R1/qnCn(t) for any t. Then Cn is invariant under Rθn . We construct

ϕn and fn (n = 1, 2, · · · ) inductively in this way.

By the same argument as in [7] and [5], we can choose qn so large that fn converges

to a C∞ diffeomorphism f as n→∞, and d(fk(x, y), fk
n(x, y)) < 1/2n for any (x, y) ∈ X1

and 0 ≤ k ≤ qn.

Remark 1. We can extend f to a C∞ diffeomorphism of any surface.

3.4. Properties of the minimal set.

Let X =
⋂∞

n=2 Φn−1(Xn). Then X is not empty because

· · · ⊂ Φn(Xn+1) ⊂ Φn−1(Xn) ⊂ · · · .

Furthermore, X contains the arc 	1 because Φn−1(	n) = 	1. On the other hand, if

(x, y) �∈ Φk(Xk+1) for some k ∈ Z+, then fn(x, y) = fk(x, y) for any n > k. Since

Φn−1(Xn) is connected, the set X is connected. Thus, in order to prove Theorem 1,

we have only to show that X is a minimal set (Lemma 1) and X is not path-connected

(Lemma 2).

Proposition 2. For the subsets Dn
i = {(x, y) ∈ Xn ; i/qn ≤ x ≤ (i+ 1)/qn}

(i = 0, 1, . . . , qn − 1), the diameter of Φn−1(D
n
i ) is less than 1/2n−1.

Proof. Let z1, z2 ∈ Dn
i . Let z′1 = (p1(z1), 0) and z′2 = (p1(z2), 0). Since

d(z′1, z
′
2) ≤ 1/qn, we have d(Φn−1(z

′
1),Φn−1(z

′
2)) < 1/2n by (6). Since {ψn−1(x, y) ; |y| ≤

1} consists of one point, ψn−1(zi) = ψn−1(z
′
i) for i = 1, 2. Thus

d(Φn−1(zi),Φn−1(z
′
i)) ≤ d(Φn−1(zi),Φn−2ψn−1(zi)) + d(Φn−2ψn−1(z

′
i),Φn−1(z

′
i))

<
1

2n+2
+

1

2n+2
by (1)

=
1

2n+1

for i = 1, 2. Therefore

d(Φn−1(z1),Φn−1(z2))

≤ d(Φn−1(z1),Φn−1(z
′
1)) + d(Φn−1(z

′
1),Φn−1(z

′
2)) + d(Φn−1(z

′
2),Φn−1(z2))

<
1

2n−1
. �

Proposition 3. For any z of X,

f j
n(z) = Φn−1R

j
θn
Φ−1

n−1(z)
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for n, j ∈ Z+.

Proof. Let z be a point of X. Then z ∈ Φn(Xn+1) for any n > 0. Since

z ∈ Φn−1(ϕn(Xn+1)), we have |p2Φ−1
n−1(z)| < 3/4 by (4). Therefore, fn(z) =

Φn−1RθnΦ
−1
n−1(z) by definition. Suppose that fk

n(z) = Φn−1R
k
θn
Φ−1

n−1(z) for some

k ∈ Z+. Then fk
n(z) = Φn−1(R

k
θn
Φ−1

n−1(z)) ∈ Φn−1(Xn). Furthermore, |p2Φ−1
n−1f

k
n(z)| =

|p2Rk
θn
Φ−1

n−1(z)| < 3/4 as above. Therefore, fk+1
n (z) = Φn−1RθnΦ

−1
n−1f

k
n(z) by the defini-

tion of fn. Thus f
k+1
n (z) = Φn−1R

k+1
θn

Φ−1
n−1(z). By induction, f j

n(z) = Φn−1R
j
θn
Φ−1

n−1(z)

for any j ∈ Z+. �

Lemma 1. X is a minimal set of f .

Proof. First prove that X is invariant under f . Let z ∈ X. We fix n ∈ Z

(n ≥ 2). Let k be an integer greater than or equal to n. Then fk(z) = Φk−1RθkΦ
−1
k−1(z)

by Proposition 3. Let w = (ϕn ◦ · · · ◦ ϕk−1)RθkΦ
−1
k−1(z) ∈ Xn. Then fk(z) =

Φn−1(ϕn ◦ · · · ◦ ϕk−1)RθkΦ
−1
k−1(z) = Φn−1(w) is an element of Φn−1(Xn). Therefore

f(z) = limk→∞ fk(z) ∈ Φn−1(Xn). As a result, f(z) ∈ ⋂∞
n=2 Φn−1(Xn) = X. Since

f−1(z) = limk→∞ f−1
k (z), we can also show that f−1(z) ∈ X. Thus f(X) = X.

Next we will show that the orbit of any point z of X is dense in X. Let u be a point

of X. For an arbitrary positive integer n, let zn = Φ−1
n−1(z) ∈ Xn and un = Φ−1

n−1(u) ∈
Xn. Then there is i (0 ≤ i < qn) such that un ∈ Dn

i = {(x, y) ∈ Xn ; i/qn ≤ x ≤
(i+ 1)/qn}. For jn = qnθn, the integers jn and qn are relatively prime by (7). Thus

there is k ∈ Z (0 ≤ k < qn) such that Rk
θn
(zn) ∈ Dn

i . Since diamΦn−1(D
n
i ) < 1/2n−1

by Proposition 2, we have d(Φn−1R
k
θn
(zn),Φn−1(un)) < 1/2n−1. On the other hand,

by Proposition 3, d(fk
n(z), u) = d(Φn−1R

k
θn
Φ−1

n−1(z), u) = d(Φn−1R
k
θn
(zn),Φn−1(un)) <

1/2n−1 as above. Since d(fk(z), fk
n(z)) < 1/2n for 0 ≤ k ≤ qn by construction, we

conclude that d(fk(z), u) < 3/2n. Thus the orbit of z is dense in X �

We fix n ≥ 1. Let vi = (i/qn,−1/2) ∈ Xn and wi = ((1/(L1 · · ·Ln−1)) + (i/qn), 1/2)

∈ Xn for i = 1, 2, . . . , n. Let v′i = (i/qn,−1/2) ∈ Xn+1 and w′
i = ((1/(L1 · · ·Ln)) +

(i/qn), 1/2) ∈ Xn+1 for i = 1, 2, . . . , n. Then p1(v
′
1) < p1(w

′
1) < p1(v

′
2) < p1(w

′
2) < · · ·

by (8).

Proposition 4. ψn(v
′
i) = vi and ψn(w

′
i) = wi.

Proof.

ψn(v
′
i) = ψn

(
i

qn
,−1

2

)
= Cn

(
i
Ln

qn

)
= (R1/qn)

iCn(0) =

(
i

qn
,−1

2

)
= vi.

ψn(w
′
i) = ψn

(
1

L1 · · ·Ln
+

i

qn
,
1

2

)
= Cn

(
1

L1 · · ·Ln−1
+

iLn

qn

)

= (R1/qn)
iCn

(
1

L1 · · ·Ln−1

)
=

(
1

L1 · · ·Ln−1
+

i

qn
,
1

2

)
= wi. �

Lemma 2. X is not path-connected.

Proof. Let z1 = (1, 1/2) ∈ X1 and z2 = (1/2,−1/2) ∈ X1. The point z1 is
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an end point of 	1. Thus z1 ∈ X. Furthermore, Φn(1/(L1 · · ·Ln), 1/2) = z1 for any

n ∈ Z+ because Φn(	n+1) = 	1 by (3). On the other hand, for any j ≥ 1, ϕj(z2) =

ϕj(1/q1,−1/2) = R1/q1ϕj(0,−1/2) = R1/q1(0,−1/2) = (1/q1,−1/2) = z2 by (2). Thus

Φn(1/2,−1/2) = z2 for any n ∈ Z+. Therefore z2 ∈ X.

Assume that there is a path γ connecting z1 and z2 contained in X. We further

assume that γ : [0, 1] → X is homotopic to t �→ (1 − (1/2)t, 1/2 − t) in X1 with the

boundary fixed (we can prove the other cases similarly).

Let N denote the number of connected components of γ ∩ p−1
2 (−1/4, 1/4) such that

one of the boundary points is contained in p−1
2 (−1/4) and the other boundary point is

contained in p−1
2 (1/4).

We choose an integer n satisfying 2n− 2 > N and n ≥ 3. Let γn+1 = Φ−1
n (γ). Then

γn+1 connects (1/(L1 · · ·Ln), 1/2) with (1/q1,−1/2) in Xn+1 as above. By (8) and (5),

we obtain

1

L1 · · ·Ln
<

1

qn
<

1

qn
+

1

L1 · · ·Ln
<

2

qn
< · · · < n− 1

qn
+

1

L1 · · ·Ln
<

n

qn
<

1

q1
.

We choose points a′i ∈ Xn+1 in p−1
1 (i/qn)∩ γn+1 for i = 1, 2, . . . , n and points b′j ∈ Xn+1

in p−1
1 (j/qn + 1/(L1 · · ·Ln)) ∩ γn+1 for j = 1, 2, . . . , n− 1 so that there are si and tj of

[0, 1] satisfying a′i = γn+1(si), b
′
j = γn+1(tj) and

0 < s1 < t1 < s2 < t2 < · · · < tn−1 < sn < 1.

Now p1(v
′
i) = i/qn and p1(a

′
i) = i/qn. Since the diameter of {Φn(x, y) ; |y| ≤ 1} <

1/2n+2 by (1), we have d(Φn(v
′
i),Φn(a

′
i)) < 1/2n+2 for i = 1, 2, . . . , n. Furthermore,

d(Φn(v
′
i),Φn−1(vi)) = d(Φn−1ϕn(v

′
i),Φn−1ψn(v

′
i)) < 1/2n+3 again by (1) and Proposi-

tion 4. Moreover, d(Φn−1(vi), (0,−1/2)) < 1/2n by (6). As a result,

p2Φn(a
′
i) < −

1

2
+

1

2n+2
+

1

2n+3
+

1

2n
< −1

4

when n ≥ 3.

On the other hand, for j = 1, 2, . . . , n− 1, d(Φn(w
′
j),Φn(b

′
j)) < 1/2n+2 by (1), and

d(Φn(w
′
j),Φn−1(wj)) = d(Φn−1ϕn(w

′
j),Φn−1ψn(w

′
j)) < 1/2n+3 by (1) and Proposition 4.

Since d(Φn−1(wj), (1, 1/2)) = d(Φn−1(wj),Φn−1(1/(L1 · · ·Ln−1), 1/2)) < 1/2n by (6),

we have

p2Φn(b
′
j) >

1

2
− 1

2n+2
− 1

2n+3
− 1

2n
>

1

4

when n ≥ 3.

The points Φn(a
′
i) and Φn(b

′
j) of γ satisfy p2Φn(a

′
i) < −1/4 and p2Φn(b

′
j) > 1/4.

Therefore, there are at least 2n − 2 connected components of γ ∩ p−1
2 (−1/4, 1/4) such

that one of the boundaries is contained in p−1
2 (−1/4) and the other boundary point is

contained in p−1
2 (1/4). However, this contradicts the assumption, 2n−2 > N . Therefore,

there is no path γ connecting z1 and z2. �

Remark 2. A locally connected complete metric space is path-connected (see
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[8, Section 50]). Thus the minimal set of Theorem 1 is not locally connected.
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