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Abstract. In [4], B. Kim, and the authors classified 2-chains with 1-
shell boundaries into either RN (renamable)-type or NR (non renamable)-type
2-chains up to renamability of support of subsummands of a 2-chain and in-
troduced the notion of chain-walk, which was motivated from graph theory : a
directed walk in a directed graph is a sequence of edges with compatible con-
dition on initial and terminal vertices between sequential edges. We consider
a directed graph whose vertices are 1-simplices whose supports contain 0 and
edges are plus/minus of 2-simplices whose supports contain 0. A chain-walk is
a 2-chain induced from a directed walk in this graph. We reduced any 2-chains
with 1-shell boundaries into chain-walks having the same boundaries.

In this paper, we reduce any 2-chains of 1-shell boundaries into chain-
walks of the same boundary with support of size 3. Using this reduction, we
give a combinatorial criterion determining whether a minimal 2-chain is of RN-
or NR-type. For a minimal RN-type 2-chains, we show that it is equivalent
to a 2-chain of Lascar type (coming from model theory) if and only if it is
equivalent to a planar type 2-chain.

1. Introduction.

In [2], [3], J. Goodrick, B. Kim, and A. Kolesnikov defined homology groups of a

strong type p ∈ S(A) in any rosy theory T and they addressed that those groups are

related with amalgamation property. More precisely, they proved that the (n − 1)-th

homology group of a strong type p consists of (n − 1)-shells of p with support n + 1 =

{0, . . . , n} whenever T has n-CA over A = acl(A) (n ≥ 2). In particular the first

homology group consists of 1-shells of p. Therefore as is known if T is simple then due

to 3-amalgamation the first homology group is trivial. Moreover in [4], B. Kim, and the

authors proved that in any rosy theory T , the first homology group of a Lascar type p

is also trivial. We classified 2-chains with a 1-shell boundary into two types : NR (non-

renamable)- and RN (renamable)-types, and we reduce 2-chains with 1-shell boundaries

into chain-walks having the same boundaries. Using this classification, we showed that

the minimal lengths of 2-chains with 1-shell boundaries are not bounded in rosy theories.

In this paper, we give geometric and combinatorial criteria determining the types

of 2-chains. Using the notion of matrix expression, we give a combinatorial criterion for

determining whether a given minimal 2-chain having a 1-shell boundary is of RN-type.

We deduce that when the length of a given 2-chain is 3 modulo 4, the given chain must

be of RN-type. We also show that a Lascar 2-chain (a model theoretic notion crucially
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used in the proof of Fact 1.9) is equivalent to a planar 2-chain (a geometric notion). We

are working in model theoretic setting but our classification results hold in more general

categorical setting, that is, an amenable class of functors in [3].

In the rest of this section, we review some notions and facts from [2], [3] and [4]. We

first recall the definitions of simplices and the corresponding homology groups introduced

in [2], [3]. Throughout we work with a large saturated model M = Meq whose theory

T is rosy with the thorn-independence relation �| on the small sets of M.

From now on, we fix a small algebraically closed set A = acl(A) and p(x) ∈ S(A)

(with possibly infinite x). Let CA denote the category, where

1. objects are small subsets of M containing A, and

2. morphisms are elementary maps which fix A pointwise.

For some finite s ⊆ ω, the power set of s, P(s) forms the category as an ordered

set :

1. Ob(P(s)) = P(s), and

2. for u, v ∈ P(s), Mor(u, v) = {ιu,v}, where ιu,v is the single inclusion map for u ⊆ v,

or = ∅ otherwise.

For a functor f : P(s)→ CA and u ⊆ v ∈ P(s), we write fu
v := f(ιu,v) ∈ Mor(f(u), f(v))

and fu
v (u) := fu

v (f(u)) ⊆ f(v).

Definition 1.1. A functor f : P(s) → CA for some finite s ⊆ ω is said to be a

closed independent (regular) n-simplex in p if

1. |s| = n+ 1.

2. f(∅) ⊇ A; and for i ∈ s, f({i}) is of the form acl(Ca) where a(|= p) is independent

with C = f∅
{i}(∅) over A.

3. For all non-empty u ∈ P(s), we have

f(u) = acl

(
A ∪

⋃
i∈u

f{i}
u ({i})

)
;

and {f{i}
u ({i})| i ∈ u} is independent over f∅

u(∅).

We shall call a closed independent n-simplex simply by an n-simplex. The set s is called

the support of f , denoted by supp(f).

Let Sn(p) denote the collection of all n-simplices in p and Cn(p) the free abelian

group generated by Sn(p); its elements are called n-chains in p.

A non-zero n-chain c is uniquely written (up to permutation of terms) as c =∑
1≤i≤k nifi, where ni is a non-zero integer and f1, . . . , fk are distinct n-simplices. (This

form is called the standard form of the chain c.) We call |c| := |n1|+ · · ·+ |nk| the length
of the chain c, and define the support of c as the union of supp(fi)’s.
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We use a, b, c, . . . , f, g, h, . . . , α, β, . . . to denote simplices and chains. Now we de-

fine the boundary operators and using the boundary operators we will define homology

groups.

Definition 1.2. Let n ≥ 1 and 0 ≤ i ≤ n. The i-th boundary operator ∂i
n :

Cn(p) → Cn−1(p) is defined so that if f is an n-simplex with domain P(s) with s =

{s0 < · · · < sn}, then

∂i
n(f) = f � P(s \ {si})

and extended linearly to all n-chains in Cn(p).

The boundary map ∂n : Cn(p)→ Cn−1(p) is defined by the rule

∂n(c) =
∑

0≤i≤n

(−1)i∂i
n(c).

We write ∂i and ∂ for ∂i
n and ∂n, respectively, if n is clear from context.

Definition 1.3. The kernel of ∂n is denoted Zn(p), and its elements are called

(n-)cycles. The image of ∂n+1 in Cn(p) is denoted by Bn(p) and its elements are called

(n-)boundaries.

Since ∂n ◦ ∂n+1 = 0, Bn(p) ⊆ Zn(p) and we can define simplicial homology groups

in p.

Definition 1.4. The n-th (simplicial) homology group in p is

Hn(p) := Zn(p)/Bn(p).

Definition 1.5. For n ≥ 1, an n-chain c is called an n-shell if it is in the form

c = ±
∑

0≤i≤n+1

(−1)ifi,

where f0, · · · , fn+1 are n-simplices such that whenever 0 ≤ i < j ≤ n + 1, we have

∂ifj = ∂j−1fi. Specially, a 1-shell c is of the form

c = f0 − f1 + f2.

Remark 1.6. The boundary of a 2-simplex is a 1-shell, and the boundary of any

1-shell is 0.

Definition 1.7. Let n ≥ 0.

1. p has (n + 2)-amalgamation if any n-shell in p is the boundary of some (n + 1)-

simplex in p.

2. p has (n+2)-complete amalgamation (or simply (n+2)-CA) if p has k-amalgamation

for every 2 ≤ k ≤ n+ 2.
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By extension axiom of thorn-independence, whenever f : P(s) → CA, g : P(t) → CA ∈
S(p) and f � P(s ∩ t) = g � P(s ∩ t), then f and g can be extended to a simplex

h : P(s ∪ t)→ CA in p. This property is called strong 2-amalgamation.

The following fact shows why the notion of shells is important.

Fact 1.8 ([2], [3]). If p has (n+ 1)-CA for some n ≥ 1, then

Hn(p) = {[c] : c is an n-shell over A with supp(c) = {0, . . . , n+ 1} }.

We have that H1(p) is trivial if and only if any 1-shell in p is the boundary of some

2-chain in p. Therefore, if T is simple, due to 3-amalgamation H1(p) is trivial. The

following shows that the same result holds in any rosy theory.

Fact 1.9 ([4]). Suppose that p is any Lascar strong type. Then H1(p) = 0.

There are two fundamental operations used in the classification of 2-chains in [4] :

crossing and renaming-of-support operations.

Remark/Definition 1.10. Given any bijection σ : ω → ω (not necessarily order-

preserving), we may define an automorphism σ∗
n : Cn(p) → Cn(p) for each n as follows:

for any n-chain c =
∑

i nifi ∈ Cn(p), where each fi is an n-simplex with si := supp(fi) =

{si,0 < · · · < si,n}, we let σi := σ � si and ti := σi(si) = {ti,0 < · · · < ti,n}. We define

σ∗(c) :=
∑
i

ni|σi|fi ◦ σ−1
i

with |σi| := sign(σ′
i) (= ±1) where σ′

i ∈ Sym(n+1) such that for j ≤ n, σi(si,j) = ti,σ′
i(j)

.

For example

σ∗(fi) = |σi|fi ◦ σ−1
i .

Moreover, σ∗ commutes with the boundary map, i.e., ∂ ◦ σ∗ = σ∗ ◦ ∂.

Definition 1.11. Let v ∈ C2(p) be a 2-chain and let w := ε1α1 + ε2α2 be a

subsummand of v, where αi’s are 2-simplices with for i = 1, 2, εi = ±1, supp(αi) =

{
1, 
2, ki} (ki, 
i being all distinct numbers) such that α1 and α2 agree on the intersection

of their domains, namely P({
1, 
2}). Further assume that, if we let γ := αi � P({
1, 
2}),
then γ does not appear in ∂(w), i.e., the two γ terms in ∂(w) have opposite signs and

cancel each other.

Now by strong 2-amalgamation, there exists a 3-simplex μ extending both αi. For

i = 1, 2, let βi := μ � P({k1, k2, 
i}) and

w′ :=

{
ε2 β1 + ε1 β2 if ε1ε2 = −1, and exactly one of k2, 
1 is in between k1, and 
2

ε1 β1 + ε2 β2 otherwise.

Then the operation of replacing the subsummand w in v by w′ is called the crossing

operation (or simply CR-operation).
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Definition 1.12. Let c be an n-chain in Cn(p) and let d be a subsummand of

c. Let j ∈ supp(d) such that j /∈ supp(∂n(d)). (In this situation, we say that d has a

vanishing support, namely j, in its boundary.) Choose any k /∈ supp(c) and any bijection

σ : ω → ω which sends j �→ k but which fixes the rest of the elements in supp(c). Then

the operation of replacing the subsummand d in c by σ∗
n(d) is called the renaming-of-

support operation (or simply RS-operation). (See Remark/Definition 1.10 to recall the

definition of σ∗
n.)

Remark/Definition 1.13. A 2-chain c is called proper if its length |c| does not
change after any finitely many applications of CR/RS-operations to its subsummands.

This allows us to define an equivalence relation ∼ among proper 2-chains by: c ∼ c′ ⇔
c can be obtained from c′ by finitely many applications of the CR/RS-operations to its

subsummands. Note that c ∼ c′ implies ∂(c) = ∂(c′) and |c| = |c′|. A proper 2-chain

α is said to be minimal if for any proper 2-chain α′ with α′ ∼ α there does not exist a

subsummand β of α′ such that ∂(β) = 0.

We classify 2-chains into two types.

Definition 1.14. Let α be a 2-chain having a 1-shell boundary. We call α re-

namable type (or RN-type) if a subsummand of α has a vanishing support. If α is not an

RN-type 2-chain (so | supp(α)| = 3) we call α non-renamable (NR-) type.

Notation. Let f be any simplex. For any subset {j0, . . . , jk} ⊆ supp(f), we shall

abbreviate f � P({j0, . . . , jk}) as f j0,··· ,jk . Also, given a chain c =
∑

i∈I nifi (in its

standard form), and any subset {j0, . . . , jk} ⊆ supp(c), we shall write cj0,...,jk to denote

the subchain
∑

i∈J nifi, where J := {i ∈ I | supp(fi) = {j0, . . . , jk}}.

Remark 1.15. If α is any 2-chain with a 1-shell boundary, then its length is always

an odd positive number.

Now we introduce the notion of a chain-walk. At first, we recall the notion of directed

walk from graph theory.

Definition 1.16. A directed (multi) graph, abbreviated to digraph, G is a pair

(V,E) of disjoint sets (of vertices and edges) together with two maps init : E → V and

ter : E → V assigning to every edge e ∈ E an initial vertex init(e) and a terminal

vertex ter(e). The edge e is said to be (directed) from init(e) to ter(e) (or is written as

e : init(e) → ter(e)). Indeed, we loosely write e as a triple (e, init(e), ter(e)). For any

e ∈ E, let − e denote the triple (e, ter(e), init(e)). We may write G = (V, {±e | e ∈ E}).
A directed walk in G from a vertex v0 to a vertex vn+1 is a sequence of the form

〈ε0e0, . . . , εnen〉 where εi = ±1 and ei ∈ E for each i, such that v0 = init(ε0e0), vn+1 =

ter(εnen) and ter(εiei) = init(εi+1ei+1) for all i = 0, · · · , n− 1.

Remark/Definition 1.17. Let (xi)
n
i=0 be a finite sequence of natural numbers

with n ≥ 0. For k ≤ n, the k-th sign of this sequence is the number (−1)Ik , where Ik is

the number of places xj < xj+1 in the sequence of (xi)
k+1
i=0 with xn+1 = x0, denoted by

signk(xi)
n
i=0. The n-th sign is called the sign of this sequence, denoted by sign(xi)

n
i=0.
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Fix n0 ≥ 0. Consider a digraph Gn0 = (Vn0 , En0), where Vn0 is the set of 1-simplices

with support containing n0. Let sj ∈ Vn0(j = 1, 2) be with supp(sj) = {n0, nj}. An edge

from s0 to s1 is the 2-chain εa, where a is a 2-simplex with supp(a) = {n0, n1, n2} such

that an0,nj = sj , and ε = sign(ni)
2
i=0. In this case, if n1 = n2, there are no edges between

s1 and s2. For s, t ∈ Vn0
, a 2-chain α is called a chain-walk from s to t if it is of the form∑

i εiai, where (εiai) is a directed walk in Gn0
from s to t. So, if supp(s) = {n0, n1} and

supp(t) = {n0, n2}, then (∂α)n0,n1 = − sign0(n0, n1)s and (∂α)n0,n2 = sign0(n0, n2)t (*).

To emphasize (*), we call α a chain-walk from − sign0(n0, n1)s to sign0(n0, n2)t instead

of a chain-walk from s to t.

Let β be a 2-chain which is a chain-walk. Then there is a sum
∑m

i=0 εibi with respect

to the order of indices, which ensures the property of a chain-walk; for 0 ≤ i < m,

(∂εibi)
n,ni+1 + (∂εi+1bi+1)

n,ni+1 = 0, where each supp(bi) = {n, ni, ni+1}. We call such

sum a chain-walk representation of β, simply a representation. By a section of the chain-

walk β, we shall mean a subchain of β of the form

β′ :=
m′∑
i=j

εibi for some 0 ≤ j < m′ ≤ m.

0

k0 k2n k2n+1k1 k2 k3 k4 k5 k6

a0 a1 a2 a3 a4 a5 a2n

= = =1 1 2

−f02f01

f12

Figure 1. An example of a chain-walk 2-chain.

For the rest of this paper, we fix a 1-shell boundary f12−f02+f01 with supp(fjk) =

{j < k}. We reduce 2-chains having 1-shell boundaries into chain-walks with the same

boundaries.

Fact 1.18 ([4]). Let α be a minimal 2-chain with the boundary f12 − f02 + f01.

1. Assume α is of NR-type. Then |α| = 1 or |α| ≥ 5. If |α| ≥ 5 then any chain-walk

in α from f01 to −f02 is of the form
∑2n

i=0(−1)iai which is as a chain equal to α

such that f12 = a1,22j for some 1 ≤ j ≤ n− 1.

2. α is of RN-type if and only if α is equivalent to a 2-chain

α′ = a0 +

2n−1∑
i=1

εiai + a2n

(n ≥ 1) which is a chain-walk from f01 to −f02 such that supp(a2n) = {0, 1, 2} and

∂0a2n = f12, ∂
1(a2n) = −f02.
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2. Reduction to 2-chains with support {0, 1, 2}.
Next we show that any 2-chain having a 1-shell boundary can be reduced to a 2-chain

with support {0, 1, 2}. From this, any 2-chain having the 1-shell boundary f12−f02+f01
is reduced to a 2-chain of the form

∑2n
i=0(−1)iai which is a chain-walk from f01 to −f02,

and its support is {0, 1, 2}. This reduction is crucially used to develop a combinatorial

criterion for RN-type 2-chains in the next section.

First we digress to recall some graph theoretical notions related with directed walk,

and we consider a directed walk in a digraph, related with a given chain-walk, which is

different from one in Remark/Definition 1.17.

Definition 2.1. Let G = (V,E) be a digraph and consider a directed walk in G

from a vertex v0 to a vertex vn+1 of the form 〈ε0e0, . . . , εnen〉 where εi = ±1 and ei ∈ E

for each i. A directed walk from v0 to vn+1 is closed if v0 = vn+1; is reduced to εi0ei0 if

the commutative sum
∑

i≤n εiei = εi0ei0(0 ≤ i0 ≤ n); and is a balanced walk (from v0 to

v0) if
∑

i≤n εiei = 0. A balanced walk is closed.

Remark 2.2. Let β =
∑

i∈I εibi be the chain-walk in Remark/Definition 1.17 from

f01 to −f02, and let β′ =
∑

i∈J εibi be a section of β. Then β′ canonically induces a

directed walk in (V,E) where V = supp(β′) \ {0} and E = {±bki,ki+1

i | i ∈ J} with

(∂εibi)
ki,ki+1 : ki → ki+1.

(We may also loosely write εibi : ki → ki+1.) Such a directed walk is called the induced

walk from β′.
Hence the directed walk induced from the chain-walk

∑
i≤2n(−1)iai in Fact 1.18(1),

is reduced to the edge f12. The induced walk from the section a0 +
∑2n−1

i=1 εiai of α
′ in

Fact 1.18(2), is balanced.

We aim now to further reduce a given minimal 2-chain with a 1-shell boundary to

an equivalent one having a support of size 3.

Theorem 2.3. Let α be a minimal 2-chain having the 1-shell boundary f12−f02+

f01. Then α is of RN-type if and only if α is equivalent to a 2-chain

α′ =
2n∑
i=0

(−1)iai

(n ≥ 1) which is a chain-walk from f01 to −f02 such that supp(α′) = {0, 1, 2} and

∂0a2n = f12, ∂
1(a2n) = −f02.

Proof. Suppose that α =
∑

i<2n εibi + a2n (ε0 = 1) is a chain-walk from f01 to

−f02 such that supp(a2n) = {0, 1, 2} and ∂0a2n = f12, ∂
1(a2n) = −f02. Due to Fact

1.18, it suffices to show that there is α′ =
∑

i<2n ε
′
iai + a2n ∼ α as in the theorem (then

it automatically follows ε′i = (−1)i). We show this using induction on |s(= sα)| where
s := supp(β) \ {0} with β := α − a2n. Note that 1 ∈ s and 0 /∈ s. As was pointed out

in Remark 2.2, the induced walk from β is a balanced walk in V = s from 1 to 1 (*). If
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|s| = 2 then s = {1 < k} and k vanishes in ∂(β). Hence by the RS-operation we rename

k to 2 and we are done. Now let |s| = m + 1 with the induction hypothesis for m ≥ 2

(**).

Fix j( �= 1) ∈ s. We are now going to inductively remove all the edges induced from

β, connecting 1 and j. For s0 �= s1 ∈ s, let

Iαs0s1 = Is0s1 := {i < 2n | εibi : s0 → s1 or εibi : s1 → s0} and

Iαs0 = Is0 := {i < 2n | for some k ∈ s, εibi : s0 → k or εibi : k → s0}.

Let I := I1j . We use induction on |I|. Due to (*), |I| is even. Assume |I| = 0. Then

1 /∈ Ij and in particular 1 /∈ supp(βj) where βj :=
∑

i∈Ij
εibi. Now due to (*), it follows

j vanishes in ∂(βj). Then by applying the RS-operation to βj , we rename j to 1, and

obtain α′′ ∼ α with |sα′′ | = m. Then due to (**), there is a desired α′ ∼ α′′.
Now let |I| = m′+2 with the induction hypothesis that if |I| = m′ then we can find

a desired α′ ∼ α (***). Since |s| ≥ 3, there are j′( �= 1, j) ∈ s and 
 ∈ I such that either

of ε�+1b�+1 : j → j′, ε�+1b�+1 : 1 → j′, ε�−1b�−1 : j
′ → j, or ε�−1b�−1 : j

′ → 1 holds. We

will only show for the case ε�+1b�+1 : j → j′ ( the other cases can be checked by similar

arguments ). Now due to (*), we have ε�b� : 1→ j; and for some t ∈ I,

εtbt : j → 1, and (∂ε�b�)
1,j + (∂εtbt)

1,j = 0.

We now can apply the CR-operation to ε�b� + ε�+1b�+1 and obtain ε′�b
′
� + ε′�+1b

′
�+1 pre-

serving the boundary such that supp(b′�) = {0, 1, j′} and supp(b′�+1) = {1, j, j′}. Hence

we replace ε�b�+ ε�+1b�+1 in β by ε′�b
′
�, and obtain β′. Then β′+a2n is still a chain-walk,

while the term ε′�+1b
′
�+1 is left. We use it as follows. Since (∂ε�b�)

1,j = (∂ε′�+1b
′
�+1)

1,j ,

we can apply the CR-operation to εtbt + ε′�+1b
′
�+1, and obtain ε′tb

′
t + ε′′�+1b

′′
�+1 with

supp(b′t) = {0, j, j′} and supp(b′′�+1) = {0, 1, j′}. Then we replace εtbt in β′ by

ε′tb
′
t + ε′′�+1b

′′
�+1, and obtain β′′. Thus α′′ := β′′ + a2n is a chain-walk equivalent to

α. Note now |Iα′′
1j | = m′. Hence due to the induction hypothesis (***), there is a desired

α′ ∼ α′′. �

Corollary 2.4. Suppose that α is a minimal 2-chain with the 1-shell boundary

f12− f02 + f01. Then there is an equivalent minimal 2-chain α′ =
∑2n

i=0(−1)iai which is

a chain-walk from f01 to −f02, and supp(α′) = {0, 1, 2}.

Remark 2.5. In this remark we bring to our attention an issue of counting number

of possible directed walks induced from chain-walks of the form α′ in Corollary 2.4. We

use the same notation. Let α′ be an RN-type 2-chain (so n ≥ 1) such that ∂0a2n = f12,

∂1(a2n) = −f02. Let β := α′ − a2n. Then β induces a balanced walk w (from 1 to

1) of length 2n on V = {1, 2} with E+
β = E+ := {a1,2i | i < 2n}, the set of positive

edges. So |E+| ≤ n, and a1,2i : 1 → 2 for a1,2i ∈ E+. One may ask how many such

balanced walks of length 2n exist with a fixed set E+. Let |E+| = m ≤ n, and rewrite

E+ = {b1, . . . , bm}. Recall that the walk w induced form β with E+ = E+
β is a sequence

of the form w+ := 〈(−1)iei|i < 2n〉. So w+ := 〈e0, e2, . . . , e2n−2〉 is an enumeration

of E+ using all the members. Also w− := 〈−e1,−e3, . . . ,−e2n−1〉 is an enumeration of



More on 2-chains with 1-shell boundaries in rosy theories 101

E− := {−b1, . . . ,−bm}. Now the number of occurrence of a given bi in w+ and −bi in w−

are the same, say (0 <)ri ≤ n. Hence given an assignment r : E+ → ω with ri = r(bi)

and r1 + · · ·+ rm = n, there are at most

((
n

r1

)(
n− r1
r2

)
· · ·
(
n− (r1 + · · ·+ rm−1)

rm

))2

=

(
n!

r1! · · · rm!

)2

many possible such walks. Thus if we only fix E+ (so n,m fixed while r and ri > 0 vary)

then for R := {r : E+ → {1, . . . , n} | r1 + · · ·+ rm = n} there are at most

∑
r∈R

(
n!

r1! · · · rm!

)2

many possible induced walks.

A similar computation can be made when α′ is an NR-type 2-chain.

3. Combinatorial criterion for RN-type 2-chains.

In this section, by introducing the notion of matrix expression, we shall give a cri-

terion for determining whether a given minimal 2-chain having a 1-shell boundary is of

RN-type. We also give sufficient conditions for 2-chains to be of RN-type. According to

Corollary 2.4, we are mainly interested in minimal 2-chains having 1-shell boundaries with

support {0, 1, 2}, which are chain-walks. Let α be a chain-walk of length 2n+ 1 having

the 1-shell boundary f12 − f02 + f01 with supp(α) = {0, 1, 2}. For {0, 1, 2} = {i, j, k}, f ′
i

denotes fjk (j < k). Fix I = {0, 1, 2} and J = {0, . . . , n}. Also, we write εa ∈ α (ε = ±1)
to denote that a 2-simplex term εa is in α.

Now we assign a 3× (n+ 1) matrix to the 2-chain as follows:

Definition 3.1. Let
∑2n

j=0(−1)jaj be a representation of the given α which itself

is a chain-walk from f ′
2 to −f ′

1. By a matrix expression of (the representation of) α, we

mean a function M : I × J → J such that

1. for each i ∈ I, M � {i} × J : ({i}×) J → J is a permutation of J ;

2. for each i ∈ I, M(i, 0) is an index such that f ′
i = ∂ia2M(i,0);

3. for each i ∈ I, j ∈ J \ {0}, M(i, j) is an index such that ∂ia2j−1 = ∂ia2M(i,j).

Interpret M(i, j) as an entry mij of a matrix in the (i + 1)-th row and the (j + 1)-th

column, then M = (mij)I,J is a 3 × (n + 1) matrix. Obviously, given a chain-walk

representation of α, there is at least one ( possibly more than one ) matrix expression.

We may and will use M(i, j) to represent both the image of (i, j) under the function

M , and the (i+ 1, j + 1)-entry of the matrix M .

Example 3.2. Let α =
∑8

j=0(−1)jaj be a chain-walk from f01 to −f02 such

that ∂0a2 = f12, ∂1a8 = f02, ∂2a0 = f01, and ∂0a0 = ∂0a4 = ∂0a5 = ∂0a7, ∂
0a1 =

∂0a8, ∂0a3 = ∂0a6. Then both
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M1 =

⎛
⎜⎝
1 4 3 0 2

4 0 1 2 3

0 1 2 3 4

⎞
⎟⎠ , M2 =

⎛
⎜⎝
1 4 3 2 0

4 0 1 2 3

0 1 2 3 4

⎞
⎟⎠

are matrix expressions of α and (1, 4), (1, 5)-entries are swapped between M1 and M2.

Notice that matrix expressions are determined according to the choices of pairs of

terms which cancel out each other. Therefore the second ( similarly the third ) row of a

matrix expression need not always be of the form (n 0 1 · · ·n− 1); even the (2, 1)-entry

can be n′(< n), if f02 = ∂1a2n′(= ∂1a2n).

Now we are ready to state a criterion for determining the type of α.

Theorem 3.3. Let α be a minimal 2-chain of length 2n + 1 having the 1-shell

boundary f12 − f02 + f01 with supp(α) = {0, 1, 2}, which is a chain-walk. Then α is of

RN-type if and only if there is a matrix expression M for a representation
∑2n

j=0(−1)jaj
such that for some 0 ≤ i0 < i1 ≤ 2, and non-empty J0 ⊆ {1, . . . , n}, M({i0} × J0) =

M({i1} × J0) as image set under the function M .

Proof. (⇒) Assume that α =
∑2n

j=0(−1)jaj is of RN-type. Then there is a

subchain α1 of
∑2n

j=0(−1)jaj having a vanishing support i∗ ∈ {0, 1, 2}. Hence ∂iα1 = 0

for i ∈ I \ {i∗} and |α1| = 2m. Therefore when we choose a matrix expression M

satisfying Definition 3.1(3), we can let a2M(i,j) ∈ α1 for each i ∈ I \ {i∗} and j ∈ J0 :=

{j ∈ J | − a2j−1 ∈ α1}.
Then by the choice, M({i0}×J0) = M({i1}×J0), where {i0, i1, i∗} = I, as desired.

(⇐) Let M be a given matrix expression of α so that for J0 ⊆ J \ {0} and 0 ≤
i0 < i1 ≤ 2, we have M({i0} × J0) = M({i1} × J0), say J1. Let α1 :=

∑
j∈J1

a2j +∑
j∈J0

−a2j−1, a subchain of α. Then for i0, i1, we have ∂i0α1 = ∂i1α1 = 0, so α1 has a

vanishing support i∗, where {i0, i1, i∗} = I. Therefore α is of RN-type. �

Remark 3.4. The matrix expression M1 from Example 3.2 does not satisfy the

right-hand side in the above theorem. However M2 is also a matrix expression of α =∑8
j=0(−1)jaj as well and the fact that M2(0, 3) = M2(1, 3) ensures that the 2-chain α

is of RN-type.

Let M : I × J → J be a matrix expression. Then M induces a triple (σ01, σ12, σ02)

of permutations of J such that σik is a map sending the (i+ 1)-th row to the (k + 1)-th

row, i.e., σik(mij) = mkj for j ∈ J , and 0 ≤ i < k ≤ 2. Notice that σ02 = σ12 ◦ σ01.

As is well-known that every element of the symmetric group S|J| has the unique

cycle decomposition (up to obvious permutations), where each j ∈ J appears exactly

once in the decomposition (so it may contain a 1-cycle). Therefore we have the following

fact : M is a matrix expression of an RN-type 2-chain α described in Theorem 3.3 if and

only if there is a permutation σik from the triple of M whose cycle decomposition has

(more than) two disjoint cycles. On the other hand, any σik from any matrix expressions

of NR-type 2-chains cannot be disjointly decomposed.
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Now we recall some basic facts about permutations which will be used in the proof

of upcoming theorems.

Fact 3.5. Let A = {a0, . . . , am} and B = {b0, . . . , bk} be disjoint sets. Then for

0 < i ≤ m,

1. (a0 ai) ◦ (a0 a1 · · · ai · · · am) = (a0 a1 · · · ai−1) ◦ (aiai+1 · · · am);

2. (a0 a1 · · · ai · · · am) ◦ (a0 ai) = (a0 ai+1 ai+2 · · · am) ◦ (a1 a2 · · · ai);

3. (a0 b0) ◦ (a0 a1 · · · am) ◦ (b0 b1 · · · bk) = (a0 a1 · · · am b0 b1 · · · bk);

Notation. For a permutation τ , let #c(τ) denote the number of disjoint cycles

in the cycle decomposition of τ .

Theorem 3.6. Let α be a minimal 2-chain having the 1-shell boundary f12−f02+

f01. If the length of α is 3 modulo 4, then α is always of RN-type.

Proof. Suppose the length of α is 2n+ 1 for odd n. Moreover, by Corollary 2.4,

we may assume that α is a chain-walk from f01 to −f02. Let (σ01, σ12, σ02) be a triple

induced from some matrix expression of α. If the cycle decomposition of σ01 or σ12 has

disjoint cycles, then we are done. Otherwise, we can assume that σ01 = (j0 j1 · · · jn)
and σ12 = (0 k1 · · · kn), where {j0, . . . , jn} = {0, k1 . . . , kn} = J . For i ≥ 1, let τi =

(0 ki)◦ (0 ki−1)◦ · · · ◦ (0 k1)◦σ01. Then τn = σ12 ◦σ01 = σ02, and it suffices to show that

#c(τn) �= 1. Now we claim that #c(τi+1) is either #c(τi) + 1 or #c(τi)− 1. Notice that

#c(τ1) = 2 due to Fact 3.5(1). There now are two cases: If both 0 and ki+1 are contained

in the same cycle μ of the decomposition of τi, then by Fact 3.5(1), (0 ki+1) ◦ μ splits

into two cycles which have 0 and ki+1, respectively. Therefore, #c(τi+1) = #c(τi)+ 1. If

0 and ki+1 are contained in different cycles μ0 and μ1, respectively, then by Fact 3.5(3),

(0 ki+1)◦μ0◦μ1 becomes a single cycle of size |μ0|+|μ1|, so we have #c(τi+1) = #c(τi)−1.

Inductively, we get

#c(τi) ≡
{
0 (mod 2) if i ≡ 1 (mod 2)

1 (mod 2) if i ≡ 0 (mod 2).

So for odd n, #c(τn) must be even. Therefore the cycle decomposition of σ02 cannot be

a single cycle, and α must be of RN-type. �

Remark 3.7. Let us summarize the previous theorem as follows : Let β be a

minimal 2-chain with a 1-shell boundary. Then,

• if its length is 1 modulo 4, it may be of NR-type; or

• if its length is 3 modulo 4, it must be of RN-type.

For the first case, indeed we can find an NR-type 2-chain with a 1-shell boundary : Let

α be a 2-chain with supp(α) = {0, 1, 2}, which is a chain-walk with a representation∑4k
j=0(−1)jaj such that ∂0a4k = f12, ∂1a4k = f02, and ∂2a0 = f01; for each 0 ≤ j0 �=

j1 < 2k, and i ∈ {0, 1, 2}, ∂ia2j0+1 �= ∂ia2j1+1, f01 �= ∂2a2j0+1, f02 �= ∂1a2j0+1; for
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0 ≤ j < 2k, ∂0aj = ∂0a2k+1+j �= f12; and no other relations between the boundaries of

each 2-simplex terms. In this case, we obtain the unique matrix expression

M =

⎛
⎜⎝

k k + 1 · · · 2k 0 1 · · · k − 1

2k 0 · · · k − 1 k k + 1 · · · 2k − 1

0 1 · · · k k + 1 k + 2 · · · 2k

⎞
⎟⎠ .

In Example 3.2, α has two 2-simplex terms which have the same sign and the same

image under the 0-th boundary operator ∂0, for example ∂0a0 = ∂0a4, and then α is of

RN-type. The following theorem says this does not happen by accident.

Theorem 3.8. Let α be a minimal 2-chain of length 2n + 1 having the 1-shell

boundary f12− f02 + f01 with supp(α) = {0, 1, 2}, which is a chain-walk with a represen-

tation
∑2n

j=0(−1)jaj. Suppose one of the following holds :

1. ∂�a2j0−1 = ∂�a2j1−1 for some 0 < j0 < j1 ≤ n and 0 ≤ 
 ≤ 2;

2. ∂�a2j0 = ∂�a2j1 for some 0 ≤ j0 < j1 ≤ n and 0 ≤ 
 ≤ 2.

Then α is of RN-type.

Proof. Assume (1) holds. Let M be a matrix expression of α. Consider the triple

(σ01, σ12, σ02) with respect to M . If one of the permutations can be decomposed into

(more than) two disjoint cycles, then we are done. Therefore we can assume that all the

three permutations are not properly decomposed. Now let p := M(
, j0) �= q := M(
, j1).

Due to (1), we can swap the entries p and q from M to obtain a new matrix M ′. Thus

M ′(
, j0) = M(
, j1) = q and M ′(
, j1) = M(
, j0) = p. Notice that M ′(i, j) = M(i, j)

except for (i, j) = (
, j0), (
, j1). Now we have three cases:

Case 1: 
 = 2 : Since 
 = 2, only the third row is changed. So, (τ01, τ12, τ02) :=

(σ01, (p q) ◦ σ12, (p q) ◦ σ02) is a triple of permutations induced from M ′, and τ12 ( or τ02
) has two disjoint cycles due to Fact 3.5(1).

Case 2: 
 = 1 : Similarly to Case 1, ((p q) ◦ σ01, σ12 ◦ (p q), σ02) is a triple induced

from M ′ and again due to Fact 3.5(1), (p q) ◦ σ01 is decomposed into two disjoint cycles.

Case 3: 
 = 0 : Similarly, (σ01 ◦ (p q), σ12, σ02 ◦ (p q)) is a new triple and σ01 ◦ (p q)

splits into two disjoint cycles by Fact 3.5(2).

In conclusion, for any case, new matrix expression M ′ witnesses α being of RN-type.

For the second condition, the theorem holds by the same argument. �

4. Lascar 2-chains.

In this section, we look closely at RN-type 2-chains. We present the notions of planar

type, Lascar type, and tower type 2-chains, which are all of RN-type unless the length

of any given 2-chain is 1. We shall show these three properties of RN-type 2-chains are

all equivalent : Given a minimal 2-chain, if it is equivalent to a 2-chain satisfying one of

the three properties, then it is also equivalent to 2-chains which satisfy the others. This
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is an interesting result as the notion of planar type comes from geometry while that of

Lascar type comes from model theory (in particular, found in the proof of Fact 1.9).

Remark/Notation 4.1. Let � ⊂ P(ω). We say � is an abstract simplicial

complex if for u ∈ � and v ⊆ u, v is again in �. The vertex set of � is the set
⋃
�. For

a fixed finite set X = {x0 < x1 < · · · < xn} ⊂ ω, we say the power set of X, P(X) is

called an abstract n-simplex. Let Sn denote the set of abstract n-simplices and let Cn the

free abelian group generated by Sn; its elements are called abstract n-chains. Next, we

define abstract n-th boundary maps ∂n : Cn → Cn−1 as follows : if P(X) is an n-simplex

, the boundary of P(X) is defined as ∂n(P(X)) =
∑n

i=0(−1)iP(X \ {xi}) and we extend

linearly to all n-chains in Cn.

Let T be a closed triangular plane region. Let �(T ) be a triangulation, which is

a triangular subdivision, of T in the plane with only three exterior vertices assigned

{0, 1, 2}, and consider an abstract simplicial complex �a(T ) whose geometric realization

is homeomorphic to �(T ). Then �a(T ) =
⋃

i P(si) for finite subsets si ⊂ ω and

|si| = 3, and this induces an abstract 2-chain α(�a(T )) =
∑

i εiP(si) with its boundary

P({1, 2}) − P({0, 2}) + P({0, 1}), and εi = ±1 uniquely determined. For a 2-chain

α =
∑

i εiai in p with a 1-shell boundary, where ai : P(si) → CA is 2-simplex in p, we

shall write α as α : �a(T )→ CA, and we say α has the domain of a triangulation of T .
Of course we can consider a 2-chain having the domain of any triangular subdivision.

But if such a 2-chain has a 1-shell boundary, then its triangulation must have only three

exterior vertices.

And by a simplicial map between simplicial complexes L and K, we mean a map

such that whenever the vertices of L span a simplex of L, their image span a simplex

of K. We say two triangulations are isomorphic if there is a bijective simplicial map

between two triangulations.

Remark 4.2. Let T be a closed triangular plane region. If two triangulations of

T are isomorphic, then they have the same abstract simplicial complex.

Definition 4.3. Let α be a minimal 2-chain having the 1-shell boundary f12 −
f02 + f01.

1. We call α planar type (or simply planar) if α : �a(T ) → CA for some closed

triangular plane region T , where �a(T ) is a planar triangulation of T .

2. We call α Lascar type (or Lascar) if |α| = 1 or α is an RN-type 2-chain of length

2n+1, which is a chain-walk with a representation
∑2n

i=0(−1)iai (see Fact 1.18(2))
such that for each j < n, ∂0(a2j) − ∂0(a2j+1) = 0. (Hence 1 ∈ supp(ai) for all

i ≤ 2n.)

3. We call α tower type if α =
∑n

i=−n εiai (0 ≤ n) with ε0 = 1, εi = ε−i (i > 0), such

that

(a) ∂2a0 = f01, (∂εnan)
0,2 = −f02 and (∂ε−na−n)

1,2 = f12;

(b) supp(a0) = {0, 1, k0}; for 1 ≤ i ≤ n, supp(ai) = {0, ki−1, ki}, supp(a−i) =

{1, ki−1, ki}; kn = 2;
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(c) for 0 ≤ i ≤ n − 1, (∂εiai)
0,ki + (∂εi+1ai+1)

0,ki = 0 and (∂ε−ia−i)
1,ki +

(∂ε−(i+1)a−(i+1))
1,ki = 0; and

(d) εi(∂
0ai) + ε−i(∂

0a−i) = 0 for 1 ≤ i ≤ n.

The Lascar type 2-chains are so named, because such type chains are crucially used

in the proof of Fact 1.9, which are to do with the Lascar distance. Note that each of the

three type 2-chains is of RN-type if its length is ≥ 3.

We show all the three type 2-chains are equivalent. In above definition, if |α| = 3

then α is equivalent to a Lascar 2-chain by Fact 1.18.

f01 −f02

f12

0

1 2 11 2 2 21

a0 −a1 a2 −a3 a4 −a5 a6

g0 −g0 g1 −g1 g2 −g2

Figure 2. An example of a Lascar type 2-chain. The 0-th boundaries of
adjacent 2-simplices are cancelled out in a pair after taking boundary map.

−f02

f01

f12

kn = 2

01

kn−1

k0

k1

k2

a0

a−1 a1

a−2 a2

ana−n

Figure 3. A tower type 2-chain (so planar).
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Theorem 4.4. Let α be a minimal 2-chain with a 1-shell boundary f12−f02+f01.

The following are equivalent.

1. α is equivalent to a Lascar type 2-chain.

2. α is equivalent to a tower type 2-chain.

3. α is equivalent to a planar 2-chain.

Proof. When |α| = 1, nothing to prove, so we assume |α| ≥ 3.

(1) ⇒ (2) Assume α =
∑2n

i=0(−1)iai is a Lascar 2-chain as in Definition 4.3, with

supp(ai) = {0, ki, ki+1}. Thus k0 = k2 = · · · = k2n = 1, and due to the RS-operation,

we can assume that 2 < k1 < k3 < · · · < k2n−1. Since 1, k1, k3 are distinct, we can

apply the CR-operation to −a1 + a2 and obtain −b−1 + b1 with supp(b−1) = {1, k1, k3}
and supp(b1) = {0, k1, k3}. Similarly we apply the CR-operation to −a3 + a4 and obtain

−b−2 + b2 with supp(b−2) = {1, k3, k5} and supp(b2) = {0, k3, k5}. Iterate this process

and lastly we get b−n − bn with supp(b−n) = {1, 2, k2n−1}, supp(bn) = {0, 2, k2n−1}
by applying the CR-operation to −a2n−1 + a2n. Now put b0 := a0. Then it follows

b0 +
∑n−1

i=1 (−b−i + bi) + (b−n − bn) is a tower type 2-chain.

(2) ⇒ (1) This can be shown by reversely taking the process described in the proof

of (1) ⇒ (2).

(2) ⇒ (3) Clear from Figure 3.

(3) ⇒ (2) Let the 2-chain α : �a(T ) → C be planar, where �a(T ) is an abstract

simplicial complex of a closed triangular plane region T with exterior vertices 0, 1, 2; and

�(T ) is a planar triangulation of T . Now we prove using induction on |α|. If |α| = 3

then due to the comment before this theorem, we are done. So let us prove (2) when

|α| = 2n+ 1 (*), with the induction hypothesis when 3 ≤ |α| ≤ 2n− 1 (**). We take a

chain-walk β in α from −f02 to f12. (Since α is planar, such β is unique.) We prove (*)

using induction on |β|.
We have |β| ≥ 2 because α is planar and |α| ≥ 3. If |β| = 2, γ(= α − β) is again

a planar 2-chain with 1-shell boundary and by (**) γ is equivalent to a tower type 2-

chain γ′. So α is equivalent to γ′ + β, which is a tower type 2-chain and we are done.

Let us prove (*) when |β| = m + 1 with the induction hypothesis for m ≥ 2 (†). Let

β =
∑m

i=0 εibi with its representation.

Let {2, k0, k1, . . . , km+1} be the support of β such that k0 = 0, km+1 = 1 and

supp(bi) = {2, ki, ki+1} for 0 ≤ i ≤ m (moreover 2 and ki’s are all distinct). Then

βk0,k1,...,km+1 is corresponding to a piecewise-linear graph Γ connecting two vertices 0

and 1 in T . And we regard this graph as a graph on an interval corresponding to α0,1.

Case 1: Γ is locally concave upward : Let (εjbj+εj+1bj+1)
kj ,kj+1,kj+2 be correspond-

ing to a concave upward piece in Γ. Obtain ε′jb
′
j+ε′j+1b

′
j+1 by applying the CR-operation

to εjbj+εj+1bj+1, so that β′ = β−(εjbj+εj+1bj+1)+(ε′jb
′
j+ε′j+1b

′
j+1) forms a chain-walk

in a planar α′ := α − (εjbj + εj+1bj+1) + (ε′jb
′
j + ε′j+1b

′
j+1) ∼ α. Now |β′| = m. Hence

due to (†), there is a tower type α′′ ∼ α′ ∼ α0.
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0 1

3

4

5

0 1

2

3

2

4

5
−b0

b1
b2

b3 −b0

b1 b2

b3

(T ) (T )

Figure 4. Two isomorphic triangulations. (b2 + b3)
1,4,5 corresponds to a

concave upward piece in �′(T ) but not in �(T ).

Case 2: Γ is concave downward : There is a triangulation �′(T ) isomorphic to

�(T ), where the corresponding graph Γ′ is locally concave upward. By Remark 4.2 we

may replace �(T ) by �′(T ) and apply the same process in the proof of Case 1 to Γ′.
�

Question 4.5. In an amenable category, is there an RN-type 2-chain not equiva-

lent to a Lascar 2-chain?

Due to Theorem 4.4, it easily follows that any RN-type 2-chain of length 3 or 5 is

equivalent to a Lascar type. We guess that there is an RN-type 2-chain of length 7 which

is not equivalent to a Lascar 2-chain.
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