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Locally standard torus actions and h0-numbers

of simplicial posets
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Abstract. We consider the orbit type filtration on a manifold with a
locally standard torus action and study the corresponding spectral sequence
in homology. When all proper faces of the orbit space are acyclic and the free
part of the action is trivial, this spectral sequence can be described in full.
The ranks of diagonal terms of its second page are equal to h′-numbers of a
simplicial poset dual to the orbit space. Betti numbers of a manifold with a
locally standard torus action are computed: they depend on the combinatorics
and topology of the orbit space but not on the characteristic function.

A toric space whose orbit space is the cone over a Buchsbaum simplicial
poset is studied by the same homological method. In this case the ranks of
the diagonal terms of the spectral sequence at infinity are the h′′-numbers of
the simplicial poset. This fact provides a topological evidence for the nonneg-
ativity of h′′-numbers of Buchsbaum simplicial posets and links toric topology
to some recent developments in enumerative combinatorics.

1. Introduction.

An action of a compact torus Tn on a smooth compact manifold M of dimension
2n is called locally standard if it is locally modeled on the standard representation of Tn

on Cn. The orbit space Q = M/Tn is a manifold with corners. Every manifold with a
locally standard torus action is equivariantly homeomorphic to the quotient construction
X = Y/∼, where Y is a principal Tn-bundle over Q and ∼ is the equivalence relation
determined by the characteristic function on Q [13].

In the case when all faces of the orbit space (including Q itself) are acyclic, Masuda
and Panov [9] proved that H∗

T (M ;Z) ∼= Z[SQ] and H∗(M ;Z) ∼= Z[SQ]/(l.s.o.p), where
SQ is a simplicial poset dual to Q; Z[SQ] is the face ring with even grading; and (l.s.o.p) is
a linear system of parameters determined by the characteristic function. In this situation
SQ is a Cohen–Macaulay simplicial poset, so (l.s.o.p) is actually a regular sequence in
the ring Z[SQ]. In particular this implies H2j+1(M) = 0 and dimH2j(M) = hj(SQ),
where the h-numbers are determined by the combinatorics of Q.

These considerations generalize similar results for quasitoric manifolds, complete
smooth toric varieties, and symplectic toric manifolds which were known before. One
can see that there are many examples of manifolds M whose orbit spaces are acyclic.
Nevertheless, several constructions have appeared in the last years providing natural
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examples of manifolds with torus actions whose orbit spaces have nontrivial topology.
Among others, these constructions include toric origami manifolds [5] and toric log sym-
plectic manifolds [7].

It seems that the most reasonable assumption which is weaker than acyclicity of all
faces but still allows for explicit calculations is as follows. We assume that every proper
face of Q is acyclic, and Y is a trivial Tn-bundle: Y = Q × Tn (this condition may
be replaced by homological triviality: H∗(Y ) ∼= H∗(Q) ⊗ H∗(Tn)). This is the second
paper in the series of works, where we study homological structure of M under these
assumptions by using the orbit type filtration. In [1] we proved several technical results,
which will be used in this work.

It is convenient to work with the quotient construction X = (Q× Tn)/∼ instead of
M . The orbit type filtration X0 ⊂ X1 ⊂ · · · ⊂ Xn covers the natural filtration Q0 ⊂ Q1

⊂ · · · ⊂ Qn on Q, and is covered by a filtration Y0 ⊂ Y1 ⊂ · · · ⊂ Yn on Y , where Yi =
Qi × Tn. Previously we proved that homological spectral sequences associated with
filtrations on Y and X are closely related. More precisely, there is an isomorphism of
the second pages f2

∗ : (EY )2p,q → (EY )2p,q for p > q, when Q has acyclic proper faces.
In this paper we compute the ranks of groups in the spectral sequence and the Betti

numbers of X. Since Y is just the direct product Q× Tn, the spectral sequence (EY )∗∗,∗
is isomorphic to (EQ)∗∗,∗⊗H∗(Tn). The structure of (EQ)∗∗,∗ can be explicitly described.
This is done in Section 3. As a technical tool, we introduce the modified spectral sequence
(ĖQ)∗∗,∗ which coincides with (EQ)∗∗,∗ from the second page, and whose first page (ĖQ)1∗,∗,
in certain sense, lies between (EQ)1∗,∗ and (EQ)2∗,∗. Similar constructions of modified
spectral sequences (ĖY )∗∗,∗ and (ĖX)∗∗,∗ are introduced for the spaces Y and X in Section
4.

The induced map ḟ1
∗ : (ĖY )1p,q → (ĖX)1p,q is an isomorphism for p > q, as follows

essentially from the result of [1]. This gives a description of all differentials and all
non-diagonal terms of (ĖX)1∗,∗, which is stated in detail in Theorem 4.3. The diagonal
terms of the spectral sequence are considered separately. We prove, in particular, that
dim(EX)2q,q = dim(ĖX)2q,q = h′n−q(SQ), the h′-number of the dual simplicial poset (The-
orem 4.6). The proof is purely combinatorial and is placed in a separate Section 5, where
we give all necessary definitions from the combinatorial theory of simplicial posets. The
appearance of h′-numbers here is quite natural. If Q has acyclic proper faces, the dual
simplicial poset SQ is Buchsbaum. Recall that h′- and h′′-numbers are combinatorial
notions which were specially devised to study the combinatorics of Buchsbaum simplicial
complexes.

In Section 6 we introduce the bigraded structure on H∗(X) and compute the bi-
graded Betti numbers (Theorem 6.2). Bigraded Poincare duality easily follows from this
computation.

Most of the arguments used for manifolds with locally standard actions work equally
well for the space X = (P × Tn)/∼ where P is the cone over Buchsbaum simplicial
poset equipped with the dual face structure. In this case we have dim(EX)∞q,q = h′′q (S)
(Theorem 4.7). Every simplicial poset admits a characteristic function over rational
numbers. Hence our theorem implies that h′′q (S) ≥ 0 for any Buchsbaum simplicial poset
S. This result was proved by Novik and Swartz in [11] by a different method.

Both manifolds with acyclic proper faces and cones over Buchsbaum posets are
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unified in the notion of Buchsbaum pseudo-cell complex introduced in Section 2. The
technique developed in the paper can be applied to any Buchsbaum pseudo-cell complex.

In the last section we analyze a simple example which shows that, when the assump-
tion of proper face acyclicity is dropped, the problem of computing Betti numbers of X

is more complicated. In general, Betti numbers of X may depend not only on the orbit
space Q, but also on the characteristic function.

2. Preliminaries.

2.1. Coskeleton filtrations and manifolds with corners.
Definition 2.1. A finite partially ordered set (poset in the following) is called

simplicial if there is a minimal element 0̂ ∈ S and, for any I ∈ S, the lower interval
{J ∈ S | J ≤ I} is isomorphic to the poset of faces of a (k−1)-simplex, for some number
k ≥ 0.

The elements of S are called simplices. The number k in the definition is denoted
by |I| and is called the rank of I. Also set dim I = |I| − 1. A simplex of rank 1 is
called a vertex ; the set of all vertices is denoted Vert(S). The link of a simplex I ∈ S

is the set lkS I = {J ∈ S | J ≥ I}. This set inherits the order relation from S, and
lkS I is a simplicial poset on its own, with I being the minimal element. Let S′ denote
the barycentric subdivision of S. By definition, S′ is a simplicial complex on the vertex
set S \ {0̂} whose simplices are the ordered chains in S \ {0̂}. The geometric realization
of S is the geometric realization of its barycentric subdivision |S| def= |S′|. One can also
think of |S| as a CW-complex with simplicial cells (such complexes were called simplicial
cell complexes in [3]). A poset S is called pure if all its maximal elements have equal
dimensions. A poset S is pure whenever S′ is pure.

Let k denote the ground ring, which may be either Z or a field. The term
“(co)homology of simplicial poset” means the (co)homology of its geometrical realiza-
tion. If the coefficient ring in the notation of (co)homology is omitted, it is supposed to
be k. The rank of a k-module A is denoted by dimA.

Definition 2.2. A simplicial poset S of dimension n−1 is called Buchsbaum (over
k) if H̃i(lkS I;k) = 0 for all 0̂ 6= I ∈ S and i 6= n − 1 − |I|. If S is Buchsbaum and,
moreover, H̃i(S;k) = 0 for i 6= n− 1, then S is called Cohen–Macaulay (over k).

By abuse of terminology we call S a homology manifold of dimension n − 1 if its
geometric realization |S| is a homology (n−1)-manifold. Simplicial poset S is a homology
manifold if and only if it is Buchsbaum and, moreover, its local homology stack of highest
degree is isomorphic to a constant sheaf (the details are discussed in [1]).

If S is Buchsbaum and connected, then S is pure. In the following we consider only
pure posets, and assume dimS = n− 1.

Construction 2.3. For any pure simplicial poset S, there is an associated space
P (S) = Cone|S| endowed with the dual face structure (also called coskeleton structure),
defined as follows. The complex P (S) is a simplicial complex on the set S and k-simplices
of P (S) have the form (I0 < I1 < · · · < Ik), where Ij ∈ S. For each I ∈ S consider the
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subsets:

GI = |{(I0 < I1 < · · · ) ∈ S′ such that I0 ≥ I}| ⊂ P (S),

∂GI = |{(I0 < I1 < · · · ) ∈ S′ such that I0 > I}| ⊂ P (S).

and the subset G◦I = GI \ ∂GI . We have G0̂ = P (S); GI ⊂ GJ whenever J < I, and
dimGI = n − |I|, since S is pure. The subset GI is called the dual face of a simplex
I ∈ S. A subset ∂GI is a union of faces of smaller dimensions.

Recall several facts about manifolds with corners. A smooth connected manifold
with corners Q is called nice (or a manifold with faces) if every codimension k face lies
in exactly k distinct facets. In the following we consider only nice compact orientable
manifolds with corners. Any such Q determines a simplicial poset SQ whose elements
are the faces of Q ordered by reversed inclusion. The whole Q is the maximal face of
itself, thus represents the minimal element of SQ.

Definition 2.4. A nice manifold with corners Q is called Buchsbaum if Q is
orientable and every proper face of Q is acyclic. If, moreover, Q is acyclic itself, it is
called Cohen–Macaulay.

If Q is a Buchsbaum manifold with corners, then its underlying simplicial poset SQ

is Buchsbaum (moreover, SQ is a homology manifold), and when Q is Cohen–Macaulay,
then so is SQ (moreover, SQ is a homology sphere) by [1, Lemma 6.2].

2.2. Buchsbaum pseudo-cell complexes.
It is convenient to introduce a notion generalizing both manifolds with corners and

cones over pure simplicial posets.

Construction 2.5 (Pseudo-cell complex). A CW-pair (F, ∂F ) will be called k-
dimensional pseudo-cell, if F is compact and connected, dimF = k, dim ∂F ≤ k − 1.
A (regular finite) pseudo-cell complex Q is a space which is a union of an expanding
sequence of subspaces Qk such that Q−1 is empty and Qk is the pushout obtained from
Qk−1 by attaching finite number of k-dimensional pseudo-cells (F, ∂F ) along injective
attaching CW-maps ∂F → Qk−1. We assume that the boundary of each pseudo-cell
is a union of lower dimensional pseudo-cells. The poset of pseudo-cells, ordered by the
reversed inclusion is denoted by SQ. The abstract elements of SQ are denoted by I, J ,
etc. and the corresponding pseudo-cells considered as subsets of Q are denoted by FI , FJ ,
etc.

A pseudo-cell complex Q, of dimension n is called simple if SQ is a simplicial poset
of dimension n − 1 and dimFI = n − |I| for any I ∈ SQ. In particular, the space Q

itself represents the maximal pseudo-cell, Q = F0̂. Pseudo-cells of a simple pseudo-cell
complex Q will be called faces, faces different from Q—proper faces, and maximal proper
faces—facets. Facets correspond to vertices of SQ.

Nice manifolds with corners and cones over simplicial posets stratified by dual faces
are examples of simple pseudo-cell complexes. Simple polytopes are the examples which
may be considered as both cones over simplicial poset and manifolds with corners.
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Every regular finite CW-complex Q is a pseudo-cell complex. If Q has more than
one maximal cell, then Q is an example of non-simple pseudo-cell complex.

Definition 2.6. A simple pseudo-cell complex Q is called Buchsbaum (over k) if,
for any proper face FI ⊂ Q, I 6= 0̂, the following conditions hold:

1. FI is acyclic, H̃∗(FI ;k) = 0;
2. Hj(FI , ∂FI ;k) = 0 for each j 6= dim FI .

Buchsbaum complex Q is called Cohen–Macaulay (over k) if these two conditions also
hold for the maximal face F0̂ = Q.

Both Buchsbaum manifolds and cones over Buchsbaum posets are examples of
Buchsbaum pseudo-cell complexes (and the same for Cohen–Macaulay property). Indeed,
for Buchsbaum manifolds with corners H̃∗(FI) vanishes by definition, and H∗(FI , ∂FI)
vanishes in the required degrees by the Poincare–Lefschetz duality, since every face FI

is an orientable manifold with boundary. In the cone case we have GI = Cone(∂GI)
and ∂GI

∼= |lkS I|, so the conditions of Definition 2.6 follow from the isomorphism
H∗(GI , ∂GI) ∼= H∗−1(∂GI) and Definition 2.2.

On the other hand, the converse holds. If Q is a manifold with corners, having
non-acyclic proper faces, or a cone over non-Buchsbaum simplicial poset, then Q is a
non-Buchsbaum simple pseudo-cell complex.

For a general simple pseudo-cell complex we have the filtration

Q0 ⊂ Q1 ⊂ · · · ⊂ Qn−1 ⊂ Qn = Q;

and the truncated filtration

Q0 ⊂ Q1 ⊂ · · · ⊂ Qn−1 = ∂Q,

where Qj is the union of j-dimensional faces. The homological spectral sequences asso-
ciated with these filtrations are denoted by (EQ)r

p,q and (E∂Q)r
p,q respectively. The same

argument as in [1, Lemma 6.2] proves the following

Proposition 2.7. (1) Let Q be a Buchsbaum pseudo-cell complex, SQ be its under-
lying poset, and P =P (SQ) be the cone complex. Then there exists a face-preserving map
ϕ : Q → P which induces the identity isomorphism of posets of faces and an isomorphism
of the truncated spectral sequences ϕ∗ : (E∂Q)r

∗,∗
∼=→ (E∂P )r

∗,∗ for r ≥ 1. In particular, it
follows that SQ is a Buchsbaum simplicial poset.

(2) If Q is a Cohen–Macaulay pseudo-cell complex of dimension n, then ϕ induces
an isomorphism of non-truncated spectral sequences ϕ∗ : (EQ)r

∗,∗
∼=→ (EP )r

∗,∗ for r ≥ 1.
In particular, it follows that SQ is a Cohen–Macaulay simplicial poset.

Thus all homological information about Buchsbaum pseudo-cell complex Q away
from its maximal cell is encoded in the underlying poset SQ. This makes Buchsbaum
pseudo-cell complexes and in particular Buchsbaum manifolds with corners natural can-
didates for study.
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3. Spectral sequence of Q.

3.1. Truncated and non-truncated spectral sequences.
In Buchsbaum case the spectral sequence (EQ)r

p,q can be described explicitly. We
have (EQ)r

p,q ⇒ Hp+q(Q), the differentials act as (dQ)r : (EQ)r
p,q → (EQ)r

p−r,q+r−1, and

(EQ)1p,q
∼= Hp+q(Qp, Qp−1) ∼=

⊕

I,dim FI=p

Hp+q(FI , ∂FI).

By the definition of Buchsbaum pseudo-cell complex we have (EQ)1p,q = 0 unless q = 0
or p = n. Such form of the spectral sequence will be referred to as -shaped.

By forgetting the last term of the filtration we get the spectral sequence (E∂Q)r
p,q ⇒

Hp+q(∂Q), whose terms vanish unless q = 0. Thus (E∂Q)r
p,q collapses at a second page,

giving the isomorphism (E∂Q)2p,0
∼= Hp(∂Q).

In the non-truncated case we have (EQ)2p,0
∼= (E∂Q)2p,0 for p 6= n, n − 1. The terms

(EQ)2n,q coincide with (EQ)1n,q
∼= Hn+q(Q, ∂Q) when q 6= 0. The term (EQ)2n−1,0 differs

from (E∂Q)2n−1,0
∼= Hn−1(∂Q) by the image of the first differential (dQ)1 which hit it at

the previous step. Similarly, the term (EQ)2n,0 is the kernel of the same differential. To
avoid mentioning these two exceptional cases every time in the following, we introduce
the formalism of modified spectral sequence.

3.2. Modified spectral sequence.
Let (ĖQ)1∗,∗ be the collection of k-modules defined by

(ĖQ)1p,q
def=





(E∂Q)2p,q, if p ≤ n− 1,

(EQ)1p,q, if p = n,

0, otherwise.

Let d−Q be the differential of degree (−1, 0) acting on
⊕

(EQ)1p,q by:

d−Q =

{
(dQ)1 : (EQ)1p,q → (EQ)1p−1,q, if p ≤ n− 1,

0, otherwise.

It is easily seen that the bigraded homology module H((EQ)1∗,∗, d
−
Q) is isomorphic to

(ĖQ)1∗,∗. Now consider the differential (ḋQ)1 of degree (−1, 0) acting on
⊕

(ĖQ)1p,q:

(ḋQ)1 =





0, if p ≤ n− 1,

(EQ)1n,q

(dQ)1−→ (EQ)1n−1,q, if p = n.

In the latter case, the image of the differential lies in (ĖQ)1n−1,q ⊆ (EQ)1n−1,q since
(ĖQ)1n−1,q is just the kernel of (dQ)1. We have (EQ)2∗,∗ ∼= H((ĖQ)1∗,∗, (ḋQ)1). These
considerations are shown on the diagram:
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(ĖQ)1

(ḋQ)1

##
(EQ)1

(dQ)1 //

d−Q
;;

(EQ)2
(dQ)2 // (EQ)3

(dQ)3 // . . .

in which the dotted arrows represent passing to homology. To summarize:

Figure 1. The shape of the spectral sequence.

Claim 3.1. There is a homological spectral sequence (ĖQ)r
p,q ⇒ Hp+q(Q) such

that (ĖQ)1∗,∗ = H((EQ)1∗,∗, d
−
Q), and (ĖQ)r

∗,∗ = (EQ)r
∗,∗ for r ≥ 2. The only nontrivial

differentials of this sequence have the form

(ḋQ)r : (ĖQ)r
n,1−r → (ĖQ)r

n−r,0

for r ≥ 1 (see Figure 1).

The differentials have distinct domains and targets. Thus the whole spectral se-
quence (EQ)r

p,q ⇒ Hp+q(Q) folds into a single long exact sequence, which is isomorphic
to the long exact sequence of the pair (Q, ∂Q):

· · · // Hn+1−r(Q) // (ĖQ)r
n,1−r

(ḋQ)r

// (ĖQ)r
n−r,0

// Hn−r(Q) // · · ·

(ĖQ)1n,1−r (ĖQ)1n−r,0

∼=
²²

· · · // Hn+1−r(Q) // Hn+1−r(Q, ∂Q)
δn+1−r // Hn−r(∂Q) // Hn−r(Q) // · · ·

(3.1)

In particular, the differentials (dQ)r : (EQ)r
n,1−r → (EQ)r

n−r,0 coincide up to isomor-
phism with the connecting homomorphisms

δn+1−r : Hn+1−r(Q, ∂Q) → Hn−r(∂Q).
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This proves

Proposition 3.2. Up to isomorphism, the spectral sequence (ĖQ)r
∗,∗ ⇒ H∗(Q)

has the form shown on Figure 2.

Figure 2. Modified spectral sequence for Q.

4. Quotient construction and its spectral sequence.

4.1. Quotient construction.
Let Tn denote the compact torus, and Λ∗ be its homology algebra, Λ∗ =

⊕n
j=0 Λj ,

Λj = Hj(Tn;k). Let Q be a simple pseudo-cell complex of dimension n, and SQ be its
dual simplicial poset. The map

λ : Vert(SQ) → {1-dimensional toric subgroups of Tn}

is called a characteristic function if the following condition (so called (∗)-condition) holds:
whenever i1, . . . , ik are the vertices of some simplex in SQ, the map

λ(i1)× · · · × λ(ik) → Tn (4.1)

induced by inclusions λ(ij) ↪→ Tn is injective and splits. Note that i1, . . . , ik are the
vertices of a simplex if and only if Fi1 ∩ · · · ∩Fik

6= ∅. Denote the image of the map (4.1)
by TI , where I is a simplex with the vertices i1, . . . , ik.

It follows from the (∗)-condition that the map

H1(λ(F1)× · · · × λ(Fk);k) → H1(Tn;k) (4.2)

is injective and splits for every k. If the map (4.2) splits for a specific ground ring k,
we say that λ satisfies (∗k)-condition and call it a k-characteristic function. It is easy to
see that the topological (∗)-condition is equivalent to (∗Z), and that (∗Z) implies (∗k) for
any k.

For a simple pseudo-cell complex Q of dimension n, consider the space Y = Q×Tn.
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Construction 4.1. For any k-characteristic function λ over Q consider the quo-
tient construction

X = Y/∼ = (Q× Tn)/∼,

where (q1, t1) ∼ (q2, t2) if and only if q1 = q2 ∈ F ◦I for some I ∈ SQ and t1t
−1
2 ∈ TI .

The action of Tn on the second coordinate of Y descends to the action on X. The orbit
space of this action is Q and the stabilizer of the point q ∈ F ◦I ⊂ Q is TI . Let f denote
the canonical quotient map, f : Y → X.

The filtration on Q induces filtrations on Y and X:

Yi = Qi × Tn, Xi = Yi/∼, i = 0, . . . , n.

The filtration X0 ⊂ X1 ⊂ · · · ⊂ Xn = X is the orbit type filtration on X. This means
that Xi is the union of all torus orbits of dimension at most i. We have dim Xi = 2i. We
will use the following notation

YI = FI × Tn, ∂YI = (∂FI)× Tn,

XI = YI/∼, ∂XI = ∂YI/∼

for I ∈ SQ. Note that ∂XI does not have the meaning of topological boundary of XI ,
this is just a notational convention. Since ∂Q = Qn−1, we have ∂Y = (∂Q) × Tn =
Qn−1 × Tn = Yn−1 and ∂X = ∂Y/∼ = Yn−1/∼ = Xn−1.

Consider the homological spectral sequences

(EY )r
p,q ⇒ Hp+q(Y ), (EX)r

p,q ⇒ Hp+q(X),

(E∂Y )r
p,q ⇒ Hp+q(∂Y ), (E∂X)r

p,q ⇒ Hp+q(∂X),

associated with these filtrations. The canonical map f : Y → X induces the morphisms
fr
∗ : (EY )r

∗,∗ → (EX)r
∗,∗ and fr

∗ : (E∂Y )r
∗,∗ → (E∂X)r

∗,∗.
Since homology groups of the torus are torsion free, we have

(EY )r
p,q
∼=

⊕
q1+q2=q

(EQ)r
p,q1

⊗ Λq2 , (4.3)

for r ≥ 1 by Kunneth’s formula. Similarly,

(E∂Y )r
p,q
∼=

⊕
q1+q2=q

(E∂Q)r
p,q1

⊗ Λq2 .

4.2. Modified spectral sequences.
Absolutely similar to the case of Q, we introduce the modified spectral sequences

(ĖY )∗,∗ and (ĖX)∗,∗. Consider the bigraded module:
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(ĖY )1p,q =

{
(E∂Y )2p,q, if p < n,

(EY )1n,q, if p = n.

and define the differentials d−Y : (EY )1p,q → (EY )1p−1,q and (ḋY )1 : (ĖY )1p,q → (ĖY )1p−1,q

by

d−Y =

{
(dY )1, if p < n,

0, if p = n.
(ḋY )1 =





0, if p < n,

(EY )1n,q

(dY )1−→ (EY )1n−1,q if p = n.

It is easy to see that (ĖY )1∗,∗ ∼= H((EY )1∗,∗, d
−
Y ) and (EY )2∗,∗ ∼= H((ĖY )1∗,∗, (ḋY )1). Let

(ĖY )r
∗,∗ = (EY )r

∗,∗ for r ≥ 2. Thus there is a modified spectral sequence (ĖY )r
∗,∗ ⇒

H∗(Y ) and for r ≥ 1 there holds

(ĖY )r
p,q
∼=

⊕
q1+q2=q

(ĖQ)r
p,q1

⊗ Λq2 . (4.4)

The same construction applies to X and gives the spectral sequence (ĖX)r
∗,∗ ⇒

H∗(X) such that (ĖX)1∗,∗ ∼= H((EX)1∗,∗, d
−
X), and (ĖX)r

∗,∗ = (EX)r
∗,∗ for r ≥ 2. The map

f induces the map of modified spectral sequences:

ḟr
∗ : (ĖY )r

∗,∗ → (ĖX)r
∗,∗.

By dimensional reasons the homological spectral sequence (EX)r
p,q ⇒ Hp+q(X) (and

hence its modified version) has an obvious vanishing property:

(EX)1p,q = Hp+q(Xp, Xp−1) = 0 if p < q.

Figure 3. The induced map of spectral sequences.
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Proposition 4.2. The map ḟ1
∗ : (ĖY )1p,q → (ĖX)1p,q is an isomorphism if p > q

or p = q = n. It is injective if p = q. In the remaining cases, that is p < q, the modules
(ĖX)1p,q vanish.

Proof. The map f2
∗ : (E∂Y )2p,q → (E∂X)2p,q is an isomorphism for p > q and

injective for p = q (see [1, Theorem 5.2 and Remark 6.6]). Thus ḟ1
∗ : (ĖY )1p,q → (ĖX)1p,q

is an isomorphism for q < p < n and injective for q = p < n. Note that in [1] we
considered manifolds with corners, but the argument used there can be applied to any
Buchsbaum pseudo-cell complex without significant changes.

As for the case p = n, the map f∗ : (EY )1n,q → (EX)1n,q is an isomorphism since the
identification ∼ does not touch the interior of Y , and therefore,

Xn/Xn−1 = X/∂X ∼= Y/∂Y = Yn/Yn−1.

Thus ḟ1
∗ : (ĖY )1n,q = Hn+q(Y, ∂Y ) → (ĖX)1n,q = Hn+q(X, ∂X) is an isomorphism by

excision. ¤

This proposition together with (4.4) and Proposition 3.2 provides a complete de-
scription of differentials and non-diagonal terms of (ĖX)r

∗,∗.

Theorem 4.3. Let Q be a Buchsbaum (over k) pseudo-cell complex, and let X =
(Q×Tn)/∼ be the quotient construction determined by some k-characteristic function on
Q. There exists a homological spectral sequence (ĖX)r

∗,∗ converging to H∗(X). Starting
from the second page this spectral sequence coincides with (EX)∗∗,∗ (the spectral sequence
associated with the orbit type filtration). The first page, (ĖX)1 is the homology module
of (EX)1, with respect to the differential d−X of degree (−1, 0). The following properties
hold for (ĖX)∗∗,∗:

(1) Non-diagonal terms of the first page have the form

(ĖX)1p,q
∼=





Hp(∂Q)⊗ Λq, if q < p < n,
⊕

q1+q2=q+n
Hq1(Q, ∂Q)⊗ Λq2 , if p = n,

0, if q > p.

(2) There exist injective maps ḟ1
∗ : Hq(∂Q)⊗ Λq ↪→ (ĖX)1q,q for q ≤ n.

(3) Nontrivial differentials for r ≥ 1 have the form

(ḋX)r ∼=





δq1 ⊗ idΛ :

(ĖX)1n,q1+q2−n

∪
Hq1(Q, ∂Q)⊗ Λq2 →

(ĖX)1q1−1,q2
∪

Hq1−1(∂Q)⊗ Λq2 ,

if r = n− q1 + 1, q1 − 1 > q2,

ḟ1
∗ ◦ (δq1 ⊗ idΛ) : Hq1(Q, ∂Q)⊗ Λq2

→ Hq1−1(∂Q)⊗ Λq2 ↪→ (ĖX)∗q1−1,q1−1, if r = n− q1 + 1, q1 − 1 = q2,

0, otherwise.
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Remark 4.4. We can weaken the condition of triviality Y ∼= Q× Tn, and require
only the homological triviality, namely that (4.3) holds for Y . All results of the paper
hold in this generality. In [1] we proved that f2

∗ : (EY )2∗,∗ → (EX)2∗,∗ and f2
∗ : (E∂Y )2∗,∗ →

(E∂X)2∗,∗ are isomorphisms if q < p and injective for q = p for any principal Tn-bundle
Y over Q. So one can describe the structure of (EX)∗∗,∗ if the structure of (EY )∗∗,∗ is
known. The problem is that there is no uniform description of (EY )∗∗,∗ when Y is a
general Tn-bundle. We have such description when Y is homologically trivial, and this
was the main reason to introduce this assumption.

Note that if Q is an orientable manifold with boundary, the condition H∗(Y ) ∼=
H∗(Q)⊗H∗(Tn) implies H∗(Y, ∂Y ) ∼= H∗(Q, ∂Q)⊗H∗(Tn) by Poincare–Lefschetz duality.
In this case the homological triviality condition (4.3) holds for Y .

4.3. Diagonal terms of the spectral sequence.
Our next goal is to compute the diagonal terms (ĖX)1q,q since Theorem 4.3 does not

describe them explicitly. In this subsection we state the results about their dimensions.
The proofs are given in the next section.

Let β̃p(S) denote the rank of H̃p(S) for each p < n. If Q is a Buchsbaum pseudo-cell
complex, we have dim H̃p(∂Q) = β̃p(SQ) since SQ is homologous to ∂Q by Proposition
2.7. Let hq(S), h′q(S) and h′′q (S) be the h-, h′- and h′′-numbers of a simplicial poset S

(see definitions in Section 5).

Theorem 4.5. In the notation and under conditions of Theorem 4.3 there holds

dim(ĖX)1q,q = hq(SQ) +
(

n

q

) q∑
p=0

(−1)p+qβ̃p(SQ) for q ≤ n− 1.

Theorem 4.6. Let Q be a Buchsbaum manifold with corners and X = (Q×Tn)/∼.
Then:

(1) dim(ĖX)1q,q = h′n−q(SQ) for q ≤ n− 2, and dim(ĖX)1n−1,n−1 = h′1(SQ) + n.
(2) dim(EX)2q,q = dim(ĖX)2q,q = h′n−q(SQ) for 0 ≤ q ≤ n.

For the cone over Buchsbaum simplicial poset, the diagonal components of the ∞-
page also have a clear combinatorial meaning.

Theorem 4.7. Let S be a Buchsbaum simplicial poset, P = P (S) be the cone over
its geometric realization, and X = (P × Tn)/∼. Then

dim(EX)∞q,q = dim(ĖX)∞q,q = h′′q (S)

for 0 ≤ q ≤ n.

Corollary 4.8. If S is Buchsbaum, then h′′i (S) ≥ 0.

Proof. For any simplicial poset S there exists a characteristic function on P =
P (S) over Q. Thus we can consider the space X = (P × Tn)/∼ and apply Theorem 4.7.

¤
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5. Face vectors and ranks of diagonal components.

In this section we prove Theorems 4.5, 4.6 and 4.7.

5.1. Preliminaries on face numbers.
First recall several standard definitions from combinatorial theory of simplicial

posets.

Construction 5.1. Let S be a pure simplicial poset, dimS = n − 1. Let fi(S)
be the the number of i-dimensional simplices in S and, in particular, f−1(S) = 1 (the
element 0̂ ∈ S has dimension −1). The array (f−1, f0, . . . , fn−1) is called the f-vector
of S. We write fi instead of fi(S) since the poset is always clear from the context. Let
fS(t) be the generating polynomial: fS(t) =

∑
i≥0 fi−1t

i.
The h-numbers are determined by the formula:

n∑

i=0

hit
i =

n∑

i=0

fi−1t
i(1− t)n−i = (1− t)nfS

(
t

1− t

)
, (5.1)

where t is a formal variable. Let βi(S) = dimHi(S), β̃i(S) = dim H̃i(S), and

χ(S) =
n−1∑

i=0

(−1)iβi(S) =
n−1∑

i=0

(−1)ifi(S), χ̃(S) =
n−1∑

i=0

β̃i(S) = χ(S)− 1.

Thus fS(−1) = 1− χ(S). Note that

hn = (−1)n−1χ̃(S). (5.2)

The h′- and h′′-numbers of S are defined by the formulas

h′i = hi +
(

n

i

)( i−1∑

j=1

(−1)i−j−1β̃j−1(S)
)

for 0 ≤ i ≤ n,

h′′i = h′i −
(

n

i

)
β̃i−1(S) = hi +

(
n

i

)( i∑

j=1

(−1)i−j−1β̃j−1(S)
)

for 0 ≤ i ≤ n− 1,

and h′′n = h′n. The sum over an empty set is assumed zero. It follows from (5.2) that

h′n = hn +
n−1∑

j=0

(−1)n−j−1β̃j−1(S) = β̃n−1(S). (5.3)

Proposition 5.2 (Dehn–Sommerville relations). For a homology manifold S there
holds
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hi = hn−i + (−1)i

(
n

i

)
(1− (−1)n − χ(S)), (5.4)

or, equivalently :

hi = hn−i + (−1)i

(
n

i

)
(1 + (−1)nχ̃(S)). (5.5)

Moreover, h′′i = h′′n−i.

Proof. The first statement can be found e.g. in [12] or [4, Theorem 3.8.2]. Also
see Remark 5.5 below. The last statement follows from the definition of h′′-numbers and
Poincare duality βi(S) = βn−1−i(S) (see [10, Lemma 7.3]). ¤

Now we introduce an auxiliary numerical characteristic of a simplicial poset S.

Definition 5.3. Let S be a Buchsbaum simplicial poset. For i ≥ 0 consider the
number

f̂i(S) =
∑

I∈S,dim I=i

dim H̃n−1−|I|(lkS I).

For a homology manifold S there holds f̂i = fi since all proper links are homology
spheres. In general, there is another formula connecting these quantities.

Proposition 5.4. For Buchsbaum simplicial poset S there holds

fS(t) = (1− χ(S)) + (−1)n
∑

k≥0

f̂k(S) · (−t− 1)k+1.

Proof. This follows from the general statement [8, Theorem 9.1], [4, Theorem
3.8.1], but we provide an independent proof for completeness. For simplicial posets we
have:

d

dt
fS(t) =

∑

v∈Vert(S)

flk v(t),

(see [2, Lemmas 3.7 and 3.8]) and, more generally,

(
d

dt

)k

fS(t) = k!
∑

I∈S,|I|=k

flk I(t).

Thus for k ≥ 1:

f
(k)
S (−1) = k!

∑

I∈S,|I|=k

(1− χ(lkS I))
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= k!
∑

I∈S,|I|=k

(−1)n−|I| dim H̃n−|I|−1(lk I) = (−1)n−kk!f̂k−1.

The Taylor expansion of fS(t) at −1 has the form:

fS(t) = fS(−1) +
∑

k≥1

1
k!

f
(k)
S (−1)(t + 1)k = (1− χ(S)) +

∑

k≥0

(−1)n−k−1f̂k · (t + 1)k+1,

which completes the proof. ¤

Remark 5.5. If S is a homology manifold, then Proposition 5.4 implies

fS(t) = (1− (−1)n − χ(S)) + (−1)nfS(−t− 1),

which is yet another equivalent form of Dehn–Sommerville relations (5.4).

Lemma 5.6. For Buchsbaum poset S there holds

n∑

i=0

hit
i = (1− t)n(1− χ(S)) +

∑

k≥0

f̂k · (t− 1)n−k−1.

Proof. Substitute t/(1− t) in Proposition 5.4 and apply (5.1). ¤

Comparing the coefficients of ti in the identity of Lemma 5.6 we get:

hi(S) = (1− χ(S))(−1)i

(
n

i

)
+

∑

k≥0

(−1)n−k−i−1

(
n− k − 1

i

)
f̂k(S). (5.6)

5.2. Ranks of (EX)1∗,∗.
To prove Theorem 4.5 we use the following straightforward idea. The module (ĖX)1∗,∗

is the homology of (EX)1∗,∗ with respect to the differential d−X of degree (−1, 0). Theorem
4.3 describes the ranks of all groups (ĖX)1p,q except for p = q; the terms (EX)1p,q are
known as well. Thus the ranks of the remaining terms dim(ĖX)1q,q can be found by
equating Euler characteristics of (EX)1∗,∗ and (ĖX)1∗,∗.

When we pass from (EX)1∗,∗ to (ĖX)1∗,∗, the terms with p = n do not change. The
other groups are the same as if we passed from (E∂X)1∗,∗ to (E∂X)2∗,∗. Thus it is sufficient
to perform calculations with the truncated sequence (E∂X)∗∗,∗.

Let χ1
q be the Euler characteristic of the q-th row of (E∂X)1∗,∗:

χ1
q =

∑

p≤n−1

(−1)p dim(E∂X)1p,q. (5.7)

Lemma 5.7. For q ≤ n− 1 there holds χ1
q = (χ(SQ)− 1)

(
n
q

)
+ (−1)qhq(SQ).

Proof. By Proposition 2.7 there is an isomorphism of spectral sequences
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(E∂Q)∗ → (E∂P (SQ))∗. Thus, in particular, for any I ∈ SQ \ {0̂}, |I| = n − p we have
an isomorphism

Hp(FI , ∂FI) ∼= Hp(GI , ∂GI) ∼= Hp−1(lkSQ
I) (5.8)

where GI is the face of P (SQ) dual to I. The last isomorphism in (5.8) is due to the
long exact sequence of the pair (GI , ∂GI), since GI = Cone(∂GI) and ∂GI

∼= lkSQ
I.

For p < n we have

dim(E∂X)1p,q =
∑

I,dim FI=p

dimHp+q(XI , ∂XI).

We have XI
∼= FI × (Tn/TI)/∼FI

, where ∼FI
identifies points over ∂FI . Thus

Hp+q(XI , ∂XI) ∼= Hp(FI , ∂FI)⊗Hq(Tn/TI). Therefore,

dim(E∂X)1p,q =
∑

I,|I|=n−p

dim(Hp(FI , ∂FI)⊗Hq(Tn/TI)) =
(

p

q

)
· f̂n−p−1(SQ).

In the last equality we applied (5.8) and the definition of f̂ -numbers. Therefore,

χ1
q =

∑

p≤n−1

(−1)p dim(E∂X)1p,q =
∑

p≤n−1

(−1)p

(
p

q

)
f̂n−p−1(SQ). (5.9)

Now substitute i = q and k = n− p− 1 in (5.6) and combine with (5.9). ¤

5.3. Ranks of (ĖX)1∗,∗.
By the definition of modified spectral sequence we have (ĖX)1p,q

∼= (E∂X)2p,q for
p ≤ n− 1. Let χ2

q be the Euler characteristic of q-th row of (E∂X)2∗,∗:

χ2
q =

∑

p≤n−1

(−1)p dim(E∂X)2p,q. (5.10)

Euler characteristics of the first and the second pages coincide: χ2
q = χ1

q. By Theorem
4.3, for q < p < n we have

dim(ĖX)1p,q =
(

n

q

)
βp(SQ).

Lemma 5.7 yields

(−1)q dim(ĖX)1q,q +
n−1∑

p=q+1

(−1)p

(
n

q

)
βp(SQ) = (χ(SQ)− 1)

(
n

q

)
+ (−1)qhq(SQ).

This relation combined with the equality χ(SQ) =
∑n−1

p=0 βp(SQ) and the obvious relation
between reduced and non-reduced Betti numbers, completes the proof of Theorem 4.5.
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5.4. Manifold case.
Let us prove Theorem 4.6. If Q is a Buchsbaum manifold with corners, then SQ

is a homology manifold. Then Poincare duality βi(SQ) = βn−1−i(SQ) and the Dehn–
Sommerville relations (5.5) imply

dim(ĖX)1q,q = hq +
(

n

q

) q∑
p=0

(−1)p+qβ̃p

= hq − (−1)q

(
n

q

)
+

(
n

q

) q∑
p=0

(−1)p+qβp

= hq − (−1)q

(
n

q

)
+

(
n

q

) n−1∑
p=n−1−q

(−1)n−1−p+qβp

= hn−q + (−1)q

(
n

q

)[
(−1)nχ̃ +

n−1∑
p=n−1−q

(−1)n−1−pβp

]

= hn−q + (−1)q

(
n

q

)[
− (−1)n +

n−q−2∑
p=0

(−1)p+nβp

]
.

The last expression in brackets coincides with
∑n−q−2

p=−1 (−1)p+nβ̃p whenever the sum-
mation is taken over nonempty set, that is for q ≤ n − 2. Thus dim(ĖX)1q,q = h′n−q for
q ≤ n− 2. In the case q = n− 1 we have dim(ĖX)1n−1,n−1 = h1 +

(
n

n−1

)
= h′1 + n. This

proves part (1) of Theorem 4.6.
Part (2) follows easily. Indeed, for q = n we have

dim(ĖX)2n,n = dim(ĖX)1n,n =
(

n

n

)
dimHn(Q, ∂Q) = 1 = h′0(SQ).

For q = n− 1:

dim(ĖX)2n−1,n−1 = dim(ĖX)1n−1,n−1 −
(

n

n− 1

)
dim Im δn = h′1(SQ),

since the map δn : Hn(Q, ∂Q) → Hn−1(∂Q) is injective and dimHn(Q, ∂Q) = 1.
If q ≤ n− 2, then (ĖX)2q,q = (ĖX)1q,q, and the statement follows from part (1).

5.5. Cone case.
If P = P (S) ∼= Cone|S|, then the map δi : Hi(P, ∂P ) → H̃i−1(∂P ) is an isomorphism

as follows from the long exact sequence of the pair (P, ∂P ). Thus for q ≤ n− 1 Theorem
4.3 implies

dim(ĖX)∞q,q = dim(ĖX)1q,q −
(

n

q

)
dimHq+1(P, ∂P ) = dim(ĖX)1q,q −

(
n

q

)
β̃q(S).
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By Theorem 4.5, this expression is equal to

hq +
(

n

q

)[ q∑
p=0

(−1)p+qβ̃p(S)
]
−

(
n

q

)
β̃q(S) = hq(S) +

(
n

q

) q−1∑
p=0

(−1)p+qβ̃p(S) = h′′q .

The case q = n follows from (5.3). Indeed, the term (ĖX)1n,n survives in the spectral
sequence, thus we have

dim(ĖX)∞n,n =
(

n

n

)
dimHn(P, ∂P ) = βn−1(S) = h′n(S) = h′′n(S).

This proves Theorem 4.7.

6. Homology of X.

In this section we assume that k is a field. Theorem 4.3 gives an additional grading
on H∗(X), namely the one induced by degrees of exterior forms, as described below. In
the following Q is an arbitrary Buchsbaum pseudo-cell complex of dimension n.

Figure 4. Decomposition of spectral sequences into graded components.

Construction 6.1. The spectral sequence (ĖY )∗ splits as the direct sum of spec-
tral subsequences, indexed by degrees of exterior forms. For 0 ≤ j ≤ n consider the

-shaped spectral sequence

(Ėj
Y )r

p,q = (ĖQ)r
p,q−j ⊗ Λj .

Clearly, (ĖY )r
∗,∗ =

⊕n
j=0(Ė

j
Y )r
∗,∗. This decomposition is sketched on Figure 4. Let

Hi,j(Y ) denote the module Hi(Q)⊗ Λj . Then (Ėj
Y )r

p,q ⇒ Hp+q−j,j(Y ).
Let us construct the corresponding -shaped spectral subsequences in (ĖX)∗∗,∗. Con-
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sider the bigraded vector subspaces (Ėj
X)1∗,∗:

(Ėj
X)1p,q =





(ĖX)1p,q, if q = j and p < n,

0, if q 6= j and p < n,

Hq+n−j(Q, ∂Q)⊗ Λj , if p = n.

In the last case we used the isomorphism of Theorem 4.3. Theorem 4.3 implies that
all differentials of (ĖX)∗∗,∗ preserve the subspace (Ėj

X)1∗,∗, thus spectral subsequences
(Ėj

X)r
∗,∗ are well defined for r ≥ 2, and (ĖX)r

∗,∗ =
⊕n

j=0(Ė
j
X)r

∗,∗.
Over a field, Hk(X) can be identified with the associated module

⊕
p+q=k(EX)∞p,q,

and therefore inherits the double grading:

Hk(X) ∼=
⊕

i+j=k

Hi,j(X), where

Hi,j(X) def=
⊕

p+q=i+j

(Ėj
X)∞p,q.

Hence we have (Ėj
X)r

p,q ⇒ Hp+q−j,j(X). The map ḟr
∗ : (ĖY )r

∗,∗ → (ĖX)r
∗,∗ sends (Ėj

Y )r
∗,∗

to (Ėj
X)r

∗,∗ for each j ∈ {0, . . . , n}. The map f∗ : H∗(Y ) → H∗(X) sends Hi,j(Y ) to
Hi,j(X).

Theorem 6.2.

(1) If i > j, then f∗ : Hi,j(Y ) → Hi,j(X) is an isomorphism. As a consequence, we get
Hi,j(X) ∼= Hi(Q)⊗ Λj.

(2) If i < j, then there exists an isomorphism Hi,j(X) ∼= Hi(Q, ∂Q)⊗ Λj.
(3) In case i = j < n, the module Hi,i(X) fits in the exact sequence

0 → (ĖX)∞i,i → Hi,i(X) → Hi(Q, ∂Q)⊗ Λi → 0,

or, equivalently,

0 → Im δi+1 ⊗ Λi → (ĖX)1i,i → Hi,i(X) → Hi(Q, ∂Q)⊗ Λi → 0.

(4) If i = j = n, then

Hn,n(X) = (ĖX)∞n,n = (ĖX)1n,n
∼= Hn(Q, ∂Q).

Proof. According to Theorem 4.3, the map ḟ1
∗ : (Ėj

Y )1i,q → (Ėj
X)1i,q is an isomor-

phism if i > j or i = j = n, and injective if i = j < n. For each j both spectral sequences
(Ėj

Y ) and (Ėj
X) are -shaped, and therefore unfold in the long exact sequences:
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· · · // (Ėj
Y )1i,j //

ḟ1
∗

²²

Hi,j(Y ) //

f∗

²²

(Ėj
Y )1n,i−n+j

(ḋY )n−i+1

//

ḟ1
∗∼=

²²

(Ėj
Y )1i−1,j

//

f∗
²²

· · ·

· · · // (Ėj
X)1i,j // Hi,j(X) // (Ėj

X)1n,i−n+j

(ḋX)n−i+1

// (Ėj
X)1i−1,j

// · · ·

(6.1)

Application of five lemma in the case i > j proves (1). For i < j, the groups (Ėj
X)1i,j ,

(Ėj
X)1i−1,j vanish by dimensional reasons, thus Hi,j(X) ∼= (Ėj

X)1n,i−n+j
∼= (Ėj

Y )1n,i−n+j
∼=

Hi(Q, ∂Q)⊗ Λj . Case i = j also follows from (6.1) by a simple diagram chase. ¤

In the case of manifolds Theorem 6.2 reveals a bigraded duality. If Q is a nice
manifold with corners, Y = Q × Tn, and λ is a characteristic function over Z, then
X = Y/∼ is a compact orientable topological manifold with the locally standard torus
action. In this case Poincare duality respects the double grading.

Proposition 6.3. Let Q be a Buchsbaum manifold with corners, and let X

be a quotient construction over Q determined by a Z-characteristic function. Then
Hi,j(X;k) ∼= Hn−i,n−j(X;k) for any field k.

Proof. When i < j, we have

Hi,j(X) ∼= Hi(Q, ∂Q)⊗ Λj
∼= Hn−i(Q)⊗ Λn−j

∼= Hn−i,n−j(X),

by the Poincare–Lefschetz duality applied to Q and Poincare duality applied to torus.
The remaining isomorphism Hi,i(X) ∼= Hn−i,n−i(X) now follows from the ordinary
Poincare duality on X. ¤

Remark 6.4. If X is determined byQ-characteristic function, then it is a homology
Q-manifold. In this case Proposition 6.3 holds over Q.

7. One example with non-acyclic proper faces.

Claim 7.1. In general, Betti numbers of manifolds with locally standard torus
actions may depend not only on the orbit space, but also on the values of characteristic
function.

Let Q be the product of a circle S1 with the closed interval I = [−1, 1] ⊂ R1.
Then Q is a nice manifold with corners having two proper faces: F1 = S1 × {−1} and
F2 = S1×{1}. The faces are not acyclic, so the arguments of the paper are not applicable.
Consider the 2-torus T 2 with a given coordinate splitting T 2 = T ({1}) × T ({2}).

First, define the characteristic function λ on Q by

λ(F1) = T ({1}), λ(F2) = T ({2}).

The corresponding manifold with locally standard action is

X = (S1 × I× T 2)/∼ = S1 × (I× T 2/∼) = S1 ×ZI ∼= S1 × S3.
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Here ZI is the moment-angle manifold of the interval I, see [4] or [6].
Next, consider the characteristic function λ′ on Q determined by

λ′(F1) = λ′(F2) = T ({1}).

The corresponding manifold is

X ′ = (S1 × I× T 2)/∼ = S1 × T ({2}) × (I× T ({1})/∼) ∼= S1 × S1 × S2.

We see that the same manifold with corners S1 × I may be the orbit space of two
manifolds with locally standard actions having different Betti numbers.
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