(©2016 The Mathematical Society of Japan
J. Math. Soc. Japan

Vol. 68, No. 4 (2016) pp. 1615-1653

doi: 10.2969/jmsj/06841615

Hitting times of Bessel processes, volume of the Wiener sausages
and zeros of Macdonald functions

By Yuji HAMANA and Hiroyuki MATSUMOTO

(Received Feb. 16, 2015)

Abstract. We derive formulae for some ratios of the Macdonald func-
tions by using their zeros, which are simpler and easier to treat than known
formulae. The result gives two applications in probability theory and one in
classical analysis. We show a formula for the Lévy measure of the distribution
of the first hitting time of a Bessel process and an explicit form for the expected
volume of the Wiener sausage for an even dimensional Brownian motion. In
addition, we show that the complex zeros of the Macdonald functions are the
roots of some algebraic equations with real coefficients.

1. Introduction.

The (modified) Bessel functions appear in various kinds of situations. In probability
theory, for example, I,,’s appear in the explicit form for the transition probability densities
of the Bessel processes. In this article we are concerned with the ratio of the modified
Bessel functions. It is known that such functions represent the Laplace transforms of the
first hitting times of the Bessel processes (cf. [2], [13]) and of the expected volume of the
Wiener sausage (cf. [5]). From an analytical point of view Ismail et al. [10], [11] have
studied when such functions are completely monotone.

We are mainly concerned with the ratios of the modified Bessel function of the second
kind K, so-called the Macdonald functions. Ismail [10] has shown that (K,11/K,)(y/2)
is completely monotone by expressing it as a Stieltjes transform of some function. From
his expression we can invert the Laplace transform, but the resulting formula seems
complicated. The purpose of this article is to rewrite the ratio in a simpler form by
means of the zeros of K, and to invert the Laplace transform. The result is applied to
two questions in probability theory and a study on the zeros of K, .

Recently, in connection with the first hitting times of Bessel processes, the authors
[8] have studied another type of the ratios of the Macdonald functions and decomposed
it into a sum of several functions which are easy to treat. A similar method via some
contour integrals is effective in this article.

The purpose of [8] is to show an explicit form of the distribution function for the first
hitting time Téfb) to b of the Bessel process with index v starting at a. The density for T(;Vb)
and its asymptotics have been discussed in [7]. The infinite divisibility of the distribution

was first investigated by Kent [13]. To be accurate, the conditional distribution of Tétjb)
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under the condition that it is finite is infinitely divisible (cf. [11]). General theory in
the infinite divisibility of the distributions of the first hitting times of one-dimensional
diffusion processes is given by Yamazato [22].

As referred in [8], the function K,41/K, appears when we give an expression for
the Lévy measure. We may apply our result on the ratio of the Macdonald functions to
obtain an explicit expression for the Lévy measure of the distribution of Ta(f'b).

Moreover, the function (Kd/z/Kd/Q_l)(rm) in A > 0 represents the Laplace trans-
form of the expectation of the Wiener sausage for the d-dimensional Brownian motion
associated with a close ball with radius r (cf. [5]). In the case when d is odd, Hamana [6]
divided the function into a sum of several functions of which the inverse Laplace trans-
forms can be easily obtained and he deduced an exact form of the mean volume of the
Wiener sausage by means of zeros of K4/5_;. By using our result we can show that, also
in the even dimensional case, the expectation is represented in a similar form. However,
if we consider the large time asymptotics, we see a difference between the odd and the
even dimensional cases. The logarithmic terms appear in the even dimensional cases,
while the asymptotic expansions are given only by the powers of ¢ in the odd cases.

We should remark that the Wiener sausage for a Brownian motion associated with a
general compact set is investigated in [16], [17], [20] and so on, and that the same problem
for a stable process is discussed in [1], [18]. These articles deal with the large time
asymptotics of their expectation and the first several terms are given. In the Brownian
cases it is shown that the asymptotic expansion in powers of 1/logt is admitted if d = 2
and that the logarithmic term appears if d = 4. In higher dimensional cases we do not
find the logarithmic terms in the literature.

In the results mentioned so far we have express several quantities by using the zeros
of K,. If we consider the asymptotic behavior of the ratio (K,4+1/K,)(w) as w — oo or
w — 0, we may conversely obtain information on the zeros of K,. In particular, we see
that the zeros are the roots of some algebraic equations with real coefficients and show
the way to obtain the coefficients.

This article is organized as follows. Section 2 is devoted to a decomposition of the
functions K,4+1/K,. Section 3 is devoted to a representation of the Lévy measure of
the first hitting time of the Bessel process. We calculate the expected volume of the
Wiener sausage for the even dimensional Brownian motion in Section 4 and discuss its
large time asymptotics in Section 5. In the final Section 6 we study the complex zeros
of the Macdonald functions.

2. Ratios of Macdonald functions.

For v € C the notation I, and K, are used to denote the modified Bessel functions
of the first kind and the second kind, respectively. We call v the order of the functions.
Especially, K, is also called the Macdonald function. In this article we treat only the
case when the all orders of modified Bessel functions are real.

Before giving the result, we recall several facts on the zeros of the Macdonald func-
tion. For v € R let N(v) be the number of zeros of K. It is known that N(v) is equal
to |v| —1/2 if v —1/2 is an integer and that N (v) is the even number closest to |v| —1/2
otherwise. Thus we have N(v) = 0 if |v] < 3/2. If |v| = 2n + 3/2 for some integer
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n, K, has a real (negative) zero. Otherwise, K, does not have real zeros. Each zero,
if exists, lies in the half plain C~ = {z € C; Re(z) < 0}. When N(v) > 1, we write
2u15 20,25 -+ 5 Zu,N(v) for the zeros. It is known that all zeros of K, are distinct. For
details, see [8, p.5240] and [21, pp. 511-513] for example.

Let D ={z € C\ {0}; |argz| <7} and D, = {z € D; K, (z) # 0} for v € R. The
purpose of this section is to show the following theorem.

THEOREM 2.1. Let w € D, and v* = max{v,0}. In addition, we put, for u >0,
Gu(z) = K, (2)? + 7°1,(2)* + 27 sin(mp) K, (2) [, (x), x> 0. (2.1)

(1) When v —1/2 is an integer, we have that, if |v| = 1/2,

Ky1(w) vt
—F =1+ — 2.2
K, (w) * w (22)

and that, if [v| > 3/2,
N(@)
Kyp1(w) 2vF 1

— < =1+ — _— 2.3
K, (w) LT ; Zyj— W (2:3)

(2) When v —1/2 is not an integer, we have that, if |v| < 3/2,

Kon(w) 2t o[ dr

and that, if |v] > 3/2,

N(v)
K, q1(w) vt /C><J dx
7214——4—5 ——— + cos(mv _ . 2.5
K, (w) w oA W (mv) o z(z+w)G,(z) (25)

For a proof of Theorem 2.1, it is sufficient to consider the case of v > 0 because of
the formula K, = K_, and the recurrence relation

()~ Kua(2) = 2K, (2) (2.6

(cf. [21, p.79]). In fact, we see for v < 0

Ku1(2) _ Kpyjya(z) | 2v
= +—, z€D,=Dy.
K, (2) K, (2) 2 vl

Formula (2.2) is easily obtained from
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T o, T _,z+1
Kio(2) = %€ K3/2(Z)=\/Z€ —

Moreover (2.3) has been already established in [6]. Therefore we concentrate on the case
when v — 1/2 is not an integer.

To prove (2.4) and (2.5), we need two lemmas. One is an uniform estimate of the
Macdonald function, which has been proved in [8].

LEMMA 2.2. Let 6 € (0,37/2) be given. For p > 0 we have

Kule) =\ 3o 1+ Bu(2) (27)

if |arg z| < 3m/2 — 0. Here |E,(z)| < A,/|z| for a constant A, which is independent of
z.

The other gives asymptotic behavior on the real line of the functions involving the
modified Bessel functions. It is easily shown by the formula

Iﬂ(x):\/%{1—4M2z_1+0(i>}:\/%{1—1—0(1)}, T — 00 (2.8)

for > 0 (cf. [21, p.203]) and we omit the detailed proofs.

LEMMA 2.3.  Let (,n,& > 0. It follows that, as x — oo,

e K, (z)K¢(x)

Gele) = 51+ — 0y = e {1+ o0(1)},
Ly(@)Ie(z) 1 L(x)Ke(x) e 2
W - ﬁ{l +0(1)}7 GC(.’E) = {1 _|_0(1)}.

We are now ready to show Theorem 2.1. We only consider the case when v —1/2 is
not an integer. Let o € (0,1) and w € D,,. For z € D, with z # w, we set

Wy 1 KVJrl(Z)
val?) 2%z —w) K,(z)

Letting € and R be positive numbers with € < 1 and € < R and setting

. € ™
Or, = Arcsin = € (0, 2),

we consider the same piecewise Cl-curve v = 79 +v1 — 73 — 72 as in [8], where

VO:Z:Reiea _7T+0R,ES0S7T_9R,87
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v z=x+1i, — Rcosbp.<z<0,
Y2 i z=x—1c, — Rcosfp. <z <0,
v3:z=ee?, —m/2<0<7m/2

We take R so large and € so small that w and all zeros of K, are inside . Then, setting
V(o) = o [ @i R = o [ g
€)= o A val2)dz, Wp(R,a,e) = o 5 a(2)dz

for k=0,1,2 and

1
Us(a,e) = —/ va(2)dz,
278 J
we have U(R, o, ¢) = Wy(R, a,e) + U1 (R, o, ) — Ua(R, v, ) — Us(av, €).

The singular points of f’, inside v are w and the zeros of K,, which are all poles
of order one. Hence the residue theorem yields

Res(w; f.%,) if N(v) =0,
(R, o, e) = N() 2.9)
( Res(w; f;"’a) + Z Res(z,,’j; f;fja) if N(v) > 1. (
j=1

Here Res(v; f) is the residue of a function f at a pole v. It is obvious that

L KVJrl (w)

Res(w;ff,‘ja) = W

When N(v) > 1, by the formula 2K (2) — vK,(2) = —2K,41(2) (cf. [21, p.29]), we
have

1 Ku+1(zuj) 1
R 3 v ; ;ﬂa = : = - N
S fia) = S 0 K)oy — )
Hence we obtain from (2.9)
Ku+l(w) .
fNv) =
D it N() =0,
lim lim lim (R, a,¢) = N(v) (2.10)
e—0a—0 R—oo KVJrl (’U}) 1 .
B — ifNwy)>1
K, (w) ]; vj — W

if we show that the limit on the left hand side exists.
We fix € > 0 and a > 0. By (2.7) we have for sufficiently large R
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R [ YR ) 1 R 1+ A 1/R
Uo(R, a,e)| < - v (Re'?)[d6 < — i
‘ 0( ,a,5)| = o /_71—_1_9}3,5 ‘fl/,l)é( € )l — RQR* |’U.)| 1*Ay/R 9

which immediately yields that ¥y (R, a, ) converges to 0 as R — co.
For the integral ¥, (R, a, €), we have

RcosOr,. _ 1
¥ (R, a,e) = L/ - 1 | Kyt ( x+'ze)dx
27t Jo (—x +ie)*(—x +ie —w) K,(—x+ie)

Note that K, (e'"z) = e "™ K, (z) —inl,(z) for z € D and u > 0 (cf. [21, p.80]). Then,
setting

K, 1(2) +ime™1,,1(2)

gl/71(2) - KV(Z) — ’i?TeiTrVL,(Z) )
we have
K, 1(e™2)
T2 g (2), 2.11
K, (c72) 9v1(2) (2.11)
1 v

U\ (R, o, ¢) = —/ _geal®) (2.12)

2mi Joo ez (z + w)

where 7Y is the line in D defined by 79 : 2 =2 —ie, 0 <z < Rcosfp.
We now define three paths as follows:

’yll:Z:sew, —7/2<6<0, 712:2':1: e<xz <R,

7{’ : z:Rew, —0r.<0<0.
Since w is inside 7, we have that |Im(w)| > € if Re(w) < 0. There is no zero of K, on
the real axis and the integrand of the right hand side of (2.12) is holomorphic inside and

on the contour consisting of 79, 1, v# and ~;. Then the Cauchy integral theorem yields
that ¥ (R, o, €) = ¥i(a,e) + P (R, o, e) — ¥3(R, , €), where

10 ce?g, 1 (ce'?)
o} = — . L do
1 (Oé; 5) ot /_71—/2 et(0+maca (5619 + w) )

I y
R = 5 [ el

2mi eirag(r 4+ w)
Wan - L [ R are
1 » Gy 7 —on.. ez’(Q-{-w)aRa(ReiG + w)

If —/2 <60 <0, we deduce from (2.7) and (2.11)
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|gu,1(Re

(CEZ)
19 'Kl,+1 RG )‘S 1+Au+l/R (213)

Rei0+m)) 1-A,/R

for sufficiently large R, which immediately implies that ¥$(R,a,e) — 0 as R — oo.
Moreover, from (2.13) for R =z and 6 = 0, it follows that

1 & v
hm Wl (R « E) 2 / 971((3:)+)de
™ e (xr +w

for which we write ¥Z(a,€).

For the integral Ws(R, v, ¢), we use K,(e™""z) = €™ K, (z) + irl,(z) for z € D
and g > 0 (cf. [21, p.80]) instead of the formula for K,(e"2). In the same fashion
as ¥1(R, a,¢), we can easily see that Wo(R,a, ) converges to —Wi(a,e) + ¥3(a,¢e) as
R — o0, where

)

1 (™2 ceifg, (e
1 B v,2
Uy (aye) = o / eilb—maga(geil w)d@

1 o 9v 2(1)
w3 =— | —=2=—_4
2(a€) 2 /6 e~ (g 4 w) “

K,i1(2) —ime ™1, (%)
K, (2) +ime=vI,(z)

9v,2 (Z) =

Therefore we conclude that

Rhm U(R,a,e) = Ui (o, e) + WE(a,e) + ¥y (a,€) — Wd (a,€) — 3(a, €). (2.14)

We next consider the limiting behavior of the integral on (2.14) as a,e — 0. We
first let &« — 0. Then it is easy to see

1 /0 0o i0
lim Wll(a,z-:) = 7/ g€ gvaice ) g (e )dﬂ,
a0 210 J_pjp €€ +w
1 /2 Eeieg 2(561'0)
: 1 _ L v,
Jim (8) = 27r/ get? +w a9,

1 (™2 ee®  K,,q(cet?)
lim ¥ = — - ——df
as 3(,¢) 2 /,,/2 ee? —w K, (eei?)

It is known that

(log i) (1+0(1)}  ifpu=0,

I'(p

Ku(z) = J(i)M{HO(U} B

(2.15)
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as |z| = 0in D (cf. [21, p.512]). Moreover, it is easy to see
1+ 0(1) if =0,

IM(Z): 1 2\ .
F(u+1)(2> {1+0(1)} ifp>0

(2.16)

as |z| — 0 in D by the series expression. With the help of (2.15) and (2.16), we obtain
that zg,.1(2)/(z + w) and zg, 2(2)/(z + w) tend to 0 if v = 0 and to 2v/w if v > 0 as
|z| — 0 in D. Hence we have

lim lim ¥} (o, ) = lim lim ¥ (a,¢) = . (2.17)

e—0a—0 e—0a—0 2w

Moreover, since zK,11(z)/(z — w)K,(z) tends to —2v/w as |z| — 0 in D, we obtain

. . 14
lim lim ¥5(a,e) = ——
e—0a—0 w

and

2
lim lim {¥} (o, €) + ¥2(a, ) — Ws(av, )} = E” (2.18)

e—0a—0
Next we set ®(a,¢) = ¥WZ(a,e) — ¥2(a,e). Then, putting
F,(z) = —2isin(ra){K,41(2)K, () — 721,41 (2) 1, (2)}
+ iweiiﬂa{eiﬂy—rv+l(x)KV(x) +e i vi1(x) L (z)}
+ime ™ e ™ I, 1 (2) K, () + ™ K, 1(x) 1, (2)}
and

o Fv(‘r) _ gu,l(x) o gu,Z(z)
GV(QT) eima e—ima ’

where G, (z) is given by (2.1), we have

_ 1 OOM z
Plae) = 27ri/6 x“(m—&—w)d '

The formula K, 11 (x)I,(x) + L41(x) K, (x) = 1/x (cf. [21, p.80]) yields that

e L™, 1 (2) K, (x) + e K,y (7)1, ()}

e ™ e, () Ky (z) + €™ K, 1 (x) 1, ()}
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TV

= e‘”“{ c + 2isin(nv) 41 (2) K, (x)} + elm@ { <

. -2 sin(wy)IVJrl(x)K,,(ac)}

_ w + 4sin(mv) sin(ra)l, 41 (2) K, (z).

Hence, letting

F,1(z) = 2isin(ra) K, 1(2)K, (), F,2(x) = 2ir*sin(ra)l,1(z)1,(x),

2' o
F,3(z) = %(OH_V), F, 4(z) = dim sin(mv) sin(ra) [, 11 (x) K, (z),

we have

7FV71(£L') + FU,Q(.x) + Fl,73(l') + Fy’4(l') )

hy(z) = Golo)

We set

1 [ 1  Fo
) = — : 1<k <A4.
klae) 27Ti/€ @t Gy o) o Lsks

By virtue of Lemma 2.3, the functions

1 Ky (2)Ky(x) 1 Ly (z)Ky(2)
T+ w G,(x) ’

are integrable on (g, 00). Hence we get

lirrb Dy (a,e) = lir% Py(a,e) =0. (2.19)

The integral @3(a, ) is written as

* dx
@ =
s(a,e) = cosm(a + v) /E T 1 w)G ()
and, with the help of Lemma 2.3, we can derive
e dx
lim & = _ . 2.20
cxl—>InO 3(@,5) COS<7TV)‘/E I(I’ +'LU)GV(Z') ( )
It follows from (2.15) and (2.16) that
1\2
<10g > {I1+0(1)} ifv=0,
G, (z) = * (2.21)

1 .
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as ¥ — 0, where x, = 1/4"~1{I'(v)}2. This implies the convergence of the right hand
side of (2.20) as ¢ — 0 and

- _ > dx
Clli% Clylg}) @3(0&, 5) = COS(TU/)A m (222)

It remains to consider ®@5(w, €),

1 I41(2),(x)
r4+w) Gy(x)

Py (e, e) = msin(ra) /:O o

We should remark that the function I,41(z)I,(z)/(z + w)G,(z) is not integrable on
(6,00). We write Pa(a,e) = —®L(a,e) — P2(a,e) + P3(a, €) + P3(a, €), where

1 _ sin(rar) [ 1 K,(x)?
Pyl €) = T /E z%(x +w) Gy(x) dz,

1 I (2)K,(x)
% (x + w) G, (z)

®3(a, ) = wsin(ma) /°° — 1 L@@ - La@),

dx,

Di(a,¢) = 2sin(7v) sin(ra) /00

T+ w) Gy (x) ’
) [~ e

We can easily deduce from Lemma 2.3

lim @3(a,e) = lim. D3(a,e) =0

a—0

in the same way as (2.19).
To compute @3(a, ¢), we note the following:

L)~ L)} _ 2w+l
G,(x) m2x

{1+o(1)}, = — o0,

which is obtained from (2.8) and Lemma 2.3. Since

| L@ @) @)
T+ w G,(x)

is integrable on (g, 00), we have that @3(«, ) tends to 0 as a — 0.
The calculation of @3(a, ) is easy. In fact we have

sin(ra) [ dz w sin(ma) /OO dz
2 = —
2(¢) ™ /E glte T ez + w)
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_sin(ra)  wsin(ra) /OO dx
- Tag® ™ ez 4+ w)

for any € > 0. Hence we conclude from (2.19) and (2.22)

lim lim @(a g)=1+ COS(ﬂ'V)/ ( dz
0

lim lim FCETIENER (2.23)

Combining (2.10), (2.14), (2.17), (2.18) and (2.23), we complete our proof of (2.4)
and (2.5) in the case of v > 0. O

3. The first hitting time of the Bessel process.

For v € R the one-dimensional diffusion process with infinitesimal generator

G ;L n

1 241 d 1 d( 4 d
T 2da? dz \” dx

2¢ dr 2zl dax dx
is called the Bessel process with index v. The classification of boundary points gives the
following information. The endpoint co is a natural boundary for any v € R. For v > 0,
0 is an entrance and not exit boundary. For —1 < v < 0, 0 is a regular boundary, which
is instantly reflecting. For v < —1, 0 is an exit but not entrance boundary. For more
details, see [12] and [19] for example.

For a,b € R let T(D) be the first hitting time to b of the Bessel process with index v

) v ) < oo is infinitely divisible.

The purpose of this section is to give the exact form of the Lévy measure mgg

0 < b < a by applying Theorem 2.1.

starting at a. The conditional distribution of 7, ;' under 7,

when

It is known that, when 0 < a < b, the distribution of T( b) is a mixture of exponential
distributions. Let us recall the results in [2]. See also [12] In this case, the Laplace
transforms of the conditional distributions are given by the following. For A > 0 we have

(bV2N)¥ 1
2"I'(v+1) ,(bv2))

(5) T

a\"I_,(aV2)\) .
a4y zaved) fo<a<b v<-—1.
<b) vy et

Combining these results with the formula

I,L(I)(Q)# T(u+1 H( JW>

ifa=0<b,v>-—1,

<oo]: if0<a<bv>-1,

for p > —1 and « > 0, where {j, ,}°2; is an increasing sequence of positive zeros of the
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Bessel function J,, of the first kind of order u, we obtain the following expressions for
the Lévy measures:

1(0 Oo) Ze_(]”/%z)” ifa=0<b,v>-1,
(v) e}
dme(2) | 10,.00)(@) Z( ~(2 /207 _ e—(ﬁ,n/%z)w) if0<a<bv>-1,
dx T —~
].(0 OO) Z( (72 Vn/2b2 —e (j2y’n/2a2)a:> if0<a< b, v<—1,

where 14 is the indicator function of a set A.
The following is the main result in this section.

THEOREM 3.1.  For 0 < b < a the support of the Lévy measure m((:lz is [0,00) and

it 1s absolutely continuous with respect to the Lebesque measure. We have the following

expressions for the density p((:g, x>0 of m(V)

(1) Ifa>0,
(=1/2) a
T) = .
paO ( ) \/W
(2) Ifa>0,v—1/2€Z and v < —3/2,
) a L NR [ i e
v ) = _ e~ T+2zy 5 ade.
W) = s~ sy 2 / ¢

(3) Ifa>0, =3/2<v<0andv#-1/2,

W, \  a cos(mv) /OO/OO 1 —€2/4z+€n/V2a
P (z) = + e d&dn.
’0( ) V2mrx3 2vrwxd Jo Jo 77G\1/|(77)

4) Ifa>0,v—1/2¢Z andv < —3/2,

N(v)
a

=& /Aa+20,56/V3ay
V. 27r:c3 2V Z / ¢

cos(mv) /°°/°° 1 €2 duten/ /3
n & e/ V2ageqy
/w3 Jo Jo nG(n)

(5) If0<b<aand v ==+1/2,

po(a) =
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(6) If0<b<a,v—1/2€Z and |v| > 3/2,

(GO
(v) _a—b 1 / —€2 /4% (2, 1€/ 2a 2y ;€/V/2b

T) = — E e e*vi — eV d€.
pa,b( ) /727(_3:3 9 /71_1.3 st ( ) g

(7)) If0<b<a,0<|v|<3/2 and v # £1/2,

W) a—b  cos(mv / / e84z (o=En/V2a _ —&n/V2b
Pop(T) = + — — dédn.
b( nG\ul( ) ( )

V2ra3

(8) If0<b<a,v—1/2¢7Z and |v| > 3/2,

N(v)
(v) _ a—1>b 1 E /41 z,,Jﬁ/\fa_ z,,JE/\fb
Peal®) = o QFZ/ er e

COS
5 / / b /an (gmen/VEa _ o~/ V) geap
nGM( ) (e )

The rest of this section 15 devoted to the proof of Theorem 3.1. By the formulae for
the Laplace transforms of 7' b , we have, for A > 0, if a > 0 and v < 0,

2u+1

—)\7'() (v) ool = a .
Pl e <ol = m vy eV .
if0<b<aandveR,
|v]
) T(V) ol (@ K, (av2))
Ele ) < oo] = (b> Ko vy (3.2)

We represent K, (z) in terms of G, and zeros of K.

ProPoOSITION 3.2.  For xz > 0 we have the following formulae.

(1) Ifp=1/2,

log{z/2K, o (2)} = %logg . (3.3)
(2) If u—1/2€ Z and p > 3/2,
log{2" K, (z)} = log{2" ' I'()} — 2 — Z log (3.4)

(3) If0 < 1< 3/2 and p # 1/2,
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log{z" K, (z)} = log{2* ' I"(u)} — = — cos(mp) /OOO yGi(y) log Y —;/_ z

(4) If u—1/2¢ Z and p > 3/2,
N(p) o
log{z" K =log{2"'I'(u)} —z — log —2—
og{z" K, ()} = log{ (w)} — = ;é; 05

< 1 y+x
— cos(m lo dy.
(’OA vy By Y

PROOF. Formula (3.3) is obtained from the explicit expression for K o(z).

In order to show the others, we note the following formula:

d v _ KV-‘rl(‘r) 21
I log{z" K, (x)} = R, ) +—

which can be derived by (2.6) and (" K, (2)) = —2"K,_1(z) (cf. [21, p.79]).
If v—1/2 € Z and v > 3/2, it follows from (2.3) and (3.7) that

N(v)
d 1
Iz log{z"K(x)} = -1 -

= Z%j — X

Then we obtain that, for any ¢ > 0,

N(v)

log{z" K, (z)} —log{c"K,(e)} = —(x —¢) + Z /w *

5 - Zu,j '
Hence, letting ¢ — 0, we get (3.4) with the help of
lirr%)x”K,,(x) =2""1r(v).

If0<v <3/2and v # 1/2, it follows from (2.4) and (3.7) that

d v = —1 — cos(mv h —dy
% IOg{x Ku(x)} - 1 ( )A y(y + x)GV(y)

Hence we have

log{z"K,(z)} — log{e"K,(¢)} = —(z — ) — cos(mv) /x d¢ /OOo

dy.

_dy
y(y +8)Gu(y)

(3.6)

(3.8)

Note that G, (x) is positive for & > 0 unless v is 2n + 3/2 for any integer n. Thus it

follows from (3.8) that
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log{z"K,(z)} —log{2" 'I'(v)} = —x — cos(nv) / df/ T § W EwSTENmE

By the Fubini theorem, the right hand side is equal to

x — cos( u)/oo dy /x a6
—x — cos(T ,

o YGu(Y) Jo y+§
which yields (3.5).

We can show (3.6) in the same way. O

In order to see Theorem 3.1, we only have to check

o)) = log B 1) < o] = [ (e = 1)
for each case. It follows from (3.1) and (3.2) that, if a > 0 and v < 0,
6ud(N) = log {(av2X) " K (av2X)} — log{2" 1= I ([v])},
and that, if 0 < b < a and v € R,
$)(N) = log { (V2N K, (avV2A)} — log{(bv2X) | K}, (0V2))}. (3.9)

The following lemma and Proposition 3.2 prove Theorem 3.1 for v # 0.

LEMMA 3.3. Letc>0,v >0 and z€ C™. For A\ >0 it follows that

Ny / 3.10
\/271'363 ( )
log dx/ e~ € AatzE/ Ve g 3.11
— = / 0 ¢ (3.11)
and
/ log n+cev2h 1 d77
0 n nG, (

=— —52/“—5’7/\@% dn. 3.12
e e g (3.12)

PROOF. We recall the following formula (cf. [3, p.361]): for —1 < p <0,

/OOO y? e ¥ — 1)dy = I'(p).
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Setting p = —1/2 and noting I'(—1/2) = —24/m, we obtain (3.10).
Recall the formulae

/ e e /4w =3/2, 2}/%65\5 (3.13)
0

for A >0, £ > 0 and

oo —ar _ ,—pPx
/ e = 10g
0 X o

for o, 8 € C with Re(c) > 0 and Re(8) > 0 (cf. [3, p.361]). Then we obtain

(Xll_ Az
// 36 75 [4x— a&d d§—2\/710gf+a
x3/2

This yields (3.11). Since G, (x) is positive for > 0, we may apply the Fubini theorem
and obtain (3.12) in a similar way to (3.11). O

REMARK 3.4. If v = 0, it follows from (2.21) that the left hand side of (3.12)
diverges.

We finally consider the case of v = 0. Since K{(z) = —K;(x), we have

A roe ko) = @) T dn
dmngO() ! /o n(n+x)Go(n)

by Theorem 2.1. Note that 1/2Gy(z) is integrable on (0, 00). Hence, by (3.9), we get

am oo
O3 — (0 — b1V ge [T dn
¢a,b( ) (Cl )\/T /I;\/ﬁ g/@ 7’(77+1’)G0(77)

77+a\ﬁ
(o= bvar- / 77G0 77+b\ﬁ

For ¢ > 0 and € > 0, we write

/oologn+6\/ 2\ 1 dn: _/Oo 1 o dTl /OO 6_52/4m_£77/\/§cd§.
c n nGo(n) o 2Vmx nGo(n) Jo

This formula immediately implies

/°° 1 log 77+a\ﬁ
c nGo(n) +bxﬁ

= — L, [T _dn / X ax( e/ 0/ VB
= e *(e —e “)dE. 3.14
/0 ovaed  Je mGo(n) ( ) (3.14)
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It is easy to see from (3.12) and (3.13) that the right hand side of (3.14) converges as
¢ — 0 and thus we obtain Theorem 3.1 in the case of v = 0.

4. The expected volume of the Wiener sausage.

Let r > 0 be given. The Wiener sausage {W(¢)};>o for the Brownian motion with
radius 7 is defined by

W(t)={z e R?; x + B(s) € U for some s € [0,¢]}

for t > 0, where {B(t)};>0 is a Brownian motion on R% and U is the closed ball with
center 0 and radius r. For £ > 0 let

L(t) = /MU Py[r < tdz,

where 7 = inf{t > 0; B(t) € U} and P, is the law of the Brownian motion starting from
x € R, It is easy to see that the expectation of the volume of W (t) coincides with the
sum of L(t) and the volume of U.

In the case when d is odd, the explicit form of L(t) has already given. One and three
dimensional cases are easy. Indeed, we have that L(t) is equal to 24/2t/7 if d = 1 and
27rt + 4r?\/27t if d = 3. These formulae can be obtained directly from the well-known
formula for P,[r < t]. For details, see [5], [12], [16]. In the higher dimensional cases,
the authors [8] recently obtained an explicit form of P,[r < t]. However it is not of a
convenient form for the integration on zx.

We here consider the Laplace transform of L given by

SdflT'dfl Kd/2 (7‘\/ 2)\)
V23 Ky 1(rv2))

/oo e ML(t)dt = >0, (4.1)
0

where Sq_1 is the surface area of d — 1 dimensional unit sphere (cf. [5]). When d is odd,
since Kg/2(7)/Kg/2—1(x) may be expressed by the ratio of polynomials for z > 0, and
the right hand side of (4.1) may be represented by the linear combination of rational
functions of the following four types: A~1/2, \=1, A=3/2, (\f)\ — z)~ 1. Hence the Laplace
transform on (4.1) can be inverted. When d is odd and more than or equal to five,
Theorem 1.1 in [6] shows that, for ¢ > 0

L(t) = Sy_yrt2 (d—2)t N 72 V2rd Q4 /°° I SRR
-5, -
2 d—4 Nt —y (Z;d))2 0

J

Here we have used zj(»d) and Ng instead of zq/5_1 ; and N(d/2 — 1), respectively.
Our goal in this section is to give similar results in even dimensional cases by applying
the results in Theorem 2.1. For ¢t > 0 and = € R let
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[ 2 2
t _ L -z /2t.
q( ,l‘) 7Tte

THEOREM 4.1.  For z > 0 we set G (z) = Gajo—1(z).
(1) If d = 2, we have

C oy —1+e Y
=277 {\/ A . G q(t, rm)dazdy].

(2) If d =4, we have

[eelye e} 1 _ e—my
L(#) = 27272 [t + r3/ / ——q(t,rx dxdy}
) 0 Jo YPGH(y) ( )

(3) If d > 6 and d is even, we have

_ d—2[(d=2)t TS U T A ROR
L(t) = Sq—1r [ 5 +d—4 T Z (d))2 | e q(t,rx)dx

=1 (%

o0 OO —xy
1 d/2*1r3/ / _c q(t,rx dxdy}
) 0Jo ng(d)(y) ( )

We set T'(t) = L(2r?t) for t > 0 and then deduce from (4.1) that, for A > 0

Ooe_,\t ~ Sgart Ka2(VA)
/0 Tttt = VA3 Kd/2—1(\/X)-

For a proof of Theorem 4.1 we consider the function:

1 Kl/"rl(\/X)

Let T, be the inverse Laplace transform of X,. Then we have the following, which
immediately yields Theorem 4.1.

A>0.

THEOREM 4.2.  Setting v = max{v,0}, we have the following.
(1) If v <1/2,

Py —14e Y

T,(t) =2v"t + 2\/;4- cos(mv) /000/0 Wq(2t7x)dxdy. (4.2)

(@ F1/2<p <1,
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T, (1) = 20+t — cos(rv) /0 OO/OOO mq(%, 2)dzdy. (4.3)
(3) If 1 < |v] < 3/2,
T,(t) =2vtt + __t + cos(mv) /00/00 iq(%,x)dxdy. (4.4)
2(Jv[ - 1) 0Jo ¥PGuy)
(4) If|lv| > 3/2 and v — 1/2 is not an integer,
N(v) 1 o0
T,(t) =2vtt + T 2 ZBJ/O 2% q(2t, x)dx

+ cos(mv q(2t, x)dxdy. 4.5
// Yy G\V| ) (4.5)

From now on, we shall treat K, 11/K, as the function on the half real line (0, c0).

For our purpose we need three lemmas.

LEMMA 4.3. Ifn+1/2 <up<mn+3/2 for an integer n > 1, we have

K, () = 1Y (i) {1 tat %f ( - 1/2> (ﬁ’é;)k) (20)* + 0(m2”+1)}
as x| 0. Especially, we have

I(p) [ 2\" 124 —3 12— 5
K“(x):g)(x> {1+ +§2 2x2+62u_2x3+0(3c3) .

Moreover we have that, if 1 < p < 3/2,

W(i)“ firer 202 co6n) yi<u<an

K.(@) 2 \z 22— 2
p\T) =
Ilw) (2 Me‘ﬂl-ﬁ-m—i—o(m)} if1/2<p<l
2 x

ProOOF. It is well-known that

N =7 /oo ot 2 n—1/2
B =ity Jo € Ty y

(cf. [15, p.140], [21, p. 206]). The Taylor formula yields that
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) —1/2
/e_yy2“_1(1+2x>u dy
0 Y
<[l (UE)
0 Yy
,u—1/2 2 2n+1 25 p—2n—3/2
(00 (045 pas

for some & € [0,1]. Since 2u —2n —2 > —1 and p — 2n — 3/2 < 0, we have

00 9 p—2n—3/2 00 9 n—2n—3/2
/ efyyZ,quan (1 + l‘) dy S / efyy2,u72n72 (1 4 g‘r) dy
0 Y 0 Y

oo
< / e Yy 2y = (2 — 2n — 1).
0

Hence the dominated convergence theorem yields that

oo

lim e YyPH—2n=2 (1 +
z]0 Jo

9 n—2n—3/2
x) dy = I(2p — 2n — 1).
y

Therefore we obtain

Vi e
@2y T(p+1/2)

Koulw) = )+ (2= DI D

2n
+y (“ _k1/2> I(2p — k)(22)
k=2

+ (’;ni/f)nw —2n — 1)(22)>" T {1 + o(1)}

as z | 0. With the help of the formula

1
22“F(z)r(z + 2> = /7l(22) (4.6)
(cf. [15, p.3]), we easily obtain the first assertion. The remainders can be seen similarly
and the calculation is left to the reader. O
The following lemma is a straightforward consequence of Lemma 4.3.

LEMMA 4.4. We have that, as x | 0,
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2wt 1
1 if — <1

o~ to() if 5 <<l
K,1(x) 2vT T ) 3
Do\ t) _ ) v 1 2
K, (2) e ooy oW Hl<hi<g

v x 5 3 1

AN - ‘ S u_-¢z.

=R I I N

For an integer k > 1 we set

N(@)

1 /OO dy
v,k = T Ov,k = — .
Cuk Z ok k o YIGL(y)

=1 “vj

By virtue of Theorem 2.1 and Lemma 4.4, we can derive the connection between (,
and o, k.

LEMMA 4.5. (1) If1/2 < |v| <1, we have

14 9,1 cos(mv) = 0. (4.7)
(2) If 1 < |v] < 3/2, we have
1+ op1cos(mv) =0, —pp2cos(mv) = # (4.8)
’ ’ 2y = 1)
(3) If|v| >3/2 and v — 1/2 is not an integer, we have
L (4.9)

1+ (1 +ov1cos(mv) =0, (o2 — ovacos(my) = 2y = 1)

PrROOF. Recall that, for v # 0

T2
{1+ o(1
5 {I+0(1)} as r — 00,

W{l +o(1)} asz|0.

If 1/2 < |v| < 1, we obtain by (4.10) that 1/y*G),|(y) is asymptotically equal to

n|y|y2"’|*2 as y | 0. This implies the convergence of g, ;. The dominated convergence
theorem shows that, as x | 0,

o dy B .
/0 (y+2)yGp(y) o+ oll).

Hence we deduce from (2.4) that
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K, i1(x) 2uT
_— = 1 _— S v 1).
K, (@) + . + cos(mv) 0,1 + o(1)

With the help of Lemma 4.4, we conclude (4.7).
In the case of 1 < |v| < 3/2, 1/y*G),(y) is integrable by (4.10) and we have

/OOO (erI)dlijuKy) B /ooo{; B y(yi z) }dej(y)

= 04,1 — 0y 2 + 0(x) (4.11)

by the dominated convergence theorem. Then we get by (2.4) that

K, 2v"
Kﬂi?2+1+mlmamox&2mamo+d>

and hence, combining with Lemma 4.4, we get (4.8).
If |v] > 3/2 and v — 1/2 is not an integer, we deduce

P 1 ® 1 T
- Z{ +}:CV,1+ICD,Q+0(9C).
j=1 v — & j=1 Avj ZV,j(ZV’j - CL‘)

Since 1/y*G,|(y) is integrable on (0, 00) by (4.10), (4.11) is valid for this case. Therefore
it follows from (2.5) that

K]lg(lg(gg;) E + 141+ 0v1cos(mv) + {2 — 0v2cos(mv)} + o(x).

We immediately obtain (4.9) by Lemma 4.4. O

REMARK 4.6. In the case when |v| > 3/2 and v — 1/2 ¢ Z, we can derive that
Cuv,3 + ov3cos(mr) = 0. It is not necessary for the proof of Theorem 4.2.

By virtue of Theorem 2.1, we have that, if |v| < 3/2 and v — 1/2 ¢ Z,

E L COS in% dy
PN =T AT /wvwm%u

and that, if |[v| > 3/2 and v — 1/2 ¢ Z,
20+ W) 1

1
= TR T e,V

[ s
o VNMVX+y)yG ()

+ cos(mv) (4.12)
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LEMMA 4.7. Fort >0 let

Ly — 14 e
qu(t :// —————q(2t, x)dxdy.
() 0 J0o y3G|V|(ZJ) ( )

Then, we have, for A >0

%] e—At _ o) d’y
/o q,(t)dt /0 NE G ) . (4.13)

PrOOF. We first recall the elementary formula

1

e At —V Az

q(2t,z)dt = e , A>0. (4.14)
/o VA

Then, with the help of the Fubini theorem, we deduce

o o o 1 xy — 1 +e—acy
A\t —az LY
e g, (t)dt :/ dy/ —e dz.
/o (¥ 0 o VA y3G 1 (y)

Carrying out the elementary integral in x, we obtain (4.13). (|

We now complete our proof of Theorem 4.2. If |v| < 3/2 and v — 1/2 ¢ Z,

T,(t) =2v"t + 2\/Z + cos(mv)q, (t). (4.15)

When |v| < 1/2, (4.15) immediately implies (4.2).
When [v| > 1/2 and v — 1/2 ¢ Z, we have by (4.10) that 1/y°G),(y) is integrable
n (0,00). Since

1—e ™ xq(2t, )
ST gt a)| < 2T
y3G|u\(y)q< )’ y2G ) (v)

we have

*1—e
—21/ —0v1 // q(2t, z)dzdy. (4.16)
Gl (v)

Combining this formula with (4.7) and (4.15), we conclude (4.3).
When |v| > 1 and v — 1/2 ¢ Z, we can further improve (4.16). Indeed, since
1/y*G),(y) is integrable on (0, 00), we get that

[o olyge o} e—zy
——q(2t,x)dx
/0/0 y3G(y) (21, 2)
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converges and we get

<>—2\f o=+ [ [ yGM a2t )dady. (4.17)

Hence, we get (4.4) by (4.15), (4.17) and Lemma 4.4.
To invert X, in the case of |v| > 3/2, we note

N
A
g - = o1+ VA + Z D P Tk

Hence (4.12) is equivalent to
N(v)

vt 14+¢a Cu2 1
2,0\ = =t -
e ;R WD Dl v, v, sy

dy
VIV +9)yG(y)

+ cos(mv)

With the help of (4.14), we easily see that, for z € C~

o0 oo 1
—At zx
e dt/ e q(2t,x)dr = —————.
/0 0 VAWV = 2)
Hence, we deduce (4.5) from (4.17) and Lemma 4.4. O

5. Large time asymptotics for the Wiener sausage.

This section is devoted to show an asymptotic behavior of L(t) for large ¢ in even
dimensional cases. Le Gall [16] considered the Wiener sausage associated with a general
compact set and proved

log t log t
Dt 4 P logt + el + 280 4y <Og> if d =4,
L(t) = L L

AVt 4+ P 4 Va2 o) ifd>5

(5.1)

and gave the explicit expression of each constant c( ) It d = 2, Le Gall [17] also showed
that L(t) admits the asymptotic expansion in pOWGI‘b of 1/logt.

When d is odd, Hamana [6] gave the asymptotic expansion of L(t). The purpose in
this section is to improve the asymptotic behavior of L(¢) if d is even and not less than 6.
Throughout this section, we use C;’s for positive constants independent of the variable.

THEOREM 5.1. If d is even and not less than 6, there is a family of constants
{agld)}d:% such that
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(d—2)t n r? 3 agrd—? 1
2 d—4  242-2(q_4)[(d/2 — 1) td/2-2

L1 di@Jr L((d—3)/2) " logt [ 1
td/2=1 cqn/2 0\ fm(d — 2)I(d/2 — 1)3 ¢43 ti=3 )|’

L(t) = Sy_1r?72 {

where

-~ /°° 1 o yd=2 p
Y= Jo v\ G@(y) 22— 12 [

Recalling the notation G(9 = G451, we set
Na L)
1 (@)
- - z;
t)y=r E @ / e Tq(t,rr)de,
j=1 (Zj ) 0

o0 OO -y
Lo(t) = / 4t rx)dzdy.
2( ) r /; 0 ng(d)(y)q( Tx) ray

Then we have from Theorem 4.1 that, if d is even and not less than 6,

(d—2)t n r?

5 yari Li(t) + (=12 1Ly(1) . (5.2)

The calculation of Ly (t) is easy since Re(zj(-d)) < 0 foreach j=1,2,...,Ny. Forx >0
and an integer n > 0 we put

k=0
and let M be a positive integer. Then it follows that

[e'e] M n,.2n fe%e] [e%¢] 2,..2
Y (=1)"r on 2Pz rex D
/ ‘ S Sl A S S

0 n=0

RS (—1)"r2"(2n)!1+0< 1 )

i 2mnl (2(9)2n1 2" (M1

We use m instead of d/2 — 1 for simplicity and hence obtain

n 2n+3 2”)‘<m,2n+3 1 1
\/72 npl tn+1/2 + O<tJV1+3/2) (53)

as t — oo.
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For a proof of Theorem 5.1 we need to give an asymptotic behavior of L (t) for large
t. We set LY(t) = Lo(2r%t)/r? and then have

LY(t) = /000/000 %q(%,x)dmdy. (5.4)

We note that G, (z) = K, (2)? 4+ 721, ().

LEMMA 5.2.  For an integer n > 1 we have

® Roi(2?) (~1)w
/O e = e (5.5)

ProOOF. From a change of variables from z to y given by y = 22 we deduce that
the left hand side of (5.5) is equal to

n—1
1/~ 1 _ (-1)F 1 /1
5/0 W{Z Vg =glg T

k=0

(cf. [3, p.361]). The formula I'(2)I'(1 — z) = n/sin(rz), z € C\ Z (cf. [15, p. 3]) yields
(5.5). O

We give several constants which we need to describe the asymptotic behavior of
1/Gp(z) as x | 0. For integers h, k with 1 <h <k <m — 1 we put

b,h = > bk, by -+ - i,

ki+kot--+kp=Fk
k1 kg, kp>1

where
, _ (DM " I(m—h)(m—k+h)
F T4 r(m)?2 &= T(h+ DIk —h+1)
We set
k
(=nm+t
=N bpp (k=1,2,....m—1), ap=———"_.
a ; ok ( 02,,m—1), AT (m)?

We note that a; = b;. Moreover recall that k,, = 1/4™1I'(m)2. See (2.21) for the
definition of x,. The second lemma gives the asymptotic behavior of 1/G,,(z).

LEMMA 5.3. We have that, as x | 0,

m—1

1 2 2k 2 1 2
= mal E mx“" log — + O(z"™) ». 5.6
C(@) Em® { + 2 apx™ + amx”" log - + O(z"™) (5.6)
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PrOOF. It is known that

()R (m =k — 1) <x>2’“‘m

2

T o 1 x 2k+m
-1 m+11 el I B
(=1 OngZOk!(k+m)!(2>

(_1)m+l oo 1 x 2k+m
B 2 kz:;)k! (k+m)!(2> {Wk+1)+k+m+1)},

where ¢ is the logarithmic derivative of the gamma function (cf. [21, p.80]). This
formula immediately yields that the leading term of K, (z) for small z is

m m—1 2k m
r 2 —D*r(m —k —1m™ 1
(m) () 3 (=1)"I'(m — k) <x> ) <x> log &
2 T P I'(k+1)I'(m) \ 2 I'm+1)\2 T
and its error term is of order ™. Hence we have that, as x | 0

K (2)? = W(i)m{i—f m<z)2k}2

k=0

()™ 1 (—D)RCm— k) (22
- Ses X i (3) O

Since I,,,(x)? = O(x?™), we conclude that, as = | 0,

m—1
1 1
Gm(x) = {1 - E b — a,,z®™ log — + O(x2m)}.
x

2m
Rm I
m k=1

We set GO () = km2®™ Gy, (1) for simplicity. It is sufficient to obtain the asymptotic

behavior of 1/G2 (x). We can easily derive

m—1 ,m—1 h
1 1
1 b 2k m 2m1 - 2m ) .
N + hil <k§1 "+ ama™ log x) + O(z"™) (5.7)

In the case of m = 2, (5.7) immediately implies (5.6). We concentrate on considering the
case of m > 3. In this case, the summation on the right hand side of (5.7) is

m—1 ,m—1 h
1
1+ Z <Z bkx2k> + amz®™ log - + O(2*™). (5.8)
h=1 Nk=1
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A simple calculation shows that the double sum in the right hand side of (5.8) is equal
to

Sk bk’hx% + O(me).
h=1 k=h
Hence we deduce
1 m—1
G ) =1+ kzl apz®® + apa®™ log + O(z*™),
which implies (5.6) for m > 3. O

We now proceed to a proof of Theorem 5.1. From (5.4) it follows that

2 // 1 —oViuy  —u?
0 2Vtu u
t) = — e Ye™ " dudy,
) ﬁ 0J0 ySGm(y)

which is the sum of

[\')

m—

2 & 1 on  —2/Tuy
x/?nzzo //0 Pam) e
2 o0 OO
LAt ﬁ/ 72\/{“7"Rm_2(u2)dudy.
0 Jo

We easily derive

1 &2 (=1)"2n) omanss 1
T 4nn)! gnt+1/2°

For x > 0 and an integer k =0,1,2,...,m — 1 let

k
1 2m 2n
T)= ——— — KmT anx ",
Qk( ) Gm(l‘) m nZ:% n
where we have put ag = 1 for convenience. We need the following lemma to derive the

large time asymptotics of L3(t).

LEMMA 5.4.  We have that L3(t) is the sum of the following three integrals;

_quy m—1
f/ / g™ Z ary** Ry yr—2(u?)dudy, (5.9)
k=0
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_ \fu m—1 m
f// 2/fuy ( (T)n:‘; in/;( )u2(m+k*1)dudy7 (5.10)
:O
00 00 —2\/5’11«1/
%/0/0 6y73Qm,1(y)Rszz(u2)dudy. (5.11)

PROOF. By the definition of Q¢ and Ry, we have

9 72\fuy o
L ( // — = EkmyY Ry, — 2( )dudy
2 0 00 e—Qﬂuy (_1)77;—1@0(?}) )
+—= w? ™Y dud
ﬁ/o /o y3 (m —1)! Y
72\fuy )
/ / ——5—Qo(y) Rm—1(u”)dudy. (5.12)

Moreover, it follows that, for y > 0, u > 0 and k > 1, Qr_1(y) Rmir_2(u?) is

(_1)m+k—1

Qu() R 1 (4%) + Fomary® ™ R (6) + o

Qk(y)u2(m+k_1).

Taking the sum on k over [1,m — 1], we deduce that the third term of the right hand
side of (5.12) is equal to

AL R

2 o0 OO e—2\/iuy m—1
+ ﬁ/ / y3 ﬁmy%n Z ak‘kaRm+k72(u2)dUdy
0 Jo

k=1
—o/tuy m—1 m
/ / e Vi $ EDTOM) i g
y.
:1 (m+k—1)!
Hence we conclude that L3(t) is the sum of (5.9), (5.10) and (5.11). O

For (5.9) we first carry out the integral in y and use (5.5). Then we see that (5.9) is
equal to

2k Z ap(2m + 2k — 3)! [ Ryin_o(u?)

92m+2k—2pmtk—1 2 (m+k—1) du

0

B ()l D (2m 4 2k —2) 1
=Vt Z 22m+2k—2(m 4+ k — 1/2) tmtk-1"

(5.13)
=0
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The formula (4.6) yields that the right hand side of (5.13) and so (5.9) are equal to

K e (=)= (m 4 k — 1)ay,
7 Z tm+k—1 :
k=0

Carrying out the integral on w in (5.10), we see that (5.10) is equal to

fmrk—1/2 2m+2kt2 Y-

3=

mzfl (_1>m+k—1[‘(m + k- 1/2) /oo ” Qk(y) d (514)

k=0

Here we have applied

re--1 1 I'(2) 222—2p<2 1). (5.15)

I'(z)  2:-11(z) = T2

We should note that the integral in the right hand side of (5.14) converges for each integer
k=0,1,2,...,m — 1. Tt is easy to see that (4.10) yields that, as  — oo,

Qr(x) = K™ 2k o o(g2m+2R), (5.16)
Moreover we deduce from (5.6) that, as = | 0,

KOy 22MT2RF2 L O(22m2k+4) if 0 <k <m — 2,

Qr(r) = (5.17)

1
Emamzi™ log — + O(x4™) ifk=m-—1.
x

Hence Qy(y)/y*™+2#+2 is integrable on (0,00) for each k =0,1,2,...,m — 1.
For t > 0 we let

2 o Qm—l(y) /Oo —2V/t 2
Pt)= — [ =m=1¥) Y Ry
1 (t) ﬁ/l 7 dy ; e Ropm—2(u®)du,

2 lQm(y) > —2v/tu 2
Pt = —= [ oy [ Ry, o),

2kmam [ . 1 * oViu
P3(t) = = /0y4 31og§dy/0 e VIR, o (u?)du,

where we put Q,,(z) = Qm_1(7) — Kma,r?™log(1/x). Then (5.11) is the sum of P;(t),
Pg(t) and Pg(t).

By virtue of (5.16), we obtain that |Q,,_1(y)| < C3y*™~2 for y > 1. Combining this
estimate with |Rg,,_2(u?)| < Cqu*™2, we deduce

o] < 05/1 v 5dy/0 EY b Ty = t2m—1/2/1 E.
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This means that Py (t) is of order 1/t>™~1/2 and is negligible.

We next show Py(t) = O(1/t*™~1). It follows from (5.17) that |Q,,(y)| < Cry*™ for
y < 1. Noting Raoy,—2(x) < 0 for £ > 0, we obtain by the Fubini theorem that

|P2(t)] < C’S/ _R277L—2(U2)du/ e*?\/fuyyélm—,?,dy'
0 0
The formula (5.5) implies that

Cy > —Rom—2(u?) Com 1
Py(t)] < du = ‘
| 2( )| — t2m—l / u4'm«_2 u 2F(2m - 1/2) t2m—1

The calculation of Ps(t) is slightly complicated but not difficult. A change of vari-
ables from y to v given by 2v/ty = v yields

2/t oo
o KEmQm 4m—3 2\/5 —uv 2
P3(t) = = =T /0 v log Y dv ; e " Rom—2(u)du.

For t > 1/4 we set

Py (t) :log(2\/f)/0 v4m73dv/0 e Rop_o(u?)du,

o0

Pi(t) :log(2\/%)/ U4m73d1}/ ™" Ry 2 (u?)du,
2 0

Vit

2Vt )
P3(t) :/1 pim=3 1ogvdv/o e ™" Ry o (u?)du,

1 1
1
Pél(t):/0 v4m_3logfdv/0 €™ Ry 2 (u?)du,

v
1 e8]
1
P35(t):/0 v4m_310g;dv/1 ™" Ry (u?)du.

Then we have

KmOm

Ps(t) = 24m =3 /r{2m—1

{P5(t) = P3(t) — P{(t) + P5(t) + P5 (1)}

We show that Pj () is the leading part of Ps(t) and the others are all negligible. Recall
that Rop,—2(u?) < 0. It follows from (4.6) for z = 2m — 1 and (5.5) that

logt > Rop—o(u?
Pi(t) = <()§+10g2>1“(4m—2) wdu

0 u4m72

= —2'm=5 /x(2m — 1)logt 4+ O(1).
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The estimate of P§(t) is easy. Indeed, we have

o0 o0

4m—3 > —uv, dm—2 dv
v dv e "u du < Cqylogt
0 2

P2(t)] < cwlogt/ v
\/g v

2Vt

which is of order logt/v/t. The way of estimates of the remaining integrals is similar to
that of PZ(t). We deduce

&S] 0 ]
Og’l}dv

POl <Cn [ v Sloguan [
1

e—uvu4m—2du S 013/
0

1 v?

and that, by 0 < e=*yim=2 <1 for u,v € [0,1],

1 1 1

1 , 1

|Ps(t)| < 014/ vim=31og ~ dv/ e Wyutm=2qy < 014/ vi™m =3 1og = du.
0 v 0 0 v

These immediately imply that P§(¢) and Ps(t) are bounded. Note that R, (x) is asymp-

totically equal to (—1)"*1z"/n! as © — oo for an integer n > 0. This yields that

|Rom—2(u?)| < Cysu®™~* for u > 1 and then we deduce

o0

1
1
RO < Cos [ oS log o [

1
1
e Wyt dy < Oy / log — dv = Chs.
0 v 1 v

0

Therefore, by virtue of Lemma 5.4, we accordingly obtain

m—1 m+k—1
, . (=)0 (m 4+ k — 1) ay,
LQ(t) 7 Z tm+k—1
k=0
= (_1>m+k—1p(m +Ek-1/2) [ Qk(y)
tr T o PR
Kmam'(2m — 1) logt 1
_ i amm1 T O\ @t )

which implies that we finished to give the asymptotic behavior of L3(t).
Recall the definition of k,, and a,,. We deduce from (5.15) that

Km@mI'(2m —1) (=)™ 1
N 1 - 4mﬁmf(m)3r<m N 2)'

Since La(t) = r2L3(t)(t/2r?), we obtain, by (5.3) for M = d — 4, that

— Ly (t) + (=) Ly(t)

B 2 d—4 (_1)n(2n>!r2n+3<m’2n+3 1
—Vr Z onpl tn+1/2
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d
o /2 3 d/2+n(2n);7a2n+ Omonts 1

27 tnt1/2

/2~ 2 nF d/2—|—n— )a 9d/2+n—3,.d+2n— 25((1)
— Kdj2-1 Z

td/2+n—2

I'((d—3)/2)r*** logt 1
V(d—2)I(d/2 —1)3 td=3 + O(td—3>

where

@) _ Qily) ,

yd+2k
(5.1) and (5.2) imply that (m.q—1 = 0 and
Cmants + (1) 0m 2n13 =0
forn=0,1,2,...,d/2 — 3. Therefore we can conclude that

rd_2§(()d) 1 n 1 48 asld)
24/2=2(d — 4)['(d/2 — 1) td/2-2

td/2—1 — tn/2
I'((d—3)/2)r?=* logt 40 1
V(d—2)I(d/2 — 1)3 td=3 td=3 )’

Our proof of Theorem 5.1 is completed. O

~Laft) + ()2 La(t) = -

6. Zeros of Macdonald functions.

We can find several properties concerning the zeros of J,, Y, and I, (cf. [15], [21]).
However there is less information on the zeros of K, . Some numerical evaluations have
only been given. See [14] for example.

Our purpose in this section is to represent all zeros of K, as the root of a polynomial
of order N(v). Since K, = K_, and N(v) > 1if |v| > 3/2, it is sufficient to consider the
case of v > 3/2. Moreover, if v =n + 1/2 for an integer n > 1, the formula

yields that all zeros of K, are the solutions of the equation

2”: n=B sy,
=0
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Here we have used the notation

 T(w+k+1/2)
k) = e — k172

From now on, we discuss the cases when v > 3/2 and v — 1/2 ¢ Z. By virtue of
(2.5), we have that, for x >0

N(v) 00
Kyi1(x) 2v / dy
S o1+ 2y teos(my) [ —— (6.1)
K, (z) v A, o Yy+z)Gu(y)
We can derive the power sum of 2,1, 2,2, ..., 2, n@u) by (6.1). The Newton formula (cf.
[4, p.276]) gives the polynomial whose roots are z,,1, 2,2, -, 2, N(1)-
LEMMA 6.1. Let
N
Pa=2 %
j=1
for positive integers n, N and z1,z9,...,2nv € C. We define a sequence {&,}N_, of

complex numbers by & =1 and

1 n
n = - ];fn—kpk

form=1,2,....N. Then we have that, for z € C

N N
H(Z - Zj) = Zgl\f—nzn- (62)
j=1 n=0

Proor. Let s, be the elementary symmetric polynomial of degree n, that is,

Sn = § : Zj1%42 " B

1<j1 <2< <jn <N

The Newton formula yields that py = —s; and

n—1
Pn = Z(_l)n_k+1sn—kpk + (_1)n+1n3n
k=1

for n =2,3,..., N. Therefore we easily deduce (6.2) from the formula
N N

(z=2) =D ()N Fsy_ 2"

7j=1 n=0
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This completes the proof of the lemma. O

We first consider the asymptotic expansion of (6.1) for large z. Recall that, for yu > 0

and a given integer M > 0
M+1
/ o s n) 1
22)" +0 <xM+2 >

as x — oo (cf. [15, p.123], [21, p.202]) and we have

K@) NN an o5t ) (63)

1
K, (z) = an xM+2

}M—H

where {a,}, |, is the sequence of real numbers defined by

(v+1,n) En:(um—k)

omn = 2n—k ak

k=0

forn=0,1,2,..., M + 1. A simple calculation shows

1 n 1 1/, 1 1 1
= = — = —\|\V — — = - - -
) y a1 5 275 1) =735 1)
1 1 25
s () () el )( v)
The remaining constants ag, ar, ... have complicated forms. It is easy to give the asymp-

totic expansion of the right hand side of (6.1) and then we have that, for M > N(v)

K, 1(z
Kjéi))_l"__zxnﬂz v,

M —1)" co ,n—1 1
+cos(7ry)7;)(xn+)1 /0 éy(y)dy+0<xMJr2>' (6.4)

Here we should note that the integral of 4™~ /G, (y) over (0, 00) converges for each inte-
ger m > 0, which can be shown by Lemma 2.3 and (2.21). Comparing the corresponding
coefficients in (6.3) and (6.4), we obtain

dy
yGV(y) 7

Nv)=v- % + cos(mv) /000 (6.5)

N(v) n—1

Z 2z, ;= —ant1 + (=1)" cos(mv) /Ooo 0 dy (6.6)

J=1
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forn=1,2,..., M. We define a sequence {ai’l}g:(l(’)) of complex numbers by af =1 and

1 n Ooykfl }
ol ==Y o’ 2aps — (=1)"cos 7r1// d
29 e = 0 costen) [T 4

for n =1,2,..., N(v). Therefore, by (6.6) and Lemma 6.1, we have the following theo-
rem.

THEOREM 6.2.  For |v| > 3/2 the zeros of K, are the solutions of

N(w)
Y ARy—n?" =0
n=0

We obtain another polynomial whose roots are 2,1, 2,2, - - -, 2y, () Dy considering
the asymptotic behavior of (6.1) for small x, which is an improvement of Lemma 4.4.
Let N > 1 be an integer with N +1/2 < v < N + 3/2. It follows from Lemma 4.3 that,
asx | 0,

2N+1

KV+ (Z‘) _ 21 n 2N
e == 7;) bpa™ + o(z*"), (6.7)

K, (x)

where {b, }2V I is a sequence of real numbers defined by

(1/ + 1/2> 2"I'(2v —n+2) _ Z": (V - 1/2) 2"k P(2u —n + k)bk

n I'(2v+2) i\ n—k I'(2v)

forn=0,1,2,...,2N + 1. A simple calculation shows

1 1
—_— b: = b = —
(v —1)’ 3 =0, by

bp=1, b1 =0, by=

1

bs =0, b= R2v(v—1)3 v —-2)(v—3)’

The remaining coefficients have complicated forms. We easily get

N N(v)
Kypi(z) 2w : 1
o N e =
Ko~ TR
2N o
+ cos(mv) Z(—l)"m”/ HL + o(2?N). (6.8)
n=0 0 yn GV(?J)

We have to remark that we can not derive the higher term in (6.8) while M in (6.4) is
arbitrary. This deference is caused from the integrability of 1/y™ G, (y). Comparing the
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corresponding coefficients in (6.7) and (6.8), we obtain

N(@) 0o
1 dy
=-1- cos(wu)/ , (6.9)
= Zy.j o YGu(y)
N(v)
1 > dy
— = 2wb, + (—1)" Cos(m/)/ _— (6.10)
j:1 Zl/,j 0 yn+1GV(y)

forn=2,3,...,2N. We define a sequence {ﬂ;j}fj:('a) of complex numbers by g§ = 1,

dy

By =1 +cos(7r1/)/0 TR

v o__ _l . v _1\k > dy

1, ] © dy
+ nﬁn_l{l + cos(m/)/o 7y2Gy(y) }

forn=2,3,...,N(v). By (6.9), (6.10) and Lemma 6.1, we have the following theorem.

THEOREM 6.3.  For |v| > 3/2 the zeros of K, are the solutions of

N(v)

Z Brz" =0.

n=0
REMARK 6.4. It is known that, if v — 1/2 is not an odd integer,

1 6,
Nw)=v—-+2%
W) =v 2 + m
(cf. [21, p.512]). Here 6, is the unique number determined by |0,| < 7, cosf, = sin7v,
sin @, = cosmv. Hence we deduce from (6.5) that, if v > 3/2 and v — 1/2 ¢ Z,

[e%e) dy B 01,
/o yG,(y)  mcos(mv)’ (6.11)

Similarly, when 0 < v < 3/2 and v # 1/2, we can easily derive (6.11) by virtue of (2.4)
and (6.3). In particular, we obtain that, for an integer n > 0,

-
o WK.(y)?+nm2L,(y)?2} 2

REMARK 6.5. When 3/2 < v < 7/2, N(v) = 2 and the zeros of K, satisfy some
quadratic equations. In particular, when v = 2, the zeros 2z ; and z3 2 satisfy
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15 [ dy 11 /°° dy
_ - _t — = -1 - -
22,1 + 22,2 S /0 G2 (y) y Zo1 Zo2 0 y2G2 (y)
15 /°° ydy 1 1 1 /°° dy
2 2 _
2, = — : =t [
PRy Galy) 3. 25, 2 Jo yPGa(y)

By using Mathematica we obtain from each system of equations that the zeros are close
to —1.28137 £+ 0.4294851 4, and check the comment “The two zeros of K3(z) are not very
far from the points —1.29 4+ 0.444.” in [21, p.512]. A table of the zeros is given in [9],
where the continuity of each zero as a function of the index is shown and its graph is

also given.
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