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Hitting times of Bessel processes, volume of the Wiener sausages

and zeros of Macdonald functions

By Yuji Hamana and Hiroyuki Matsumoto
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Abstract. We derive formulae for some ratios of the Macdonald func-
tions by using their zeros, which are simpler and easier to treat than known
formulae. The result gives two applications in probability theory and one in
classical analysis. We show a formula for the Lévy measure of the distribution
of the first hitting time of a Bessel process and an explicit form for the expected
volume of the Wiener sausage for an even dimensional Brownian motion. In
addition, we show that the complex zeros of the Macdonald functions are the
roots of some algebraic equations with real coefficients.

1. Introduction.

The (modified) Bessel functions appear in various kinds of situations. In probability
theory, for example, Iν ’s appear in the explicit form for the transition probability densities
of the Bessel processes. In this article we are concerned with the ratio of the modified
Bessel functions. It is known that such functions represent the Laplace transforms of the
first hitting times of the Bessel processes (cf. [2], [13]) and of the expected volume of the
Wiener sausage (cf. [5]). From an analytical point of view Ismail et al. [10], [11] have
studied when such functions are completely monotone.

We are mainly concerned with the ratios of the modified Bessel function of the second
kind Kν , so-called the Macdonald functions. Ismail [10] has shown that (Kν+1/Kν)(

√
z)

is completely monotone by expressing it as a Stieltjes transform of some function. From
his expression we can invert the Laplace transform, but the resulting formula seems
complicated. The purpose of this article is to rewrite the ratio in a simpler form by
means of the zeros of Kν and to invert the Laplace transform. The result is applied to
two questions in probability theory and a study on the zeros of Kν .

Recently, in connection with the first hitting times of Bessel processes, the authors
[8] have studied another type of the ratios of the Macdonald functions and decomposed
it into a sum of several functions which are easy to treat. A similar method via some
contour integrals is effective in this article.

The purpose of [8] is to show an explicit form of the distribution function for the first
hitting time τ

(ν)
a,b to b of the Bessel process with index ν starting at a. The density for τ

(ν)
a,b

and its asymptotics have been discussed in [7]. The infinite divisibility of the distribution
was first investigated by Kent [13]. To be accurate, the conditional distribution of τ

(ν)
a,b
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under the condition that it is finite is infinitely divisible (cf. [11]). General theory in
the infinite divisibility of the distributions of the first hitting times of one-dimensional
diffusion processes is given by Yamazato [22].

As referred in [8], the function Kν+1/Kν appears when we give an expression for
the Lévy measure. We may apply our result on the ratio of the Macdonald functions to
obtain an explicit expression for the Lévy measure of the distribution of τ

(ν)
a,b .

Moreover, the function (Kd/2/Kd/2−1)(r
√

2λ) in λ > 0 represents the Laplace trans-
form of the expectation of the Wiener sausage for the d-dimensional Brownian motion
associated with a close ball with radius r (cf. [5]). In the case when d is odd, Hamana [6]
divided the function into a sum of several functions of which the inverse Laplace trans-
forms can be easily obtained and he deduced an exact form of the mean volume of the
Wiener sausage by means of zeros of Kd/2−1. By using our result we can show that, also
in the even dimensional case, the expectation is represented in a similar form. However,
if we consider the large time asymptotics, we see a difference between the odd and the
even dimensional cases. The logarithmic terms appear in the even dimensional cases,
while the asymptotic expansions are given only by the powers of t in the odd cases.

We should remark that the Wiener sausage for a Brownian motion associated with a
general compact set is investigated in [16], [17], [20] and so on, and that the same problem
for a stable process is discussed in [1], [18]. These articles deal with the large time
asymptotics of their expectation and the first several terms are given. In the Brownian
cases it is shown that the asymptotic expansion in powers of 1/ log t is admitted if d = 2
and that the logarithmic term appears if d = 4. In higher dimensional cases we do not
find the logarithmic terms in the literature.

In the results mentioned so far we have express several quantities by using the zeros
of Kν . If we consider the asymptotic behavior of the ratio (Kν+1/Kν)(w) as w →∞ or
w → 0, we may conversely obtain information on the zeros of Kν . In particular, we see
that the zeros are the roots of some algebraic equations with real coefficients and show
the way to obtain the coefficients.

This article is organized as follows. Section 2 is devoted to a decomposition of the
functions Kν+1/Kν . Section 3 is devoted to a representation of the Lévy measure of
the first hitting time of the Bessel process. We calculate the expected volume of the
Wiener sausage for the even dimensional Brownian motion in Section 4 and discuss its
large time asymptotics in Section 5. In the final Section 6 we study the complex zeros
of the Macdonald functions.

2. Ratios of Macdonald functions.

For ν ∈ C the notation Iν and Kν are used to denote the modified Bessel functions
of the first kind and the second kind, respectively. We call ν the order of the functions.
Especially, Kν is also called the Macdonald function. In this article we treat only the
case when the all orders of modified Bessel functions are real.

Before giving the result, we recall several facts on the zeros of the Macdonald func-
tion. For ν ∈ R let N(ν) be the number of zeros of Kν . It is known that N(ν) is equal
to |ν| − 1/2 if ν− 1/2 is an integer and that N(ν) is the even number closest to |ν| − 1/2
otherwise. Thus we have N(ν) = 0 if |ν| < 3/2. If |ν| = 2n + 3/2 for some integer
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n, Kν has a real (negative) zero. Otherwise, Kν does not have real zeros. Each zero,
if exists, lies in the half plain C− = {z ∈ C ; Re(z) < 0}. When N(ν) ≥ 1, we write
zν,1, zν,2, . . . , zν,N(ν) for the zeros. It is known that all zeros of Kν are distinct. For
details, see [8, p. 5240] and [21, pp. 511–513] for example.

Let D = {z ∈ C \ {0} ; | arg z| < π} and Dν = {z ∈ D ; Kν(z) 6= 0} for ν ∈ R. The
purpose of this section is to show the following theorem.

Theorem 2.1. Let w ∈ Dν and ν+ = max{ν, 0}. In addition, we put, for µ ≥ 0,

Gµ(x) = Kµ(x)2 + π2Iµ(x)2 + 2π sin(πµ)Kµ(x)Iµ(x), x > 0. (2.1)

(1) When ν − 1/2 is an integer, we have that, if |ν| = 1/2,

Kν+1(w)
Kν(w)

= 1 +
2ν+

w
(2.2)

and that, if |ν| ≥ 3/2,

Kν+1(w)
Kν(w)

= 1 +
2ν+

w
+

N(ν)∑

j=1

1
zν,j − w

. (2.3)

(2) When ν − 1/2 is not an integer, we have that, if |ν| < 3/2,

Kν+1(w)
Kν(w)

= 1 +
2ν+

w
+ cos(πν)

∫ ∞

0

dx

x(x + w)G|ν|(x)
(2.4)

and that, if |ν| > 3/2,

Kν+1(w)
Kν(w)

= 1 +
2ν+

w
+

N(ν)∑

j=1

1
zν,j − w

+ cos(πν)
∫ ∞

0

dx

x(x + w)G|ν|(x)
. (2.5)

For a proof of Theorem 2.1, it is sufficient to consider the case of ν ≥ 0 because of
the formula Kµ = K−µ and the recurrence relation

Kµ+1(z)−Kµ−1(z) =
2µ

z
Kµ(z) (2.6)

(cf. [21, p. 79]). In fact, we see for ν < 0

Kν+1(z)
Kν(z)

=
K|ν|+1(z)
K|ν|(z)

+
2ν

z
, z ∈ Dν = D|ν|.

Formula (2.2) is easily obtained from



1618 Y. Hamana and H. Matsumoto

K1/2(z) =
√

π

2z
e−z, K3/2(z) =

√
π

2z
e−z z + 1

z
.

Moreover (2.3) has been already established in [6]. Therefore we concentrate on the case
when ν − 1/2 is not an integer.

To prove (2.4) and (2.5), we need two lemmas. One is an uniform estimate of the
Macdonald function, which has been proved in [8].

Lemma 2.2. Let δ ∈ (0, 3π/2) be given. For µ ≥ 0 we have

Kµ(z) =
√

π

2z
e−z{1 + Eµ(z)} (2.7)

if | arg z| ≤ 3π/2− δ. Here |Eµ(z)| ≤ Aµ/|z| for a constant Aµ which is independent of
z.

The other gives asymptotic behavior on the real line of the functions involving the
modified Bessel functions. It is easily shown by the formula

Iµ(x) =
ex

√
2πx

{
1− 4µ2 − 1

8x
+ o

(
1
x

)}
=

ex

√
2πx

{1 + o(1)}, x →∞ (2.8)

for µ ≥ 0 (cf. [21, p. 203]) and we omit the detailed proofs.

Lemma 2.3. Let ζ, η, ξ ≥ 0. It follows that, as x →∞,

Gζ(x) =
πe2x

2x
{1 + o(1)}, Kη(x)Kξ(x)

Gζ(x)
= e−4x{1 + o(1)},

Iη(x)Iξ(x)
Gζ(x)

=
1
π2
{1 + o(1)}, Iη(x)Kξ(x)

Gζ(x)
=

e−2x

π
{1 + o(1)}.

We are now ready to show Theorem 2.1. We only consider the case when ν − 1/2 is
not an integer. Let α ∈ (0, 1) and w ∈ Dν . For z ∈ Dν with z 6= w, we set

fw
ν,α(z) =

1
zα(z − w)

Kν+1(z)
Kν(z)

.

Letting ε and R be positive numbers with ε < 1 and ε < R and setting

θR,ε = Arcsin
ε

R
∈

(
0,

π

2

)
,

we consider the same piecewise C1-curve γ = γ0 + γ1 − γ3 − γ2 as in [8], where

γ0 : z = Reiθ, − π + θR,ε ≤ θ ≤ π − θR,ε,
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γ1 : z = x + iε, −R cos θR,ε ≤ x ≤ 0,

γ2 : z = x− iε, −R cos θR,ε ≤ x ≤ 0,

γ3 : z = εeiθ, − π/2 ≤ θ ≤ π/2.

We take R so large and ε so small that w and all zeros of Kν are inside γ. Then, setting

Ψ(R, α, ε) =
1

2πi

∫

γ

fw
ν,α(z)dz, Ψk(R, α, ε) =

1
2πi

∫

γk

fw
ν,α(z)dz

for k = 0, 1, 2 and

Ψ3(α, ε) =
1

2πi

∫

γ3

fw
ν,α(z)dz,

we have Ψ(R, α, ε) = Ψ0(R, α, ε) + Ψ1(R, α, ε)− Ψ2(R, α, ε)− Ψ3(α, ε).
The singular points of fw

ν,α inside γ are w and the zeros of Kν , which are all poles
of order one. Hence the residue theorem yields

Ψ(R, α, ε) =





Res(w; fw
ν,α) if N(ν) = 0,

Res(w; fw
ν,α) +

N(ν)∑

j=1

Res(zν,j ; fw
ν,α) if N(ν) ≥ 1.

(2.9)

Here Res(v; f) is the residue of a function f at a pole v. It is obvious that

Res(w; fw
ν,α) =

1
wα

Kν+1(w)
Kν(w)

.

When N(ν) ≥ 1, by the formula zK ′
ν(z) − νKν(z) = −zKν+1(z) (cf. [21, p. 29]), we

have

Res(zν,j ; fw
ν,α) =

1
zα
ν,j(zν,j − w)

Kν+1(zν,j)
K ′

ν(zν,j)
= − 1

zα
ν,j(zν,j − w)

.

Hence we obtain from (2.9)

lim
ε→0

lim
α→0

lim
R→∞

Ψ(R, α, ε) =





Kν+1(w)
Kν(w)

if N(ν) = 0,

Kν+1(w)
Kν(w)

−
N(ν)∑

j=1

1
zν,j − w

if N(ν) ≥ 1
(2.10)

if we show that the limit on the left hand side exists.
We fix ε > 0 and α > 0. By (2.7) we have for sufficiently large R
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|Ψ0(R, α, ε)| ≤ R

2π

∫ π−θR,ε

−π+θR,ε

|fw
ν,α(Reiθ)|dθ ≤ 1

Rα

R

R− |w|
1 + Aν+1/R

1−Aν/R
,

which immediately yields that Ψ0(R, α, ε) converges to 0 as R →∞.
For the integral Ψ1(R, α, ε), we have

Ψ1(R, α, ε) =
1

2πi

∫ R cos θR,ε

0

1
(−x + iε)α(−x + iε− w)

Kν+1(−x + iε)
Kν(−x + iε)

dx.

Note that Kµ(eiπz) = e−iπµKµ(z)− iπIµ(z) for z ∈ D and µ ≥ 0 (cf. [21, p. 80]). Then,
setting

gν,1(z) =
Kν+1(z) + iπeiπνIν+1(z)

Kν(z)− iπeiπνIν(z)
,

we have

Kν+1(eiπz)
Kν(eiπz)

= −gν,1(z), (2.11)

Ψ1(R, α, ε) =
1

2πi

∫

γ0
1

gν,1(z)
eiπαzα(z + w)

dz, (2.12)

where γ0
1 is the line in D defined by γ0

1 : z = x− iε, 0 ≤ x ≤ R cos θR,ε.
We now define three paths as follows:

γ1
1 : z = εeiθ, − π/2 ≤ θ ≤ 0, γ2

1 : z = x, ε ≤ x ≤ R,

γ3
1 : z = Reiθ, − θR,ε ≤ θ ≤ 0.

Since w is inside γ, we have that | Im(w)| > ε if Re(w) < 0. There is no zero of Kν on
the real axis and the integrand of the right hand side of (2.12) is holomorphic inside and
on the contour consisting of γ0

1 , γ1
1 , γ2

1 and γ3
1 . Then the Cauchy integral theorem yields

that Ψ1(R, α, ε) = Ψ1
1 (α, ε) + Ψ2

1 (R, α, ε)− Ψ3
1 (R, α, ε), where

Ψ1
1 (α, ε) =

1
2π

∫ 0

−π/2

εeiθgν,1(εeiθ)
ei(θ+π)αεα(εeiθ + w)

dθ,

Ψ2
1 (R, α, ε) =

1
2πi

∫ R

ε

gν,1(x)
eiπαxα(x + w)

dx,

Ψ3
1 (R, α, ε) =

1
2π

∫ 0

−θR,ε

Reiθgν,1(Reiθ)
ei(θ+π)αRα(Reiθ + w)

dθ.

If −π/2 ≤ θ ≤ 0, we deduce from (2.7) and (2.11)
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|gν,1(Reiθ)| =
∣∣∣∣
Kν+1(Rei(θ+π))
Kν(Rei(θ+π))

∣∣∣∣ ≤
1 + Aν+1/R

1−Aν/R
(2.13)

for sufficiently large R, which immediately implies that Ψ3
1 (R, α, ε) → 0 as R → ∞.

Moreover, from (2.13) for R = x and θ = 0, it follows that

lim
R→∞

Ψ2
1 (R, α, ε) =

1
2πi

∫ ∞

ε

gν,1(x)
eiπαxα(x + w)

dx,

for which we write Ψ2
1 (α, ε).

For the integral Ψ2(R, α, ε), we use Kµ(e−iπz) = eiπµKµ(z) + iπIµ(z) for z ∈ D

and µ ≥ 0 (cf. [21, p. 80]) instead of the formula for Kµ(eiπz). In the same fashion
as Ψ1(R, α, ε), we can easily see that Ψ2(R, α, ε) converges to −Ψ1

2 (α, ε) + Ψ2
2 (α, ε) as

R →∞, where

Ψ1
2 (α, ε) =

1
2π

∫ π/2

0

εeiθgν,2(εeiθ)
ei(θ−π)αεα(εeiθ + w)

dθ,

Ψ2
2 (α, ε) =

1
2πi

∫ ∞

ε

gν,2(x)
e−iπαxα(x + w)

dx,

gν,2(z) =
Kν+1(z)− iπe−iπνIν+1(z)

Kν(z) + iπe−iπνIν(z)
.

Therefore we conclude that

lim
R→∞

Ψ(R, α, ε) = Ψ1
1 (α, ε) + Ψ2

1 (α, ε) + Ψ1
2 (α, ε)− Ψ2

2 (α, ε)− Ψ3(α, ε). (2.14)

We next consider the limiting behavior of the integral on (2.14) as α, ε → 0. We
first let α → 0. Then it is easy to see

lim
α→0

Ψ1
1 (α, ε) =

1
2π

∫ 0

−π/2

εeiθgν,1(εeiθ)
εeiθ + w

dθ,

lim
α→0

Ψ1
2 (α, ε) =

1
2π

∫ π/2

0

εeiθgν,2(εeiθ)
εeiθ + w

dθ,

lim
α→0

Ψ3(α, ε) =
1
2π

∫ π/2

−π/2

εeiθ

εeiθ − w

Kν+1(εeiθ)
Kν(εeiθ)

dθ.

It is known that

Kµ(z) =





(
log

2
z

)
{1 + o(1)} if µ = 0,

Γ (µ)
2

(
2
z

)µ

{1 + o(1)} if µ > 0

(2.15)
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as |z| → 0 in D (cf. [21, p. 512]). Moreover, it is easy to see

Iµ(z) =





1 + o(1) if µ = 0,

1
Γ (µ + 1)

(
z

2

)µ

{1 + o(1)} if µ > 0
(2.16)

as |z| → 0 in D by the series expression. With the help of (2.15) and (2.16), we obtain
that zgν,1(z)/(z + w) and zgν,2(z)/(z + w) tend to 0 if ν = 0 and to 2ν/w if ν > 0 as
|z| → 0 in D. Hence we have

lim
ε→0

lim
α→0

Ψ1
1 (α, ε) = lim

ε→0
lim
α→0

Ψ1
2 (α, ε) =

ν

2w
. (2.17)

Moreover, since zKν+1(z)/(z − w)Kν(z) tends to −2ν/w as |z| → 0 in D, we obtain

lim
ε→0

lim
α→0

Ψ3(α, ε) = − ν

w

and

lim
ε→0

lim
α→0

{Ψ1
1 (α, ε) + Ψ2

1 (α, ε)− Ψ3(α, ε)} =
2ν

w
. (2.18)

Next we set Φ(α, ε) = Ψ2
1 (α, ε)− Ψ2

2 (α, ε). Then, putting

Fν(x) = −2i sin(πα){Kν+1(x)Kν(x)− π2Iν+1(x)Iν(x)}
+ iπe−iπα{eiπνIν+1(x)Kν(x) + e−iπνKν+1(x)Iν(x)}
+ iπeiπα{e−iπνIν+1(x)Kν(x) + eiπνKν+1(x)Iν(x)}

and

hν(x) =
Fν(x)
Gν(x)

=
gν,1(x)
eiπα

− gν,2(x)
e−iπα

,

where Gν(x) is given by (2.1), we have

Φ(α, ε) =
1

2πi

∫ ∞

ε

hν(x)
xα(x + w)

dx.

The formula Kν+1(x)Iν(x) + Iν+1(x)Kν(x) = 1/x (cf. [21, p. 80]) yields that

e−iπα{eiπνIν+1(x)Kν(x) + e−iπνKν+1(x)Iν(x)}
+ eiπα{e−iπνIν+1(x)Kν(x) + eiπνKν+1(x)Iν(x)}
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= e−iπα

{
e−iπν

x
+ 2i sin(πν)Iν+1(x)Kν(x)

}
+ eiπα

{
eiπν

x
− 2i sin(πν)Iν+1(x)Kν(x)

}

=
2 cos π(α + ν)

x
+ 4 sin(πν) sin(πα)Iν+1(x)Kν(x).

Hence, letting

Fν,1(x) = 2i sin(πα)Kν+1(x)Kν(x), Fν,2(x) = 2iπ2 sin(πα)Iν+1(x)Iν(x),

Fν,3(x) =
2iπ cos π(α + ν)

x
, Fν,4(x) = 4iπ sin(πν) sin(πα)Iν+1(x)Kν(x),

we have

hν(x) =
−Fν,1(x) + Fν,2(x) + Fν,3(x) + Fν,4(x)

Gν(x)
.

We set

Φk(α, ε) =
1

2πi

∫ ∞

ε

1
xα(x + w)

Fν,k(x)
Gν(x)

dx, 1 ≤ k ≤ 4.

By virtue of Lemma 2.3, the functions

1
x + w

Kν+1(x)Kν(x)
Gν(x)

,
1

x + w

Iν+1(x)Kν(x)
Gν(x)

are integrable on (ε,∞). Hence we get

lim
α→0

Φ1(α, ε) = lim
α→0

Φ4(α, ε) = 0. (2.19)

The integral Φ3(α, ε) is written as

Φ3(α, ε) = cos π(α + ν)
∫ ∞

ε

dx

x1+α(x + w)Gν(x)

and, with the help of Lemma 2.3, we can derive

lim
α→0

Φ3(α, ε) = cos(πν)
∫ ∞

ε

dx

x(x + w)Gν(x)
. (2.20)

It follows from (2.15) and (2.16) that

Gν(x) =





(
log

1
x

)2

{1 + o(1)} if ν = 0,

1
κνx2ν

{1 + o(1)} if ν > 0

(2.21)
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as x → 0, where κν = 1/4ν−1{Γ (ν)}2. This implies the convergence of the right hand
side of (2.20) as ε → 0 and

lim
ε→0

lim
α→0

Φ3(α, ε) = cos(πν)
∫ ∞

0

dx

x(x + w)Gν(x)
. (2.22)

It remains to consider Φ2(α, ε),

Φ2(α, ε) = π sin(πα)
∫ ∞

ε

1
xα(x + w)

Iν+1(x)Iν(x)
Gν(x)

dx.

We should remark that the function Iν+1(x)Iν(x)/(x + w)Gν(x) is not integrable on
(ε,∞). We write Φ2(α, ε) = −Φ1

2(α, ε)− Φ2
2(α, ε) + Φ3

2(α, ε) + Φ4
2(α, ε), where

Φ1
2(α, ε) =

sin(πα)
π

∫ ∞

ε

1
xα(x + w)

Kν(x)2

Gν(x)
dx,

Φ2
2(α, ε) = 2 sin(πν) sin(πα)

∫ ∞

ε

1
xα(x + w)

Iν+1(x)Kν(x)
Gν(x)

dx,

Φ3
2(α, ε) = π sin(πα)

∫ ∞

ε

1
xα(x + w)

Iν(x){Iν(x)− Iν+1(x)}
Gν(x)

dx,

Φ4
2(α, ε) =

sin(πα)
π

∫ ∞

ε

dx

xα(x + w)
.

We can easily deduce from Lemma 2.3

lim
α→0

Φ1
2(α, ε) = lim

α→0
Φ2

2(α, ε) = 0

in the same way as (2.19).
To compute Φ3

2(α, ε), we note the following:

Iν(x){Iν(x)− Iν+1(x)}
Gν(x)

=
2ν + 1
π2x

{1 + o(1)}, x →∞,

which is obtained from (2.8) and Lemma 2.3. Since

1
x + w

Iν(x){Iν(x)− Iν+1(x)}
Gν(x)

is integrable on (ε,∞), we have that Φ3
2(α, ε) tends to 0 as α → 0.

The calculation of Φ4
2(α, ε) is easy. In fact we have

Φ4
2(α, ε) =

sin(πα)
π

∫ ∞

ε

dx

x1+α
− w sin(πα)

π

∫ ∞

ε

dx

x1+α(x + w)



Zeros of Macdonald functions 1625

=
sin(πα)
παεα

− w sin(πα)
π

∫ ∞

ε

dx

x1+α(x + w)
→ 1, α → 0

for any ε > 0. Hence we conclude from (2.19) and (2.22)

lim
ε→0

lim
α→0

Φ(α, ε) = 1 + cos(πν)
∫ ∞

0

dx

x(x + w)Gν(x)
. (2.23)

Combining (2.10), (2.14), (2.17), (2.18) and (2.23), we complete our proof of (2.4)
and (2.5) in the case of ν ≥ 0. ¤

3. The first hitting time of the Bessel process.

For ν ∈ R the one-dimensional diffusion process with infinitesimal generator

G(ν) =
1
2

d2

dx2
+

2ν + 1
2x

d

dx
=

1
2x2ν+1

d

dx

(
x2ν+1 d

dx

)

is called the Bessel process with index ν. The classification of boundary points gives the
following information. The endpoint ∞ is a natural boundary for any ν ∈ R. For ν ≥ 0,
0 is an entrance and not exit boundary. For −1 < ν < 0, 0 is a regular boundary, which
is instantly reflecting. For ν ≤ −1, 0 is an exit but not entrance boundary. For more
details, see [12] and [19] for example.

For a, b ∈ R let τ
(ν)
a,b be the first hitting time to b of the Bessel process with index ν

starting at a. The conditional distribution of τ
(ν)
a,b under τ

(ν)
a,b < ∞ is infinitely divisible.

The purpose of this section is to give the exact form of the Lévy measure m
(ν)
a,b when

0 ≤ b < a by applying Theorem 2.1.
It is known that, when 0 ≤ a < b, the distribution of τ

(ν)
a,b is a mixture of exponential

distributions. Let us recall the results in [2]. See also [12]. In this case, the Laplace
transforms of the conditional distributions are given by the following. For λ > 0 we have

E
[
e−λτ

(ν)
a,b

∣∣ τ
(ν)
a,b < ∞]

=





(b
√

2λ)ν

2νΓ (ν + 1)
1

Iν(b
√

2λ)
if a = 0 < b, ν > −1,

(
b

a

)ν
Iν(a

√
2λ)

Iν(b
√

2λ)
if 0 < a ≤ b, ν > −1,

(
a

b

)ν
I−ν(a

√
2λ)

I−ν(b
√

2λ)
if 0 < a ≤ b, ν ≤ −1.

Combining these results with the formula

Iµ(x) =
(

x

2

)µ 1
Γ (µ + 1)

∞∏
n=1

(
1 +

x2

j2
µ,n

)

for µ > −1 and x > 0, where {jµ,n}∞n=1 is an increasing sequence of positive zeros of the
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Bessel function Jµ of the first kind of order µ, we obtain the following expressions for
the Lévy measures:

dm
(ν)
a,b(x)
dx

=





1(0,∞)(x)
x

∞∑
n=1

e−(j2
ν,n/2b2)x if a = 0 < b, ν > −1,

1(0,∞)(x)
x

∞∑
n=1

(
e−(j2

ν,n/2b2)x − e−(j2
ν,n/2a2)x

)
if 0 < a ≤ b, ν > −1,

1(0,∞)(x)
x

∞∑
n=1

(
e−(j2

−ν,n/2b2)x − e−(j2
−ν,n/2a2)x

)
if 0 < a ≤ b, ν ≤ −1,

where 1A is the indicator function of a set A.
The following is the main result in this section.

Theorem 3.1. For 0 ≤ b < a the support of the Lévy measure m
(ν)
a,b is [0,∞) and

it is absolutely continuous with respect to the Lebesgue measure. We have the following
expressions for the density p

(ν)
a,b , x > 0 of m

(ν)
a,b .

(1) If a > 0,

p
(−1/2)
a,0 (x) =

a√
2πx3

.

(2) If a > 0, ν − 1/2 ∈ Z and ν ≤ −3/2,

p
(ν)
a,0(x) =

a√
2πx3

− 1
2
√

πx3

N(ν)∑

j=1

∫ ∞

0

e−ξ2/4x+zν,jξ/
√

2adξ.

(3) If a > 0, −3/2 < ν < 0 and ν 6= −1/2,

p
(ν)
a,0(x) =

a√
2πx3

+
cos(πν)
2
√

πx3

∫ ∞

0

∫ ∞

0

1
ηG|ν|(η)

e−ξ2/4x+ξη/
√

2adξdη.

(4) If a > 0, ν − 1/2 /∈ Z and ν < −3/2,

p
(ν)
a,0(x) =

a√
2πx3

− 1
2
√

πx3

N(ν)∑

j=1

∫ ∞

0

e−ξ2/4x+zν,jξ/
√

2adξ

+
cos(πν)
2
√

πx3

∫ ∞

0

∫ ∞

0

1
ηG|ν|(η)

e−ξ2/4x+ξη/
√

2adξdη.

(5) If 0 < b < a and ν = ±1/2,

p
(ν)
a,b(x) =

a− b√
2πx3

.
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(6) If 0 < b < a, ν − 1/2 ∈ Z and |ν| ≥ 3/2,

p
(ν)
a,b(x) =

a− b√
2πx3

− 1
2
√

πx3

N(ν)∑

j=1

∫ ∞

0

e−ξ2/4x
(
ezν,jξ/

√
2a − ezν,jξ/

√
2b

)
dξ.

(7) If 0 < b < a, 0 ≤ |ν| < 3/2 and ν 6= ±1/2,

p
(ν)
a,b(x) =

a− b√
2πx3

+
cos(πν)
2
√

πx3

∫ ∞

0

∫ ∞

0

1
ηG|ν|(η)

e−ξ2/4x
(
e−ξη/

√
2a − e−ξη/

√
2b

)
dξdη.

(8) If 0 < b < a, ν − 1/2 /∈ Z and |ν| > 3/2,

p
(ν)
a,b(x) =

a− b√
2πx3

− 1
2
√

πx3

N(ν)∑

j=1

∫ ∞

0

e−ξ2/4x
(
ezν,jξ/

√
2a − ezν,jξ/

√
2b

)
dξ

+
cos(πν)
2
√

πx3

∫ ∞

0

∫ ∞

0

1
ηG|ν|(η)

e−ξ2/4x
(
e−ξη/

√
2a − e−ξη/

√
2b

)
dξdη.

The rest of this section is devoted to the proof of Theorem 3.1. By the formulae for
the Laplace transforms of τ

(ν)
a,b , we have, for λ > 0, if a > 0 and ν < 0,

E
[
e−λτ

(ν)
a,0

∣∣ τ
(ν)
a,0 < ∞]

=
2ν+1

Γ (|ν|)(a
√

2λ)ν
Kν(a

√
2λ), (3.1)

if 0 < b ≤ a and ν ∈ R,

E
[
e−λτ

(ν)
a,b

∣∣ τ
(ν)
a,b < ∞]

=
(

a

b

)|ν|K|ν|(a
√

2λ)

K|ν|(b
√

2λ)
. (3.2)

We represent Kν(x) in terms of Gν and zeros of Kν .

Proposition 3.2. For x > 0 we have the following formulae.

(1) If µ = 1/2,

log{x1/2K1/2(x)} =
1
2

log
π

2
− x. (3.3)

(2) If µ− 1/2 ∈ Z and µ ≥ 3/2,

log{xµKµ(x)} = log{2µ−1Γ (µ)} − x−
N(µ)∑

j=1

log
zµ,j

zµ,j − x
. (3.4)

(3) If 0 < µ < 3/2 and µ 6= 1/2,
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log{xµKµ(x)} = log{2µ−1Γ (µ)} − x− cos(πµ)
∫ ∞

0

1
yGµ(y)

log
y + x

y
dy. (3.5)

(4) If µ− 1/2 /∈ Z and µ > 3/2,

log{xµKµ(x)} = log{2µ−1Γ (µ)} − x−
N(µ)∑

j=1

log
zµ,j

zµ,j − x

− cos(πµ)
∫ ∞

0

1
yGµ(y)

log
y + x

y
dy. (3.6)

Proof. Formula (3.3) is obtained from the explicit expression for K1/2(x).
In order to show the others, we note the following formula:

d

dx
log{xνKν(x)} = −Kν+1(x)

Kν(x)
+

2ν

x
, (3.7)

which can be derived by (2.6) and (xνKν(x))′ = −xνKν−1(x) (cf. [21, p. 79]).
If ν − 1/2 ∈ Z and ν ≥ 3/2, it follows from (2.3) and (3.7) that

d

dx
log{xνKν(x)} = −1−

N(ν)∑

j=1

1
zν,j − x

.

Then we obtain that, for any ε > 0,

log{xνKν(x)} − log{ενKν(ε)} = −(x− ε) +
N(ν)∑

j=1

∫ x

ε

dξ

ξ − zν,j
.

Hence, letting ε → 0, we get (3.4) with the help of

lim
x→0

xνKν(x) = 2ν−1Γ (ν). (3.8)

If 0 < ν < 3/2 and ν 6= 1/2, it follows from (2.4) and (3.7) that

d

dx
log{xνKν(x)} = −1− cos(πν)

∫ ∞

0

dy

y(y + x)Gν(y)
.

Hence we have

log{xνKν(x)} − log{ενKν(ε)} = −(x− ε)− cos(πν)
∫ x

ε

dξ

∫ ∞

0

dy

y(y + ξ)Gν(y)
.

Note that Gν(x) is positive for x > 0 unless ν is 2n + 3/2 for any integer n. Thus it
follows from (3.8) that
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log{xνKν(x)} − log{2ν−1Γ (ν)} = −x− cos(πν)
∫ x

0

dξ

∫ ∞

0

dy

y(y + ξ)Gν(y)
.

By the Fubini theorem, the right hand side is equal to

−x− cos(πν)
∫ ∞

0

dy

yGν(y)

∫ x

0

dξ

y + ξ
,

which yields (3.5).
We can show (3.6) in the same way. ¤

In order to see Theorem 3.1, we only have to check

φ
(ν)
a,b(λ) := log E

[
e−λτ

(ν)
a,b

∣∣ τ
(ν)
a,b < ∞]

=
∫ ∞

0

(e−λx − 1)p(ν)
a,b(x)dx

for each case. It follows from (3.1) and (3.2) that, if a > 0 and ν < 0,

φ
(ν)
a,0(λ) = log

{
(a
√

2λ)|ν|K|ν|(a
√

2λ)
}− log{2|ν|−1Γ (|ν|)},

and that, if 0 < b < a and ν ∈ R,

φ
(ν)
a,b(λ) = log

{
(a
√

2λ)|ν|K|ν|(a
√

2λ)
}− log{(b

√
2λ)|ν|K|ν|(b

√
2λ)}. (3.9)

The following lemma and Proposition 3.2 prove Theorem 3.1 for ν 6= 0.

Lemma 3.3. Let c > 0, ν > 0 and z ∈ C−. For λ > 0 it follows that

√
2λ = −

∫ ∞

0

e−λx − 1√
2πx3

dx, (3.10)

log
z

z − c
√

2λ
=

∫ ∞

0

e−λx − 1
2
√

πx3
dx

∫ ∞

0

e−ξ2/4x+zξ/
√

2cdξ (3.11)

and

∫ ∞

0

log
η + c

√
2λ

η

1
ηGν(η)

dη

= −
∫ ∞

0

e−λx − 1
2
√

πx3
dx

∫ ∞

0

∫ ∞

0

1
ηGν(η)

e−ξ2/4x−ξη/
√

2cdξdη. (3.12)

Proof. We recall the following formula (cf. [3, p. 361]): for −1 < p < 0,

∫ ∞

0

yp−1(e−y − 1)dy = Γ (p).
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Setting p = −1/2 and noting Γ (−1/2) = −2
√

π, we obtain (3.10).
Recall the formulae

∫ ∞

0

e−λx−ξ2/4xx−3/2dx =
2
√

π

ξ
e−ξ

√
λ (3.13)

for λ ≥ 0, ξ > 0 and
∫ ∞

0

e−αx − e−βx

x
dx = log

β

α

for α, β ∈ C with Re(α) > 0 and Re(β) > 0 (cf. [3, p. 361]). Then we obtain

∫ ∞

0

∫ ∞

0

1− e−λx

x3/2
e−ξ2/4x−αξdxdξ = 2

√
π log

√
λ + α

α
.

This yields (3.11). Since Gν(x) is positive for x > 0, we may apply the Fubini theorem
and obtain (3.12) in a similar way to (3.11). ¤

Remark 3.4. If ν = 0, it follows from (2.21) that the left hand side of (3.12)
diverges.

We finally consider the case of ν = 0. Since K ′
0(x) = −K1(x), we have

d

dx
log K0(x) = −K1(x)

K0(x)
= −1−

∫ ∞

0

dη

η(η + x)G0(η)

by Theorem 2.1. Note that 1/xG0(x) is integrable on (0,∞). Hence, by (3.9), we get

φ
(0)
a,b(λ) = −(a− b)

√
2λ−

∫ a
√

2λ

b
√

2λ

dξ

∫ ∞

0

dη

η(η + x)G0(η)

= −(a− b)
√

2λ−
∫ ∞

0

1
ηG0(η)

log
η + a

√
2λ

η + b
√

2λ
dη.

For c > 0 and ε > 0, we write

∫ ∞

ε

log
η + c

√
2λ

η

1
ηG0(η)

dη = −
∫ ∞

0

e−λx − 1
2
√

πx3
dx

∫ ∞

ε

dη

ηG0(η)

∫ ∞

0

e−ξ2/4x−ξη/
√

2cdξ.

This formula immediately implies

∫ ∞

ε

1
ηG0(η)

log
η + a

√
2λ

η + b
√

2λ
dη

=
∫ ∞

0

e−λx − 1
2
√

πx3
dx

∫ ∞

ε

dη

ηG0(η)

∫ ∞

0

e−ξ2/4x
(
e−ξη/

√
2b − e−ξη/

√
2a

)
dξ. (3.14)
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It is easy to see from (3.12) and (3.13) that the right hand side of (3.14) converges as
ε → 0 and thus we obtain Theorem 3.1 in the case of ν = 0.

4. The expected volume of the Wiener sausage.

Let r > 0 be given. The Wiener sausage {W (t)}t≥0 for the Brownian motion with
radius r is defined by

W (t) = {x ∈ Rd ; x + B(s) ∈ U for some s ∈ [0, t]}

for t ≥ 0, where {B(t)}t≥0 is a Brownian motion on Rd and U is the closed ball with
center 0 and radius r. For t > 0 let

L(t) =
∫

Rd\U
Px[τ ≤ t]dx,

where τ = inf{t ≥ 0 ; B(t) ∈ U} and Px is the law of the Brownian motion starting from
x ∈ Rd. It is easy to see that the expectation of the volume of W (t) coincides with the
sum of L(t) and the volume of U .

In the case when d is odd, the explicit form of L(t) has already given. One and three
dimensional cases are easy. Indeed, we have that L(t) is equal to 2

√
2t/π if d = 1 and

2πrt + 4r2
√

2πt if d = 3. These formulae can be obtained directly from the well-known
formula for Px[τ ≤ t]. For details, see [5], [12], [16]. In the higher dimensional cases,
the authors [8] recently obtained an explicit form of Px[τ ≤ t]. However it is not of a
convenient form for the integration on x.

We here consider the Laplace transform of L given by

∫ ∞

0

e−λtL(t)dt =
Sd−1r

d−1

√
2λ3

Kd/2(r
√

2λ)

Kd/2−1(r
√

2λ)
, λ > 0, (4.1)

where Sd−1 is the surface area of d− 1 dimensional unit sphere (cf. [5]). When d is odd,
since Kd/2(x)/Kd/2−1(x) may be expressed by the ratio of polynomials for x > 0, and
the right hand side of (4.1) may be represented by the linear combination of rational
functions of the following four types: λ−1/2, λ−1, λ−3/2, (

√
λ− z)−1. Hence the Laplace

transform on (4.1) can be inverted. When d is odd and more than or equal to five,
Theorem 1.1 in [6] shows that, for t > 0

L(t) = Sd−1r
d−2

[
(d− 2)t

2
+

r2

d− 4
−
√

2r3

√
πt

Nd∑

j=1

1

(z(d)
j )2

∫ ∞

0

e−r2x2/2t+z
(d)
j xdx

]
.

Here we have used z
(d)
j and Nd instead of zd/2−1,j and N(d/2− 1), respectively.

Our goal in this section is to give similar results in even dimensional cases by applying
the results in Theorem 2.1. For t > 0 and x ∈ R let
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q(t, x) =

√
2
πt

e−x2/2t.

Theorem 4.1. For x > 0 we set G(d)(x) = Gd/2−1(x).

(1) If d = 2, we have

L(t) = 2πr

[√
2t

π
+ r2

∫ ∞

0

∫ ∞

0

xy − 1 + e−xy

y3G(2)(y)
q(t, rx)dxdy

]
.

(2) If d = 4, we have

L(t) = 2π2r2

[
t + r3

∫ ∞

0

∫ ∞

0

1− e−xy

y3G(4)(y)
q(t, rx)dxdy

]
.

(3) If d ≥ 6 and d is even, we have

L(t) = Sd−1r
d−2

[
(d− 2)t

2
+

r2

d− 4
− r3

Nd∑

j=1

1

(z(d)
j )2

∫ ∞

0

ez
(d)
j xq(t, rx)dx

+ (−1)d/2−1r3

∫ ∞

0

∫ ∞

0

e−xy

y3G(d)(y)
q(t, rx)dxdy

]
.

We set T (t) = L(2r2t) for t > 0 and then deduce from (4.1) that, for λ > 0

∫ ∞

0

e−λtT (t)dt =
Sd−1r

d

√
λ3

Kd/2(
√

λ)

Kd/2−1(
√

λ)
.

For a proof of Theorem 4.1 we consider the function:

Σν(λ) =
1√
λ3

Kν+1(
√

λ)
Kν(

√
λ)

, λ > 0.

Let Tν be the inverse Laplace transform of Σν . Then we have the following, which
immediately yields Theorem 4.1.

Theorem 4.2. Setting ν+ = max{ν, 0}, we have the following.

(1) If |ν| < 1/2,

Tν(t) = 2ν+t + 2

√
t

π
+ cos(πν)

∫ ∞

0

∫ ∞

0

xy − 1 + e−xy

y3G|ν|(y)
q(2t, x)dxdy. (4.2)

(2) If 1/2 < |ν| ≤ 1,
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Tν(t) = 2ν+t− cos(πν)
∫ ∞

0

∫ ∞

0

1− e−xy

y3G|ν|(y)
q(2t, x)dxdy. (4.3)

(3) If 1 < |ν| < 3/2,

Tν(t) = 2ν+t +
1

2(|ν| − 1)
+ cos(πν)

∫ ∞

0

∫ ∞

0

e−xy

y3G|ν|(y)
q(2t, x)dxdy. (4.4)

(4) If |ν| > 3/2 and ν − 1/2 is not an integer,

Tν(t) = 2ν+t +
1

2(|ν| − 1)
−

N(ν)∑

j=1

1
z2
ν,j

∫ ∞

0

ezν,jxq(2t, x)dx

+ cos(πν)
∫ ∞

0

∫ ∞

0

e−xy

y3G|ν|(y)
q(2t, x)dxdy. (4.5)

From now on, we shall treat Kν+1/Kν as the function on the half real line (0,∞).
For our purpose we need three lemmas.

Lemma 4.3. If n + 1/2 < µ < n + 3/2 for an integer n ≥ 1, we have

Kµ(x) =
Γ (µ)

2

(
2
x

)µ

e−x

{
1 + x +

2n+1∑

k=2

(
µ− 1/2

k

)
Γ (2µ− k)

Γ (2µ)
(2x)k + o(x2n+1)

}

as x ↓ 0. Especially, we have

Kµ(x) =
Γ (µ)

2

(
2
x

)µ

e−x

{
1 + x +

1
2

2µ− 3
2µ− 2

x2 +
1
6

2µ− 5
2µ− 2

x3 + o(x3)
}

.

Moreover we have that, if 1 < µ < 3/2,

Kµ(x) =





Γ (µ)
2

(
2
x

)µ

e−x

{
1 + x +

1
2

2µ− 3
2µ− 2

x2 + o(x2)
}

if 1 < µ < 3/2,

Γ (µ)
2

(
2
x

)µ

e−x{1 + x + o(x)} if 1/2 < µ ≤ 1.

Proof. It is well-known that

Kµ(x) =
√

π

(2x)µ

e−x

Γ (µ + 1/2)

∫ ∞

0

e−yy2µ−1

(
1 +

2x

y

)µ−1/2

dy

(cf. [15, p. 140], [21, p. 206]). The Taylor formula yields that
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∫ ∞

0

e−yy2µ−1

(
1 +

2x

y

)µ−1/2

dy

=
∫ ∞

0

e−yy2µ−1

{
1 +

2n∑

k=1

(
µ− 1/2

k

)(
2x

y

)k

+
(

µ− 1/2
2n + 1

)(
2x

y

)2n+1(
1 +

2ξx

y

)µ−2n−3/2}
dy

for some ξ ∈ [0, 1]. Since 2µ− 2n− 2 > −1 and µ− 2n− 3/2 < 0, we have

∫ ∞

0

e−yy2µ−2n−2

(
1 +

2x

y

)µ−2n−3/2

dy ≤
∫ ∞

0

e−yy2µ−2n−2

(
1 +

2ξx

y

)µ−2n−3/2

dy

≤
∫ ∞

0

e−yy2µ−2n−2dy = Γ (2µ− 2n− 1).

Hence the dominated convergence theorem yields that

lim
x↓0

∫ ∞

0

e−yy2µ−2n−2

(
1 +

2x

y

)µ−2n−3/2

dy = Γ (2µ− 2n− 1).

Therefore we obtain

Kµ(x) =
√

π

(2x)µ

e−x

Γ (µ + 1/2)

[
Γ (2µ) + (2µ− 1)Γ (2µ− 1)x

+
2n∑

k=2

(
µ− 1/2

k

)
Γ (2µ− k)(2x)k

+
(

µ− 1/2
2n + 1

)
Γ (2µ− 2n− 1)(2x)2n+1{1 + o(1)}

]

as x ↓ 0. With the help of the formula

22z−1Γ (z)Γ
(

z +
1
2

)
=
√

πΓ (2z) (4.6)

(cf. [15, p. 3]), we easily obtain the first assertion. The remainders can be seen similarly
and the calculation is left to the reader. ¤

The following lemma is a straightforward consequence of Lemma 4.3.

Lemma 4.4. We have that, as x ↓ 0,
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Kν+1(x)
Kν(x)

=





2ν+

x
+ o(1) if

1
2

< |ν| ≤ 1,

2ν+

x
+

x

2(|ν| − 1)
+ o(x) if 1 < |ν| < 3

2
,

2ν+

x
+

x

2(|ν| − 1)
+ o(x2) if |ν| > 3

2
, ν − 1

2
6∈ Z.

For an integer k ≥ 1 we set

ζν,k =
N(ν)∑

j=1

1
zk
ν,j

, %ν,k =
∫ ∞

0

dy

yk+1G|ν|(y)
.

By virtue of Theorem 2.1 and Lemma 4.4, we can derive the connection between ζν,k

and %ν,k.

Lemma 4.5. (1) If 1/2 < |ν| ≤ 1, we have

1 + %ν,1 cos(πν) = 0. (4.7)

(2) If 1 < |ν| < 3/2, we have

1 + %ν,1 cos(πν) = 0, −%ν,2 cos(πν) =
1

2(|ν| − 1)
. (4.8)

(3) If |ν| > 3/2 and ν − 1/2 is not an integer, we have

1 + ζν,1 + %ν,1 cos(πν) = 0, ζν,2 − %ν,2 cos(πν) =
1

2(|ν| − 1)
. (4.9)

Proof. Recall that, for ν 6= 0

G|ν|(x) =





π

2x
e2x{1 + o(1)} as x →∞,

1
κ|ν|x2|ν| {1 + o(1)} as x ↓ 0.

(4.10)

If 1/2 < |ν| ≤ 1, we obtain by (4.10) that 1/y2G|ν|(y) is asymptotically equal to
κ|ν|y2|ν|−2 as y ↓ 0. This implies the convergence of %ν,1. The dominated convergence
theorem shows that, as x ↓ 0,

∫ ∞

0

dy

(y + x)yG|ν|(y)
= %ν,1 + o(1).

Hence we deduce from (2.4) that
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Kν+1(x)
Kν(x)

= 1 +
2ν+

x
+ cos(πν)%ν,1 + o(1).

With the help of Lemma 4.4, we conclude (4.7).
In the case of 1 < |ν| < 3/2, 1/y3G|ν|(y) is integrable by (4.10) and we have

∫ ∞

0

dy

(y + x)yG|ν|(y)
=

∫ ∞

0

{
1
y
− x

y(y + x)

}
dy

yG|ν|(y)

= %ν,1 − x%ν,2 + o(x) (4.11)

by the dominated convergence theorem. Then we get by (2.4) that

Kν+1(x)
Kν(x)

=
2ν+

x
+ 1 + %ν,1 cos(πν)− x%ν,2 cos(πν) + o(x),

and hence, combining with Lemma 4.4, we get (4.8).
If |ν| > 3/2 and ν − 1/2 is not an integer, we deduce

N(ν)∑

j=1

1
zν,j − x

=
N(ν)∑

j=1

{
1

zν,j
+

x

zν,j(zν,j − x)

}
= ζν,1 + xζν,2 + o(x).

Since 1/y3G|ν|(y) is integrable on (0,∞) by (4.10), (4.11) is valid for this case. Therefore
it follows from (2.5) that

Kν+1(x)
Kν(x)

=
2ν+

x
+ 1 + ζν,1 + %ν,1 cos(πν) + x{ζν,2 − %ν,2 cos(πν)}+ o(x).

We immediately obtain (4.9) by Lemma 4.4. ¤

Remark 4.6. In the case when |ν| > 3/2 and ν − 1/2 /∈ Z, we can derive that
ζν,3 + %ν,3 cos(πν) = 0. It is not necessary for the proof of Theorem 4.2.

By virtue of Theorem 2.1, we have that, if |ν| < 3/2 and ν − 1/2 /∈ Z,

Σν(λ) =
2ν+

λ2
+

1√
λ3

+ cos(πν)
∫ ∞

0

dy√
λ3(

√
λ + y)yG|ν|(y)

and that, if |ν| > 3/2 and ν − 1/2 /∈ Z,

Σν(λ) =
2ν+

λ2
+

1√
λ3

+
N(ν)∑

j=1

1√
λ3(zν,j −

√
λ)

+ cos(πν)
∫ ∞

0

dy√
λ3(

√
λ + y)yG|ν|(y)

. (4.12)
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Lemma 4.7. For t > 0 let

qν(t) =
∫ ∞

0

∫ ∞

0

xy − 1 + e−xy

y3G|ν|(y)
q(2t, x)dxdy.

Then, we have, for λ > 0

∫ ∞

0

e−λtqν(t)dt =
∫ ∞

0

dy√
λ3(

√
λ + y)yG|ν|(y)

. (4.13)

Proof. We first recall the elementary formula

∫ ∞

0

e−λtq(2t, x)dt =
1√
λ

e−
√

λx, λ > 0. (4.14)

Then, with the help of the Fubini theorem, we deduce

∫ ∞

0

e−λtqν(t)dt =
∫ ∞

0

dy

∫ ∞

0

1√
λ

e−
√

λx xy − 1 + e−xy

y3G|ν|(y)
dx.

Carrying out the elementary integral in x, we obtain (4.13). ¤

We now complete our proof of Theorem 4.2. If |ν| < 3/2 and ν − 1/2 /∈ Z,

Tν(t) = 2ν+t + 2

√
t

π
+ cos(πν)qν(t). (4.15)

When |ν| < 1/2, (4.15) immediately implies (4.2).
When |ν| > 1/2 and ν − 1/2 /∈ Z, we have by (4.10) that 1/y2G|ν|(y) is integrable

on (0,∞). Since

∣∣∣∣
1− e−xy

y3G|ν|(y)
q(2t, x)

∣∣∣∣ ≤
xq(2t, x)
y2G|ν|(y)

,

we have

qν(t) = 2

√
t

π
%ν,1 −

∫ ∞

0

∫ ∞

0

1− e−xy

y3G|ν|(y)
q(2t, x)dxdy. (4.16)

Combining this formula with (4.7) and (4.15), we conclude (4.3).
When |ν| > 1 and ν − 1/2 /∈ Z, we can further improve (4.16). Indeed, since

1/y3G|ν|(y) is integrable on (0,∞), we get that

∫ ∞

0

∫ ∞

0

e−xy

y3G|ν|(y)
q(2t, x)dx
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converges and we get

qν(t) = 2

√
t

π
%ν,1 − %ν,2 +

∫ ∞

0

∫ ∞

0

e−xy

y3G|ν|(y)
q(2t, x)dxdy. (4.17)

Hence, we get (4.4) by (4.15), (4.17) and Lemma 4.4.
To invert Σν in the case of |ν| > 3/2, we note

N(ν)∑

j=1

1
zν,j −

√
λ

= ζν,1 +
√

λζν,2 +
N(ν)∑

j=1

λ

z2
ν,j(zν,j −

√
λ)

.

Hence (4.12) is equivalent to

Σν(λ) =
2ν+

λ2
+

1 + ζν,1√
λ3

+
ζν,2

λ
−

N(ν)∑

j=1

1
z2
ν,j

√
λ(
√

λ− zν,j)

+ cos(πν)
∫ ∞

0

dy√
λ3(

√
λ + y)yG|ν|(y)

.

With the help of (4.14), we easily see that, for z ∈ C−
∫ ∞

0

e−λtdt

∫ ∞

0

ezxq(2t, x)dx =
1√

λ(
√

λ− z)
.

Hence, we deduce (4.5) from (4.17) and Lemma 4.4. ¤

5. Large time asymptotics for the Wiener sausage.

This section is devoted to show an asymptotic behavior of L(t) for large t in even
dimensional cases. Le Gall [16] considered the Wiener sausage associated with a general
compact set and proved

L(t) =





c
(4)
1 t + c

(4)
2 log t + c

(4)
3 + c

(4)
4

log t

t
+ o

(
log t

t

)
if d = 4,

c
(d)
1 t + c

(d)
2 + c

(d)
3 t2−d/2 + O(t1−d/2) if d ≥ 5

(5.1)

and gave the explicit expression of each constant c
(d)
j . If d = 2, Le Gall [17] also showed

that L(t) admits the asymptotic expansion in powers of 1/ log t.
When d is odd, Hamana [6] gave the asymptotic expansion of L(t). The purpose in

this section is to improve the asymptotic behavior of L(t) if d is even and not less than 6.
Throughout this section, we use Ci’s for positive constants independent of the variable.

Theorem 5.1. If d is even and not less than 6, there is a family of constants
{α(d)

n }d−5
n=0 such that
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L(t) = Sd−1r
d−2

[
(d− 2)t

2
+

r2

d− 4
− αd rd−2

2d/2−2(d− 4)Γ (d/2− 1)
1

td/2−2

+
1

td/2−1

d−5∑
n=0

α
(d)
n

tn/2
+

Γ ((d− 3)/2)r2d−4

√
π(d− 2)Γ (d/2− 1)3

log t

td−3
+ O

(
1

td−3

)]
,

where

αd =
∫ ∞

0

1
yd

{
1

G(d)(y)
− yd−2

2d−4Γ (d/2− 1)2

}
dy.

Recalling the notation G(d) = Gd/2−1, we set

L1(t) = r3
Nd∑

j=1

1

(z(d)
j )2

∫ ∞

0

ez
(d)
j xq(t, rx)dx,

L2(t) = r3

∫ ∞

0

∫ ∞

0

e−xy

y3G(d)(y)
q(t, rx)dxdy.

Then we have from Theorem 4.1 that, if d is even and not less than 6,

L(t) = Sd−1r
d−2

[
(d− 2)t

2
+

r2

d− 4
− L1(t) + (−1)d/2−1L2(t)

]
. (5.2)

The calculation of L1(t) is easy since Re(z(d)
j ) < 0 for each j = 1, 2, . . . , Nd. For x ≥ 0

and an integer n ≥ 0 we put

Rn(x) = e−x −
n∑

k=0

(−1)k

k!
xk.

and let M be a positive integer. Then it follows that

∫ ∞

0

e−r2x2/2t+z
(d)
j xdx =

M∑
n=0

(−1)nr2n

n! (2t)n

∫ ∞

0

x2nez
(d)
j xdx +

∫ ∞

0

RM

(
r2x2

2t

)
ez

(d)
j xdx

=
M∑

n=0

(−1)nr2n(2n)!

2nn! (z(d)
j )2n+1

1
tn

+ O

(
1

tM+1

)
.

We use m instead of d/2− 1 for simplicity and hence obtain

L1(t) =

√
2
π

M∑
n=0

(−1)nr2n+3(2n)! ζm,2n+3

2nn!
1

tn+1/2
+ O

(
1

tM+3/2

)
(5.3)

as t →∞.
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For a proof of Theorem 5.1 we need to give an asymptotic behavior of L2(t) for large
t. We set L0

2(t) = L2(2r2t)/r2 and then have

L0
2(t) =

∫ ∞

0

∫ ∞

0

e−xy

y3Gm(y)
q(2t, x)dxdy. (5.4)

We note that Gm(x) = Km(x)2 + π2Im(x)2.

Lemma 5.2. For an integer n ≥ 1 we have

∫ ∞

0

Rn−1(x2)
x2n

dx =
(−1)nπ

2Γ (n + 1/2)
. (5.5)

Proof. From a change of variables from x to y given by y = x2 we deduce that
the left hand side of (5.5) is equal to

1
2

∫ ∞

0

1
yn+1/2

{
e−y −

n−1∑

k=0

(−1)k

k!
yk

}
dy =

1
2
Γ

(
1
2
− n

)

(cf. [3, p. 361]). The formula Γ (z)Γ (1− z) = π/ sin(πz), z ∈ C \ Z (cf. [15, p. 3]) yields
(5.5). ¤

We give several constants which we need to describe the asymptotic behavior of
1/Gm(x) as x ↓ 0. For integers h, k with 1 ≤ h ≤ k ≤ m− 1 we put

bk,h =
∑

k1+k2+···+kh=k

k1,k2,...,kh≥1

bk1bk2 · · · bkh
,

where

bk =
(−1)k+1

4kΓ (m)2

k∑

h=0

Γ (m− h)Γ (m− k + h)
Γ (h + 1)Γ (k − h + 1)

.

We set

ak =
k∑

h=1

bk,h (k = 1, 2, . . . , m− 1), am =
(−1)m+1

4m−1mΓ (m)2
.

We note that a1 = b1. Moreover recall that κm = 1/4m−1Γ (m)2. See (2.21) for the
definition of κν . The second lemma gives the asymptotic behavior of 1/Gm(x).

Lemma 5.3. We have that, as x ↓ 0,

1
Gm(x)

= κmx2m

{
1 +

m−1∑

k=1

akx2k + amx2m log
1
x

+ O(x2m)
}

. (5.6)
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Proof. It is known that

Km(x) =
1
2

m−1∑

k=0

(−1)k(m− k − 1)!
k!

(
x

2

)2k−m

+ (−1)m+1 log
x

2

∞∑

k=0

1
k! (k + m)!

(
x

2

)2k+m

− (−1)m+1

2

∞∑

k=0

1
k! (k + m)!

(
x

2

)2k+m

{ψ(k + 1) + ψ(k + m + 1)},

where ψ is the logarithmic derivative of the gamma function (cf. [21, p. 80]). This
formula immediately yields that the leading term of Km(x) for small x is

Γ (m)
2

(
2
x

)m m−1∑

k=0

(−1)kΓ (m− k)
Γ (k + 1)Γ (m)

(
x

2

)2k

+
(−1)m

Γ (m + 1)

(
x

2

)m

log
1
x

and its error term is of order xm. Hence we have that, as x ↓ 0

Km(x)2 =
Γ (m)2

4

(
2
x

)2m{m−1∑

k=0

(−1)kΓ (m− k)
Γ (k + 1)Γ (m)

(
x

2

)2k}2

+
(−1)m

m
log

1
x

m−1∑

k=0

(−1)kΓ (m− k)
Γ (k + 1)Γ (m)

(
x

2

)2k

+ O(1).

Since Im(x)2 = O(x2m), we conclude that, as x ↓ 0,

Gm(x) =
1

κmx2m

{
1−

m−1∑

k=1

bkx2k − amx2m log
1
x

+ O(x2m)
}

.

We set G0
m(x) = κmx2mGm(x) for simplicity. It is sufficient to obtain the asymptotic

behavior of 1/G0
m(x). We can easily derive

1
G0

m(x)
= 1 +

m−1∑

h=1

(m−1∑

k=1

bkx2k + amx2m log
1
x

)h

+ O(x2m). (5.7)

In the case of m = 2, (5.7) immediately implies (5.6). We concentrate on considering the
case of m ≥ 3. In this case, the summation on the right hand side of (5.7) is

1 +
m−1∑

h=1

(m−1∑

k=1

bkx2k

)h

+ amx2m log
1
x

+ O(x2m). (5.8)
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A simple calculation shows that the double sum in the right hand side of (5.8) is equal
to

m−1∑

h=1

m−1∑

k=h

bk,hx2k + O(x2m).

Hence we deduce

1
G0

m(x)
= 1 +

m−1∑

k=1

akx2k + amx2m log
1
x

+ O(x2m),

which implies (5.6) for m ≥ 3. ¤

We now proceed to a proof of Theorem 5.1. From (5.4) it follows that

L0
2(t) =

2√
π

∫ ∞

0

∫ ∞

0

1
y3Gm(y)

e−2
√

tuye−u2
dudy,

which is the sum of

L1
2(t) =

2√
π

m−2∑
n=0

(−1)n

n!

∫ ∞

0

∫ ∞

0

1
y3Gm(y)

u2ne−2
√

tuydudy,

L2
2(t) =

2√
π

∫ ∞

0

∫ ∞

0

1
y3Gm(y)

e−2
√

tuyRm−2(u2)dudy.

We easily derive

L1
2(t) =

1√
π

m−2∑
n=0

(−1)n(2n)! %m,2n+3

4nn!
1

tn+1/2
.

For x > 0 and an integer k = 0, 1, 2, . . . , m− 1 let

Qk(x) =
1

Gm(x)
− κmx2m

k∑
n=0

anx2n,

where we have put a0 = 1 for convenience. We need the following lemma to derive the
large time asymptotics of L2

2(t).

Lemma 5.4. We have that L2
2(t) is the sum of the following three integrals;

2√
π

∫ ∞

0

∫ ∞

0

e−2
√

tuy

y3
κmy2m

m−1∑

k=0

aky2kRm+k−2(u2)dudy, (5.9)
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2√
π

∫ ∞

0

∫ ∞

0

e−2
√

tuy

y3

m−1∑

k=0

(−1)m+k−1Qk(y)
(m + k − 1)!

u2(m+k−1)dudy, (5.10)

2√
π

∫ ∞

0

∫ ∞

0

e−2
√

tuy

y3
Qm−1(y)R2m−2(u2)dudy. (5.11)

Proof. By the definition of Q0 and Rk, we have

L2
2(t) =

2√
π

∫ ∞

0

∫ ∞

0

e−2
√

tuy

y3
κmy2mRm−2(u2)dudy

+
2√
π

∫ ∞

0

∫ ∞

0

e−2
√

tuy

y3

(−1)m−1Q0(y)
(m− 1)!

u2(m−1)dudy

+
2√
π

∫ ∞

0

∫ ∞

0

e−2
√

tuy

y3
Q0(y)Rm−1(u2)dudy. (5.12)

Moreover, it follows that, for y > 0, u > 0 and k ≥ 1, Qk−1(y)Rm+k−2(u2) is

Qk(y)Rm+k−1(u2) + κmaky2(m+k)Rm+k−2(u2) +
(−1)m+k−1

(m + k − 1)!
Qk(y)u2(m+k−1).

Taking the sum on k over [1,m − 1], we deduce that the third term of the right hand
side of (5.12) is equal to

2√
π

∫ ∞

0

∫ ∞

0

e−2
√

tuy

y3
Qm−1(y)R2m−2(u2)dudy

+
2√
π

∫ ∞

0

∫ ∞

0

e−2
√

tuy

y3
κmy2m

m−1∑

k=1

aky2kRm+k−2(u2)dudy

+
2√
π

∫ ∞

0

∫ ∞

0

e−2
√

tuy

y3

m−1∑

k=1

(−1)m+k−1Qk(y)
(m + k − 1)!

u2(m+k−1)dudy.

Hence we conclude that L2
2(t) is the sum of (5.9), (5.10) and (5.11). ¤

For (5.9) we first carry out the integral in y and use (5.5). Then we see that (5.9) is
equal to

2κm√
π

m−1∑

k=0

ak(2m + 2k − 3)!
22m+2k−2tm+k−1

∫ ∞

0

Rm+k−2(u2)
u2(m+k−1)

du

=
√

πκm

m−1∑

k=0

(−1)m+k−1akΓ (2m + 2k − 2)
22m+2k−2Γ (m + k − 1/2)

1
tm+k−1

. (5.13)
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The formula (4.6) yields that the right hand side of (5.13) and so (5.9) are equal to

κm

2

m−1∑

k=0

(−1)m+k−1Γ (m + k − 1)ak

tm+k−1
.

Carrying out the integral on u in (5.10), we see that (5.10) is equal to

1
π

m−1∑

k=0

(−1)m+k−1Γ (m + k − 1/2)
tm+k−1/2

∫ ∞

0

Qk(y)
y2m+2k+2

dy. (5.14)

Here we have applied

Γ (2z − 1)
Γ (z)

=
1

2z − 1
Γ (2z)
Γ (z)

=
22z−2

√
π

Γ

(
z − 1

2

)
. (5.15)

We should note that the integral in the right hand side of (5.14) converges for each integer
k = 0, 1, 2, . . . , m− 1. It is easy to see that (4.10) yields that, as x →∞,

Qk(x) = κmx2m+2k + o(x2m+2k). (5.16)

Moreover we deduce from (5.6) that, as x ↓ 0,

Qk(x) =





κmak+1x
2m+2k+2 + O(x2m+2k+4) if 0 ≤ k ≤ m− 2,

κmamx4m log
1
x

+ O(x4m) if k = m− 1.
(5.17)

Hence Qk(y)/y2m+2k+2 is integrable on (0,∞) for each k = 0, 1, 2, . . . , m− 1.
For t > 0 we let

P1(t) =
2√
π

∫ ∞

1

Qm−1(y)
y3

dy

∫ ∞

0

e−2
√

tuyR2m−2(u2)du,

P2(t) =
2√
π

∫ 1

0

Qm(y)
y3

dy

∫ ∞

0

e−2
√

tuyR2m−2(u2)du,

P3(t) =
2κmam√

π

∫ 1

0

y4m−3 log
1
y

dy

∫ ∞

0

e−2
√

tuyR2m−2(u2)du,

where we put Qm(x) = Qm−1(x)− κmamx4m log(1/x). Then (5.11) is the sum of P1(t),
P2(t) and P3(t).

By virtue of (5.16), we obtain that |Qm−1(y)| ≤ C3y
4m−2 for y ≥ 1. Combining this

estimate with |R2m−2(u2)| ≤ C4u
4m−2, we deduce

|P1(t)| ≤ C5

∫ ∞

1

y4m−5dy

∫ ∞

0

e−2
√

tuyu4m−2du =
C6

t2m−1/2

∫ ∞

1

dy

y4
.
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This means that P1(t) is of order 1/t2m−1/2 and is negligible.
We next show P2(t) = O(1/t2m−1). It follows from (5.17) that |Qm(y)| ≤ C7y

4m for
y < 1. Noting R2m−2(x) ≤ 0 for x ≥ 0, we obtain by the Fubini theorem that

|P2(t)| ≤ C8

∫ ∞

0

−R2m−2(u2)du

∫ ∞

0

e−2
√

tuyy4m−3dy.

The formula (5.5) implies that

|P2(t)| ≤ C9

t2m−1

∫ ∞

0

−R2m−2(u2)
u4m−2

du =
C9π

2Γ (2m− 1/2)
1

t2m−1
.

The calculation of P3(t) is slightly complicated but not difficult. A change of vari-
ables from y to v given by 2

√
ty = v yields

P3(t) =
κmam

24m−3
√

πt2m−1

∫ 2
√

t

0

v4m−3 log
2
√

t

v
dv

∫ ∞

0

e−uvR2m−2(u2)du.

For t > 1/4 we set

P 1
3 (t) = log(2

√
t)

∫ ∞

0

v4m−3dv

∫ ∞

0

e−uvR2m−2(u2)du,

P 2
3 (t) = log(2

√
t)

∫ ∞

2
√

t

v4m−3dv

∫ ∞

0

e−uvR2m−2(u2)du,

P 3
3 (t) =

∫ 2
√

t

1

v4m−3 log v dv

∫ ∞

0

e−uvR2m−2(u2)du,

P 4
3 (t) =

∫ 1

0

v4m−3 log
1
v

dv

∫ 1

0

e−uvR2m−2(u2)du,

P 5
3 (t) =

∫ 1

0

v4m−3 log
1
v

dv

∫ ∞

1

e−uvR2m−2(u2)du.

Then we have

P3(t) =
κmam

24m−3
√

πt2m−1
{P 1

3 (t)− P 2
3 (t)− P 3

3 (t) + P 4
3 (t) + P 5

3 (t)}.

We show that P 1
3 (t) is the leading part of P3(t) and the others are all negligible. Recall

that R2m−2(u2) ≤ 0. It follows from (4.6) for z = 2m− 1 and (5.5) that

P 1
3 (t) =

(
log t

2
+ log 2

)
Γ (4m− 2)

∫ ∞

0

R2m−2(u2)
u4m−2

du

= −24m−5
√

πΓ (2m− 1) log t + O(1).
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The estimate of P 2
3 (t) is easy. Indeed, we have

|P 2
3 (t)| ≤ C10 log t

∫ ∞

2
√

t

v4m−3dv

∫ ∞

0

e−uvu4m−2du ≤ C11 log t

∫ ∞

2
√

t

dv

v2
,

which is of order log t/
√

t. The way of estimates of the remaining integrals is similar to
that of P 2

3 (t). We deduce

|P 3
3 (t)| ≤ C12

∫ ∞

1

v4m−3 log v dv

∫ ∞

0

e−uvu4m−2du ≤ C13

∫ ∞

1

log v

v2
dv

and that, by 0 ≤ e−uvu4m−2 ≤ 1 for u, v ∈ [0, 1],

|P 4
3 (t)| ≤ C14

∫ 1

0

v4m−3 log
1
v

dv

∫ 1

0

e−uvu4m−2du ≤ C14

∫ 1

0

v4m−3 log
1
v

dv.

These immediately imply that P 3
3 (t) and P 4

3 (t) are bounded. Note that Rn(x) is asymp-
totically equal to (−1)n+1xn/n! as x → ∞ for an integer n ≥ 0. This yields that
|R2m−2(u2)| ≤ C15u

4m−4 for u ≥ 1 and then we deduce

|P 5
3 (t)| ≤ C15

∫ 1

0

v4m−3 log
1
v

dv

∫ ∞

1

e−uvu4m−4du ≤ C16

∫ 1

0

log
1
v

dv = C16.

Therefore, by virtue of Lemma 5.4, we accordingly obtain

L2
2(t) =

κm

2

m−1∑

k=0

(−1)m+k−1Γ (m + k − 1) ak

tm+k−1

+
1
π

m−1∑

k=0

(−1)m+k−1Γ (m + k − 1/2)
tm+k−1/2

∫ ∞

0

Qk(y)
y2m+2k+2

dy

− κmamΓ (2m− 1)
4

log t

t2m−1
+ O

(
1

t2m−1

)
,

which implies that we finished to give the asymptotic behavior of L0
2(t).

Recall the definition of κm and am. We deduce from (5.15) that

−κmamΓ (2m− 1)
4

=
(−1)m

4m
√

π mΓ (m)3
Γ

(
m− 1

2

)
.

Since L2(t) = r2L0
2(t)(t/2r2), we obtain, by (5.3) for M = d− 4, that

− L1(t) + (−1)d/2−1L2(t)

= −
√

2
π

d−4∑
n=0

(−1)n(2n)! r2n+3ζm,2n+3

2nn!
1

tn+1/2
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−
√

2
π

d/2−3∑
n=0

(−1)d/2+n(2n)! r2n+3%m,2n+3

2nn!
1

tn+1/2

− κd/2−1

d/2−2∑
n=0

(−1)nΓ (d/2 + n− 2)an2d/2+n−3rd+2n−2ξ
(d)
n

td/2+n−2

+
Γ ((d− 3)/2)r2d−4

√
π(d− 2)Γ (d/2− 1)3

log t

td−3
+ O

(
1

td−3

)
,

where

ξ
(d)
k =

∫ ∞

0

Qk(y)
yd+2k

dy.

(5.1) and (5.2) imply that ζm,d−1 = 0 and

ζm,2n+3 + (−1)d/2%m,2n+3 = 0

for n = 0, 1, 2, . . . , d/2− 3. Therefore we can conclude that

−L1(t) + (−1)d/2−1L2(t) = − rd−2ξ
(d)
0

2d/2−2(d− 4)Γ (d/2− 1)
1

td/2−2
+

1
td/2−1

d−6∑
n=0

α
(d)
n

tn/2

+
Γ ((d− 3)/2)r2d−4

√
π(d− 2)Γ (d/2− 1)3

log t

td−3
+ O

(
1

td−3

)
.

Our proof of Theorem 5.1 is completed. ¤

6. Zeros of Macdonald functions.

We can find several properties concerning the zeros of Jν , Yν and Iν (cf. [15], [21]).
However there is less information on the zeros of Kν . Some numerical evaluations have
only been given. See [14] for example.

Our purpose in this section is to represent all zeros of Kν as the root of a polynomial
of order N(ν). Since Kν = K−ν and N(ν) ≥ 1 if |ν| ≥ 3/2, it is sufficient to consider the
case of ν ≥ 3/2. Moreover, if ν = n + 1/2 for an integer n ≥ 1, the formula

Kν(z) =
√

π

2z
e−z

n∑

k=0

(ν, k)
(2z)k

yields that all zeros of Kν are the solutions of the equation

n∑

k=0

(ν, n− k)
2n−k

zk = 0.
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Here we have used the notation

(ν, k) =
Γ (ν + k + 1/2)

k!Γ (ν − k + 1/2)
.

From now on, we discuss the cases when ν > 3/2 and ν − 1/2 /∈ Z. By virtue of
(2.5), we have that, for x > 0

Kν+1(x)
Kν(x)

= 1 +
2ν

x
+

N(ν)∑

j=1

1
zν,j − x

+ cos(πν)
∫ ∞

0

dy

y(y + x)Gν(y)
. (6.1)

We can derive the power sum of zν,1, zν,2, . . . , zν,N(ν) by (6.1). The Newton formula (cf.
[4, p. 276]) gives the polynomial whose roots are zν,1, zν,2, . . . , zν,N(ν).

Lemma 6.1. Let

pn =
N∑

j=1

zn
j

for positive integers n,N and z1, z2, . . . , zN ∈ C. We define a sequence {ξn}N
n=0 of

complex numbers by ξ0 = 1 and

ξn = − 1
n

n∑

k=1

ξn−kpk

for n = 1, 2, . . . , N . Then we have that, for z ∈ C

N∏

j=1

(z − zj) =
N∑

n=0

ξN−nzn. (6.2)

Proof. Let sn be the elementary symmetric polynomial of degree n, that is,

sn =
∑

1≤j1<j2<···<jn≤N

zj1zj2 · · · zjn .

The Newton formula yields that p1 = −s1 and

pn =
n−1∑

k=1

(−1)n−k+1sn−kpk + (−1)n+1nsn

for n = 2, 3, . . . , N . Therefore we easily deduce (6.2) from the formula

N∏

j=1

(z − zj) =
N∑

n=0

(−1)N−ksN−kzn.
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This completes the proof of the lemma. ¤

We first consider the asymptotic expansion of (6.1) for large x. Recall that, for µ ≥ 0
and a given integer M ≥ 0

Kµ(x) =
√

π

2x
e−x

M+1∑
n=0

(µ, n)
(2x)n

+ O

(
1

xM+2

)

as x →∞ (cf. [15, p. 123], [21, p. 202]) and we have

Kν+1(x)
Kν(x)

=
M+1∑
n=0

an

xn
+ O

(
1

xM+2

)
, (6.3)

where {an}M+1
n=0 is the sequence of real numbers defined by

(ν + 1, n)
2n

=
n∑

k=0

(ν, n− k)
2n−k

ak

for n = 0, 1, 2, . . . , M + 1. A simple calculation shows

a0 = 1, a1 = ν +
1
2
, a2 =

1
2

(
ν2 − 1

4

)
, a3 = −1

2

(
ν2 − 1

4

)
,

a4 = −1
8

(
ν2 − 1

4

)(
ν2 − 25

4

)
, a5 =

1
2

(
ν2 − 1

4

)(
ν2 − 13

4

)
.

The remaining constants a6, a7, . . . have complicated forms. It is easy to give the asymp-
totic expansion of the right hand side of (6.1) and then we have that, for M ≥ N(ν)

Kν+1(x)
Kν(x)

= 1 +
2ν

x
−

M∑
n=0

1
xn+1

N(ν)∑

j=1

zn
ν,j

+ cos(πν)
M∑

n=0

(−1)n

xn+1

∫ ∞

0

yn−1

Gν(y)
dy + O

(
1

xM+2

)
. (6.4)

Here we should note that the integral of ym−1/Gν(y) over (0,∞) converges for each inte-
ger m ≥ 0, which can be shown by Lemma 2.3 and (2.21). Comparing the corresponding
coefficients in (6.3) and (6.4), we obtain

N(ν) = ν − 1
2

+ cos(πν)
∫ ∞

0

dy

yGν(y)
, (6.5)

N(ν)∑

j=1

zn
ν,j = −an+1 + (−1)n cos(πν)

∫ ∞

0

yn−1

Gν(y)
dy (6.6)
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for n = 1, 2, . . . , M . We define a sequence {αν
n}N(ν)

n=0 of complex numbers by αν
0 = 1 and

αν
n =

1
n

n∑

k=1

αν
n−k

{
ak+1 − (−1)k cos(πν)

∫ ∞

0

yk−1

Gν(y)
dy

}

for n = 1, 2, . . . , N(ν). Therefore, by (6.6) and Lemma 6.1, we have the following theo-
rem.

Theorem 6.2. For |ν| > 3/2 the zeros of Kν are the solutions of

N(ν)∑
n=0

αν
N(ν)−nzn = 0.

We obtain another polynomial whose roots are zν,1, zν,2, . . . , zν,N(ν) by considering
the asymptotic behavior of (6.1) for small x, which is an improvement of Lemma 4.4.
Let N ≥ 1 be an integer with N + 1/2 < ν < N + 3/2. It follows from Lemma 4.3 that,
as x ↓ 0,

Kν+1(x)
Kν(x)

=
2ν

x

2N+1∑
n=0

bnxn + o(x2N ), (6.7)

where {bn}2N+1
n=0 is a sequence of real numbers defined by

(
ν + 1/2

n

)
2nΓ (2ν − n + 2)

Γ (2ν + 2)
=

n∑

k=0

(
ν − 1/2
n− k

)
2n−kΓ (2ν − n + k)

Γ (2ν)
bk

for n = 0, 1, 2, . . . , 2N + 1. A simple calculation shows

b0 = 1, b1 = 0, b2 =
1

4ν(ν − 1)
, b3 = 0, b4 = − 1

16ν(ν − 1)2(ν − 2)
,

b5 = 0, b6 =
1

32ν(ν − 1)3(ν − 2)(ν − 3)
, b7 = 0.

The remaining coefficients have complicated forms. We easily get

Kν+1(x)
Kν(x)

=
2ν

x
+ 1 +

2N∑
n=0

xn

N(ν)∑

j=1

1
zn+1
ν,j

+ cos(πν)
2N∑
n=0

(−1)nxn

∫ ∞

0

dy

yn+2Gν(y)
+ o(x2N ). (6.8)

We have to remark that we can not derive the higher term in (6.8) while M in (6.4) is
arbitrary. This deference is caused from the integrability of 1/ymGν(y). Comparing the



Zeros of Macdonald functions 1651

corresponding coefficients in (6.7) and (6.8), we obtain

N(ν)∑

j=1

1
zν,j

= −1− cos(πν)
∫ ∞

0

dy

y2Gν(y)
, (6.9)

N(ν)∑

j=1

1
zn
ν,j

= 2νbn + (−1)n cos(πν)
∫ ∞

0

dy

yn+1Gν(y)
(6.10)

for n = 2, 3, . . . , 2N . We define a sequence {βν
n}N(ν)

n=0 of complex numbers by βν
0 = 1,

βν
1 = 1 + cos(πν)

∫ ∞

0

dy

y2Gν(y)
,

βν
n = − 1

n

n∑

k=2

βν
n−k

{
2νbk + (−1)k cos(πν)

∫ ∞

0

dy

yk+1Gν(y)

}

+
1
n

βν
n−1

{
1 + cos(πν)

∫ ∞

0

dy

y2Gν(y)

}

for n = 2, 3, . . . , N(ν). By (6.9), (6.10) and Lemma 6.1, we have the following theorem.

Theorem 6.3. For |ν| > 3/2 the zeros of Kν are the solutions of

N(ν)∑
n=0

βν
nzn = 0.

Remark 6.4. It is known that, if ν − 1/2 is not an odd integer,

N(ν) = ν − 1
2

+
θν

π

(cf. [21, p. 512]). Here θν is the unique number determined by |θν | < π, cos θν = sin πν,
sin θν = cos πν. Hence we deduce from (6.5) that, if ν > 3/2 and ν − 1/2 /∈ Z,

∫ ∞

0

dy

yGν(y)
=

θν

π cos(πν)
. (6.11)

Similarly, when 0 ≤ ν < 3/2 and ν 6= 1/2, we can easily derive (6.11) by virtue of (2.4)
and (6.3). In particular, we obtain that, for an integer n ≥ 0,

∫ ∞

0

dy

y{Kn(y)2 + π2In(y)2} =
1
2
.

Remark 6.5. When 3/2 < ν < 7/2, N(ν) = 2 and the zeros of Kν satisfy some
quadratic equations. In particular, when ν = 2, the zeros z2,1 and z2,2 satisfy
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



z2,1 + z2,2 = −15
8
−

∫ ∞

0

dy

G2(y)
,

z2
2,1 + z2

2,2 =
15
8

+
∫ ∞

0

ydy

G2(y)
,





1
z2,1

+
1

z2,2
= −1−

∫ ∞

0

dy

y2G2(y)
,

1
z2
2,1

+
1

z2
2,2

=
1
2

+
∫ ∞

0

dy

y3G2(y)
.

By using Mathematica we obtain from each system of equations that the zeros are close
to −1.28137± 0.4294851 i, and check the comment “The two zeros of K2(z) are not very
far from the points −1.29 ± 0.44 i.” in [21, p. 512]. A table of the zeros is given in [9],
where the continuity of each zero as a function of the index is shown and its graph is
also given.
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