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Abstract. In this article, we describe the trace formulae of composi-
tion of several (up to four) adjoint actions of elements of the Lie algebra of
a vertex operator algebra by using the Casimir elements. As an application,
we give constraints on the central charge and the dimension of the Lie alge-
bra for vertex operator algebras of class S4. In addition, we classify vertex
operator algebras of class S4 with minimal conformal weight one under some
assumptions.

Introduction.

The notion “of class Sn” was introduced in [Ma01] as follows: a vertex operator
algebra (VOA) is said to be of class Sn if its trivial components with respect to the full
automorphism group coincide with the subVOA Vω generated by the conformal vector
ω up to degree n. For example, the moonshine VOA is of class S11. Conversely, if a
VOA V of central charge c with minimal conformal weight 2 is of class S8, then c = 24
and dimV 2 = 196884 ([Ma01], [Hö08]), which are satisfied by the moonshine VOA.
For VOAs of class S6, there are constraints on the central charge and the dimension of
the minimal conformal weight space (see [Ma01, Table 3.3], [Hö08, Theorem 4.1] and
[TV14, Section 6]). In particular, VOAs of class S6 with minimal conformal weight one
are lattice VOAs associated to the root lattices of type A1 and E8 ([Hö08], [Tu09]).

In [Ma01], several properties of a VOA V of class Sn were investigated, and as
their application, trace formulae of composition of several (up to five) adjoint actions of
elements of the Griess algebra were described.

One property is that for any v ∈ V i (i ≤ n) and any m ∈ Z, the traces of o(v) and
o(π(v)) on V m are the same, where o(v) is the weight preserving operation of v and π

is the projection from V to the subVOA Vω. This property was studied in [Hö08] as
conformal n-designs, which are analogues of block designs and spherical designs.

Another property is that the i-th Casimir element belongs to the subVOA Vω if
i ≤ n. By using this property and genus zero correlation functions, constrains on the
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central charge and the dimension of the minimal conformal weight space were studied in
[Tu07]. In addition, it was shown in [Tu09] that if the minimal conformal weight of V

is one and the 4-th Casimir element belongs to Vω, then V is isomorphic to one of the
simple affine VOAs associated with Deligne’s exceptional Lie algebras A1, A2, G2, D4,
F4, E6, E7 and E8 ([De96]) at level 1 by using modular differential equations.

In this article, we describe the trace formulae of composition of several (up to four)
adjoint actions of elements of the Lie algebra of a VOA by using the Casimir elements,
along with the method in [Ma01]. By the cyclic property of trace, we obtain the same
constraints as in [Tu07] on the central charge and the dimension of the Lie algebra of
a VOA of class S4. We show that possible C2-cofinite simple VOAs of class S4 are
the simple affine VOAs associated with Deligne’s exceptional Lie algebras at level 1 by
using representation theory for simple affine VOAs ([FZ92]). Conversely, we prove that
such VOAs are of class S4 in the following way: If the type of the Lie algebra is An,
Dn or En, then the graded dimension of the trivial components with respect to the
inner automorphism group was calculated in [BT99], which proves the assertion for
the Lie algebras of type A1, E6, E7 and E8. In addition, considering Dynkin diagram
automorphisms, we prove that if the type of the Lie algebra is A2 or D4, then the
associated simple affine VOA at level 1 is of class S4. For the remaining Lie algebras
of type G2 and F4, we calculate the graded dimension of the trivial components, which
is described in terms of string functions ([Kac90], [KP84]). The main theorem is the
following:

Theorem 5.7. Let V be a C2-cofinite, simple VOA of CFT-type with non-zero
invariant bilinear form. Assume that V 1 6= 0 and that the central charge of V is neither
0, −22/5 nor dimV 1. Then V is of class S4 under AutV if and only if V is isomorphic
to one of the simple affine VOAs associated with the simple Lie algebras of type A1, A2,

G2, D4, F4, E6, E7, E8 at level 1.

The organization of this article is as follows: In Section 1, we recall some definitions
and notation about VOAs. In Section 2, we recall the definitions of VOAs of class Sn

and the Casimir elements, and review related results. In Section 3, we express the trace
formulae for the adjoint action of the Lie algebra of a VOA. In Section 4, as an application
of the trace formulae, we give constraints on the central charge and the dimension of the
Lie algebra for a VOA of class S4 with minimal conformal weight one. In addition, we
discuss possible VOA structures. In Section 5, we prove that the simple affine VOAs
associated with Deligne’s exceptional Lie algebras at level 1 are of class S4. In Appendix
A, we prove the quartic trace formula, and in Appendix B, we sketch another proof.

1. Preliminary.

In this article, the notation and terminology follow [MN99]. Let V =
⊕∞

i=0 V i be
a vertex operator algebra (VOA). It is a vector space over C equipped with a linear map
Y : V → (End V )[[z, z−1]],

Y (v, z) =
∑

i∈Z
v(i)z

−i−1 for v ∈ V,
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and the vacuum vector 1 ∈ V 0 and the conformal vector ω ∈ V 2 satisfying some condi-
tions (see [MN99, Section 7.4] for details). The graded dimension dim∗(V, q) of V is the
formal series defined by

dim∗(V, q) =
∞∑

i=0

dimV iqi.

The conformal vector ω generates a representation of the Virasoro algebra:

[L(m), L(n)] = (m− n)L(m + n) +
m3 −m

12
δm+n,0c IdV ,

where L(m) = ω(m+1), c ∈ C is the central charge of V and IdV is the identity operator
on V . Let Vω denote the subVOA of V generated by the conformal vector ω. A singular
vector of a Vω-module is a nonzero vector v of the module such that L(m)v = 0 for all
m ≥ 1 and v /∈ C1. The minimal conformal weight of V is defined by min{i ∈ Z | V i 6=
V i

ω}.
In this article, we always assume that a VOA V is of CFT-type, that is, the conformal

weight 0 space V 0 is spanned by the vacuum vector 1. By this assumption, the minimal
conformal weight of V is 1 if and only if V 1 6= 0. In addition, the conformal weight one
space V 1 of V carries a Lie algebra structure with Lie bracket [·, ·] given by [a, b] = a(0)b

for a, b ∈ V 1.
We also always assume that V carries a non-degenerate invariant bilinear form (·|·)

in the sense of [FHL93]. It was shown in [Li94, Theorem 3.1] that there is a linear iso-
morphism between V 0/L(1)V 1 and the space of invariant bilinear forms on V . It follows
from dimV 0 = 1 and the existence of the invariant form (·|·) that dimV 0/L(1)V 1 = 1,
equivalently L(1)V 1 = 0. In particular, an invariant bilinear form on V is uniquely deter-
mined up to scalars. We normalize the form (·|·) so that (1|1) = −1. Then (a|b)1 = a(1)b

for a, b ∈ V 1. We note that the invariance property of the form (·|·) on V implies that
the restriction of (·|·) to the Lie algebra V 1 is invariant, that is, (a(0)b|c) = (a|b(0)c) for
all a, b, c ∈ V 1. We also note that if V is simple, then a non-zero invariant bilinear form
is non-degenerate on V (and on V 1).

An automorphism of a VOA V is a linear isomorphism g : V → V satisfy-
ing g(a(i)b) = (ga)(i)(gb) for all a, b ∈ V and all i ∈ Z that fixes the conformal
vector ω. Let AutV denote the group of all automorphisms of V . For a ∈ V 1,
exp(a(0)) is an automorphism of V . Let N(V ) denote the subgroup of AutV defined
by N(V ) = 〈exp(a(0))| a ∈ V 1〉. Clearly, N(V ) is normal in AutV , and it acts on V 1 as
the inner automorphism group of the Lie algebra V 1. For a subgroup H of AutV , let V H

denote the set of fixed points of H on V , that is, V H = {v ∈ V | g(v) = v for all g ∈ H}.
Note that V H is a subVOA.

A VOA V is said to be C2-cofinite if dimV/〈u(−2)v | u, v ∈ V 〉C < ∞.



1372 H. Maruoka, A. Matsuo and H. Shimakura

2. VOA of class Sn and the Casimir elements.

In this section, we recall the definitions of VOAs of class Sn and the Casimir ele-
ments, and review related results from [Ma01], [Tu07].

Let V be a VOA of CFT-type with non-degenerate invariant bilinear form.

Definition 2.1 ([Ma01, Definition 1.1]). Let H be a subgroup of AutV . A VOA
V is said to be of class Sn under H if (V H)i = V i

ω for 0 ≤ i ≤ n.

Let d be the dimension of V 1. Assume that d > 0. Let {x1, x2, . . . , xd} be a basis
of V 1 and let {x1, x2, . . . , xd} be its dual basis with respect to the invariant form. For a
non-negative integer i, the i-th Casimir element κi of V is defined by:

κi =
d∑

j=1

xj
(1−i)xj ∈ V i.

Note that κ0 = d1 and that κi is independent of the basis chosen for V 1. Since AutV

preserves the invariant form, we have g(κi) = κi for all g ∈ AutV . The following lemma
is clear:

Lemma 2.2. If V is of class Sn under (a subgroup of ) Aut V , then κi ∈ V i
ω for

0 ≤ i ≤ n.

The following lemma is immediate from the commutator formula ([MN99, (4.3.2)]).

Lemma 2.3 ([Tu07, (5.1)] (cf. [Ma01, (2.7)])). For every positive integer m,

L(m)κi = (i− 1)κi−m.

Remark 2.4. If κn ∈ V n
ω , then κi ∈ V i

ω for all 0 ≤ i ≤ n.

Let c be the central charge of V . By Lemma 2.3, we obtain the following:

Lemma 2.5 ([Tu07, Section 5.1]). Let n ∈ {2, 3, 4}. Assume that Vω has no
singular vectors, up to degree n. If κn ∈ V n

ω , then the explicit expressions of κi for
0 ≤ i ≤ n are given as follows:

κ0 = d1, κ1 = 0, κ2 =
2d

c
L(−2)1

(
=

2d

c
ω

)
, κ3 =

d

c
L(−3)1,

κ4 =
3d

c(5c + 22)
(
4L(−2)21 + (c + 2)L(−4)1

)
.

Remark 2.6. (1) By [Wa93], if Vω contains a singular vector of degree n, then
the central charge of V is equal to

1− 6(p− q)2

pq
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for some p, q ∈ {2, 3, . . . } satisfying (p, q) = 1, p, q ≥ 2 and (p − 1)(q − 1) = n. In
particular, if c 6= −22/5, 0 then Vω has no singular vectors, up to degree 5.

(2) If Vω has no singular vectors, then

dim∗(Vω, q) =
1∏

i∈Z≥2
(1− qi)

= 1 + q2 + q3 + 2q4 + 2q5 + 4q6 + 4q7 + 7q8 + · · · .

3. Trace formulae for the Lie algebra.

Let V be a VOA of CFT-type with non-degenerate invariant bilinear form (·|·). Let
c be the central charge of V and let d be the dimension of V 1. In this section, we state
the trace formulae for the adjoint representation of the Lie algebra V 1.

Proposition 3.1 ([Tu07, Proposition 3]). Assume that c 6= 0 and κ2 ∈ V 2
ω . Then

for a1, a2 ∈ V 1,

TrV 1 a1(0)a2(0) = 2
(

d

c
− 1

)
(a1|a2).

Proof. This proposition is proved directly, along with Lemmas 2.5 and A.1:

TrV 1 a1(0)a2(0) =
d∑

j=1

(a1(0)a2(0)x
j |xj) = −

d∑

j=1

(a2|xj
(0)a1(0)xj)

= −2(a1|a2) + (a2|a1(1)κ2) = 2
(

d

c
− 1

)
(a1|a2). ¤

Note 3.2. We know the ratio between the form (·|·) and the Killing form on V 1

from the proposition above.

Remark 3.3. Assume that c 6= 0 and κ2 ∈ V 2
ω . By Proposition 3.1, the Lie algebra

V 1 is semisimple if and only if c 6= d.

Proposition 3.4. Assume that c 6= 0 and κ2 ∈ V 2
ω . Then for a1, a2, a3 ∈ V 1,

TrV 1 a1(0)a2(0)a3(0) =
(

d

c
− 1

)
(a1|a2(0)a3).

Proof. Since

TrV 1 a1(0)a2(0)a3(0) =
d∑

j=1

(
a1(0)a2(0)a3(0)x

j |xj

)

= (−1)3
d∑

j=1

(
xj |a3(0)a2(0)a1(0)xj

)

= −TrV 1 a3(0)a2(0)a1(0) = −TrV 1 a1(0)a3(0)a2(0), (3.1)
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we have

1
2

TrV 1 a1(0)(a2(0)a3)(0) =
1
2
(
TrV 1 a1(0)a2(0)a3(0) − TrV 1 a1(0)a3(0)a2(0)

)

= TrV 1 a1(0)a2(0)a3(0),

which was mentioned in [Me84, p180, d)]. Thus the assertion follows from Proposition
3.1. ¤

Remark 3.5. Under the assumption that c 6= 0 and κ3 ∈ V 3
ω , Proposition 3.4 can

be proved by an argument similar to the proof of Theorem 3.6 in Appendix A.

The following theorem can be proved by using Borcherds’ identity. See Appendices
A and B for proofs.

Theorem 3.6. Assume that c 6= 0,−22/5 and κ4 ∈ V 4
ω . Then for a1, a2, a3, a4 ∈

V 1,

TrV 1 a1(0)a2(0)a3(0)a4(0)

=
(

1 +
3d(c− 2)
c(22 + 5c)

)
(a1(0)a2|a3(0)a4) +

(
2− 24d

c(22 + 5c)

)
(a1(0)a4|a2(0)a3)

+
24d

c(22 + 5c)
(
(a1|a2)(a3|a4) + (a1|a3)(a2|a4) + (a1|a4)(a2|a3)

)
.

Remark 3.7. Let g be a simple Lie algebra of type A1, A2, G2, F4, E6, E7 or E8.
For an irreducible representation ρ of g, the quartic trace formula Tr ρ(x)4 (x ∈ g) is
described in [Ok79]. Considering the case where a1 = a2 = a3 = a4 in Theorem 3.6, we
obtain the same formula as in [Ok79] (cf. [Me83]) for the adjoint representation.

Remark 3.8. Let g be a finite dimensional Lie algebra over C with non-degenerate
invariant bilinear form. By the same argument as in (3.1), for a1, a2, . . . , am ∈ g,

Trg ad(a1) ad(a2) · · · ad(am) = (−1)m Trg ad(am) ad(am−1) · · · ad(a1).

When m = 2n + 1, substituting a1 = a2 = · · · = am = x, we obtain Trg ad(x)2n+1 = 0.

Remark 3.9. By Remark 3.8, for a ∈ V 1 and n ∈ Z≥0, TrV 1(a(0))2n+1 = 0.

Remark 3.10. Theorem 3.6 remains true if we replace the assumption that κ4 ∈
V 4

ω by the assumption that V 1 is a conformal 4-design. (See Appendix B for a sketch
of the proof.) Under some assumptions (e.g. [Ya14, Condition 2]), V 1 is a conformal
4-design if and only if κ4 ∈ V 4

ω (cf. [Ya14, Proposition 5]).
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4. Constraints on c and d.

Let V be a simple VOA of CFT-type with non-zero invariant bilinear form. Let c

be the central charge of V and let d be the dimension of V 1. Throughout this section,
we assume that d > 0, c /∈ {d, 0,−22/5} and κ4 ∈ V 4

ω .
In this section, we obtain constraints on c and d by using the trace formulae in the

previous section, based on the method in [Ma01]. Furthermore, we discuss possible C2-
cofinite VOAs. These results were obtained in [Tu07, Section 5] and [Tu09, Section 2]
by different methods based on genus zero correlation functions and modular differential
equations.

Since V is simple, the invariant form is non-degenerate. Hence, by Remark 3.3,
the Lie algebra V 1 is semisimple, and there exists an sl2 triplet (e, f, h) in V 1. Letting
a1 = a4 = e and a2 = a3 = f , we have (a1(0)a2|a3(0)a4) 6= 0 and (a1(0)a4|a2(0)a3) = 0.
Hence, by the cyclic property of trace, the coefficients of the first and second terms in
Theorem 3.6 are the same. Thus we obtain

d =
c(22 + 5c)

10− c
. (4.1)

The following was mentioned in [Tu09, (2.13)].

Lemma 4.1. Let c be a positive rational number. If the number d given in (4.1) is
a positive integer, then (c, d) is one of the 21 pairs in Table 1.

Proof. It follows from (4.1) and d > 0 that 0 < c < 10. Let c = p/q, where p

and q are relatively prime positive integers. By (4.1), we have

d =
p(22q + 5p)
q(10q − p)

.

Since p and q are relatively prime and d is an integer, q is a factor of 22q + 5p. Hence q

must be 1 or 5. By q ∈ {1, 5}, 0 < p/q < 10 and d ∈ Z>0, one can easily see that c = p/q

is one of 21 cases in Table 1. ¤

By Remark 3.3, V 1 is semisimple. Let V 1 =
⊕t

i=1 gi be the direct sum of t simple
Lie algebras gi and let ki be the level of the affine Lie algebra associated to gi on V .
Let us determine the ratio h∨i /ki along the line of [DM04a, (3.6)], where h∨i is the dual
Coxeter number of gi. Let φi(·, ·) be the normalized invariant bilinear form on gi so
that φi(α, α) = 2 for a long root α. Comparing the commutator formula as the affine
representation and that in a VOA, we obtain

kiφi(·, ·) = (·|·)

on gi. Recall from [Kac90, Excercise 6.2] that for x, y ∈ gi,

2h∨i φi(x, y) = Trgi
ad(x) ad(y).
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Hence by Proposition 3.1, we obtain for all i

h∨i
ki

=
d

c
− 1. (4.2)

Now, we assume that V is C2-cofinite. Then ki is a positive integer ([DM06,
Theorem 1.1]), and hence c is a positive rational number by (4.2).

Proposition 4.2 (cf. [Tu07, Proposition 5]). Let V be a C2-cofinite, simple VOA
of CFT-type with non-zero invariant bilinear form. Assume that V 1 6= 0 and the central
charge of V is neither 0, −22/5, nor dimV 1. We further assume that κ4 ∈ V 4

ω . Then
the Lie algebra V 1 is a simple Lie algebra of type A1, A2, G2, D4, F4, E6, E7 or E8.
Furthermore, the level is 1.

Proof. Given h∨ ∈ Z≥2, the minimum dimension of simple Lie algebras with dual
Coxeter number h∨ and the corresponding type are summarized in Table 2 (cf. [Kac90,
Section 6.1]). By Lemma 4.1, (c, d) is one of the 21 pairs in Table 1, which determines
h∨i /ki by (4.2). Notice that h∨i = h∨i /ki × ki and ki is a positive integer. One can easily
verify that d is less than or equal to the minimum dimension in Table 2 for any positive
integer ki. In particular, the equality holds if and only if c ∈ {1, 2, 14/5, 4, 26/5, 6, 7, 8},
t = 1 and k = 1. Since t is the number of simple components of g, V 1 is simple. In
addition, by Table 2, if c = 1, 2, 14/5, 4, 26/5, 6, 7, 8, then the type of V 1 is A1, A2, G2,
D4, F4, E6, E7, E8, respectively. ¤

Let us discuss a possible VOA structure of V .

Theorem 4.3 (cf. [Tu09, Theorem 2.8]). Let V be a C2-cofinite, simple VOA of
CFT-type with non-zero invariant bilinear form. Assume that V 1 6= 0 and the central
charge of V is neither 0, −22/5, nor dimV 1. We further assume that κ4 ∈ V 4

ω . Then

Table 1. (c, d) for a VOA of class S4 and the corresponding ratio h∨/k.

c 2
5 1 2 14

5 4 5 26
5 6 32

5
34
5 7

d 1 3 8 14 28 47 52 78 96 119 133

h∨/k 3
2 2 3 4 6 42

5 9 12 14 33
2 18

c 38
5 8 41

5
42
5

44
5 9 46

5
47
5

48
5

49
5

d 190 248 287 336 484 603 782 1081 1680 3479

h∨/k 24 30 34 39 54 66 84 114 174 354

Table 2. Minimum dimension D of simple Lie algebras with dual Coxeter number h∨.

h∨ 2 3 4 9 12 18 30 2n− 1(≥ 5), n 6= 5 2n(≥ 6), n 6= 6, 9, 15

D 3 8 14 52 78 133 248 2n2 + n 2n2 + 3n + 1

Type A1 A2 G2 F4 E6 E7 E8 Bn Dn+1
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V is isomorphic to one of the simple affine VOAs associated with simple Lie algebras of
type A1, A2, G2, D4, F4, E6, E7, E8 at level 1.

Proof. By Proposition 4.2, the Lie algebra V 1 is simple and its type is one of
A1, A2, G2, D4, F4, E6, E7, E8. In addition, the level is 1.

Let U be the vertex subalgebra of V generated by V 1. Note that U has the conformal
vector ωU (cf. [DM04a, (4.1)]). By [DM06, Theorem 1], U is isomorphic to a simple
affine VOA associated with V 1 at level 1. By the explicit construction of ωU , one can
see that ωU = (c/2d)κ2, which is equal to ω by Lemma 2.5. It follows from [DLM97,
Theorem 3.7] that U is rational. Let V = U⊕W as U -modules. Notice that all irreducible
U -modules are classified in [FZ92, Theorem 3.1.3] and that by the possible types of
V 1(= U1) given in Proposition 4.2, the lowest weight of any irreducible U -module is a
non-negative rational number less than 1. Since dimV 0 = dim U0 = 1, W must be 0,
namely, V = U . ¤

Remark 4.4. By Remark 3.10, Theorem 4.3 remains true if we replace the as-
sumption κ4 ∈ V 4

ω by the assumption that V 1 is a conformal 4-design.

Note 4.5. It was announced in [Tu09, Proposition 6] that if κ6 ∈ V 6
ω then V is

isomorphic to the simple affine VOA associated with the simple Lie algebra of type A1 or
E8 at level 1. A similar result was given in [Hö08, Theorem 4.1] under the assumption
that V 1 is a conformal 6-design.

Note 4.6. Under the same assumptions as in Theorem 4.3, possible characters of
VOAs were determined in [Tu09] by using a 2nd order modular differential equation,
which proves Theorem 4.3 ([Tu09, Theorem 2.8]).

Note 4.7. A Z≥0-graded vertex algebra VA1/2 (resp. VE7+1/2) with one-dimensional
abelian Lie algebra (resp. the non-simple Lie algebra E7+1/2) was considered in [Kaw14].
Its “central charge” is 2/5 (resp. 38/5), which was chosen so that the associated “char-
acter” satisfies the modular differential equation of rational conformal field theories with
two characters. Since the corresponding pairs (c, d) = (2/5, 1) and (38/5, 190) are in-
cluded in Table 1, we expect that VA1/2 and VE7+1/2 are “nice” vertex algebras. However,
we cannot deal with these vertex algebras in this article by the following reason: The
weight one spaces of VA1/2 and VE7+1/2 are non-semisimple Lie algebras. But the as-
sumptions of this section imply that the weight one space is a semisimple Lie algebra by
Remark 3.3.

5. Classification of VOAs of class S4 with minimal conformal weight
one.

In this section, we prove that the simple affine VOAs associated with simple Lie
algebras of type A1, A2, G2, D4, F4, E6, E7, E8 at level 1 are of class S4. As a consequence,
we classify C2-cofinite, simple VOAs of class S4 with minimal conformal weight one.

Let g be a simple Lie algebra and let Lg(1, 0) denote the simple affine VOA associated
with g at level 1. It is well-known that Lg(1, 0) is C2-cofinite and of CFT-type and that
its central charge is dim g/(1 + h∨), where h∨ is the dual Coxeter number of g. Clearly,
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Lg(1, 0)1 ∼= g as Lie algebras.
Set N = N(Lg(1, 0)). Using [KP84, (4.39)] (cf. [Kac90, Exercise 12.17]), A. Baker

and H. Tamanoi gave in [BT99] the explicit formula of the graded dimension of the fixed
point subspace of N on Lg(1, 0) when the type of g is An, Dn or En; for example

dim∗(Lg(1, 0)N , q) =





dim∗(Vω, q) if g = A1,

1 + q2 + 2q3 + 3q4 + 4q5 + 8q6 + · · · if g = A2,

1 + q2 + q3 + 4q4 + 4q5 + 9q6 + · · · if g = D4,

1 + q2 + q3 + 2q4 + 3q5 + 6q6 + · · · if g = E6,

1 + q2 + q3 + 2q4 + 2q5 + 5q6 + · · · if g = E7,

1 + q2 + q3 + 2q4 + 2q5 + 4q6 + · · · if g = E8.

(5.1)

Comparing Remark 2.6 (2) and (5.1), we obtain the following proposition.

Proposition 5.1. If the type of g is A1, A2, D4, E6, E7 and E8, then Lg(1, 0) is
of class S∞, S2, S3, S4, S5 and S7 under N(Lg(1, 0)), respectively.

Remark 5.2. If the type of g is An (n ≥ 1) and Dn (n ≥ 4), then Lg(1, 0) is of
class S2 and S3 under N(Lg(1, 0)), respectively.

Let us prove that Lg(1, 0) is of class S5 if the type of g is A2, G2, D4 or F4.

Proposition 5.3. If the type of g is A2 or D4, then Lg(1, 0) is of class S5.

Proof. Let L be the root lattice of g. Set h = C⊗ZL. Since Lg(1, 0) is isomorphic
to the lattice VOA VL

∼= S(h−Z ) ⊗ C[L] associated to L, it suffices to show that VL is
of class S5. For the details of VL, see [FLM88]. For convenience, we omit 1 = 1 ⊗ e0

in the description of elements in S(h−Z ) = S(h−Z ) ⊗ e0. Set V = VL, G = AutV and
N = N(V ). Let K be the subgroup of N defined by K = 〈exp a(0) | a ∈ h(−1)〉. Notice
that for a ∈ h and β ∈ L, exp(a(−1)(0)) acts on S(h−Z ) ⊗ eβ as the scalar multiple by
exp (a, β), where (, ) is the inner product of h. Since (, ) is non-degenerate, we obtain

V K = S(h−Z ) = SpanC{h1(−n1) · · ·ht(−nt) | hi ∈ h, n1 ≥ · · · ≥ nt ≥ 1}.

Recall from [FLM88, Section 10.4] that G contains a subgroup which acts on S(h−Z ) as
AutL. More precisely, for g ∈ AutL, there exists an element in Aut V which acts on
S(h−Z ) by

h1(−n1)h2(−n2) · · ·ht(−nt) 7→ (gh1)(−n1)(gh2)(−n2) · · · (ght)(−nt).

Case 1: the type of g is A2. By Proposition 5.1, V is of class S2 under N .
Let {α1, α2} be a set of simple roots of the root lattice L of type A2. Recall that
AutL is generated by −1, τ , and µ, where τ(α1) = α2, τ(α2) = α1, and µ(α1) = α1,
µ(α2) = −α1 − α2.

First, let us show that (S(h−Z )Aut L)3 =V 3
ω . Notice that (S(h−Z )〈−1〉)3 =h(−2)h(−1).
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By the action of τ , we have

(S(h−Z )〈−1,τ〉)3 = C
( 2∑

i=1

αi(−2)αi(−1)
)
⊕ C

( ∑

{i,j}={1,2}
αi(−2)αj(−1)

)
.

In addition, considering the action of µ, we have

(S(h−Z )Aut L)3 = C
( 2∑

i=1

αi(−2)αi(−1) +
1
2

( ∑

{i,j}={1,2}
αi(−2)αj(−1)

))
= V 3

ω .

Next, we prove that V is of class S5. Recall that VL has a real form on which the
invariant form is positive-definite ([Mi04, Proposition 2.7]). Since dim(V N )2 = dim V 2

ω

and dim(V N )3 > dimV 3
ω , there exists a highest weight vector v ∈ (V N )3 for Vω which

is orthogonal to Vω with respect to the invariant form. Moreover, by |G/N | = 2 and
dim(V N )3 − dimV 3

ω = 1, there exists g ∈ G \ N such that g(v) = −v. Let M be the
Vω-submodule generated by v. Then M ∩ Vω = 0 and g acts by −1 on M . By [KR87,
Proposition 8.2 (b)],

∞∑

i=0

dimM iqi = q3 + q4 + 2q5 + · · · .

Hence by (5.1),

∞∑

i=0

(dim(V N )i − dimM i)qi = 1 + q2 + q3 + 2q4 + 2q5 + · · · .

Clearly, dim(V G)i ≤ dim(V N )i − dimM i for all i. It follows from Remark 2.6 (2) that
(V G)i = V i

ω for 0 ≤ i ≤ 5, that is, V is of class S5.

Case 2: the type of g is D4. By Proposition 5.1, V is of class S3. Let
{e1, e2, e3, e4} be an orthonormal basis of R4 and let L be the root lattice of type D4.
We use the standard description L = {∑4

i=1 xiei |
∑4

i=1 xi ∈ 2Z}. Notice that the Weyl
group W of L is the semi-direct product E : S4, where E ∼= 23 is the group of sign changes
involving only even numbers of signs of the set {e1, e2, e3, e4} and S4 is the permutation
group on coordinates. One can see that

(S(h−Z )E)4 =
⊕

1≤i≤j≤4

Cei(−1)2ej(−1)2 ⊕
4⊕

i=1

Cei(−3)ei(−1)⊕
4⊕

i=1

Cei(−2)2

⊕ Ce1(−1)e2(−1)e3(−1)e4(−1).

Considering the action of S4 ⊂ W , we have
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(S(h−Z )W )4 = C
4∑

i=1

ei(−1)4 ⊕ C
∑

1≤i<j≤4

ei(−1)2ej(−1)2 ⊕ C
4∑

i=1

ei(−3)ei(−1)

⊕ C
4∑

i=1

ei(−2)2 ⊕ Ce1(−1)e2(−1)e3(−1)e4(−1).

Hence dim(S(h−Z )W )4 = 5.
We fix a set of simple roots {e1 − e2, e2 − e3, e3 ± e4}. Let H be the subgroup

of AutL generated by the Dynkin diagram automorphisms. Then AutL = W : H and
H ∼= S3. Note that H is generated by the following two involutions ν and σ:

ν(ei) = (−1)δi4ei (1 ≤ i ≤ 4),

σ(e1) =
1
2
(e1 + e2 + e3 − e4), σ(e2) =

1
2
(e1 + e2 − e3 + e4),

σ(e3) =
1
2
(e1 − e2 + e3 + e4), σ(e4) =

1
2
(−e1 + e2 + e3 + e4).

One can see that

(S(h−Z )Aut L)4 = C
4∑

i=1

ei(−3)ei(−1)⊕ C
4∑

i=1

ei(−2)2

⊕ C
( 4∑

i=1

ei(−1)4 + 2
∑

1≤i<j≤4

ei(−1)2ej(−1)2
)

and that the following 2-dimensional subspace X of (S(h−Z )W )4 is irreducible for H:

X = C
( 4∑

i=1

ei(−1)4 − 2
∑

1≤i<j≤4

ei(−1)2ej(−1)2
)
⊕ Ce1(−1)e2(−1)e3(−1)e4(−1).

Since N contains a subgroup induced from W , we have (V N )4 ⊂ (S(h−Z )W )4. More-
over, by G/N ∼= H (cf. [Hum78, Section 16.5] and [DN99, Theorem 2.1]), (V N )4

is a submodule of (S(h−Z )W )4 for H. Recall from (5.1) that dim(V N )4 = 4. Hence
dim(S(h−Z )W )4 = dim(V N )4 + 1. It follows from the irreducibility of X for H and
dimX = 2 that X must be contained in (V N )4. Clearly, X ∩ (V G)4 = 0 and dimV 4

ω = 2.
Comparing the dimensions, we obtain (V N )4 = X ⊕ V 4

ω , and hence (V G)4 = V 4
ω . More-

over, by (5.1) and Remark 2.6 (2), we have dimV 5
ω = dim V 4

ω and dim(V N )4 = dim(V N )5.
Since L(−1) is injective, we also have L(−1)X ⊕ V 5

ω = (V N )5. Thus (V G)5 = V 5
ω , and

V is of class S5. ¤

Let us consider the remaining case where the type of g is F4 or G2. We prove the
following lemma needed later:

Lemma 5.4. Let Φ be an indecomposable root system and let ρ be half the sum of
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positive roots with respect to fixed simple roots. Let W be the Weyl group and w ∈ W .

(1) |ρ− w(ρ)| = |ρ− w−1(ρ)|.
(2) If a simple reflection r ∈ W satisfies l(rw) > l(w), then |ρ − rw(ρ)| > |ρ − w(ρ)|,

where l(w) is the length of w.

Proof. (1) follows from |ρ − w(ρ)| = |w−1(ρ) − ρ|. Let β be the simple root
corresponding to r and (·, ·) the inner product. By r(ρ) = ρ − β and (ρ, β) = (β, β)/2,
we have

|ρ− w(ρ)|2 = |ρ− rw(ρ)− β|2 = |ρ− rw(ρ)|2 + |β|2 − 2(ρ− rw(ρ), β)

= |ρ− rw(ρ)|2 + |β|2 − 2(w−1(β), ρ)− |β|2 = |ρ− rw(ρ)|2 − 2(w−1(β), ρ).

By l(rw) > l(w) and [Hum78, Corollary of Lemma C in Section 10.2] w−1r(β) is a
negative root, and hence w−1(β) is a positive root. Thus (w−1(β), ρ) > 0. ¤

Proposition 5.5. If the type of g is G2 or F4, then Lg(1, 0) is of class S5 under
N(Lg(1, 0)).

Proof. Set V = Lg(1, 0) and N = N(V ). We fix a Cartan subalgebra h of
V 1(∼= g) and a set of simple roots. Let ( , ) be the inner product on h∗ normalized so
that |α|2 = (α, α) = 2 for a long root α. We view V as a basic module L(Λ0) for the
affine Lie algebra of g (see [Kac90] for the notations Λ0 etc.). Then V N is a sum of
trivial g-submodules of L(Λ0). It follows from [KP84, (4.39)] (see also [Kac90, Exercise
12.17]) that

dim∗(V N , q) = q−s
∑

w∈W

ε(w)q|ρ−w(ρ)|2/2cΛ0
Λ0+ρ−w(ρ), (5.2)

where s = −|ρ|2/2(1 + h∨)h∨, ρ is half the sum of all positive roots, cΛ0
Λ0+ρ−w(ρ) is the

string function defined in [Kac90, (12.7.7)] and ε(w) = (−1)l(w).

Case 1: g is of type G2. Remark that h∨ = 4, |ρ|2 = 14/3 and s = −7/60. Let
Λ2 be a short root. It follows from [Kac90, (12.7.9)] that for an element α in the root
lattice,

cΛ0
Λ0+α =

{
cΛ0
Λ0

if |α|2 ∈ 2Z,

cΛ0
Λ2

if |α|2 ∈ 2/3 + 2Z.

By Lemma 5.4, one can describe all elements w in the Weyl group W (G2) satisfying
|ρ− w(ρ)|2 ≤ 12 and obtain Table 3.

In [KP84, Example 6 in Section 4.6] the string functions for G
(1)
2 are described

explicitly as
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Table 3. Number of elements in W (G2) with |ρ− w(ρ)|2 ≤ 12.

(|ρ− w(ρ)|2, ε(w)) (0, 1) (2/3,−1) (2,−1) (14/3, 1) (8,−1) (32/3,−1)

number of elements w 1 1 1 2 1 1

cΛ0
Λ2

= η(q)−3q27/40
∏

i 6≡±2 (mod 5)

(1− q3i)

= q−7/60+2/3(1 + 3q + 9q2 + 21q3 + 48q4 + 99q5 + · · · ),

cΛ0
Λ0

= cΛ0
Λ2

+ η(q)−3q1/120
∏

i 6≡±1 (mod 5)

(1− qi/3)

= q−7/60(1 + 2q + 6q2 + 14q3 + 32q4 + 66q5 + 135q6 + · · · ),

where η(q) = q1/24
∏∞

i=1(1− qi) is the Dedekind eta function. By (5.2) and Table 3,

dim∗(V N , q) ≡ q7/60
(
(1− q − q4)cΛ0

Λ0
+ (−q1/3 + 2q7/3 − q16/3)cΛ0

Λ2

)
(mod q7)

≡ 1 + q2 + q3 + 2q4 + 2q5 + 5q6 (mod q7).

Hence V is of class S5 under N by Remark 2.6 (2).

Case 2: g is of type F4. Remark that h∨ = 9, |ρ|2 = 39 and s = −13/60. Let
Λ4 be a short root. It follows from [Kac90, (12.7.9)] that for an element α in the root
lattice,

cΛ0
Λ0+α =

{
cΛ0
Λ0

if |α|2 ∈ 2Z,

cΛ0
Λ4

if |α|2 ∈ 1 + 2Z.

By Lemma 5.4, one can describe all elements w in the Weyl group W (F4) satisfying
|ρ− w(ρ)|2 ≤ 10 and obtain Table 4.

In [KP84, Example 7 in Section 4.6] the string functions for F
(1)
4 are described

explicitly as

Table 4. Number of elements in W (F4) with |ρ− w(ρ)|2 ≤ 10.

(|ρ− w(ρ)|2, ε(w)) (0, 1) (1,−1) (2,−1) (3, 1) (4,−1) (5, 1) (5,−1)

number of elements w 1 2 2 5 1 2 2

(|ρ− w(ρ)|2, ε(w)) (6, 1) (7,−1) (8,−1) (9,−1) (9, 1) (10, 1)

number of elements w 3 4 2 4 1 2
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cΛ0
Λ4

= η(q)−6η(q2)q9/20
∏

i 6≡±2 (mod 5)

(1− q2i)

= q−13/60+1/2(1 + 6q + 25q2 + 86q3 + 261q4 + · · · ),

cΛ0
Λ0

= cΛ0
Λ4

+ η(q)−6η(q1/2)q1/80
∏

i 6≡±1 (mod 5)

(1− qi/2)

= q−13/60(1 + 4q + 17q2 + 56q3 + 172q4 + 476q5 + · · · ).

By (5.2) and Table 4, we obtain

dim∗(V N , q) ≡ q13/60
(
(1− 2q − q2 + 3q3 − 2q4 + 2q5)cΛ0

Λ0

+ (−2q1/2 + 5q3/2 − 4q7/2 − 3q9/2)cΛ0
Λ4

)
(mod q6)

≡ 1 + q2 + q3 + 2q4 + 2q5 (mod q6).

Hence V is of class S5 by Remark 2.6 (2). ¤

Note 5.6. We believe that Lg(1, 0) is of class S5 if the type of g is E6.

Combining Theorem 4.3, Propositions 5.1, 5.3 and 5.5, we obtain the following:

Theorem 5.7. Let V be a C2-cofinite, simple VOA of CFT-type with non-zero
invariant bilinear form. Assume that V 1 6= 0 and that the central charge of V is neither
0, −22/5, nor dimV 1. Then V is of class S4 under AutV if and only if V is isomorphic
to one of the simple affine VOAs associated with the simple Lie algebras of type A1, A2,

G2, D4, F4, E6, E7, E8 at level 1.

Corollary 5.8. Under the same assumptions as in Theorem 5.7, the following
are equivalent :

(1) κ4 ∈ V 4
ω ;

(2) V is of class S4.

Remark 5.9. The trace formulae for the adjoint representation of simple Lie al-
gebras of type A1, A2, G2, D4, F4, E6, E7, E8, up to degree 4, can be obtained by Propo-
sitions 3.1 and 3.4 and Theorem 3.6.

A. Proof of Theorem 3.6.

In this appendix, we prove Theorem 3.6, based on [Ma01, Section 2.2]. We use
many formulae (cf. Section 4.2 and Section 4.3 in [MN99]) deduced from the Borcherds
identity. For example, we often refer the following formula:

Lemma A.1. For a, x ∈ V and q ∈ Z, the following holds:

x(q)a(0) = (a(1)x)(q−1) + x(q−1)a(1) + a(0)x(q) − a(1)x(q−1).
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Let T denote the 0-th operation of the conformal vector ω, that is, T = ω(0) = L(−1).
Notice that Tnv/n! = v(−n−1)1 for v ∈ V , n ∈ Z≥0. Set

X2 =
2d

c
, X3 =

d

c
, X4 =

3d(c + 2)
2c(5c + 22)

, Y4 =
12d

c(5c + 22)
.

By Lemma 2.5, one can easily see

κ2 = X2ω, κ3 = X3Tω, κ4 = X4T
2ω + Y4ω(−1)ω.

By the invariance of the bilinear form and Lemma A.1,

TrV 1 a1(0)a2(0)a3(0)a4(0)

=
d∑

i=1

(a1(0)a2(0)a3(0)a4(0)x
i|xi) = −

d∑

i=1

(a4|xi
(0)a3(0)a2(0)a1(0)xi)

= (a1(0)a3|a2(0)a4) + (a1(0)a4|a2(0)a3)−
d∑

i=1

(a4|a3(0)x
i
(0)a2(0)a1(0)xi)

+
d∑

i=1

(a4|a3(1)x
i
(−1)a2(0)a1(0)xi). (A.1)

By Proposition 3.4, the third term of (A.1) is

−
d∑

i=1

(a4|a3(0)x
i
(0)a2(0)a1(0)) = −

d∑

i=1

(a4(0)a3|xi
(0)a2(0)a1(0)xi)

=
(

d

c
− 1

)
(a1(0)a2|a3(0)a4).

Let us compute the forth term of (A.1). By Lemma A.1,

d∑

i=1

(a4|a3(1)x
i
(−1)a2(0)a1(0)xi)

=
d∑

i=1

(a4|a3(1)x
i
(−2)a2(1)a1(0)xi) +

d∑

i=1

(a4|a3(1)a2(0)x
i
(−1)a1(0)xi)

−
d∑

i=1

(a4|a3(1)a2(1)x
i
(−2)a1(0)xi). (A.2)

Let us calculate each term of the right hand side of (A.2). The first term of (A.2) is
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d∑

i=1

(a4|a3(1)x
i
(−2)a2(1)a1(0)xi) = (a4|a3(1)Txi)(a2|a(0)xi)

= (a4|a3(0)a2(0)a1) = (a1(0)a2|a3(0)a4).

By Lemma A.1, the second term of (A.2) is

d∑

i=1

(a4|a3(1)a2(0)x
i
(−1)a1(0)xi)

= (a4|a3(1)a2(0)Ta1) + (a4|a3(1)a2(0)a1(0)κ2)− (a4|a3(1)a2(0)a1(1)κ3)

= (a4|a3(0)a2(0)a1)−X3(a4|a3(1)a2(0)Ta1) = (1−X3)(a1(0)a2|a3(0)a4).

By Lemma A.1, the last term of (A.2) is

−
d∑

i=1

(a4|a3(1)a2(1)x
i
(−2)a1(0)xi)

= −(a4|a3(1)a2(1)T
(2)a1)− (a4|a3(1)a2(1)a1(0)κ3) + (a4|a3(1)a2(1)a1(1)κ4)

= (2X4 − 1)(a1(0)a2|a3(0)a4) + Y4(a4|a3(1)a2(1)a1(1)ω(−1)ω).

By the commutator formula and the skew symmetry, the last term of the equation above
is

(a4|a3(1)a2(1)a1(1)ω(−1)ω)

= (a4|a3(1)a2(1)ω(−1)a1(1)ω) + (a4|a3(1)a2(1)a1(−1)ω)

= 2(a4|a3(1)a2(1)ω(−1)a1)− (a4|a3(1)a2(1)T
2a1)/2

= 2(a4|a3(1)ω(−1)a2(1)a1) + 2(a4|a3(1)a2(−1)a1)− (a4|a3(0)a2(0)a1)

= 2(a2|a1)(a4|a3)− 2(a1(0)a4|a2(0)a3)

+ 2(a3|a2)(a4|a1) + 2(a4|a2)(a3|a1)− (a1(0)a2|a3(0)a4).

Therefore we obtain the following:

TrV 1 a1(0)a2(0)a3(0)a4(0)

=
(

d

c
−X3 + 2X4 − Y4 + 1

)
(a1(0)a2|a3(0)a4) + (2− 2Y4)(a1(0)a4|a2(0)a3)

+ 2Y4

(
(a1|a2)(a3|a4) + (a1|a3)(a2|a4) + (a1|a4)(a2|a3)

)

=
(

1 +
3d(c− 2)
c(22 + 5c)

)
(a1(0)a2|a3(0)a4) +

(
2− 24d

c(22 + 5c)

)
(a1(0)a4|a2(0)a3)

+
24d

c(22 + 5c)
(
(a1|a2)(a3|a4) + (a1|a3)(a2|a4) + (a1|a4)(a2|a3)

)
.
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B. Another proof of Theorem 3.6.

In this appendix, we sketch a proof of Theorem 3.6 under the assumption that V 1

is a conformal 4-design in a similar way as in [Ma01, Section 2.3].
By using the associativity formula, we obtain

TrV 1 a1(0)a2(0)a3(0)a4(0)

= TrV 1(a1(−1)a2(−1)a3(−1)a4)(3) + (a1(0)a2|a3(0)a4) + 2(a1(0)a4|a2(0)a3), (B.1)

which was mentioned in [Hur02, Lemma 5.2]. Let π be the orthogonal projection from
V 4 to V 4

ω with respect to the invariant form. Set v = a1(−1)a2(−1)a3(−1)a4. Then v ∈ V 4,
and by the definition of the conformal 4-design ([Hö08]),

TrV 1 v(3) = TrV 1 π(v)(3). (B.2)

Set π(v) = Z1L(−4)1 + Z2L(−2)L(−2)1. By (v|u) = (π(v)|u) for all u ∈ V 4
ω , one can

directly show that

Z1 =
(c + 14)

c(5c + 22)
(a1(0)a2|a3(0)a4) +

12
c(5c + 22)

(a1(0)a4|a2(0)a3)

− 12
c(5c + 22)

((a1|a2)(a3|a4) + (a1|a3)(a2|a4) + (a1|a4)(a2|a3)),

Z2 =
−16

c(5c + 22)
(a1(0)a2|a3(0)a4)− 20

c(5c + 22)
(a1(0)a4|a2(0)a3)

+
20

c(5c + 22)
((a1|a2)(a3|a4) + (a1|a3)(a2|a4) + (a1|a4)(a2|a3)).

(B.3)

In addition, one can check that

TrV 1 (L(−4)1)(3) = TrV 1 (L(−2)L(−2)1)(3) = 3d. (B.4)

Combining (B.1), (B.2), (B.3) and (B.4), we obtain Theorem 3.6.
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