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Abstract. We use the convexity of a certain function discovered by W.
Kendall on small metric balls in CAT(1)-spaces to show that any probability
measure on a complete CAT(1)-space of small radius admits a unique barycen-
ter. We also present various properties of barycenter on those spaces. This
extends the results previously known for CAT(0)-spaces and CAT(1)-spaces
of small diameter.

1. Introduction.

In this paper, we are concerned with local geometry of CAT(κ)-spaces particularly
with a positive number κ > 0. They are metric spaces with κ ∈ R as an upper bound for
their curvature in the sense of Alexandrov which is defined in terms of geodesic triangles.
The precise definition is given in Definition 2 below.

Let (X, d) be a metric space. By a geodesic in it, we mean a curve γ : I → X of
constant speed defined on an interval I ⊂ R which realizes the distance between points
on its image, i.e., there is a constant |γ′| ≥ 0 with d(γ(s), γ(t)) = |γ′| · |s − t| for any
s, t ∈ I. We say that a function f : X → R ∪ {∞} is convex when the function f(γ( · ))
is convex on I for any geodesic γ : I → X. When X is a product of two metric spaces
Y1 and Y2 equipped with a natural product metric, this amounts to that f(γ1( · ), γ2( · ))
is convex on I for any pair of geodesics γi : I → Yi, i = 1, 2.

It is well-known that the distance function d : Y × Y → [0,∞) of a CAT(0)-space
(Y, d) is convex. The following theorem is the main tool that we avail ourselves of in our
approach, which states that any small ball in a CAT(κ)-space with κ > 0 also admits such
a convex function. Here and hereafter, B(o, · ) and B(o, · ) denote open and closed metric
balls centered at o ∈ Y respectively. We also use Rκ := π/

√
κ and cosκ r := cos(

√
κ · r)

for κ > 0 and r > 0.

Theorem A. Let (Y, d) be a CAT(κ)-space with κ > 0 and r < Rκ/2. For any
h > h̃ > 0 with h ≤ cosκ r, ν ∈ R and o ∈ Y , the function Φ(κ)

ν,h̃
: B(o, r)×B(o, r) → [0,∞)

given by

(x, y) 7−→
(

1
κ
· 1− cosκ d(x, y)
cosκ d(x, o) cosκ d(y, o)− h̃2

)ν+1

is convex, provided that 2(2ν + 1)h̃2(h2 − h̃2) ≥ 1.
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In the terminology of Kendall [23], Theorem A says that the ball B(o, r) in its
statement has convex geometry and it extends his result in [23] to general CAT(κ)-
spaces. The function in Theorem A appeared in [23] after a similar function was used by
Jäger–Kaul [14] in their proof of a uniqueness theorem for harmonic maps. Kendall [23]
proved Theorem A for the unit sphere of the Euclidean space; see Theorem 34 below. He
also remarked that Theorem A holds for a regular geodesic ball [22, Definition 1.6] with a
positive upper bound for the sectional curvature in a complete Riemannian manifold. A
regular geodesic ball is characterized as a ball which itself becomes a CAT(κ)-space with
some κ > 0, e.g. Kuwae [25]. Since a proof of Theorem A is not found in the literature,
we decided to give a detailed proof in the appendix.

We also add that convex functions have been playing key roles in the theory of
harmonic maps. Among others, Ishihara [13] gave a characterization of harmonic maps
between Riemannian manifolds by means of convex functions and Jost–Xin–Yang [18]
proved a Liouville type theorem for harmonic maps into a certain subset of the Euclidean
sphere by constructing convex functions. Convex functions are also behind the Liouville
type theorem for harmonic maps into singular spaces formulated by Kuwae–Sturm [27].

Next, we proceed to the second topic in the title of the paper.

Definition 1 (Barycenter). For a metric space (X, d) and p ∈ [1,∞), we let
Pp(X) be the set of all Borel probability measures µ on X with

∫
X

dp( ·, x0) dµ < ∞ for
some (hence all) x0 ∈ X. For a probability measure µ ∈ P2(X), we consider the function
Fµ : X → [0,∞) given by Fµ(x) := (1/2)

∫
X

d2( ·, x) dµ. We call a point of X where Fµ

attains its global minimum (resp. local minimum) a barycenter (resp. a Karcher mean)
of µ.

Barycenter of probability measures is also referred to as center of mass or Fréchet
mean in the literature. If µ is in P1(X), we consider the function x 7−→ ∫

X
d2( ·, x) −

d2( ·, x0) dµ with x0 ∈ X being fixed instead to define a barycenter of µ. The theory
of barycenter of probability measures on CAT(0)-spaces has been developed by many
authors; see e.g. Sturm [34].

We now state a main theorem of this paper. We say that a measure µ on a space X

is concentrated on a subset S ⊂ X if µ(X \ S) = 0. The radius of a metric space (X, d)
is defined as rad(X) := infx∈X supy∈X d(x, y).

Theorem B. Let (Y, d) be a complete CAT(κ)-space with κ > 0. Suppose that
µ ∈ P2(Y ) is concentrated on a ball B(o, r) with o ∈ Y and r < Rκ/2. Then µ admits a
barycenter b(µ) ∈ B(o, r) and it is unique in Y . In particular, if the radius of (Y, d) is
less than Rκ/2, any µ ∈ P2(Y ) admits a unique barycenter in Y .

The condition on the radius that r < Rκ/2 is sharp. We prove Theorem B by com-
bining Theorem A and the Ekeland principle (Lemma 11). We expect further applications
of our Theorem A in the geometry of CAT(κ)-spaces, cf. Jost [17].

In addition to the theorems stated above, we will also obtain Banach–Saks–Kakutani
type theorems for CAT(κ)-spaces in Theorems C and D and prove existence of minimizers
of some convex functions on CAT(κ)-spaces with κ > 0 in Theorem E in the subsequent
sections. They extend the theorems of Jost [15], [16] proved for CAT(0)-spaces to
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CAT(κ)-spaces.
The organization of this paper is as follows: After some preparation in the next

section, we prove Theorem B in Section 3. Then Sections 4 and 5 are devoted to a
collection of some properties of barycenter of probability measures on CAT(κ)-spaces.
Among them is Jensen’s inequality for convex functions (Theorem 25), cf. Kuwae [25].
The proof of Theorem A is given in the appendix.

2. Preliminaries.

In this section, we recall some rudimentary definitions and facts on the geometry
of CAT(κ)-spaces. The textbook [6] by Burago–Burago–Ivanov is one of the standard
references of the Alexandrov geometry.

We begin with the definition of CAT(κ)-spaces. For any real number κ ∈ R, let
(Mκ, dκ) be the model surface, i.e., the simply-connected surface with the distance in-
duced by the complete Riemannian metric of constant curvature κ. We will also use
(S2, d) instead of (M1, d1). We let Rκ := π/

√
κ for κ > 0 and Rκ := +∞ for κ ≤ 0.

Definition 2 (CAT(κ)-space). We call a metric space (Y, d) a CAT(κ)-space if it
is an Rκ-geodesic space, i.e., any two points x, y ∈ Y with d(x, y) < Rκ are connected by
a geodesic, and it satisfies the following: For any three points x, y, z ∈ Y with d(x, y) +
d(y, z) + d(z, x) < 2Rκ and a geodesic γ : [0, 1] → Y with γ(0) = y and γ(1) = z,

d(γ(t), x) ≤ dκ(γ̄(t), x̄) for any t ∈ [0, 1].

Here, {x̄, ȳ, z̄} ⊂ (Mκ, dκ) is an isometric copy of the three-point subset {x, y, z} ⊂ (Y, d)
and γ̄ : [0, 1] → Mκ is the geodesic with γ̄(0) = ȳ and γ̄(1) = z̄.

In this paper, we persist in using the letter Y to denote a CAT(κ)-space. Complete
Riemannian manifolds with sectional curvature at most κ and injectivity radius not less
than Rκ are typical examples of CAT(κ)-spaces. The upper curvature bound κ ∈ R of a
CAT(κ)-space changes accordingly as its distance is rescaled by a positive number and
a CAT(κ)-space is also a CAT(κ′)-space for κ′ > κ.

Our main interest is in CAT(κ)-spaces with radius < Rκ/2 for some κ > 0. A metric
ball of radius < Rκ/2 in a CAT(κ)-space is a simple example. One of the theorems of
Fujiwara–Nagano–Shioya [11, Theorem 1.7], cf. Balser–Lytchak [4, Proposition 1.2], also
provides such spaces.

Here we collect some notations used throughout this paper without giving the precise
definitions:

• For κ > 0 and r ∈ R, cosκ r := cos(
√

κ · r) and sinκ r := sin(
√

κ · r)/√κ.
• In a CAT(κ)-space (Y, d), a geodesic connecting two points x, y ∈ Y with d(x, y) <

Rκ is unique up to parameterization. We denote by γxy : [0, 1] → Y the geodesic
with γxy(0) = x and γxy(1) = y.

• ∠̃κ(x; y, z) ∈ [0, π] denotes the comparison angle for three points x, y, z in (Y, d).
For example, it is defined for κ > 0 by
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cos ∠̃κ(x; y, z) :=
cosκ d(y, z)− cosκ d(x, y) cosκ d(x, z)

κ · sinκ d(x, y) sinκ d(x, z)

if y, z 6= x and d(x, y) + d(y, z) + d(z, x) < 2Rκ.
• (Σx,∠x) and (Cx, | · |) denote the space of directions and the tangent cone at a

point x ∈ Y respectively with ox ∈ Cx := Σx × [0,∞)/Σx × {0} being the vertex.
• ↑y

x ∈ Σx with x 6= y ∈ Y denotes the equivalence class of any geodesic from x to
y, and ∠x(y, z) := ∠x(↑y

x, ↑z
x) ∈ [0, π] denotes the angle.

• For x, y ∈ Y with x 6= y, we set logx y := d(x, y) · ↑y
x ∈ Cx and logx x := ox ∈ Cx.

We also use ∠x(u, y) := ∠x(u, ↑y
x) for u ∈ Cx \ {ox}.

• |u| := |u− ox| and
〈
u, v

〉
:= (|u|2 + |v|2 − |u− v|2)/2 for two vectors u, v ∈ Cx at

x ∈ Y . If u, v 6= ox,
〈
u, v

〉
= |u||v| cos ∠x(u, v).

• For a geodesic γ : I → Y and t0 ∈ I ⊂ R, γ′(t0+) and γ′(t0−) denote the
equivalence classes in the tangent cone Cγ(t0) at the point γ(t0) ∈ Y represented
by the geodesics γ± : [0, ε) → Y given by γ±(t) := γ(t0± t) respectively with small
ε > 0.

• For a function f : I → R and t0 ∈ I ⊂ R with t0 6= sup I,

f ′(t0+) := lim
h→0+

f(t0 + h)− f(t0)
h

.

We list some basic facts on CAT(κ)-spaces which we will make use of.

Fact 3 (Angle monotonicity/comparison). For any three points x, y, z in a
CAT(κ)-space with y, z 6= x and d(x, y)+d(y, z)+d(z, x) < 2Rκ and a point y′ := γxy(t)
for some t ∈ (0, 1),

∠̃κ(x; y, z) ≥ ∠̃κ(x; y′, z) ≥ ∠x(y, z).

Fact 4 (Local uniform convexity). For any κ, r, ε > 0 with r < Rκ/2, there is
δκ(ε; r) > 0 such that

d(m(x, y), o) ≤ r − δκ(ε; r)

for any x, y ∈ B(o, r) with d(x, y) ≥ εr in a CAT(κ)-space (Y, d) with o ∈ Y . Here
m(x, y) := γxy(1/2) ∈ Y is the midpoint of x and y.

The function

δκ(ε; r) := inf
{
r − d(m(x, y), o) : x, y ∈ B(o, r) ⊂ Y with d(x, y) ≥ εr

}

resembles what is called the modulus of convexity in the theory of Banach spaces,
cf. Gelander–Karlsson–Margulis [12].

Although it will not be required later, Ohta’s lemma [30, Lemma 3.1] gives an
explicit estimate for δκ(ε; r) > 0 in Fact 4. He states his lemma for CAT(1)-spaces of
diameter < π/2, but his proof actually shows the following.
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Lemma 5 (k-convexity of CAT(κ)-spaces, Ohta [30]). Any geodesic γxy : [0, 1] →
Y connecting points x, y ∈ B(o, (Rκ − ε)/2) in a CAT(κ)-space (Y, d) with κ, ε > 0 and
o ∈ Y satisfies

d2(γxy(t), o) ≤ (1− t)d2(x, o) + td2(y, o)− k

2
t(1− t)d2(x, y) (6)

for any t ∈ [0, 1] with k := (Rκ − ε) tan(ε/2) > 0.

The following fact is needed in our proof of Theorem A.

Fact 7 (First variation formula, cf. [6, Exercise 4.5.10]). Suppose that λ, µ : I → Y

are two geodesics in a CAT(κ)-space (Y, d) with x := λ(t0), y := µ(t0) and d(x, y) < Rκ

for some t0 ∈ I with t0 6= sup I. Then the function d(t) := d(λ(t), µ(t)) satisfies

d(t0+) = −〈
λ′(t0+), ↑y

x

〉− 〈
µ′(t0+), ↑x

y

〉
.

We close this section with a simple consequence of the combination of some of the
above facts. For κ ∈ R, we say that a subset C ⊂ X of a metric space (X, d) is Rκ-convex
if any geodesic connecting points x, y ∈ C with d(x, y) < Rκ does not leave C ⊂ X.

Fact 8 (Chebyshev property of convex subsets). For a closed Rκ-convex subset
C ⊂ Y and a point p ∈ Y of a complete CAT(κ)-space (Y, d) with d(p, C) < Rκ/2,
there exists a unique point πC(p) ∈ C with d(p, πC(p)) = d(p, C). It also holds that
∠̃κ(πC(p); p, c) ≥ ∠πC(p)(p, c) ≥ π/2 for any c ∈ C if they are defined.

3. Proof of Theorem B.

In this section, we present a proof of Theorem B stated in the introduction after
some comment and preparation.

Theorem B is well-known for CAT(0)-spaces, e.g. Sturm [34], and is also known
for CAT(1)-spaces of diameter < π/2, e.g. Kuwae [25]. The proofs for these spaces
rely on the k-convexity of them as in Inequality (6) with k = 2 for CAT(0)-spaces and
k = (π−2ε) tan ε > 0 for CAT(1)-spaces of diameter ≤ π/2−ε, cf. Karcher [20, Theorem
1.2]. The notion of k-convexity for metric spaces was introduced and studied by Ohta
[30].

We here recall some definitions. For a function ϕ defined on a neighborhood of a
point x ∈ Y of a CAT(κ)-space (Y, d), we define its directional derivative by Dϕ[logx y] :=
ϕ ◦ γxy(0+) ∈ R ∪ {±∞}, if exists, for y ∈ Y with 0 < d(x, y) < Rκ. If ϕ is locally
Lipschitz at x, we extend it to a Lipschitz function Dϕ on the tangent cone Cx at x.

The following lemma is well-known, e.g. Lytchak [28, Lemma 7.3].

Lemma 9. Let ϕ be a convex function defined on a neighborhood of a point x of
a CAT(κ)-space (Y, d) with κ ∈ R. Suppose that Dϕ[ξ] < 0 for some ξ ∈ Σx and ϕ is
locally Lipschitz at x. Then there exists a unique vector ξx ∈ Σx such that

Dϕ[η] ≥ Dϕ[ξx]
〈
η, ξx

〉
for any η ∈ Σx.
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In the above lemma, ξx ∈ Σx is the point where the function Dϕ restricted on Σx

attains its minimum. We put ∇−x ϕ := (−Dϕ[ξx]) · ξx ∈ Cx in the situation of Lemma
9 or ∇−x ϕ := ox ∈ Cx when Dϕ[ξ] ≥ 0 for any ξ ∈ Cx, and we call the vector ∇−x ϕ the
(negative) gradient of ϕ at x.

Jensen’s inequality is one of the properties that we expect for barycenter or Karcher
mean of probability measures. We here give a quick proof of it, because it has something
in common with our proof of Theorem B. Another version of Jensen’s inequality is proved
in Theorem 25 in the subsequent section.

Proposition 10 (Jensen’s inequality, cf. Kendall [22, Lemma 7.2]). Let (Y, d) be
a complete CAT(κ)-space with κ ∈ R and ϕ : Y → R ∪ {∞} be a lower-semicontinuous
convex function. Suppose that µ ∈ P2(Y ) has its Karcher mean b(µ) ∈ Y and µ is
concentrated on B(b(µ), Rκ) ⊂ Y . Then

ϕ(b(µ)) ≤
∫

Y

ϕdµ

if ϕ is locally Lipschitz at b(µ).

Proof. Since our assumption implies that ϕ ≡ ∞ and nothing remains to prove
if ϕ(b(µ)) = ∞, we may assume that ϕ(b(µ)) < ∞ in the proof.

For any y ∈ B(b(µ), Rκ), the function ϕ ◦ γb(µ)y is convex on [0, 1], and we have

ϕ(y)− ϕ(b(µ)) ≥ Dϕ
[
logb(µ) y

]

≥ −〈∇−b(µ)ϕ, logb(µ) y
〉
.

We finish the proof by integrating this inequality. Indeed, it follows from Fact 7 that
the directional derivative DF of the function F := Fµ at a point x ∈ Y is given by

DF [ξ] = −
∫

Y

〈
ξ, logx y

〉
dµ(y) for ξ ∈ Cx,

and we know that DF [ξ] ≥ 0 for any ξ ∈ Cb(µ) at the Karcher mean b(µ) ∈ Y . ¤

We also invoke the following lemma.

Lemma 11 (Ekeland principle, e.g. Ekeland [8]). Let f : X → R be a lower-
semicontinuous function on a complete metric space (X, d) with infX f > −∞. For any
point x0 ∈ X and ε > 0, we can find a point xε ∈ X for which d(xε, x0) ≤ (f(x0) −
infX f)/ε and

f(y) ≥ f(xε)− ε · d(y, xε) for any y ∈ X.

Now we are in a position to begin our proof of Theorem B. The following proof was
inspired by that of Kendall [22, Theorem 7.3].
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Proof of Theorem B. Recall that µ ∈ P2(Y ) is concentrated on B(o, r) ⊂ Y

for some o ∈ Y and r < Rκ/2 and we would like to find a point where the function
F := Fµ attain the minimum. We start with the following observations.

Claim 12. For any ε > 0, there exists δ = δ(ε) > 0 such that

F (x) > inf
B(o,r)

F + δ for any x ∈ Y \B(o, r + ε).

Proof. For a point x ∈ Y with d(x, o) ≥ 2r, we have

F (x) > r2/2 > F (o) ≥ inf
B(o,r)

F.

For a point x ∈ Y with r + ε ≤ d(x, o) < 2r, we let γ : [0, d(x, o)] → Y be the unit
speed geodesic from o to x and put x′ := γ(2r + ε − d(x, o)) ∈ B(o, r). We shall show
that d(x, y) > d(x′, y) +

√
2δ for any y ∈ B(o, r), which implies that F (x) > F (x′) + δ,

cf. Afsari [1]. To show this, we fix y ∈ B(o, r) and set x0 := γ(r + (ε/2)) ∈ Y . Note that
d(y, x0), d(x, x0) = d(x′, x0) > ε/2.

If d(x0, x)+ d(x, y)+ d(y, x0) ≥ 2Rκ, we note 4r > d(x0, x
′)+ d(x′, y)+ d(y, x0) and

get

d(x, y) ≥ 2Rκ − d(x0, x
′)− d(y, x0) > d(x′, y) + 2(Rκ − 2r).

If d(x0, x) + d(x, y) + d(y, x0) < 2Rκ, we have

∠̃κ(x0;x′, y) ≤ ∠̃κ(x0; o, y) < (π/2)− δ′;

∠̃κ(x0;x, y) ≥ ∠x0(x, y)

≥ π − ∠x0(x
′, y)

≥ π − ∠̃κ(x0; o, y) > (π/2) + δ′

for some δ′ = δ′(ε) > 0. These inequalities confirm the claim. ¤

Claim 13. There exist r′ ∈ (0, r) and δ > 0 such that

DF
[↑o

x

]
< −δ for any x ∈ B(o,Rκ/2) \B(o, r′).

Proof. We choose r′ ∈ (0, r) so that r − r′ > 0 is small enough with

δ := −Rκµ(B(o, r) \B(o, r′))

+
∫

B(o,r′)
(r′ − d(y, o))(cos d(y, o)− cos r′) dµ(y) > 0.

Then for any x ∈ B(o,Rκ/2) \B(o, r′) we have
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−DF
[↑o

x

]
=

∫

Y

〈↑o
x, logx y

〉
dµ(y)

≥
∫

B(o,r)

d(x, y) cos ∠̃κ(x; y, o) dµ(y) > δ.

This confirms the claim. ¤

We continue our proof of Theorem B. For the function F := Fµ and each ε > 0, we
appeal to Lemma 11 to find a point x(ε) ∈ Y such that limε→0+ F (x(ε)) → infY F and

F (y) ≥ F (x(ε))− ε · d(y, x(ε)) for any y ∈ Y.

By the choice of x(ε),

DF [ξ] ≥ −ε|ξ| for any ξ ∈ Cx(ε). (14)

Combined with this, Claims 12 and 13 imply that lim supε→0+ d(x(ε), o) < r′ < r.
According to Theorem A, the function Φ := Φ(κ)

ν,h̃
: B(o, r) × B(o, r) → [0,∞) with

appropriate h̃ < h := cosκ r and ν ∈ R is convex. We then use Fact 7 to derive for any
y ∈ B(o, r) and ε, ε′ > 0 that

Φ(y, y)− Φ(x(ε), x(ε′))

≥ DΦ
[
log(x(ε),x(ε′))(y, y)

]

= DΦ( ·, x(ε′))
[
logx(ε) y

]
+ DΦ(x(ε), · )[ logx(ε′) y

]

≥ −〈∇−x(ε)Φ( ·, x(ε′)), logx(ε) y
〉− 〈∇−x(ε′)Φ(x(ε), · ), logx(ε′) y

〉
.

Since Φ(y, y) = 0, we integrate this inequality and use (14) to obtain that

−Φ(x(ε), x(ε′)) ≥ DF
[∇−x(ε)Φ( ·, x(ε′))

]
+ DF

[∇−x(ε′)Φ(x(ε), · )]

≥ −ε
∣∣∇−x(ε)Φ( ·, x(ε′))

∣∣− ε′
∣∣∇−x(ε′)Φ(x(ε), · )∣∣

≥ −C(ε + ε′)

with some constant C < ∞ depending only on h, h̃ and ν. This says that Φ(x(ε), x(ε′)) →
0 or equivalently d(x(ε), x(ε′)) → 0 as ε, ε′ → 0+. Therefore, a sequence (x(εi))i∈N with
εi → 0+ as i → ∞ is a Cauchy sequence in Y with lim supi→∞ d(x(εi), o) < r and it
converges to some point b(µ) ∈ B(o, r), which turns out to be a barycenter of µ.

We notice that the above argument also establishes the uniqueness of barycenter of
µ in Y . Now the proof of Theorem B is complete. ¤

We give a few easy corollaries of Theorem B. First of all, by inspecting our proof of
Theorem B, we have the following characterisation of the barycenter.
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Corollary 15. In the situation of Theorem B, suppose a point z ∈ B(o, r) satis-
fies that

DFµ[ξ] ≥ 0 for any ξ ∈ Cz.

Then z is the unique barycenter b(µ) in B(o, r).

It is known that the barycenter of a probability measure µ ∈ P1(Y ) on a complete
CAT(0)-space Y lies in the closed convex hull of a subset on which µ is concentrated,
e.g. [34, Proposition 6.1]. For CAT(κ)-spaces, we can prove something similar as well.
In the statement below, conv(S) ⊂ Y denotes the closed convex hull of a subset S ⊂ Y ,
i.e., the smallest closed Rκ-convex subset of Y containing S.

Corollary 16. In the situation of Theorem B, suppose that µ ∈ P2(Y ) is con-
centrated on a subset S of a ball B(o, r) ⊂ Y . Then b(µ) ∈ conv(S).

Proof. We slightly modify our proof of Theorem B to know that there exists a
point b̄(µ) ∈ C := conv(S) ⊂ B := B(o, r) such that Fµ(x) ≥ Fµ(b̄(µ)) for any x ∈ C.

If we suppose that b̄(µ) 6= b(µ), then it follows from Corollary 15 that there exist a
geodesic γ : [0, 1] → Y with γ(0) = b̄(µ) and ε > 0 such that

Fµ(γ(t)) < Fµ(b̄(µ))− 2εt for any t > 0.

By assumption, we have γ(t) 6∈ C and

∠̃κ(πC(γ(t)); γ(t), x) ≥ ∠πC(γ(t))(γ(t), x) ≥ π/2

for any t > 0 and x ∈ C \ {πC(γ(t))}.
Since diam(S) < Rκ, we notice that there exists δ > 0 such that

d2(γ(t), x) > d2(πC(γ(t)), x)− 2εt

for any x ∈ C and any t ∈ (0, δ). This implies that

Fµ(γ(t)) > Fµ(πC(γ(t)))− εt ≥ Fµ(b̄(µ))− εt

for any t ∈ (0, δ), which is a contradiction. We therefore conclude that b(µ) = b̄(µ) ∈ C.
¤

Remark 17. In [27] and [26], a minimizer of the function Fµ restricted on the
closed convex hull of the support of µ ∈ P1(X) is called a pure barycenter of µ. The
support of a measure µ on a metric space X is defined as

supp[µ] := {x ∈ X : µ(B(x, r)) > 0 for any r > 0} .

On a complete separable metric space, supp[µ] is the minimal closed subset on which µ
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is concentrated. Corollary 16 says that the barycenter and the pure barycenter coincide
for µ ∈ P1(Y ) as in the corollary on a complete separable CAT(κ)-space Y with κ > 0.

4. Properties of barycenters.

In this section, we collect some properties of Karcher mean or barycenter of proba-
bility measures on CAT(κ)-spaces with κ > 0, which we proved to exist in Theorem B.
We will utilize Theorem A along with the fact that the product of two CAT(κ)-spaces
equipped with the direct product metric is again a CAT(κ)-space.

Some properties of barycenter of probability measures on CAT(0)-spaces are well-
known, e.g. Sturm [34]. Our results in this section extend some of them to the context
of CAT(κ)-spaces. We do not attempt to exhaust such possible extensions. We here
also add that Ohta [31] investigated properties of barycenter of probability measures on
proper Alexandrov spaces of curvature ≥ κ.

Throughout this section, we always assume that

• (Y, d) stands for a complete CAT(κ)-space with κ > 0;
• µ ∈ P2(Y ) is concentrated on B := B(o, r) with o ∈ Y and r < Rκ/2 and has its

barycenter b(µ) ∈ B;
• Φ := Φ(κ)

ν,h̃
: B × B → [0,∞) is the convex function in Theorem A with suitable

parameters ν > −1/2 and h̃ > 0 with h̃ < h := cosκ r.

Before we commence, we remark that a simple estimate says

(
4d2(x, y)

π2(1− h̃2)

)ν+1

≤ Φ(x, y) ≤
(

d2(x, y)
2(h2 − h̃2)

)ν+1

(18)

for any x, y ∈ B(o, r).

4.1. Variance inequality.
Proposition 19 (Variance inequality, cf. [34, Proposition 4.4]). For any x ∈ B :=

B(o, r),
∫

Y

d2( ·, x)− d2( ·, b(µ)) dµ ≥ c · dα(x, b(µ))

with some constants c > 0 and α > 2 depending only on κ and r.

Proof. For any x ∈ B with x 6= b(µ), we apply Lemma 11 with x0 := x and
ε := 2(F (x) − F (b(µ)))/d(x, b(µ)) > 0 to obtain a point xε ∈ B such that d(xε, x) ≤
d(x, b(µ))/2 and the function F := Fµ satisfies

F (y) ≥ F (xε)− ε · d(y, xε) for any y ∈ B.

Then we use the argument in the proof of Theorem B, with Φ being extended to
B ×B if necessary, to see that Φ(xε, b(µ)) ≤ Cε for some constant C < ∞ and hence by
(18)
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F (x)− F (b(µ)) ≥ d(x, b(µ))
2C

· d2(ν+1)(xε, b(µ)) ≥ 1
C

(
d(x, b(µ))

2

)2ν+3

.

This proves the proposition with α := 2ν + 3 > 2. ¤

Next we seek a variance inequality which fits better to CAT(κ)-spaces with κ > 0.
We begin with a simple definition. For three points x, y, z of a metric space (X, d) and
κ ∈ R, we put

〈−→xy,−→xz〉κ := d(x, y)d(x, z) · cos ∠̃κ(x; y, z) .

To complement, we define 〈−→xy,−→xz〉κ := 0 if d(x, y)d(x, z) = 0, and we declare that
〈−→xy,−→xz〉κ := −∞ if d(x, y)d(x, z) > 0 but κ > 0 and ∠̃κ(x; y, z) is not well-defined. We
refer to 〈−→xy,−→xz〉κ as the inner product of (X, d), cf. [35]. This is a minor modification
of the notation introduced by Berg–Nikolaev [5], who gave a new characterization of
CAT(0)-spaces, cf. Sato [32].

Proposition 20. We have
∫

Y

∫

Y

〈−−−→
b(µ)x,

−−−→
b(µ)y

〉
κ

dµ(x)dµ(y) ≤ 0. (21)

This inequality is obtained by integrating the following one, cf. [35, Inequality (33)]:
For any x ∈ Y with d(x, b(µ)) < Rκ,

0 ≥ −DF
[
logb(µ) x

]
=

∫

Y

〈
logb(µ) x, logb(µ) y

〉
dµ(y)

≥
∫

Y

〈−−−→
b(µ)x,

−−−→
b(µ)y

〉
κ

dµ(y). (22)

Inequality (21) is similar but opposite to the one which appears and is called
the Lang–Schroeder–Sturm inequality in [35, Proposition 22]. That inequality holds
in Alexandrov spaces of curvature ≥ κ with κ ∈ R.

Inequality (22) with u instead of logb(µ) x yields that

∫

Y

∣∣ logb(µ) y − u
∣∣2 − ∣∣ logb(µ) y − o

∣∣2 dµ(y) ≥ ∣∣u− o
∣∣2

for any u ∈ Cb(µ) with o := ob(µ) ∈ Cb(µ). This is the variance inequality for the push-
forward measure (logb(µ))∗µ ∈ P2(Cb(µ)) by the map logb(µ) : B(b(µ), Rκ) → Cb(µ), which
means that it has the vertex as the unique barycenter, cf. Ohta [31].

We can restate Inequality (22) as follows.

Proposition 23 (Curved variance inequality, cf. Ohta [31]). For any point x ∈ Y

with d(x, b(µ)) < Rκ,
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∫

Y

cosκ d( ·, x)
d( ·, b(µ))

sinκ d( ·, b(µ))
dµ

≤ cosκ d(b(µ), x)
∫

Y

cosκ d( ·, b(µ))
d( ·, b(µ))

sinκ d( ·, b(µ))
dµ.

Ohta [31] proved the curved reverse variance inequality in proper Alexandrov spaces
of curvature ≥ κ with κ ∈ R.

4.2. Contraction property.
Proposition 24 (Contraction property, cf. [34, Theorem 6.3]). For any another

ν ∈ P2(Y ) concentrated on B ⊂ Y with its barycenter b(ν) ∈ B,

Φ(b(µ), b(ν)) ≤ inf
π

∫∫

Y×Y

Φ(x, y) dπ(x, y)

and

d(b(µ), b(ν)) ≤ C · dW
p (µ, ν)

with some constants C < ∞ and p > 1 depending only on κ and r.

In the above statement,

dW
p (µ, ν) := inf

π

( ∫∫

Y×Y

dp(x, y) dπ(x, y)
)1/p

denotes the so-called Lp-Wasserstein distance between µ and ν usually defined for p ≥ 1,
and the infimum is taken over all couplings π ∈ P2(Y × Y ) of µ and ν, i.e., the push-
forward measures of π by the projections pri : Y × Y → Y , i = 1, 2, onto the factors
satisfy that (pr1)∗π = µ and (pr2)∗π = ν.

Proof. It is easy to see that (b(µ), b(ν)) ∈ Y × Y is a barycenter of any coupling
π ∈ P2(Y × Y ) of µ and ν if Y × Y is equipped with the direct product metric dY×Y .
Indeed, for any (x, y) ∈ B ×B in a neighborhood of (b(µ), b(ν)),

Fπ(x, y) =
1
2

∫

Y×Y

d2
Y×Y ((·, ·), (x, y)) dπ =

1
2

∫

Y

d2(·, x) dµ +
1
2

∫

Y

d2(·, y) dν

≥ Fµ(b(µ)) + Fν(b(ν)) = Fπ(b(µ), b(ν)).

Like in the proof of Theorem B, we obtain

Φ(x, y)− Φ(b(µ), b(ν)) ≥ DΦ
[
log(b(µ),b(ν))(x, y)

]

≥ −〈∇−(b(µ),b(ν))Φ, log(b(µ),b(ν))(x, y)
〉

for any (x, y) ∈ B ×B. Integrating this inequality, we obtain
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∫∫

Y×Y

Φ(x, y) dπ(x, y)− Φ(b(µ), b(ν)) ≥ DFπ

[∇−(b(µ),b(ν))Φ
] ≥ 0

for any coupling π ∈ P2(Y × Y ) of µ and ν, which proves the first inequality.
The second inequality with p := 2(ν + 1) > 1 follows from the first one and (18). ¤

4.3. Jensen’s inequality.
As promised above, we present another version of Proposition 10 for CAT(κ)-spaces.

Because of its potential applications, we give a full statement.

Theorem 25 (Jensen’s inequality, cf. Kuwae [25]). Let (Y, d) be a complete
CAT(κ)-space with κ > 0. Suppose that µ ∈ P2(Y ) is concentrated on a ball B ⊂ Y of
radius r < Rκ/2 and b(µ) ∈ B is the barycenter of µ. Then for any lower-semicontinuous
convex function ϕ : Y → R ∪ {∞}

ϕ(b(µ)) ≤
∫

Y

ϕdµ.

Proof. Since our proof is identical to that of the main theorem of Kuwae [25],
cf. [34, First Proof of Theorem 6.2], we try to keep the description short.

First of all, we remark that ϕ is bounded below on any ball of radius < Rκ and
hence the integral

∫
Y

ϕdµ ∈ (−∞,∞] is well-defined.
Moreover, as was remarked in [25], we may assume that ϕ is bounded above on Y

by replacing ϕ with ϕn given by

ϕn(x) := inf
y∈B

[ϕ(y) + nΦ(x, y)] for n ∈ N and x ∈ B := B(b(µ), r).

It is easy to see by using the convexity of Φ(·, ·) that ϕn is a lower-semicontinuous convex
function bounded above for each n ∈ N and ϕn(x) ↗ ϕ(x) as n ↗∞ for x ∈ B.

We define a subset Yϕ := {(x, t) ∈ Y × [infY ϕ, supY ϕ] : ϕ(x) ≤ t}. Then Yϕ is a
closed Rκ-convex subset of a complete CAT(κ)-space Y × R equipped with the direct
product metric and we may further assume that Yϕ is contained in a ball of radius < Rκ/2
in Y × R. We consider the map ϕ̂ : Y → Yϕ assigning (x, ϕ(x)) ∈ Yϕ to each x ∈ Y .
Then the push-forward measure µ̂ := ϕ̂∗µ ∈ P2(Y ×R) is concentrated on Yϕ and has a
barycenter

b(µ̂) =
(

b(µ),
∫

Y

ϕdµ

)
∈ B × [infY ϕ, supY ϕ].

Now Corollary 16 induces that b(µ̂) lies in Yϕ. This finishes the proof. ¤

We close this section with a few comments:
Firstly, the theory of CAT(0)-space valued martingales has been explored by

e.g. Sturm [33] and Christiansen–Sturm [7]. They defined such martingales by using
barycenter of probability measures. In this paper, we observe that some of the facts on
barycenter in CAT(0)-spaces also hold in CAT(κ)-spaces with κ > 0 as well. These cir-
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cumstances would suggest that the analogue of their theory in CAT(κ)-spaces of radius
< Rκ/2 with κ > 0 is possible. Although we do not pursue this issue further in this
paper, the author wishes to come back in a future work.

Secondly, Navas [29], cf. Es-Sahib–Heinich [10], presented a construction of another
barycenter map bar? : P1(X) → X enjoying that bar?(δx) = x with δx ∈ P1(X) being
the Dirac measure for all x ∈ X and

d(bar?(µ),bar?(ν)) ≤ dW
1 (µ, ν) for all µ, ν ∈ P1(X)

on any complete separable metric space (X, d) of nonpositive curvature in the sense of
Busemann. Here dW

1 denotes the L1-Wasserstein distance, cf. Proposition 24.
A metric space of nonpositive curvature in the sense of Busemann is a geodesic space

(X, d) for which d : X ×X → [0,∞) is convex, e.g. [12], and CAT(0)-spaces are special
examples of them.

It seems that, with the use of the convex function Φ(κ)

ν,h̃
: Y ×Y → [0,∞) in Theorem

A instead of the distance function, Navas’s construction carries over into any complete
separable CAT(κ)-space Y of radius < Rκ/2 with κ > 0. Moreover, the ergodic theorem
of the form of Austin [2] and Navas [29] can also be extended to such CAT(κ)-spaces.

5. Banach–Saks Property of CAT(κ)-spaces.

In this section, we state and prove Theorems C and D for CAT(κ)-spaces, one of
which generalizes a theorem of Jost [15] stated for CAT(0)-spaces.

Kakutani [19] proved the Banach–Saks property of uniformly convex Banach spaces:
any bounded sequence (xn)n∈N of points of an uniformly convex Banach space B has a
subsequence, still denoted (xn)n∈N, for which the sequence (mn)n∈N of the arithmetic
means mn := (1/n)

∑n
i=1 xi ∈ B converges to a point of B. As the main result of this

section, we formulate this property for CAT(κ)-spaces.
We start with the following definitions.

Definition 26. For a subset A ⊂ X of a metric space (X, d), we define its cir-
cumradius as radX(A) := infx∈X radx(A), where radx(A) := supa∈A d(a, x) for x ∈ X.
A point x ∈ X giving radx(A) = radX(A) is called a circumcenter of A ⊂ X. The radius
of (X, d) is defined as rad(X) := radX(X).

It is easy to see by using the local convexity that any subset A ⊂ Y of a complete
CAT(κ)-space Y with κ ∈ R and radY (A) < Rκ/2 has a unique circumcenter contained
in the closed convex hull conv(A) ⊂ Y of A, cf. Balser–Lytchak [4, Lemma 3.3]. The
famous Bruhat–Tits fixed point theorem states that any group acting isometrically on
a CAT(0)-space fixes the circumcenter of a bounded orbit. This can be easily extended
to any isomeric action on a CAT(1)-space with an orbit of circumradius < π/2, cf. [4,
Proposition 1.4].

Definition 27 (Weak convergence [15]). Let (pn)n∈N be a sequence of points in
a CAT(κ)-space (Y, d) with rado({pn}) < Rκ/2 for some point o ∈ Y . We say that
(pn)n∈N converges weakly to o if πγ(pn) → o as n → ∞ for any geodesic γ : [0, 1] → Y
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with γ(0) = o. Here, πγ(pn) ∈ γ([0, 1]) ⊂ Y denotes the closest point to pn on the image
of γ, cf. Fact 8.

The following lemma is a Banach–Alaoglu type result for CAT(κ)-spaces.

Lemma 28 (cf. Jost [15, Theorem 2.1]). Let (Y, d) be a complete CAT(κ)-space with
κ > 0. Any sequence (pn)n∈N of points in Y with radY ({pn}) < Rκ/2 has a subsequence
which converges weakly to a point in Y .

Although a proof of this lemma seems to be scattered in the literature, we present a
short proof of it here for convenience of the reader, cf. Bačák [3, Section 2.2], Esṕınola–
Fernández-León [9, Corollary 4.4].

Proof. We let Λ0 := N and take a decreasing sequence {Λn}n∈N of infinite subsets
of N as follows: Suppose that we have chosen Λn−1 ⊂ N. We put

rn := inf
Λ

radY ({pλ : λ ∈ Λ}),

where Λ runs over all infinite subsets of Λn−1 \{minΛn−1}, and choose an infinite subset
Λn ⊂ Λn−1 \ {minΛn−1} such that

r′n := radY ({pλ : λ ∈ Λn})

satisfies that r′n− rn → 0+ as n →∞. Then rn is nondecreasing in n ∈ N and hence the
limit value limn→∞ rn = limn→∞ r′n < Rκ/2 exists.

Now the local convexity yields that the sequence (on)n∈N with on ∈ Y being the
circumcenter of {pλ : λ ∈ Λn} is a Cauchy sequence in Y . We denote the limit of (on)n∈N
as o ∈ Y . Then the local convexity again yields that the sequence (qn)n∈N with qn :=
pmin Λn

∈ Y converges weakly to o ∈ Y as n →∞. This finishes the proof. ¤

The following fact follows from the definition of weak convergence and Fact 8.

Fact 29. Suppose that a sequence (pn)n∈N in a CAT(κ)-space (Y, d) converges
weakly to o ∈ Y with lim supn→∞ d(pn, o) < Rκ/2 and lim infn→∞ d(pn, o) ≥ ρ ≥ 0. For
any point x ∈ B(o,Rκ/2) \ {o}, we have lim infn→∞ d(pn, x) > ρ.

Now we are in a position to state and prove the main theorem of this section. The
following theorem generalizes a theorem of Jost [15], cf. Remark in [15, Section 5].

Theorem C (cf. Jost [15, Theorem 2.2]). Let (Y, d) be a complete CAT(κ)-space
with κ ∈ R and (pn)n∈N be a sequence of points in Y with radY ({pn}) < Rκ/2. Then it
has a subsequence, still denoted as (pn)n∈N, for which the sequence (mn)n∈N of barycen-
ters of finitely and uniformly supported probability measures (1/n)

∑n
i=1 δpi

∈ P2(Y )
converges to a point in Y .

Our proof of Theorem C uses only a few properties of CAT(κ)-spaces and it also
works for more general convex spaces, cf. Kell [21].
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Proof. We may assume that κ > 0 because the proof of this theorem for nonpos-
itive κ ≤ 0 is reduced to that for positive κ > 0.

Lemma 28 states that (pn)n∈N has a subsequence, still denoted as (pn)n∈N, which
converges weakly to a point o ∈ Y . It follows from its proof that supn∈N d(pn, o) < Rκ/2
and we may further assume that the limit ρ := limn→∞ d(pn, o) ∈ [0, Rκ/2) exists. Then
it follows that

lim
n→∞

1
n

n∑

i=1

d2(pi, o) = ρ2.

We put B := B(o,Rκ/2) and

Λ(I) := inf
x∈B

[
1

#I

∑

i∈I

d2(pi, x)
]

for a finite subset I ⊂ N of cardinality #I < ∞.
We start our proof by making the following observation.

Claim 30. For each k, N ∈ N, we put IN
k := {(k − 1)2N + 1, . . . , k2N} ⊂ N. If

(pn)n∈N satisfies

sup
{

lim inf
k→∞

Λ
(
IN
k

)
: N ∈ N

}
= ρ2,

then the sequence (mn)n∈N of the barycenters mn ∈ B of probability measures
(1/n)

∑n
i=1 δpi

∈ P2(Y ) obtained in Theorem B converges to o.

Proof. By assumption, for any ε > 0, there exists N ∈ N such that

lim inf
k→∞

Λ
(
IN
k

)
> ρ2 − ε.

This implies that

ρ2 ≥ lim inf
n→∞

[
1
n

n∑

i=1

d2(pi,mn)
]
≥ lim inf

k→∞
1
k

k∑

l=1

Λ
(
IN
l

)
> ρ2 − ε.

Since ε > 0 is taken arbitrarily,

lim
n→∞

[
1
n

n∑

i=1

(
d2(pi, o)− d2(pi,mn)

)]
= 0.

Combining this and the variance inequality (Proposition 19), we infer that
d(mn, o) → 0 as n →∞. ¤

We thus may assume that ρ > 0 and start a process of extracting a subsequence
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from (pn)n∈N. We set J0
k := {k} for each k ∈ N and we construct inductively a sequence

(JN
k )k∈N of subsets of N of cardinality 2N for each N ∈ N such that JN

k = JN−1
l ∪ JN−1

m

for some l 6= m, max JN
k < minJN

k+1, JN
1 ⊂ JN+1

1 and

lim
k→∞

Λ
(
JN

k

)
= Λ

N
:= lim sup

l,m→∞
Λ

(
JN−1

l ∪ JN−1
m

)

It is clear that Λ
N ≤ ρ2 and Λ

N+1 ≥ Λ
N

for each N ∈ N. We intend to show that
limN→∞ Λ

N
= ρ2 by proving the following

Claim 31. If Λ
N

< (ρ − ε)2 for some N ∈ N and small ε > 0, then Λ
N+1

>

Λ
N

+ δ(ε) for some δ(ε) > 0.

Proof. For each l ∈ N, Theorem B states that there exists a unique point mN
l ∈ B

which is a barycenter of (1/2N )
∑

j∈JN
l

δpj ∈ P2(Y ) and satisfies that

Λ
(
JN

l

)
=

1
2N

∑

j∈JN
l

d2
(
pj ,m

N
l

)
.

Fix large l ∈ N with Λ
(
JN

l

)
< (ρ − ε)2. Since (pn)n∈N converges weakly to o, we find

m À l such that d(pj ,m
N
l ) > ρ for each j ∈ JN

m by Fact 29. Then

1
2N

∑

j∈JN
m

d2
(
pj ,m

N
l

)
> ρ2 > (ρ− ε)2 > Λ

(
JN

m

)
=

1
2N

∑

j∈JN
m

d2
(
pj ,m

N
m

)

and hence by the triangle inequality

2max
{
d(mN+1

l∪m ,mN
l ), d(mN+1

l∪m ,mN
m)

} ≥ d(mN
l ,mN

m) > ε,

where mN+1
l∪m ∈ B is the barycenter of (1/2N+1)

∑
j∈JN

l ∪JN
m

δpj ∈ P2(Y ) in B.
By the variance inequality (Proposition 19), we acquire that

Λ
(
JN

l ∪ JN
m

)
=

1
2N+1

( ∑

j∈JN
l

d2
(
pj ,m

N+1
l∪m

)
+

∑

j∈JN
m

d2
(
pj ,m

N+1
l∪m

))

≥ 1
2

(
Λ

(
JN

l

)
+ Λ

(
JN

m

)
+ c ·

(
ε

2

)α)

with constants c > 0 and α > 2 from Proposition 19 and hence Λ
N+1

> Λ
N

+ c′ · εα for
some c′ > 0. ¤

We let s : N → ∩N∈N ∪k∈N JN
k ⊂ N be the order-preserving bijection. Then the

sequence (qn)n∈N with qn := ps(n) satisfies the assumption of Claim 30. This completes
the proof of Theorem C. ¤
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During this work, we also came up with another formulation of Banach–Saks prop-
erty of CAT(κ)-spaces. We need the following definition to state it.

Definition 32 (Inductive mean value [34], cf. [33]). Given a sequence (pi)n
i=1 of

points in a convex subset of a metric space (X, d) on which any two points are connected
by a unique geodesic, we define a point sn ∈ X inductively by choosing s1 := p1 and sn

for n ≥ 2 as the unique point satisfying

n · d(sn, sn−1) = d(sn−1, pn) =
n

n− 1
· d(sn, pn).

It would be illustrative to express this as

sn “ = ”
(

1− 1
n

)
sn−1 +

1
n

pn.

Following Sturm [34, Definition 4.6], we write sn := (1/n)
−→∑

n
i=1pi and call it the inductive

mean value of (pi)
n
i=1.

Theorem D. Let (Y, d) be a complete CAT(κ)-space with κ ∈ R and (pn)n∈N
be a sequence of points in Y with radY ({pn}) < Rκ/2. Then it has a subsequence,
still denoted as (pn)n∈N, for which the sequence (sn)n∈N of inductive mean values sn :=
(1/n)

−→∑
n
i=1pi ∈ Y converges to a point in Y .

Proof. We may assume that κ > 0 because the proof of this theorem for nonpos-
itive κ ≤ 0 is reduced to that for positive κ > 0.

By Lemma 28, (pn)n∈N has a subsequence which converges weakly to a point o ∈ Y .
We do not change the notation in taking subsequences. It follows from its proof that
supn∈N d(pn, o) < Rκ/2 and we may further assume that the limit ρ := limn→∞ d(pn, o) ∈
[0, Rκ/2) exists.

We start the proof for the case of ρ = 0. In this case, we further take a subsequence
such that limn→∞ n · d(pn, o) = 0. Then we claim that

lim inf
n→∞

d(sn, o) = 0. (33)

Since d(sn, o) ≤ max {d(sn−1, o), d(pn, o)}, this means that d(sn, o) is arbitrarily small for
any large n À 1 which proves the theorem if ρ = 0. If we assume that infn≥n0 d(sn, o) >

ε0 > 0 for some fixed ε0 > 0 and n0 À 1, we have

d(sn, o)− d(sn−1, o) ≤ d(sn, pn) + d(pn, o)− d(sn−1, o)

≤ 1
n

(2n · d(pn, o)− d(sn−1, o)),

and hence
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d(sn, o) ≤ d(sn0 , o)− ε0

n∑

k=n0+1

1
k
→ −∞ as n →∞.

This is a contradiction.
We assume that ρ > 0 in the rest of the proof. We once again take a subsequence

from (pn)n∈N as follows: Suppose that we have chosen pn−1. If sn−1 = o, we leave pn

unchanged; if sn−1 6= o, we use Fact 29 and replace pn by its successor with larger n so
that

d(pn, sn−1) > d(pn, o).

Then for any n ≥ 2 with sn−1 6= o, by the angle monotonicity, we have

cosκ ∠̃κ(sn−1; sn, o) ≥ cosκ ∠̃κ(sn−1; pn, o)

> cosκ d(pn, o)− cosκ d(sn−1, o) cosκ d(sn−1, pn)

> cosκ d(pn, o)(1− cosκ d(sn−1, o)) > 0,

We now verify for any ε > 0 that there exist numbers N = N(ε) ∈ N and δ = δ(ε) >

0 such that d(sn, o) < d(sn−1, o) − (δ/n) if n > N and d(sn−1, o) > ε. Indeed, for any
large n À 1 with d(sn−1, o) > ε, we use that d(sn, sn−1) < Rκ/n to see

d2(sn, o) = d2(sn−1, o) + d2(sn, sn−1)− 2d(sn−1, o)d(sn, sn−1) cos ∠̃0(sn−1; sn, o)

< d2(sn−1, o) + d2(sn, sn−1)− 2d(sn−1, o)d(sn, sn−1) cos ∠̃κ(sn−1; sn, o)

< d2(sn−1, o)− (2δ/n).

This implies (33) and that d(sn, o) is arbitrarily small for any large n À 1. Now the
proof of Theorem D is complete. ¤

We conclude this section with the following theorem for CAT(κ)-spaces, which is an
analogue of the theorem of Jost [15], [16] proved for CAT(0)-spaces, cf. Jost [17].

Theorem E (cf. Jost [15], [16], [17]). Let (Y, d) be a complete CAT(κ)-space with
κ > 0. Suppose that a lower-semicontinuous convex function f : Y → R ∪ {∞} satisfies
that

radY (f−1(−∞, c0]) < Rκ/2 for some c0 > infY f.

Then f attains its minimum in Y .

Although it seems Theorem E may have many alternative proofs, we follow Jost’s
original argument in his proof of [15, Theorem 2.3]. It is a nice application of what we
have proved.

Proof. If (pn)n∈N is a minimizing sequence of a convex function f , i.e., f(pn) →
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infY f as n → ∞, our proof of Theorem C says that it has a subsequence, still denoted
as (pn)n∈N, for which the sequence (mn)n∈N of barycenters converges to a point o ∈ Y

with rado({pn}) < Rκ/2. Then Jensen’s inequality (Theorem 25) yields that

f(o) ≤ lim inf
n→∞

f(mn) ≤ lim
n→∞

1
n

n∑

i=1

f(pi) = inf
Y

f.

This proves that f(o) = infY f . ¤

A. Proof of Theorem A.

In this appendix, we describe a proof of Theorem A stated in the introduction. As
mentioned there, it generalizes Kendall’s result in [23]. Before working on Theorem A,
we recall his result and its proof.

For h > 0, we consider a small upper hemisphere

Sn−1
+,h := {x = (x1, . . . , xn) ∈ Rn : |x| = 1, x1 > h} ,

and equip it with the spherical distance d. Here and in what follows, | · | denotes the
Euclidean norm on Rn.

Theorem 34 (Kendall [23]). For any h > h̃ > 0 and ν ∈ R, the function Φν,h̃ :
Sn−1

+,h × Sn−1
+,h → [0,∞) given by

(x, y) 7−→
( |x− y|2

2(x1y1 − h̃2)

)ν+1

is convex, provided that 2(2ν + 1)h̃2(h2 − h̃2) ≥ 1.

Theorem 34 says that a small upper hemisphere Sn−1
+,h ⊂ Rn has convex geometry.

Besides this, Kendal [23] also showed that an open hemisphere Sn−1
+ := Sn−1

+,0 ⊂ Rn does
not have convex geometry. Notice that the function Φν,h̃ in Theorem 34 is nothing but

Φ(1)

ν,h̃
in Theorem A with o := (1, 0, . . . , 0) ∈ Sn−1

+ up to a constant multiple. In the above
statement, we made a slight improvement for the condition on the parameters. We notice
that Φ(κ)

ν,h̃
(x, y) approaches to a constant multiple of d(x, y) as κ, h̃ → 0 and ν → −1/2.

Since our proof of Theorem A relies on some calculation carried out in [23], we first
recall Kendall’s argument.

Kendall’s Proof of Theorem 34. We fix two geodesics λ, µ : I → (Sn−1
+,h , d)

and consider the function Φ(t) := Ψν+1(t) := Φν,h̃(λ(t), µ(t)) with t ∈ I. Roughly
speaking, we need to prove that Φ′′ ≥ 0 on I; see Proof of Theorem A for the precise
meaning of this. We do this at t = 0 ∈ I.

To begin with, we put
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x := λ(0), y := µ(0) ∈ Sn−1 ⊂ Rn; u := λ′(0), v := µ′(0) ∈ Rn.

Then λ′′(0) = −|u|2x and µ′′(0) = −|v|2y. We also put

p :=
1
2
|x− y|2 and q := x1y1 − h̃2

and note that q > h2 − h̃2 > 0.
Then, with ψ := Ψ(0) = p/q and ψ′ := Ψ′(0), we know that Ψ′(0) = (p′ − ψq′)/q

and

Ψ′′(0) = (p′′ − ψq′′ − 2ψ′q′)/q,

where

p′ =
〈
u− v, x− y

〉
= ψ′q + ψq′;

p′′ = |u− v|2 − (|u|2 + |v|2)p ≥ (p′)2/2p− (|u|2 + |v|2)p;

q′ = u1y1 + x1v2;

q′′ = 2u1v1 − (|u|2 + |v|2)(q + h̃2).

Together with that (ψq′)2/2p−2ψu1v1 ≥ 0 [23] and (q′)2 ≤ |u|2+ |v|2, which follows
from u1 =

√
1− x2

1|u| and v1 =
√

1− y2
1 |v|, cf. Proof of Theorem A below, the above

inequalities yield that

Ψ′′(0) ≥ 1
q

[
h̃2ψ(|u|2 + |v|2)− ψ′q′

]
+

(ψ′)2

2ψ

≥ 1
q

[
h̃2ψ(q′)2 − ψ′q′

]
+

(ψ′)2

2ψ
.

Recalling that Φ = Ψν+1, we acquire

Φ′′(0) ≥ (ν + 1)
h̃2

q
(|u|2 + |v|2)Φ(0) ≥ 0

if ψ′ = 0, and

Φ′′(0) = (ν + 1)ψν−1
[
ψΨ′′(0) + ν(ψ′)2

]

≥ (ν + 1)ψν−1

[
1
q

(
h̃ψq′ − ψ′

2h̃

)2

+
(

ν +
1
2
− 1

4qh̃2

)
(ψ′)2

]

≥ C(ν, h, h̃)(Φ′(0))2

in general, where
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C(ν, h, h̃) :=
1

ν + 1

(
ν +

1
2
− 1

4h̃2(h2 − h̃2)

)(
h2 − h̃2

2(1− h2)

)ν+1

. (35)

This constant is nonnegative provided that the parameters satisfy the condition in the
statement. This ends a quick review of the proof of Theorem 34. ¤

Now we turn to the proof of Theorem A. To prove this theorem, we mimic Kendall’s
proof of Theorem 34. However, we have to be careful in dealing with general CAT(κ)-
spaces in which geodesics may branch.

Proof of Theorem A. In proving the convexity of Φ(κ)

ν,h̃
, we may assume that

(Y, d) is a CAT(1)-space and κ = 1 by rescaling the metric. We fix two geodesics
λ, µ : I → B(o, r) ⊂ Y with r < π/2 and consider the function Φ(t) := Ψν+1(t) :=
Φ(κ)

ν,h̃
(λ(t), µ(t)) with t ∈ I.
We plan to prove that Φ′′ ≥ 0 on I in the barrier sense, i.e., for every t0 ∈ I \ ∂I,

there exists a C2-function Φ defined on a neighborhood of t0 ∈ I such that Φ( · ) ≥ Φ( · ),
Φ(t0) = Φ(t0) and Φ

′′
(t0) ≥ 0. This suffices to prove the convexity of the function Φ on

I. We do this at t0 = 0 ∈ I and may assume that x := λ(0) and y := µ(0) are distinct,
because the constant function Φ ≡ 0 does the job if x = y.

We choose x = x and y = y ∈ S2 such that, with o := (1, 0, 0) ∈ S2,
{
x, y, o

} ⊂ S2

is an isometric copy of {x, y, o} ⊂ B(o, r). As d(x, o) + d(y, o) + d(x, y) < 2π, this is
possible. We also take geodesics λ, λ, µ, µ : I → (S2, d) such that

λ(0) = λ(0) = x; µ(0) = µ(0) = y;

|λ′| = |λ′| = |λ′|; |µ′| = |µ′| = |µ′|;
〈
λ
′
(0+), logx y

〉
=

〈
λ′(0+), logx y

〉
;

〈
µ′(0+), logy x

〉
=

〈
µ′(0+), logy x

〉
;

〈
λ′(0+), logx o

〉
=

〈
λ′(0+), logx o

〉
;

〈
µ′(0+), logy o

〉
=

〈
µ′(0+), logy o

〉
;

and the points λ(t) and µ(t) with some t > 0 live in the same closed hemisphere with
the great circle running through x and y as the equator.

By construction, if γ ∈ {λ, µ} is nontrivial, i.e., |γ′| > 0, then

∠̃1 (γ(0); γ(t), o) ≥ ∠γ(0)(γ′(0+), o) = ∠̃1 (γ(0); γ(t), o)

for any t > 0, and by the triangle inequality for the angle ∠γ(0) on Σγ(0),

∠̃1 (γ(0); γ(t), o) ≥ ∠γ(0)(γ′(0−), o)

≥ π − ∠γ(0)(γ′(0+), o) = ∠̃1 (γ(0); γ(t), o), (36)

for any t < 0. This yields that d(γ(t), o) ≥ d
(
γ(t), o

)
for t ∈ I and hence two geodesics

λ and µ are contained in S2
+,h with 0 < h ≤ cos r.
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For t ∈ I, we put

P (t) := 1− cos d(λ(t), µ(t)) and Q(t) := cos d(λ(t), o) cos d(µ(t), o)− h̃2,

and define

P (t) := 1− cos d
(
λ(t), µ(t)

)
and Q(t) := cos d(λ(t), o) cos d

(
µ(t), o

)− h̃2,

If λ and µ are nontrivial and either of θx := ∠x(λ′(0+), y) or θy := ∠y(µ′(0+), x) is zero,
we alter the definition as

P (t) := 1− cos
[
d
(
λ(t), y

)
+ d(x, µ(t))− d(x, y)

]

for t ≥ 0. This applies to P (t) for t ≤ 0 as well if either of ∠x(λ′(0−), y) or ∠y(µ′(0−), x)
is zero. It is clear that P (0) = P (0) and Q(0) = Q(0). It also follows from Fact 7 that
P ′(0+) = P

′
(0) and Q′(0+) = Q′(0).

Claim 37. P ≥ P and Q ≤ Q on a neighborhood of 0 ∈ I.

Proof. Since actually we have already seen this claim for Q, it only remains to
check that P (t) ≥ P (t) for all t ∈ I near 0. We do this only for positive t > 0, since the
proof for negative t < 0 is the same except for the additional use of an inequality similar
to Inequality (36).

If one of λ and µ is trivial or one of θx and θy is π, the image of a geodesic extending
the geodesic connecting x and y contains one of λ(t) and µ(t) for any t > 0. Then the
angle comparison implies that

d(λ(t), µ(t)) ≥ d
(
λ(t), µ(t)

)

and this proves the claim in this case. We thus assume that both of λ and µ are nontrivial
in the rest of the proof.

If both of θx and θy are between 0 and π, we fix small t > 0 and take λt, µt ∈ S2 such
that {x, y, λ(t)} and {µ(t), y, λ(t)} ⊂ Y are isometric to

{
x, y, λt

}
and

{
µt, y, λt

} ⊂ S2

respectively and the open regions spanned by
{
x, y, λt

}
and {x, y, µt} have nonempty

intersection. Then we have

θx := ∠̃1 (x;λt, y) = ∠̃1 (x;λ(t), y) ≥ θx;

θy := ∠̃1 (y;µt, x) = ∠̃1 (y;µ(t), λ(t)) + ∠̃1 (y;λ(t), x) ≥ θy.

The distance d
(
λt, µt

)
for small t ¿ min {θx, θy, π − θy} is expressed in two ways as

d
(
λt, µt

)
= Leng

(
θx − ∠̃1 (x;µt, y); d(λ(t), x), d(µt, x)

)

= Leng
(
θy − ∠̃1 (y;λt, x); d(µ(t), y), d(λ(t), y)

)
,
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which depend only on d(x, y), d(λ(t), x), d(µ(t), y), θx and θy as every input in the above
expression is determined by them. Here, Leng(θ; a, b) ≥ 0 denotes the length of the third
edge of a geodesic triangle in (S2, d) with two edges of length a, b > 0 and the angle
θ ∈ [0, π] between them.

Since Leng(θ; a, b) with fixed a, b > 0 is monotone increasing in θ ∈ [0, π] and hence
d
(
λt, µt

)
is monotone increasing in θx and θy, we deduce that

d(λ(t), µ(t)) = d
(
λt, µt

) ≥ d
(
λ(t), µ(t)

)
.

If one of θx or θy is zero, say θy = 0, then

d(λ(t), µ(t)) ≥ d(λ(t), y)− d(µ(t), y)

≥ d
(
λ(t), y

)
+ d(µ(t), x)− d(x, y) .

Therefore we gather that P (t) ≥ P (t) for any t > 0 in a neighborhood of 0 ∈ I and
finish the proof of the claim. ¤

It is easy to see that P and Q are C2-functions. This is also the case even if P (t)
is defined differently for t ≥ 0 and t ≤ 0. For example, if θx > 0 and θy = 0, a simple
calculation using

d/dt|t=0 cos d
(
λ(t), y

)
= −|λ′| sin d(x, y) cos θx;

d2/dt2
∣∣
t=0

cos d
(
λ(t), y

)
= −|λ′|2 cos d(x, y)

yields that two functions

t 7−→ 1− cos d
(
λ(t), µ(t)

)

= 1− cos(|λ′|t) cos
[
d(x, y)− |µ′|t]− sin(|λ′|t) sin

[
d(x, y)− |µ′|t] cos θx;

t 7−→ 1− cos
[
d
(
λ(t), y

)
+ d(µ(t), x)− d(x, y)

]

= 1− cos d
(
λ(t), y

)
cos(|µ′|t)− sin d

(
λ(t), y

)
sin(|µ′|t)

have the same first and second derivatives at t = 0.
Now we see that the function Φ given by

Φ(t) := Ψ
ν+1

(t), where Ψ(t) := P (t)/Q(t) for t ∈ I

is a barrier function of Φ on a neighborhood of 0 ∈ I with the required properties.
We already know that Φ is a C2-function and Φ ≥ Φ on a neighborhood of 0 ∈ I

with Φ(0) = Φ(0). Fact 7 induces that Φ(0+) = Φ
′
(0). It also follows from Kendall’s

computation recalled in the proof of Theorem 34 above that Φ
′′
(0) ≥ 0. We now check

this. All of the following equations and inequalities are evaluated at t = 0.
We have
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P
′′

=
∣∣λ′ − µ′

∣∣2 − (|λ′|2 + |µ′|2)P ≥ (P ′)2 /2P − (|λ′|2 + |µ′|2)P ;

Q′′ = 2
(
λ′

)
1

(
µ′

)
1
− (|λ′|2 + |µ′|2)(Q + h̃2);

and Fact 7 induces that

Q′(0+) = − sin d(x, o) cos d(y, o)
〈
λ′(0+), ↑x

o

〉

− cos d(x, o) sin d(y, o)
〈
µ′(0+), ↑y

o

〉
,

which implies that (Q′(0+))2 ≤ |λ′|2 + |µ′|2. We use them to obtain

Ψ
′′

=
1
Q

[
P
′′ −ΨQ′′ − 2Ψ

′
Q′

]
≥ 1

Q

[
h̃Ψ(Q′)2 −Ψ

′
Q′

]
+

(Ψ
′
)2

2Ψ

Therefore, we acquire that

Φ
′′

= (ν + 1)Ψν−1
[
ΨΨ

′′
+ ν(Ψ

′
)2

] ≥ C(ν, h, h̃)(Φ
′
)2,

with C(ν, h, h̃) given in (35). Now the proof of Theorem A is complete. ¤

We close this appendix with supplementary remarks on Theorem A.

Remark 38 (cf. [23, Corollaries A, B]). The above proof says that the function
Φ there satisfies

Φ′′(t) ≥ C(ν, h, h̃) (Φ′(t+))2

for any t ∈ I \ ∂I in the barrier sense.
If Φ′(t0+) = 0 at some t0 ∈ I \ ∂I, the poof of Theorem 34 says that

Φ
′′ ≥ (ν + 1)

h̃2

Q

(|λ′|2 + |µ′|2) Φ at t = t0.

Therefore, we infer that Φ′′ > 0 on I in the barrier sense as long as all of Φ( · ), |λ′|, |µ′|
and C(ν, h, h̃) are positive.

Remark 39. For a ball B(o, r) ⊂ Y in a CAT(κ)-space (Y, d) with κ > 0 as in
Theorem A, the function Φ(κ)

ν,h̃
( ·, x0), with x0 ∈ B(o, r) fixed, is convex on B(o, r).

Furthermore, simpler functions ϕ : B(o,Rκ/2) → [0,∞) given by

x 7−→ 1
κ

(1− cosκ d(x, o))

and ϕx0 : B(o,Rκ/2) → [0,∞), with x0 ∈ B(o,Rκ/2) fixed, given by
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x 7−→ 1
κ
· 1− cosκ d(x, x0)

cosκ d(x, o)

are also proved to be convex on B(o,Rκ/2) ⊂ Y , cf. Kendall [24]. In fact, it is easy to
see that they are convex on the open hemisphere (Sn−1

+ , d) and thus we can prove their
convexity in the barrier sense along any geodesic in B(o,Rκ/2) ⊂ Y as was done in our
proof of Theorem A.
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http://dx.doi.org/10.1090/S0002-9939-2010-10541-5
http://dx.doi.org/10.1090/S0002-9939-2010-10541-5
http://dx.doi.org/10.1142/S1793525311000544
http://dx.doi.org/10.1007/s11856-012-0091-3
http://dx.doi.org/10.1007/s10455-005-7277-4
http://dx.doi.org/10.1007/s10455-005-7277-4
http://dx.doi.org/10.1007/s10711-008-9243-3
http://dx.doi.org/10.1007/s10711-008-9243-3
http://dx.doi.org/10.1090/S0273-0979-1979-14595-6
http://dx.doi.org/10.1016/j.jmaa.2008.12.015
http://dx.doi.org/10.1016/j.jmaa.2008.12.015
http://dx.doi.org/10.4171/CMH/54
http://dx.doi.org/10.1007/s00039-007-0639-2
http://dx.doi.org/10.1007/BF01647975
http://dx.doi.org/10.1007/BF01191341
http://dx.doi.org/10.1007/BF01191341
http://dx.doi.org/10.1007/BF02566027


Barycenter on CAT(1)-spaces 1323

[20] H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math., 30

(1977), 509–541.

[21] M. Kell, Uniformly Convex Metric Spaces, Anal. Geom. Metr. Spaces, 2 (2014), 359–380.

[22] W. Kendall, Probability, convexity, and harmonic maps with small image, I, Uniqueness and fine

existence, Proc. London Math. Soc. (3), 61 (1990), 371–406.

[23] W. Kendall, Convexity and the hemisphere, J. London Math. Soc. (2), 43 (1991), 567–576.

[24] W. Kendall, From stochastic parallel transport to harmonic maps, New directions in Dirichlet

forms, 49–115, AMS/IP Stud. Adv. Math., 8, Amer. Math. Soc., Providence, RI, 1998.

[25] K. Kuwae, Jensen’s inequality over CAT(κ)-space with small diameter, Potential theory and

stochastics in Albac, 173–182, Theta Ser. Adv. Math., 11, Theta, Bucharest, 2009.

[26] K. Kuwae, Jensen’s inequality on convex spaces, Calc. Var. Partial Differential Equations, 49

(2014), 1359–1378.

[27] K. Kuwae and K.-T. Sturm, On a Liouville type theorem for harmonic maps to convex spaces via

Markov chains, Proceedings of RIMS Workshop on Stochastic Analysis and Applications, RIMS
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