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Abstract. Let T be an m-linear Calderén—Zygmund operator with ker-
nel K and T* be the maximal operator of T. Let S be a finite subset
of Zt x {1,...,m} and denote dj = dy; - --dym. Define the commutator

Ty s of T, and Tbi"s of T* by Tgys(f)(x) = [znm H(i,j)es(bi(z) — b;(y;))
K(CE, Y1,y ym) H;nzl f](yj)dg and Tis(f )(IE) = SUPs>o | fz‘;nzl ‘x_yj‘2>52
Tl yyes bi(@) = bilu))K @, y1, - ym) T 3 (y)dg]. These commuta-
tors are reflexible enough to generalize several kinds of commutators which

already existed. We obtain the weighted strong and endpoint estimates for
Ty o and TE*S with multiple weights. These results are based on an estimate

of the Fefferman-Stein sharp maximal function of the commutators, which is
proved in a pretty much more organized way than some known proofs. Similar
results for the commutators of vector-valued multilinear Calderén—Zygmund
operators are also given.

1. Introduction.

Let T be a Calderén—Zygmund operator and b be a locally integrable function on
R™. The commutator of 7" was defined by Coifman, Rochberg and Weiss [7] in 1976, for
smooth functions, in the following way

Tof = b, T]f = bT(f) = T(bf). (1.1)

This operator turns out to be bounded on LP(R™) for 1 < p < oo [7], and not to be
of weak type (1,1) [21] when b is a BMO function. Moreover, Pérez [21] obtained the
following alternative endpoint estimate,

Hy € R |0, T1£ ()] > M < Clionco / ol (1 log* ('f“')>d

for each smooth function f with compact support and all A > 0.

A simple proof of the LP boundedness of T}, given by Coifman, Rochberg and Weiss
[7] combines the theory of weights and properties of Cauchy integral. This idea was fur-
ther developed by Alvarez, Bagby, Kurtz and Pérez [1]. Although this method is general
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enough to prove the weighted boundedness of commutators of any linear operators, it
seems that one at least cannot get the Coifman—Fefferman type estimates as well as the
endpoint estimates with this method.

An important idea in [21] is to relate the commutator to the sharp maximal operator
of Fefferman—Stein (This idea may go back to Stromberg [13]). One advantage of such
method is that we can deduce both the weighted strong and endpoint estimate (see e.g.
[2], [21]), and by duality, we can have estimates for the commutator with two weights.
We refer to [22] and [24] for more information about this. This idea or technique is
also available when we consider generalizations of the commutator. In [27], Pérez and
Trujillo-Gonzélez introduced the following more general type commutator

1)@ - [ [H b5 | K ) ) (12)

and obtained both the weighted strong and the weighted endpoint estimates. Obviously,
Ty is a generalization of both the one defined in (1.1) and the higher order commutator
studied in [21].

It is natural to extend the definition of the commutators to the case of multilinear
Calderén—Zygmund operators, for which the theory has been undergoing a rapid progress;
see [11] for a detailed account and Section 2 for the definition of multilinear C-Z operators.
The multiple weights theory was established in [15], where the authors considered the
following type of commutators

m

= Z BT () (@) =T (i, bifis. s ) (@), (1.3)

i=1

and proved its weighted strong and weak type end-point estimates. One key theme in
[15] was to obtain an improved estimate of sharp maximal function of T'(f) and T i ),
which was controlled by a new maximal operator (see Section 2.1). And by this new
maximal operator one can deduce better estimates.

More recently, in [25], iterated commutator 1115 was introduced as below

TH b(f)(x) = [b1, [b27 B [bm—h [bmvT]m]m—l T }2] (f )( )

:/nm H(b](x) _bj(yj))K(xvy17'~~aym H yj dy7 (]_4)

where dy = dy; - - - dy,,. This operator enjoys similar weighted strong and weak type
endpoint estimats to those of the operators mentioned above.

All the commutators mentioned above have maximal partners. Segovia and Torrea
[32] first studied the weighted strong boundedness of T;" defined by

Ty (f)(x) = sup

/| ) bR e 0) ) (15)
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which was the maximal operator of Ty, in (1.1). The weak type endpoint estimate of
T was given by Alphonse [17]. Zhang [37] then considered the maximal operator of
Ty in (1.2). Recently, in [36], Xue considered the following iterated type commutator of
multilinear operator T which was defined by:

m m

[Z H ))K(xvylvvym)Hfj(yj)dg

;n1|$ yi12)1/2>8 j=1 =1

Ti7,(F)(z) = sup

and proved both the strong and weak endpoint estimates.

In this paper, we want to find a general frame that contains the results of all the
above operators. Note that the operators, for instance, defined in (1.2), (1.3) and (1.4)
are all independent of each other. We are lead to the following definition.

DEFINITION 1.1. Let T be an m-linear Calderén—Zygmund operator with kernel
K. Let S be a finite subset of Z* x {1,...,m}. The commutator Ty ¢ of T and its
maximal operator TE* 5 are defined by

m

LoD = [ T] 6o = bt K@) [[Hw)dg. (10
Rnm (17'])65’ j=1
and
77 (P =suw| [ (i) ~biC VK (2w, ) T] f5 )7
oS 6>0 (27:1 ‘w_yj‘2)l/2>5 (7,7]]13 31;[1
(1.7)
for all f; € S(R”) = 1,...,m, and all z ¢ (\j_, supp f;. If S = 0, we simply denote
T~@ =T and T =T*.

REMARK 1.2. The commutators defined in (1.6) and (1.7) indeed contain the
operators defined as in (1.2), (1.3) and (1.4). Moreover, (1.6) and (1.7) in fact contain
more than that. Take for example, S = {(i,5) : ¢ € {1,...,1},j5 € {1,...,m}}, then
Ty s = Jonm izt H;":l(bl(a:) — bi(y;))K(z,y1,...,ym)dy. In this case, if take
m = 1, then this operator coincides with the commutator defined in (1.2). If we take
S =A{(,4):5€{1,...,m}}, then (1.6) coincides with (1.4).

It turns out, not very surprisingly, that both T} , and Tﬂ satisfy similar bounded-

ness as all their earlier brothers such as (1.1) and (1.2). We wﬂl only state and prove

the results for T P The same reasoning applies to the case of T with small and

5,8
straightforward modlﬁcatlons

For a finite subset S of Z1 x {1,...,m}, |S| will denote the cardinal number of S.
For a map R from S to the set of positivg numbers that are bigger that one. Denote
Tij = R(Z,j), 1/7“j = Zi:(i,j)es(l/rij) and RS = (1/7‘1, ceey 1/7"m).

The first result of this paper is:
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THEOREM 1.1. Let 0 < p < oo, w € Ay. Let Tq be the commutator defined in

(1.7), and R be such a map defined above, b; € OscexanJ. Then there exists a constant
C such that
(O] P

% S
< (Il + 1K Isje)Wlaw TT Wbillose,, ,r,
(2,7)€S8

’ML(zogL)ﬁs (J?)HLP(W)

for any bounded and compact supported functions f; (j =1,...,m).

For the definition of [T, [K|x with & € N*, [wla., lbillose,  rys

M 101 s (f), Ay and ||T*||x in the following corollary, see Section 2.
Theorem 1.1 implies the boundedness of Tl?*s on LP(wy) X «-+ x LPm(wy,) with
&= (wh...,wm) S Aﬁ.

—

COROLLARY 1.2. Let d € Ay with 1/p = 37" (1/p;), 1 < pj < o0, b €
Oscegprrii, i 21 (j=1,...,m). Then for any f; € LP(w;), there exists a constant C
depending on & such that

175 5D < O Nstin. TT Wlone s TL US55
(i,5)€S Jj=1

We obtain the following weak type estimate of T3 B

THEOREM 1.3.  Suppose p > 0 and w € Ax. Let ¢ : (0,00) — (0,00) be doubling
and there exists some constant Cy such that for any t € (0,00), ¢(t) < Cit. Suppose that
bi € Osceyprrii, iy > 1 (j = 1,...,m). Then, for any bounded and compact supported
functions f;, there exists a constant C > 0 depending on the A constant of w, such that

sup p(A\)w{z € R™ : T3 ( ) ()| )| > A"
A>0
- A
<Cs A eER": M A > .
- Aipow( )w{z LllogL)™ts (=) 1T Nysy+1 1L jyes ||bi||oscemw }

(1.8)

Based on Theorem 1.3, we can get the following weighted weak type estimate.

THEOREM 1.4.  Let (wi,...,wm) € Aq,.. 1), bi € Oscegprrii, 1ij > 1 and 1/r; =
Yapesl/riy) (3 = 1,...,m). Denote ®;(t) = t(1 + log™ t)V/7i and ®(t) = t(1 +
log™ t)zy;l(l/”). Then, for any bounded and compact supported functions f;, there exists
a constant C depending on & and T such that for any t > 0
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vs{z €R™: |T;S(f)(x)| > ™}

m . o bz sc . 1/m
SCH(/ @('fj(w)m"“’”es bllose.... ”)wj(x)dx> . (1)

t

Jj=1

Moreover, when r;; = 1 for any (i,7) € S, this result is sharp in the sense that it does
not hold for ®(t) = t(1 4 log™ t)* with a < > (/r)).

The proof of Theorem 1.4 will also be based on the weighted weak type estimate of

—

M ogrya (f) as follows.

THEOREM 1.5.  Let @ = (u,..., Q) and (wi,...,wm) € A, 1). Denote ®(t) =
t(14log™ t)zgnzl . Then, for any t > 0, there exists a constant C' > 0 such that

e € R s Mygoyupe(Fe) > ) <l T (] @(”jff)')wj(x)dx)l/m.

j=1

We can extend almost all the above results to the commutators of vector-valued (1"
valued) operators; see Section 5 for the statements.

The article is organized as follows. In Section 2, some preliminaries will be given.
A key lemma is given and proved in Section 3. Section 4 will be devoted to the proofs
of the theorems stated above. We will state and prove the weak type endpoint estimates
for the commutators of vector-valued operators in Section 5.

Throughout this paper except in Section 2, the constant C' may depend on the n,
m, p, |S| but will not depend on T, b;, w, or f unless it is indicated explicitly, and may
vary from line to line.

2. Some preliminaries.

2.1. Multilinear C-Z operators and multiple weights.

Multilinear Calderén—Zygmund operators was originated in the work of Coifman
and Mayer [4], [5], [6]. See also [14]. We follow in this paper, with minor modification,
the definition introduced in [11] by Grafakos and Torres.

DEFINITION 2.1. Let T be a multilinear operator initially defined on the m-fold
product of Schwartz spaces and taking values in the space of tempered distributions,

T:SR") x - x S(R") — S'(R").

We say that T is an m-linear Calderén—Zygmund operator if it can be extended to a
bounded multilinear operator from L' x - - - x L' to L/ and if there exists a function
K, defined off the diagonal x = y; = - -+ = y,,, in (R?)™ "} satisfying

7(7)(e) = |

m
nym j:l
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for all x ¢ ﬂ _, supp f;; and there exists, for some € > 0, a constant A. such that

Aclx — 2'|¢

|K(may17"~7ym)_K('T/ryla"'?ym”S m mn-+e (21)
(ijl |z — yj‘)
whenever |z — 2’| < (1/2) maxi<j<m |z — y;|, and
A
1K (Y0, Y1, -5 Ym)| € 7 — - (2.2)
(Zk,l:o lyr — yz|)

The maximal operator of T is defined by

m

7(F)(a) =sup | | K,y ) [ 155)d5
(e, le—y;12)1/2>8 i=1

>0

We define, for k € N*t, |[K||; = inf{A./e* : (2.1) and (2.2) hold} and ||T*||x =
IT* || p1xoosc 1 p1/moco 4+ inf{Ac /e : (2.1) and (2.2) hold}. Denote || T*||; by ||T*].

The operator T satisfies the weighted boundedness given by Lerner Ombrosi, Pérez,
Torres and Trujillo-Gonzédlez [15], where multiple weights was first introduced in the
following way.

DEFINITION 2.2 ([15] (Multilinear A condition)). Let 1 < p1,...,pn < co. Given

G = (wi,y...,wn), set vz = H;ﬂzl wf/pj. We say that & satisfies the Ay condition if

/P m

1 m / 1 1 ) , 1/p;
sup —/ w;P pi) (/ w; p-?’) < o0.
Q <|Q| Q]l;[l ! ]1;[1 Qg

When p; =1, ((1/|Q]) Jowi - PJ) P! is understood as (infgow;)~*

When m = 1, this coincides with the classical A, weight [18]. The A; condition turns
out to be able to characterize the strong-type inequalities for a more refined multilinear
maximal function M with multiple weights defined by

SUPH |Q\ / £ ()l dy;-

QBz ”

Let T be an m-linear Calderén—Zygmund operator, 1/p = 1/py + -+ + 1/py,, and
& satisfy the Ay condition. It was shown in [15], as an important application of the
boundedness of M, that T is bounded from LP!(wy) X -+ X LP™(wy,) to LP(vz) when
1 < pj < oo and to LP*°(v5) when 1 < p; < oo.

2.2. Sharp maximal functions.
M will always denote the Hardy-Littlewood maximal operator throughout the paper.
For § > 0, Mj is defined by
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z€EQ

1 1/5
My()(o) = (9 = (sp e [ 17loay)
Sharp maximal function M# of Fefferman and Stein is defined by

M) = sup inf o0 [ 150) el

z€Q CE

This gives directly that

M#* d
(f)(z) igg |Q|/ |f(y) — fqldy,

where fo denotes the average of f on @), and we write Mf(f)(m) = (M#(|f|°)(z))/°.
We will need the following lemma.

LEMMA 2.1 ([20]). (a). Let 0 < p < o0, 0 < <1, and let w € As. Then there
exists a constant Cy, only depending on n

1M f 1l 1r () < Comax{L, pywla [|MF (5 1o,

for any function f such that the left hand side is finite.

(b). Let ¢ : (0,00) — (0,00) doubling. Then, there exists a constant C' depending upon
the Ao, constant of w and the doubling condition of ¢ such that

supp(Mw(y € R : M5 f(y) > A) < Csupp(Mw(y € R™ : MF f(y) > \)
A>0 A>0

for any function such that the left hand side is finite.

REMARK 2.3. For the strong boundedness, it is the dyadic version that was proved
in [20], which was based on the estimate by Ortiz-Caraballo [19]

MFPAMI) (@) < CMPA(f) () i 0<d<e<l.

However, the non-dyadic version of the above inequality follows from the same line. [w] Aoo
in the above lemma was defined by Wilson [35] as [w] = supg(1/w(Q fQ (wxaq)-

is shown in [12] that [w]4_, is smaller, and sometimes much smaller than |jw| 4 deﬁned
by [lwlla. = supq ((1/1QI) [ w) exp ((1/1Q]) [;logw™).

2.3. Orlicz spaces and a lemma.

We present here only what we will need in this paper, see [29] for a detailed account.
Define a function @ : [0,00) — [0,00) to be a Young function if it is convex, increasing,
and ®(0) = 0. The ®-norm of a function f over a cube @ is defined by
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Ille.q =inf{>\;|Ql|/Q¢,(|f()\$)>dx§ 1}.

The maximal operator Mg is defined by Ma(f)(x) = supgs, || f|e.q, where the supre-
mum is take over all cubes containing x. When ®; = tlog®(e + t) (s > 0), we denote
H-f”‘kQ = Hf”L(logL)S,Q and M@ = ML(logL)S~ If (I)t = €t - 1, we denote Hf||‘1’7Q =
| fllexprr.@ and My = Mexpr-. For a Young function @, the oscillation Oscqe (f, Q) of a
function f is defined by Osca(f, Q) = ||f — follo.o- Also, we define

||fHOscq> = Sgp{OSCCP(fv Q)}a
where the supremum is taken over all cubes @ in R™. For r > 1, we define the space
OSCexer by
Oscoxprr = {f € Lige(R") : [| fll0scarprr < 20},

where

||fHOscexer = Sgp Hf - fQ”expL"‘,Q = Sgp ||f - fQ”etrfl,Qa

and the supremum is taken over all cubes in R™. It is easy to see that Oscepr1 =
BMO(R"™) and we know that for r > 1, the space Oscexprr is properly contained in
BMO(R") with the norm [|b]|« < C|blloscor,pr-

It was shown in [27] that the following generalized Holder’s inequality holds,

1 m
ol / e Fnlde < Con TT I leapzrs @19 pitog 110 (2.3)
Q j=1

where 71,..., 7, > 1and 1/r =377, (1/r)).

Note that ®(¢) = ¢(1+log™ )}/ is submultiplicative, which meams that there exists
a constant C' > 0 such that for any s,t > 0, ®(st) < CP(s)P(¢).

Given a vector & = (a1, ..., (), define

M og nya(f)(x) = ng H 1 £ill Log £)25 -

We will need the following analogue in the case of vector-valued operators. For ¢ =
(QIa cee 7Qm)7 ML(logL)a (fq) is defined by

M ogrya (f7) (@) = (Sggp H 145 }195 | L (log )77 -

When @ = (0,...,0), we write M, .. 1 5(f7)(z) = M(f7)(x).
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The following Lemma 2.2 plays an important role in the proof of Theorem 1.5. For
a general finite set R with |[R| = r, r € RT, we denote the set of all bijective mappings
from {1,2,...,r} onto R by Bg.

LEMMA 2.2. Let ®; be a submultiplicative Young function for any j € {1,...,m}
and E be any measurable set. For any 3 € By .. ., define

Pp,j(x) = Pp1y 0+ 0 Py (a).
Then there is a constant C such that whenever
1< [ Iflle, = (2.4)
j=1

holds, we have

m m 1
[T 1#lle, 2 < CmaX{ I1 I3 /E P, (| fa)(@)])dx : B € B{l,...,m}}- (2.5)
Jj=1 j=1

Proor. Consider first the case m = 1. We need to show that if ® is a Young
function, then for any measurable set F,

oz >1 = Wflo < 3 [ $(5@)Ne (26)

This is exactly Lemma 6.1 in [9].
For m > 2, we prove it by induction. Assume that for some j € {1,...,m} the
result holds for m — 1. Given functions that (2.4) holds, assume

”fjo”q)j()’E = min{”fj||q>j,E VS 17'~‘7m}'

Then

m

I fille,=>1.

J=1,3#jo

Therefore, by (2.6) and submultiplicativity, we have

m m 1 m
1< [[Ifille,.2= ‘ fio TI 1ille,.e <% | % <fjo(x) 1T ||fj||<1>j,E>dl“
j=1 J=1,j#jo 2j0,E B J=1, §#jo

gé /| ‘Pjo(lfjo(m)l)dx@jo( I ”fj“q’f’E)

J=1,3#jo
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By assumption,

IT 15, < Cmax ] H [ s Ua@de 5 € Bt
J=1,3#jo Jj=1
Thus,
1< lle, =
j=1

C m—1 1
< |E|/E<I)jo(|fjo($)|)qu)jo <Cmax{ 1;[ Q—/ D] () (@))dz : B € B{L..-,m}/jo}>
C m o |
< E E(I)jO('ij(x)')dmmaX{g@M/ng)ﬁ’j(lfﬁ(j)(mmdx B € By, my.B(1) =J0}

LT
< Cmax{ H E /E Q5| fag(@))dx 2 B € B{L___,m}},
j=1

where the third inequality is due to Jensen’s inequality. This is (2.5). g

2.4. Extrapolation.
We need the following extrapolation result:

LEMMA 2.3 ([8]). Given a family of functions §, suppose that for some pg, 0 <
po < 00, and for every w € A, there exists a constant C,, such that for all (f,g) € F,

/n |f(@)[PPw(z)de < Co, | |g(a)|Pw(x)d.

R

Then for all 0 < p,qg < 00, 0 < s < 00, and w € Ay, there exists a constant C,, such
that

1/q 1/q

)

Lr:s(w)

()

e (Slar)

Lr:s(w)

for all (f;,9;) €5, j € N*t.

3. A key Lemma.

As mentioned in the introduction, Theorem 1.1 will be a consequence of a Fefferman—
Stein function estimate. To state it, we first define a maximal commutator. Let K, satisfy
(2.1) and (2.2) uniformly for any n > 0. Define
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s @ =swp| [T (0o = bl o) T] 150007
s (i.9)€S j=1
—EUP‘ bSn(f)(‘r)’ (31)

and again write WE* 0( f ) = WH( f ). The following inequality provides a foundation for
our analysis.

LEMMA 3.1.  Let 0 < § < 1/m, then for any number §y, § < dy < 00, there exists a
constant C' such that for any bounded and compact supported functions f; (7 =1,...,m),
one can obtain

MF (W3 (1)) (@) < CIW* 151 M oo pyme (@) T Ilbillose

expL”id
(i,5)€S
+C Z Ms, (Ty () () H bill Baro-
DcS (i,5)€S\D

To prove Lemma 3.1, we will use the following elementary lemma.

LEMMA 3.2. Let S be a set of Zt x Zt, x;; be a sequence of real numbers for
(i,7) € S. Then the identity

[T @io— i)

(i,5)€8

= I i)+ Z(—l)S\D“( 11 (xiO‘z“))< 11 (m—M))

(i,5)€S DcCS (4,5)€D (4,5)€S\D
holds for any constants \;.

PROOF. Note first that, in general, for an arbitrary finite set F,

[T@i+b)=>" [a [T b (3.2)

i€EE ACEi€A i€E/A

Using (3.2) twice, we can write for any A;,

H (xio — zij) = H (xio — Ni + A — x45)

(i,5)€S (i,5)€S
- H ZL'” + Z H >\ — ZTio + Tio — ng) H (.Z'i() - )\z)
(i,)€S ACS (i,j)€A (i,5)€S/A

= I Qi—=zi)+ > > II @o—=2y) ] Gi—zio) [ (@io—X)

(i,5)€S ACS DCA (i,j)€D (i,j)€A/D (i,j)€S/A
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H — z5) + Z Z 1)l4/PI H (xio — 24j) H (io — \i)-

(i,5)€S DCS A: DCACS (¢,7)€D (4,5)€S\D

As for any subset D C S,

[S\D|—-1
SOOI Y ()P = Y Gl (-1 = (1)
A:DCACS D:DCS\D k=0
Lemma 3.2 is thus proved. 0

Proor OoF LEMMA 3.1. Fix a point z € R™ and a cube @ containing z, and let
0 <4 <1/m. We need to show that there exists a constant c, such that

(g Jy st~ o)

S ClIWH 141 M p 1 1y7s (F) () H [billose,, ;i

(i,9)€S
+C Y My, (Wi ()@ [T lbillsao,
Dcs (4,5)€S\D

where C' is independent of z and Q.
Let ¢y = sup,;5¢ ¢yl (cqn Will be choosen later) and define

—

I(z) = 21;13 |WE,S,n(f)(Z) — CQ7n|.

It suffices to show that ((1/|Ql) [, [1*(= |5d:1:) is to be controlled by the right side of
the above mequahty

Note Wb S, (Z fan H(i,j)es(bi('z) - bi(yj)) H;nzl fj (yj)d27~ For the
product H(z,j)es(b (2) — bi(y;)), apply Lemma 3.2 by viewing b;(2) as 0, bi(y;) as x5,
and letting \; = (b;)g be the average of b; on Q to get

I ®i(z) = bi(y;)

(i,5)€S

= [I (@) —bil))+ > )P T (i) = (bi)a) (bi(2) = bi(y;))-

(i,9)€S DcCS (¢,7)€S\D (¢,7)€D

Then we have

Ky(z9) T (e —biy)) [T £i(wi)dd — can

(i,5)€S Jj=1

I"(z) < sup
n>0

Rnm™
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+3 I e - el K3 (1),

DCS (i,j)eS\D

with KED(]F)(Z) is defined by supn>0‘men n(2:9) i jepi(2) — bi(y;))

T2, £i(y)dg |-
For the first term of the right-hand side of the above inequality, split each f; as
fi = fixo + fixqe = fJQ + [7° and write

_H = > Tl w

és

J=1 at,...,am€{0,00} =1
= 17w+ > L[5 @) =7+ > 7% (33)
j=1 1,...,am €{0,00},Jaj,a5=00 j=1 a,a#0
where @ = (a1, ..., am), az—Ooroo fa—HTlf%(yi).

Set cqn = 2a a0 Jann Kn(@,9) I jyes((bido = biyy) 1152, f5(y;)dy. By (3.3),

+ > L@+ Y I 1) =)o)l K5 ()]s

&,a#0 DCS (i,5)eS\D

I*(z)

Ol*

with I7(2) defined by sup,sg | fpum Kn(29) [T jes((bio — bi(y;)) 171 £7 (y5)d7 |
and I%(z) defined by supn>0|me n(2,7) = Ky(z, 7)1 jes((bi)o — bi(y;))
I £ () dg |-

Thus

(|22/Q|I*(z)|5dz>
<<(w, m(m/'“ o8

1/6
(z) — . 5. * g 5 ) .
s (IQI/ [T 16:2) = Gl - (W, (P2 d)

1/6

1/6
I*( )’ (z)dz)

Dcs (i,7)€S\D
= CI;+C > I:+CY Ij (3.4)
a,a#0 DcCS

By Holder’s inequality,

= (QI/ fafe

16 1 4 . 5 1/60
”d R o od
(i,))€S\D Z) <|Q|/Q| b’D(f)(Z)’ z)

<c I IvillsaoMs, (Wi ,(5) @), (3.5)

(i,5)€S\D
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where 6;; > 1, 60 > 0 and >3 ; - pe(1/055) + (1/00) = 1/6.
By the weak type endpoint boundedness of W* and the generalized Holder’s inequal-
ity (2.3),

i<l (n T1 @0 -ttt TT (@00 - 0itsm)

(i,1)es (i,m)es

Lt/m.e2(Q,dx/|Ql)

< CHW ||L1>< X L1—L1/m,c0 H |Q| / |f] |(bl)Q - bl(y])|dy]

(i,5)€S

< OHW*”ML(logL Rs(f)( ) H HbiHOsc
(i,9)€S

(3.6)

expL”id "

We are now in a position to estimate I% with & # 0. Without loss of generality, we
assume that a;, =---=a; =0and a; =00 if j & {j1,...,5}, 0 <l <m. By (2.1), we
have

15 < A, H / 5wl TT 160a = bity)ldy;

G€G i} 7@ (i,j)€S
Q|s/n
Z (3F|Q1/n] )t /k 15wl TT 1®i)q = bilys)| ) dy;
k= QJ¢{J1 Wi (i,j)€S
ZT H |3kQ|/ 5l T 10aw) — (b0)eldy;- (3.7)
k=1 J=1 (7’)])63

Applying the generalized Holder’s inequality (2. ) and noting that
S (kIS13key <2 [(F(2181/35%)de = (2/(en3)ISIHY) [7((Iny)!51 /y?)dy, one ob-
tain

<A

m
H |fj||L(10gL)1/f7’,3kQ H ||bz - (bi)QHesz"ii,?)kQ

(i,5)€S

m
H |fj||L(10gL)1/rj,3kQ H ||b1 - (bi)3kQ||eIeri-7,3kQ

IA
A TTMS ﬁmg

(i,9)€S
— IS+l AEML(logL)RS (f)(l‘) H ”biHOsceerij- (38)
(4,5)€S
By (3.4), (3.5), (3.6) and (3.8), Lemma 3.1 is proved. O

REMARK 3.1. By the proof of Lemma 3.1, it is easy to show that the same estimate
holds for M?(Wg;f )(x) with
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- _sup/ [T 10ie) = biCwp) K, v, ) T 15055

n>0 (i.)€S j=1

when K(z,y) and f;(y;) (1 < j < m) are all positive functions. We will use this fact in
the next section.

4. Weighted estimates.

We first show how to apply Lemma 3.1 to prove these estimates. As in [31] and also
[37], let u,v € C>([0,00)) such that |u/(t)| < Ct~1, v/(t) < Ct™! and satisfy

X[2,00) < u(t) < X[1,00)5 X[1,2) < 0(E) < X[1/2,3)-

Denote uﬂ(x7y17"'7ym) = K(‘r?y177ym)u(\/|x_y1‘2++ |x_ym‘2/77) and
Vol Y1,y Ym) = ‘K(a@yl, .. ,ym)v(\/|x 24+ |z —ym|2/77)|. Define

Uz o(F)(@) = sup

n>0

/(R I | EUC RG] | B!

" (ig)es =1

Vi (F)(2) = su /
foP@ = [

Ifs=0, Ugs(f)(x) and Vgs(f)(m) are defined in a similar way as before.

By arguments similar to [31], U, (z,y1,...,Ym) and Vy(z,y1,...,ym) satisfy (2.1)
and (2 2) with A, replaced by 2A. uniformly in 5. It is clear that for any finite set S,
T fla) U (F)(@) + V2 ((F)(x), which also implies |7 < [|ltt*|| + [[V*].

Thus instead of estimating T3 flx) directly, it suffices to estimate Uz S( f ) and

m

IT @i@) = bity))Val@yrse s ym) T Filwi)

(ij)ES i=1

.

Vg S( f ) respectively. The key point would be a Fefferman—Stein function estimate. The
one for M} # (Z/{i‘ f ) follows from Lemma 3.1. For M| # (Vf f ) we only need to consider

positive functions f;. It will then suffice to estimate M# (Vf +f) with V (fl, oy fm)
defined by

VE (F)() = sup TT o) = 5w |V, - oym) T Fiw)dr
’ (®)™

"0 (i)es i=1

However by Remark 3.1, similar estimate for M f (Vg’;q f ) also holds. For simplicity, we

will only prove these estimates for U ( 7).

PROOF OF THEOREM 1.1. Assume HML(Iog L)ﬁs(f)HLp(w) < 00. Admit first the
following:
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CLAIM A.  There exists some 6 with 0 < § < 1/m such that for any finite subset D
of ZT x {1,...,m} and any bounded and compact supported functions f; (i =1,...,m),

[ Ms (U5 5 (f )l Lo (w) < oo
By Lemma 2.1 and Claim A, it suffices to show that there exists §g with 0 < g <
0 < oo such that

185, @ () o

% S
< (Ul sL + 1K isie1) T Meillose, ,n
(i,5)€S

|ML(logL)éS (f)|’Lp(w) (41)

We prove this by induction. Consider first the case |S| = 1 and let S = (1, 7) for
some 1 < j < m. By Lemma 3.1, for any é; with dg < 61 < &, we have

Mﬁ (Ugsf) (x)
< O aM 10 1y D) @1l 0sc, oy + CMs, U () (@) b1 ][ Brs0-

By Lemma 2.1 and Claim A, using the estimate M;f(u*f)(z) < C|UH [T M(F) (), we
have

1M @5 5 F) oo

; + ClIMs, U (F Do Ioall Baro

mL

<C||Z/[*||2HM L(log L) RS f HLP(oJ)”bl”OSC

<l @)yl + 1K) b llose, ., ||ML<logL>ﬁs (o

where Rg = (0,...,1/r1;,...,0). This is (4.1) when |S| = 1.

Now assume (4.1) holds for any S with 0 < |S| < N — 1, and we are in a position
to prove it holds for any S with 0 < |S| = N. By Lemma 2.1 (and Claim A again) and
Lemma 3.1, there exists §; with dg < d; < d such that

IME @ )| ooy < CINsien TT Ibillose
(,7)€S8

+C % T1 Isillmaol|Ms, @5 5 ()| oo

DcS (i,j)eDe

<ClU s+ [ Nbillose
(1,7)€S8

Waw yo 1 IbillsmolME@ s (P Loy (42)

DCS (i,j)eDe

’ML(logL)ﬁs ('F)HLP(w)

eszle

expL i HML(Iog L)RS (f) ||LT’(w)

As D C S, |D| < N — 1, by assumption, we have
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M5 @5 5 ()| o

< O([U ) + 1K o) T Ibillose
(¢,7)€D

’ML(log L)fp (f)’|LP(w)'

expL”id

Combine this with (4.2),

183, @65 s P oo

SCWNMW+MMJMM+MﬁUWW

X H Hbi”Oscemerij

(2,7)€8

S *
<C(IK s + LIS 1) T Meillose,, -
(i,9)€S

|ML(log L)fs (f)||Lp(w)

|ML(log L)RS (f) H Lr(w)"

This is exactly (4.1).
Now we are left to prove Claim A when HML(IOgL)ﬁS (f)HLp(w) < 00. Asw € A,
there exists pg with max{pm, 1} < py < oo such that w € A,,. We have

M5 (U5 [Prgez= <WWWW

HLP(w) H p/po U HLP(w) LPo (w)

< C’HZ/{* p/p0| po/p _ CH

LPo(w || LP(w)

It is sufficient to show for any finite subset D of Zt x {1,...,m}, ||U§D(f)|\Lp(w) < 0.
Note that if S is an empty set, (MgD(f))(x) =U*(f)(z). f0O<|D| <1, \\UgD(f)||Lp(w)

has been shown to be finite [15]. For general D, the same sketch as in the case |D| =1
applies too. O

The proof of the Corollary 1.2 is almost the same as the argument of Theorem 3.18
n [15] and we omit its proof.

PROOF OF THEOREM 1.3.  We may assume the right-hand side of (1.8) is finite,
since otherwise there is nothing needed to prove. As in [15], we may also assume first
that w is bounded. Then the Monotone Convergence Theorem will justify the theorem
by first proving (1.8) for w, = min{w, r} and taking the limit » — co.

We assume momentarily that the following:

CLAIM B.  For some 6 with 0 < & < 1/m and for each D C S, it holds that

swo(A I Iilowo oy B Msy 0 (1)) > A7) < .
(

A0 N ges/p

As ¢ : (0,00) — (0,00) is doubling, by Lemma 2.1 and Lemma 3.1, for any § and 6y with
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0<d<dg<1/m,

sup e\ (fy € R : U5 5 (F)(w)] > A™})

< Ciu%cp()\)w(y eR™: Mfugs(f)(y) > ™)
N :

xnl/m 1/m n o m
<oswo(A g TT I ol € B s My e (7)) > A7)
(2,7)€8

S Sup@</\ I ||bi||}3/$o) (v € R My, @2 (F))) > A™).

Dics*>0 (i,5)€8/ Dy

For the second term in the right side of the last inequality, we can apply Lemma 2.1
by Claim B and then Lemma 3.1 to control it by

11/ m 1/m " . .
Cili%<p<>\||u |||§|+1 1T |b¢||o/scemerij>w(yeR F M 10g s (D)) > ™)
(1,5)€S

203 S swe(n T o )l e B M 0, (1)(0) > A7)
(@

D1CS D2CD; ,J)ES/ D2

For every family of subsets Dy C S, every family of subsets Dy C Dy, 1 < k <|S5],
we continue to apply Lemma 2.1 to decompose these subsets until |Dy| = 0. This can be
done in finite steps as every time we use Lemma 2.1, we get a strictly proper subset.

Then we will obtain

sw (N ({y € R" < 15 (F)w)| > A™})

SC’w(yER":ML(IOgLRS(JF)()>/\m) Z Z

D;CS D‘S‘CD‘S‘,l

[S|—-1
w111/ m 1/m
sup o ( AU ||14m, Ibs H”mOsceszm (IR —
>\>O | | expL *J

(4,5)€Dg =1 (i,j)€Dy /D41

=o§g%so(x|u*||1§";l 11 ||bi|é>/:;;mr.,)w(yeﬂ%":ML(logLRs@)( ) > A™).

ij
(i,5)€S

It is now enough to prove Claim B. If 0 < |D| < 1, this again have been shown to
be finite in [15], which also applies for the case of general set D. We omit the details
and will specify a little more in the following section. O

PrROOF OF THEOREM 1.5. The basic idea is taken from the proof of Theorem 3.17
n [15]. Assume without loss of generality that ¢ = 1. Define the open set
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Q= {[L’ eR™: ML(logL)a(f)(m) > 1}

Assume moreover it is not empty and for any compact sbuset F' C {2, we can cover it by
a finite family of cubes @), with finite overlap for which

m
1< H Hfj||‘1>j~,Qk'
j=1

Denote ®;(t) = t(1 +log™ t)®. Note that ®;(¢) > ¢, and

B (1) 0 @, (1) = t(1 + log™ )2 (1+ log™t (¢(1 4 log™ t))o"?)a“
< Ct(1+log™ t)%2 (1 + log™ t)%1 = C2(1 + log™t )@ Tz,

We have for any j € {1,...,m} and any set 3 € By, m},
Pp5 = Pp) 00 Ppg) < Ppm < O(1).

By Lemma 2.2,

H”fj”‘I’j,Qk- SCIH&X{H 1Qx |/ B,J |fﬁ )|)dz : /BGB{l 77”}}
=1 =1
LS|
C — O(f; dzx.
< Jﬂll@k/m (f;(2))de

Then we have

where the second last inequality is due to Holder’s inequality, and the last inequality is
due to the finite overlap of the family of sets Q.
As the set F' is arbitrary in §2, the conclusion is obtained. O
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PROOF OF THEOREM 1.4. By homogeneity, we only need to prove (1.9) when
t = 1. It is easily checked that 1/(®(1/¢)) is doubling and controlled by g(t) = Ct for
some C' > 0. By Theorem 1.3 and Theorem 1.5,

vo{z €R™: \ugs(f)(x)\ >1}

<C ofz eR": M, F > tm
igg @(l/t)v {3;‘ 5( (f ))( }

< Csup—r v< ER™: M (P > " >
t>IO) @(1/t> w\ Y L(log L)"s Y H(i,j)es Hbi”OSCemerw

m

1 Hi:(i,j)ES ”biHOSCeszTij f](l‘)| 1/m
<O L </ Kl : Jest@rie)

Considering the multiplicative of ®, this implies the theorem.

To show the sharpness of Theorem 1.4, take n = 1, f; = X(0,1) and b;(x) = log [1+x|.
This example is due to Pérez [25], where he considered the sharpness for the operator in
(1.4). The general case follows in a similar way. O

5. Vector-valued extension.

The above theorems can be extended to the vector-valued case.

DEFINITION 5.1. For any k € NT, let T}, be an m-linear Calderén—Zygmund oper-
ator with kernel K} and Sy be an finite subset of Z% x {1,...,m}. For 0 < q < oo, the
vector-valued maximal commutator Tg Gq is defined by

- o ° . . 1/q
T 1)) = 1T o, @ = (2 1725, GO0
k=1

> 1/q
—<ZIT,:,g’Sk<f1k,...,fmk)<x)|q) Y
k=1

where

T]:’l—)"s(flka ] fmk)(x)

= sup
§>0

T o) - bl Kl [ fjk(yj)dﬁ‘-

1J)ESk Jj=1

/@;"'1 o=y 2)1/2>5

Again we write TE*(A - T,;. We can define Tj, ¢ q(f) in a similar way.

When Sy, = Sy, = S and Ky, = Ky, = K for any ki, ko € N, m =1, and |S| =1,
Pérez and Trujillo-Gonzélez [28] gave the weighted strong and endpoint boundedness of
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—.

T; ¢ ,(f). Grafakos and Martell [10] gave the weighted strong boundedness in the case of
|S| = 0 for general m > 1. The endpoint estimate was obtained by Cruz-Uribe, Martell
and Pérez in [8], also under the case of [S| = 0. In [34], Tang considered

l m
Tg,Sk(flkv‘ . 7fmk)(x) = /nm (bj(x) - bj(yj))K(x7y1u cee 7ym) H fjk(yj)dzjv
1

Jj= Jj=1

where 1 < [ < m, and gave some weighted and endpoint estimates. In a recent paper
[33], Si and Xue considered the vector-valued maximal operators

oo oo

. . 1/q 1/q
T (7)) = (Z|Tﬁb,s<fk><w>|Q) _ (Z|Tﬁb,s<f1k,...,fmk><x>|Q) |

k=1 k=1

Based on an estimate for the sharp Feffermann—Stein function of this vector-valued
commutator, we can obtain the following theorems. Similar estimates for TB, 5. ( f ) will
follow along the same line.

For any k € NT, let R, be a map from S to the set of positive numbers which
are all bigger than one. Denote rjjx = Ri(4,7), 1/rjk = >0 jyes, (1/7ij) and Rs, =
(1/7‘17]“ ey 1/rm,k>-

THEOREM 5.1.  Let 0 < p,q <00, 0 <s <00 andw € Ax. Let b € Oscoypprijn.
Assume |S| = supy>1{|Sk|} < 0o. Then there exists a constant C such that

175 P e = O (3 (I + W)l TT W0lon s
k=1

(,5) €Sk

a\ 1/q
x M R;k(flka"'7fmk)> )

L(log L)

Lr:s(w)
for any bounded and compact supported functions fji, j=1,...,m, k€ N*.

Theorem 5.1 follows from the extrapolation Lemma 2.3 proved in [8]. Although a
strong weighted boundedness involving Ay is expectable by studying the weighed bounds
of vector-valued maximal operator M, we do not know how to obtain the weak endpoint
estimate via such extrapolation for |S| > 0. However, if we take Si, = Sk, = S and
K}, = Ky, = K for any k1, ko € NT, we can get both the strong and weak type endpoint
weighted estimates.

THEOREM 5.2.  Let 0 < p < 00, w € Aw, 1/q = 3771 (1/q;) with 1 < ¢; < o0.
Then there exists a constant C > 0 depending on T such that

HTiS,q-ﬂ|LP(w) =< C[w]folc H Hbi”OSCL”j q)HLp(w)'

(i,5)€S

|ML(logL)RS( (52)
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COROLLARY 5.3. Let1 < p; < o0, 1 < ¢q; < o0 for j =1,...,m with 1/p =
> (1/py) and 1/q = 3700 (1/q;). Let G € Ap. Then there exists a constant C
depending on & and T such that

m

|| bSq ||Lp(vw) <c H Hb ”030pr i)
(i,5)€S =

oo 1/qj
(meﬁ
k=1

LP3 (wy) .

THEOREM 5.4. Letw € Ao and 1/q =371, (1/q;) with 1 < g; < oo. Let R be a
map from S to the set of positive numbers that are bigger than 1. Let ¢ : (0,00) — (0, 00)
be doubling and for some constant C, (t) < Ct for any t € (0,00). Then there exists a
constant C' > 0,depending on T and the Ay, constant of w, such that

sup p(A\)w({y € R™ : \Tgsq(f)(y)l >A"Y)

A>0
. ™
< Cop e (1 € B - My, ()0 > S
A>0 Lllog L)Tis 214 [Lijes lbillose,,, v
for any bounded and uniform compact supported functions fji, j=1,...,m, k€ N*.

The following theorem to Theorem 5.4 is Theorem 1.4 to Theorem 1.3. We state it
without specifying the proof.

THEOREM 5.5.  Let (w1,...,wm) € Aq,..1) and 1/q = E;":l(l/qj) with 1 < ¢; <
00. Let bj € Oscegprris, 1ij = 1, i =1,....m. 1/r; =37, cg(1/rij). Denote ®;(t) =
t(1 + logt )Y/ and ®(t) = t(1 + logt ¢)2=1(/"3) " Then there ewists a constant C

depending on & and T such that for any bounded and uniform compact supported functions
fik:d=1,....m, ke NT,

vo{z €R":|T bsq f)(a:)| > ™}

N 1/a;
u S k1) s es Woillose o, 1m
scH(/Rncp(( u vl") (o8 O e )wj(x)dx> . (54)

Moreover, when r;; =1 for any (i,5) € S, this result is sharp in the sense that it does
not hold for any ®(t) = t(1 +log™ t)* with a < > (L))

To prove Theorem 5.2 and Theorem 5.4, define Ugs(f)(x) and Vgs(f)(x) as in

Section 4. Define the vector-valued operator U by

b,S,q

. . 1/q
@mumeW%mm%m=(Z|sn )
1/q
(Z\Sﬁhwmmmﬁ



Commutators of m-linear C-Z type operators 1183

and Vgs (f) in a similar way.

As Ty f(z) <Us (f)(@) + Vi ()(), we have

Tg*,s)qf(x) < min{1, 2(1-q>/q}(ug’s’q(f )(z) + szs,q(f )(z)).
As mentioned before, the following lemma will be crucial in this part.

LEMMA 5.6. Let 0 < § < 1/m. For any number dg, § < dg < oo, there exists a
constant C' depending on U* such that for any bounded and compact supported functions

fi (i:l,...,m),

MFUs g ) @) <C T billosers My oy 1y7s (F) (@)
(1,7)€8

+C> II WbillsaoMs, U, (D) (). (5.5)

DcCS (i,5)eS\D

The same inequality also holds for M5 (Vl?s z).

The proof of Lemma 5.6 will be similar to the one of Lemma 3.1, although the
vector-valued operator adds more terms and with that, more complexities. The key for
tackling the new complexities is a very careful application of Hdolder’s inequality and
Minkowski’s inequality. For reader’s convenience, we give a rather completed proof.

PROOF OF LEMMA 5.6. We are only going to estimate Mf (Ugsqf)(x). The es-

timate of M, #(Va F)(z) is almost the same.

By deﬁmtlon of the Fefferman—Stein function, our aim is to show that, for any
point z € R™, any cube @ containing x and 0 < § < dy < 1/m, there exists a con-
stant cg such that for any bounded and compact supported functions f; (i = 1,...,m),

(1/1QI) fQ 1125 : Sq )(2)|? — |ca|5|dx) /% is bounded by the right side of the above in-
equality.

Let ¢ = (Xneyleh DY = {ch s }Hlia, where ¢y, = sup, g lcqinl- As 6 <
1/m < g, and by ||| f]lz — lgllze=| < [If — gllz, we have

11424z (F)Hr, = It | < (142 (£ (@) = ety
< [{ st 5, B2 sl ], = T

where I} (z) = SUp, 5 ‘UB,Sn(f_f;)( ) — cQ b 7,‘
By setting cokm = 2a,a.0 Jrnm Un(@: ) [ jyes((bi)@ — bi(y;)) TT5%, fir(y;)dy,
applying Lemma 3.1 and splitting H]:l f]k(y]) as (3.3), we have
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I;(z) < sup
n>0

Rmm (i,5)€8 J=1
# X sl [ ) o) TT (G~ 000 [T 52 05107

8,60 (i.j)€s i=1

+> I 10z) = (0)e)l

DCS (i,j)eS\D

cswp| [ (=5 ] <bi<z>—bi<yj>>Hfj<yjk>dg\
m>0] /R (ij)ED j=1
+ ) L@+ T 10z = @)l |4, (fo) ()]
a,a40 DcCS (i,j)eS\D
Therefore

e = (i 105 }“de)l/éw > (i s L)
vo X (i T 106~ o0 66 i)

DcCS (i,5)€S\D
_OL+OZI*+CZID (5.6)
DcSs

As 0 < § < 1/m, by Kolmogrov’s inequality and Corollary 3.3 in [8] which proved an
endpoint weighted boundedness of T, we have

fcfu (50 T @e-bahst TT (@0 o)
i:(i,1)€S i:(4,m)€S L1/m(Q,dz/|Ql)
2\ 1/4;
(Z( I Itboe =l 17%) ")
k=1 Ni:(i,j)€S LY (R™,dz/|Q)
<c H 15illose, . v Mo 1y () @): (5.7)

(i,4)€S

For any @ # 0, by (3.7) and the fact that U,(z,y1,...,Ym) of L{n(f) satisfies (2.1)

uniformly, we have

— 1 7 1
;,k<z>sc;3t€jr_[1m/w|fjk<yj>| IT 1itws) - (Bo)alds;

i:(i,7)€S
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Then
<y (L g L 1wl TI bt~ Gl )
k=1 “Mt=1 j=1 i:(1,5)€S

IN

o0 1 m
33 (5= gt [

k=1 t=1 =1

|b¢<yj><bi>Qdyj) ,

i:(4,7) €S

by Holder’s inequality (1 < g < oo) or Minkowski’s inequality (0 < ¢ < 1). Apply
Hélder’s inequality again, we can control I%? further by

oo 1 m 1 [eS) . 1/q; q
C; 2 <3tQ| /:atQ (,; Hiw{5) > (H 1bi(y;) — (bz)Qdya> :

ix(i,j)€Ss

By the generalized Holder’s inequality (2.3),

i ||

<§:|fjk(yj)|qj>1/q]

w20y mall

| ECRII

i:(i,5)€S

L(log L)/73 ,3tQ

—

SC H ”biH(Cl)schUM%(IogL)&( q)(x) (58)

(4,)€S

We now estimate I}, for D C S. By Holder’s inequality,

e T (i [1e@-00r) " (5 [legdeie)

(1,5)€S\D
<C H [|bs HB]V[OM50( (f))( ). (5.9)
(i,7)€S\D
Combine (5.7), (5.8) and (5.9), we finish the proof of this lemma by (5.6). O

Theorem 5.2 can be directly obtained by the above lemma, we omit the proofs and
proceed to the proof of Theorem 5.4.

—

PROOF OF THEOREM 5.4.  As Tgsqf(m) < min{1,2<1*q>/q}(ugsq(f)(x) +

Vgsq(f)(x)), we only need to prove this theorem for Z/{iS’q(f_') and V§7S7q(f). The
proof is almost identical with that of Theorem 1.4, where we use Lemma 5.6 instead of
Lemma 3.1. We omit the details. The only place we need to pay attention is that this
time, to apply Lemma 2.1, we need to show for any subset D C S, b; bounded, and any

bounded f; with compact support,
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—.

iupotp()\)w{y eR": ‘TE*D q(f)(y)‘ > A"} < oo, (5.10)
S D,
whenever
sup o0 (1 € B s My 1,0, () 0) > ) <
: i T, .
A>0 Llog L)fs 24 [l jyes lbillose,,,,

By the uniform compactness of f;, assume that supp f;x C B(0, R).
sup p(Nw{y € R« |Tf ()] > A"}
A>0 0
< iupgw(/\)w{y € B(0,2R) : T}, | (f)(y)} > A"}
>

+ supp(Mw{y € R"/B(0,2R) : ’ ’ A= T+11.
A>0

We can assume w is bounded. By the fact that ¢(t) < Ct and Holder’s inequality, let
1<p<oo,

I<C’bup/\}{y€BO2R |>/\m}‘

|quf

1/m (1—(1/p))n p/m Y
<c/ . 77, (D@ " dy < CR /n| ip.. (W) . (5.11)

By Corollary 5.3, the last term is finite. For the term I, since y ¢ B(0,2R),

qu(f)( = <1§ </B(0,R)m s H(ﬁjej ||Z( L ™ H | Fji yj)dy) )Uq

/4
<o T1 o~ e /, (S aemisuie)
(i,j)€8 B(0,]yl)

<O T Ibillos My s (Fra) )

(i.5)€s

Then

11 < suppNo{y € B0 TT 1l My y0 Fra))] > 47

A>0 (i.)€S
<Csup90(>\)w<yeR"'M (fra)y) > - ) <
_— ° R T’_‘ '
A>0 Llog L) ! H(z‘,j)es ||bz'||OscempL"‘z:j

(5.12)

By (5.11) and (5.12), we get (5.10). Thus we finish the proof. O
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