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Abstract. Let T be an m-linear Calderón–Zygmund operator with ker-
nel K and T ∗ be the maximal operator of T . Let S be a finite subset
of Z+ × {1, . . . , m} and denote d~y = dy1 · · · dym. Define the commutator

T~b,S
of T , and T ∗~b,S

of T ∗ by T~b,S
(~f )(x) =

R
Rnm

Q
(i,j)∈S(bi(x) − bi(yj))

·K(x, y1, . . . , ym)
Qm

j=1 fj(yj)d~y and T ∗~b,S
(~f )(x) = supδ>0

˛̨ RPm
j=1 |x−yj |2>δ2

·Q(i,j)∈S(bi(x) − bi(yj))K(x, y1, . . . , ym)
Qm

j=1 fj(yj)d~y
˛̨
. These commuta-

tors are reflexible enough to generalize several kinds of commutators which
already existed. We obtain the weighted strong and endpoint estimates for
T~b,S

and T ∗~b,S
with multiple weights. These results are based on an estimate

of the Fefferman–Stein sharp maximal function of the commutators, which is
proved in a pretty much more organized way than some known proofs. Similar
results for the commutators of vector-valued multilinear Calderón–Zygmund
operators are also given.

1. Introduction.

Let T be a Calderón–Zygmund operator and b be a locally integrable function on
Rn. The commutator of T was defined by Coifman, Rochberg and Weiss [7] in 1976, for
smooth functions, in the following way

Tbf = [b, T ]f = bT (f)− T (bf). (1.1)

This operator turns out to be bounded on Lp(Rn) for 1 < p < ∞ [7], and not to be
of weak type (1, 1) [21] when b is a BMO function. Moreover, Pérez [21] obtained the
following alternative endpoint estimate,

|{y ∈ Rn : |[b, T ]f(y)| > λ}| ≤ C‖b‖BMO

∫

Rn

|f(x)|
λ

(
1 + log+

( |f(x)|
λ

))
dx

for each smooth function f with compact support and all λ > 0.
A simple proof of the Lp boundedness of Tb given by Coifman, Rochberg and Weiss

[7] combines the theory of weights and properties of Cauchy integral. This idea was fur-
ther developed by Alvarez, Bagby, Kurtz and Pérez [1]. Although this method is general
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enough to prove the weighted boundedness of commutators of any linear operators, it
seems that one at least cannot get the Coifman–Fefferman type estimates as well as the
endpoint estimates with this method.

An important idea in [21] is to relate the commutator to the sharp maximal operator
of Fefferman–Stein (This idea may go back to Strömberg [13]). One advantage of such
method is that we can deduce both the weighted strong and endpoint estimate (see e.g.
[2], [21]), and by duality, we can have estimates for the commutator with two weights.
We refer to [22] and [24] for more information about this. This idea or technique is
also available when we consider generalizations of the commutator. In [27], Pérez and
Trujillo-González introduced the following more general type commutator

T~b(f)(x) =
∫

Rn

[ m∏

j=1

(bj(x)− bj(y))
]
K(x, y)f(y)dy (1.2)

and obtained both the weighted strong and the weighted endpoint estimates. Obviously,
T~b is a generalization of both the one defined in (1.1) and the higher order commutator
studied in [21].

It is natural to extend the definition of the commutators to the case of multilinear
Calderón–Zygmund operators, for which the theory has been undergoing a rapid progress;
see [11] for a detailed account and Section 2 for the definition of multilinear C-Z operators.
The multiple weights theory was established in [15], where the authors considered the
following type of commutators

T~b(~f )(x) =
m∑

i=1

(
biT (~f )(x)− T (f1, . . . , bifi, . . . , fm)(x)

)
, (1.3)

and proved its weighted strong and weak type end-point estimates. One key theme in
[15] was to obtain an improved estimate of sharp maximal function of T (~f ) and T~b(~f ),
which was controlled by a new maximal operator (see Section 2.1). And by this new
maximal operator one can deduce better estimates.

More recently, in [25], iterated commutator TQ b was introduced as below

TQ b(~f )(x) = [b1, [b2, . . . , [bm−1, [bm, T ]m]m−1 · · · ]2]1(~f )(x)

=
∫

Rnm

m∏

j=1

(bj(x)− bj(yj))K(x, y1, . . . , ym)
m∏

j=1

fj(yj)d~y, (1.4)

where d~y = dy1 · · · dym. This operator enjoys similar weighted strong and weak type
endpoint estimats to those of the operators mentioned above.

All the commutators mentioned above have maximal partners. Segovia and Torrea
[32] first studied the weighted strong boundedness of T ∗b defined by

T ∗b (f)(x) = sup
δ>0

∣∣∣∣
∫

|x−y|>δ

(b(x)− b(y))K(x, y)f(y)dy

∣∣∣∣, (1.5)
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which was the maximal operator of Tb in (1.1). The weak type endpoint estimate of
T ∗b was given by Alphonse [17]. Zhang [37] then considered the maximal operator of
T~b in (1.2). Recently, in [36], Xue considered the following iterated type commutator of
multilinear operator T ∗ which was defined by:

T ∗Q b(~f )(x) = sup
δ>0

∣∣∣∣
∫

(
Pm

j=1 |x−yj |2)1/2>δ

m∏

j=1

(bj(x)− bj(yj))K(x, y1, . . . , ym)
m∏

j=1

fj(yj)d~y

∣∣∣∣,

and proved both the strong and weak endpoint estimates.
In this paper, we want to find a general frame that contains the results of all the

above operators. Note that the operators, for instance, defined in (1.2), (1.3) and (1.4)
are all independent of each other. We are lead to the following definition.

Definition 1.1. Let T be an m-linear Calderón–Zygmund operator with kernel
K. Let S be a finite subset of Z+ × {1, . . . , m}. The commutator T~b,S of T and its
maximal operator T ∗~b,S

are defined by

T~b,S(~f )(x) =
∫

Rnm

∏

(i,j)∈S

(bi(x)− bi(yj))K(x, y1, . . . , ym)
m∏

j=1

fj(yj)d~y, (1.6)

and

T ∗~b,S
(~f )(x) = sup

δ>0

∣∣∣∣
∫

(
Pm

j=1 |x−yj |2)1/2>δ

∏

(i,j)∈S

(bi(x)−bi(yj))K(x, y1, . . . , ym)
m∏

j=1

fj(yj)d~y

∣∣∣∣
(1.7)

for all fj ∈ S(Rn), j = 1, . . . , m, and all x 6∈ ⋂m
j=1 supp fj . If S = ∅, we simply denote

T~b,∅ = T and T ∗~b,∅ = T ∗.

Remark 1.2. The commutators defined in (1.6) and (1.7) indeed contain the
operators defined as in (1.2), (1.3) and (1.4). Moreover, (1.6) and (1.7) in fact contain
more than that. Take, for example, S = {(i, j) : i ∈ {1, . . . , l}, j ∈ {1, . . . , m}}, then
T~b,S(~f )(x) =

∫
Rnm

∏l
i=1

∏m
j=1(bi(x) − bi(yj))K(x, y1, . . . , ym)d~y. In this case, if take

m = 1, then this operator coincides with the commutator defined in (1.2). If we take
S = {(j, j) : j ∈ {1, . . . , m}}, then (1.6) coincides with (1.4).

It turns out, not very surprisingly, that both T~b,S and T ∗~b,S
satisfy similar bounded-

ness as all their earlier brothers such as (1.1) and (1.2). We will only state and prove
the results for T ∗~b,S

. The same reasoning applies to the case of T~b,S , with small and
straightforward modifications.

For a finite subset S of Z+ × {1, . . . , m}, |S| will denote the cardinal number of S.
For a map R from S to the set of positive numbers that are bigger that one. Denote
rij = R(i, j), 1/rj =

∑
i:(i,j)∈S(1/rij) and ~RS = (1/r1, . . . , 1/rm).

The first result of this paper is:



1164 Q. Xue and J. Yan

Theorem 1.1. Let 0 < p < ∞, ω ∈ A∞. Let T ∗~b,S
be the commutator defined in

(1.7), and R be such a map defined above, bi ∈ OscexpLrij . Then there exists a constant
C such that

∥∥T ∗~b,S
(~f )

∥∥
Lp(ω)

≤ C
(‖T ∗‖[ω]|S|A∞ + ‖K‖|S|+1

)
[ω]A∞

∏

(i,j)∈S

‖bi‖Osc
expL

rij

∥∥M
L(logL)

~RS
(~f )

∥∥
Lp(ω)

for any bounded and compact supported functions fj (j = 1, . . . , m).

For the definition of ‖T ∗‖, ‖K‖k with k ∈ N+, [ω]A∞ , ‖bi‖Osc
expL

rij
,

M
L(logL)

~RS
(~f ), A~p and ‖T ∗‖k in the following corollary, see Section 2.

Theorem 1.1 implies the boundedness of T ∗~b,S
on Lp1(ω1) × · · · × Lpm(ωm) with

~ω = (w1, . . . , wm) ∈ A~p.

Corollary 1.2. Let ~ω ∈ A~p with 1/p =
∑m

j=1(1/pj), 1 < pj < ∞, bi ∈
OscexpLrij , rij ≥ 1 (j = 1, . . . , m). Then for any fj ∈ Lp(ωj), there exists a constant C

depending on ~ω such that

∥∥T ∗~b,S
(~f )

∥∥
Lp(v~ω)

≤ C‖T ∗‖|S|+1

∏

(i,j)∈S

‖bi‖Osc
expL

rij

m∏

j=1

‖fj‖Lpj (ωj).

We obtain the following weak type estimate of T ∗~b,S
.

Theorem 1.3. Suppose p > 0 and ω ∈ A∞. Let ϕ : (0,∞) → (0,∞) be doubling
and there exists some constant C1 such that for any t ∈ (0,∞), ϕ(t) < C1t. Suppose that
bi ∈ OscexpLrij , rij ≥ 1 (j = 1, . . . , m). Then, for any bounded and compact supported
functions fj, there exists a constant C > 0 depending on the A∞ constant of ω, such that

sup
λ>0

ϕ(λ)ω
{
x ∈ Rn : |T ∗~b,S

(~f )(x)| > λm
}

≤ C sup
λ>0

ϕ(λ)ω
{

x ∈ Rn : M
L(logL)

~RS
(~f )(x) >

λm

‖T ∗‖‖S‖+1

∏
(i,j)∈S ‖bi‖Osc

expL
rij

}
.

(1.8)

Based on Theorem 1.3, we can get the following weighted weak type estimate.

Theorem 1.4. Let (ω1, . . . , ωm) ∈ A(1,...,1), bi ∈ OscexpLrij , rij ≥ 1 and 1/rj =∑
(i,j)∈S(1/rij) (j = 1, . . . , m). Denote Φj(t) = t(1 + log+ t)1/rj and Φ(t) = t(1 +

log+ t)
Pm

j=1(1/rj). Then, for any bounded and compact supported functions fj, there exists
a constant C depending on ~ω and T such that for any t > 0
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v~ω

{
x ∈ Rn : |T ∗~b,S

(~f )(x)| > tm
}

≤ C

m∏

j=1

( ∫

Rn

Φ
( |fj(x)|∏i:(i,j)∈S ‖bi‖Osc

expL
rij

t

)
ωj(x)dx

)1/m

. (1.9)

Moreover, when rij ≡ 1 for any (i, j) ∈ S, this result is sharp in the sense that it does
not hold for Φ(t) = t(1 + log+ t)α with α <

∑m
j=1(1/rj).

The proof of Theorem 1.4 will also be based on the weighted weak type estimate of
ML(logL)~α(~f ) as follows.

Theorem 1.5. Let ~α = (α1, . . . , αm) and (ω1, . . . , ωm) ∈ A(1,...,1). Denote Φ(t) =
t(1 + log+ t)

Pm
j=1 αj . Then, for any t > 0, there exists a constant C > 0 such that

vω

{
x ∈ Rn : ML(logL)~α(~f )(x) > tm

} ≤ C[~ω]1/m
A~1

m∏

j=1

( ∫

Rn

Φ
( |fj(x)|

t

)
ωj(x)dx

)1/m

.

We can extend almost all the above results to the commutators of vector-valued (lr

valued) operators; see Section 5 for the statements.
The article is organized as follows. In Section 2, some preliminaries will be given.

A key lemma is given and proved in Section 3. Section 4 will be devoted to the proofs
of the theorems stated above. We will state and prove the weak type endpoint estimates
for the commutators of vector-valued operators in Section 5.

Throughout this paper except in Section 2, the constant C may depend on the n,
m, p, |S| but will not depend on T , bi, ω, or ~f unless it is indicated explicitly, and may
vary from line to line.

2. Some preliminaries.

2.1. Multilinear C-Z operators and multiple weights.
Multilinear Calderón–Zygmund operators was originated in the work of Coifman

and Mayer [4], [5], [6]. See also [14]. We follow in this paper, with minor modification,
the definition introduced in [11] by Grafakos and Torres.

Definition 2.1. Let T be a multilinear operator initially defined on the m-fold
product of Schwartz spaces and taking values in the space of tempered distributions,

T : S(Rn)× · · · × S(Rn) −→ S ′(Rn).

We say that T is an m-linear Calderón–Zygmund operator if it can be extended to a
bounded multilinear operator from L1×· · ·×L1 to L1/m,∞, and if there exists a function
K, defined off the diagonal x = y1 = · · · = ym in (Rn)m+1, satisfying

T (~f )(x) =
∫

(Rn)m

K(x, y1, . . . , ym)
m∏

j=1

fj(yj)d~y
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for all x 6∈ ⋂m
j=1 supp fj ; and there exists, for some ε > 0, a constant Aε such that

|K(x, y1, . . . , ym)−K(x′, y1, . . . , ym)| ≤ Aε|x− x′|ε( ∑m
j=1 |x− yj |

)mn+ε (2.1)

whenever |x− x′| ≤ (1/2)max1≤j≤m |x− yj |, and

|K(y0, y1, . . . , ym)| ≤ Aε( ∑m
k,l=0 |yk − yl|

)mn . (2.2)

The maximal operator of T is defined by

T ∗(~f )(x) = sup
δ>0

∣∣∣∣
∫

(
Pm

j=1 |x−yj |2)1/2>δ

K(x, y1, . . . , ym)
m∏

j=1

fj(yj)d~y

∣∣∣∣.

We define, for k ∈ N+, ‖K‖k = inf{Aε/εk : (2.1) and (2.2) hold} and ‖T ∗‖k =
‖T ∗‖L1×···×L1→L1/m,∞ + inf{Aε/εk : (2.1) and (2.2) hold}. Denote ‖T ∗‖1 by ‖T ∗‖.

The operator T satisfies the weighted boundedness given by Lerner Ombrosi, Pérez,
Torres and Trujillo-González [15], where multiple weights was first introduced in the
following way.

Definition 2.2 ([15] (Multilinear A~p condition)). Let 1 ≤ p1, . . . , pm < ∞. Given
~ω = (ω1, . . . , ωm), set ν~ω =

∏m
j=1 ω

p/pj

j . We say that ~ω satisfies the A~p condition if

sup
Q

(
1
|Q|

∫

Q

m∏

j=1

ωj
p/pi

)1/p m∏

j=1

(
1
|Q|

∫

Q

ωj
1−p′j

)1/p′j
< ∞.

When pj = 1,
(
(1/|Q|) ∫

Q
ωj

1−p′j
)1/p′i is understood as (infQ ωj)−1.

When m = 1, this coincides with the classical Ap weight [18]. The A~p condition turns
out to be able to characterize the strong-type inequalities for a more refined multilinear
maximal function M with multiple weights defined by

M(~f )(x) = sup
Q3x

m∏

j=1

1
|Q|

∫

Q

|fj(yj)| dyj .

Let T be an m-linear Calderón–Zygmund operator, 1/p = 1/p1 + · · · + 1/pm, and
~ω satisfy the A~p condition. It was shown in [15], as an important application of the
boundedness of M, that T is bounded from Lp1(ω1) × · · · × Lpm(ωm) to Lp(ν~ω) when
1 < pj < ∞ and to Lp,∞(ν~ω) when 1 ≤ pj < ∞.

2.2. Sharp maximal functions.
M will always denote the Hardy-Littlewood maximal operator throughout the paper.

For δ > 0, Mδ is defined by
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Mδ(f)(x) = (Mδ(|f |δ)(x))1/δ =
(

sup
x∈Q

1
|Q|

∫

Q

|f(y)|δdy

)1/δ

.

Sharp maximal function M# of Fefferman and Stein is defined by

M#(f)(x) = sup
x∈Q

inf
c∈R1

1
|Q|

∫

Q

|f(y)− c|dy.

This gives directly that

M#(f)(x) ∼ sup
x∈Q

1
|Q|

∫

Q

|f(y)− fQ|dy,

where fQ denotes the average of f on Q, and we write M#
δ (f)(x) = (M#(|f |δ)(x))1/δ.

We will need the following lemma.

Lemma 2.1 ([20]). (a). Let 0 < p < ∞, 0 < δ < 1, and let ω ∈ A∞. Then there
exists a constant Cn only depending on n

‖Mδf‖Lp(ω) ≤ Cn max{1, p}[ω]A∞
∥∥M#

δ (f)
∥∥

Lp(ω)

for any function f such that the left hand side is finite.
(b). Let ϕ : (0,∞) → (0,∞) doubling. Then, there exists a constant C depending upon
the A∞ constant of ω and the doubling condition of ϕ such that

sup
λ>0

ϕ(λ)ω(y ∈ Rn : Mδf(y) > λ) ≤ C sup
λ>0

ϕ(λ)ω
(
y ∈ Rn : M#

δ f(y) > λ
)

for any function such that the left hand side is finite.

Remark 2.3. For the strong boundedness, it is the dyadic version that was proved
in [20], which was based on the estimate by Ortiz-Caraballo [19]

M#,d
δ (Md

ε (f))(x) ≤ CM#,d
ε (f)(x) if 0 < δ < ε < 1.

However, the non-dyadic version of the above inequality follows from the same line. [ω]A∞
in the above lemma was defined by Wilson [35] as [ω]∞ = supQ(1/ω(Q))

∫
Q

M(ωχQ). It
is shown in [12] that [ω]A∞ is smaller, and sometimes much smaller than ‖ω‖A∞ defined
by ‖ω‖A∞ = supQ

(
(1/|Q|) ∫

Q
ω
)
exp

(
(1/|Q|) ∫

Q
log ω−1

)
.

2.3. Orlicz spaces and a lemma.
We present here only what we will need in this paper, see [29] for a detailed account.

Define a function Φ : [0,∞) → [0,∞) to be a Young function if it is convex, increasing,
and Φ(0) = 0. The Φ-norm of a function f over a cube Q is defined by
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‖f‖Φ,Q = inf
{

λ :
1
|Q|

∫

Q

Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

The maximal operator MΦ is defined by MΦ(f)(x) = supQ3x ‖f‖Φ,Q, where the supre-
mum is take over all cubes containing x. When Φt = t logs(e + t) (s > 0), we denote
‖f‖Φ,Q = ‖f‖L(log L)s,Q and MΦ = ML(log L)s . If Φt = etr − 1, we denote ‖f‖Φ,Q =
‖f‖expLr,Q and MΦ = MexpLr . For a Young function Φ, the oscillation OscΦ(f,Q) of a
function f is defined by OscΦ(f,Q) = ‖f − fQ‖Φ,Q. Also, we define

‖f‖OscΦ = sup
Q
{OscΦ(f,Q)},

where the supremum is taken over all cubes Q in Rn. For r ≥ 1, we define the space
OscexpLr by

OscexpLr = {f ∈ L1
loc(Rn) : ‖f‖OscexpLr < ∞},

where

‖f‖OscexpLr = sup
Q
‖f − fQ‖expLr,Q = sup

Q
‖f − fQ‖etr−1,Q,

and the supremum is taken over all cubes in Rn. It is easy to see that OscexpL1 =
BMO(Rn) and we know that for r > 1, the space OscexpLr is properly contained in
BMO(Rn) with the norm ‖b‖∗ ≤ C‖b‖OscexpLr .

It was shown in [27] that the following generalized Hölder’s inequality holds,

1
|Q|

∫

Q

|f1 · · · fmg|dx ≤ Cm

m∏

j=1

‖fj‖expLrj ,Q‖g‖L(log L)1/r,Q, (2.3)

where r1, . . . , rm ≥ 1 and 1/r =
∑m

j=1(1/rj).
Note that Φ(t) = t(1+log+ t)1/α is submultiplicative, which meams that there exists

a constant C > 0 such that for any s, t > 0, Φ(st) ≤ CΦ(s)Φ(t).
Given a vector ~α = (α1, . . . , αm), define

ML(log L)~α(~f )(x) = sup
Q3x

m∏

j=1

‖fj‖L(log L)αj ,Q.

We will need the following analogue in the case of vector-valued operators. For ~q =
(q1, . . . , qm), ML(logL)~α(~f~q) is defined by

ML(logL)~α(~f~q)(x) = sup
Q3x

m∏

j=1

‖{fj}lqj ‖L(log L)αj ,Q.

When ~α = (0, . . . , 0), we write ML(log L)~0(~f~q)(x) = M(~f~q)(x).



Commutators of m-linear C-Z type operators 1169

The following Lemma 2.2 plays an important role in the proof of Theorem 1.5. For
a general finite set R with |R| = r, r ∈ R+, we denote the set of all bijective mappings
from {1, 2, . . . , r} onto R by BR.

Lemma 2.2. Let Φj be a submultiplicative Young function for any j ∈ {1, . . . , m}
and E be any measurable set. For any β ∈ B1,...,m, define

Φβ,j(x) = Φβ(1) ◦ · · · ◦ Φβ(j)(x).

Then there is a constant C such that whenever

1 <
m∏

j=1

‖fj‖Φj ,E (2.4)

holds, we have

m∏

j=1

‖fj‖Φj ,E ≤ C max
{ m∏

j=1

1
|E|

∫

E

Φβ,j(|fβ(j)(x)|)dx : β ∈ B{1,...,m}

}
. (2.5)

Proof. Consider first the case m = 1. We need to show that if Φ is a Young
function, then for any measurable set E,

‖f‖Φ,E > 1 =⇒ ‖f‖Φ,E ≤ 1
E

∫

E

Φ(|f(x)|)dx. (2.6)

This is exactly Lemma 6.1 in [9].
For m ≥ 2, we prove it by induction. Assume that for some j ∈ {1, . . . , m} the

result holds for m− 1. Given functions that (2.4) holds, assume

‖fj0‖Φj0 ,E = min{‖fj‖Φj ,E : j = 1, . . . , m}.

Then

m∏

j=1, j 6=j0

‖fj‖Φj ,E > 1.

Therefore, by (2.6) and submultiplicativity, we have

1 <
m∏

j=1

‖fj‖Φj ,E =
∥∥∥∥fj0

m∏

j=1, j 6=j0

‖fj‖Φj ,E

∥∥∥∥
Φj0,E

≤ 1
E

∫

E

Φj0

(
fj0(x)

m∏

j=1, j 6=j0

‖fj‖Φj ,E

)
dx

≤ C

|E|
∫

E

Φj0(|fj0(x)|)dxΦj0

( m∏

j=1, j 6=j0

‖fj‖Φj ,E

)
.
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By assumption,

m∏

j=1, j 6=j0

‖fj‖Φj ,E ≤ C max
{ m−1∏

j=1

1
|Qk|

∫

E

Φβ,j(|fβ(j)(x)|)dx : β ∈ B{1,...,m}/j0

}
.

Thus,

1 <
m∏

j=1

‖fj‖Φj ,E

≤ C

|E|
∫

E

Φj0(|fj0(x)|)dxΦj0

(
C max

{ m−1∏

j=1

1
|Qk|

∫

E

Φβ,j(|fβ(j)(x)|)dx : β ∈ B{1,...,m}/j0

})

≤ C

|E|
∫

E

Φj0(|fj0(x)|)dx max
{ m∏

j=2

1
|Qk|

∫

E

Φβ,j(|fβ(j)(x)|)dx : β ∈ B{1,...,m}, β(1) = j0

}

≤ C max
{ m∏

j=1

1
|E|

∫

E

Φβ,j(|fβ(j)(x)|)dx : β ∈ B{1,...,m}

}
,

where the third inequality is due to Jensen’s inequality. This is (2.5). ¤

2.4. Extrapolation.
We need the following extrapolation result:

Lemma 2.3 ([8]). Given a family of functions F, suppose that for some p0, 0 <

p0 < ∞, and for every ω ∈ A∞, there exists a constant Cω such that for all (f, g) ∈ F,

∫

Rn

|f(x)|p0ω(x)dx ≤ Cω

∫

Rn

|g(x)|p0ω(x)dx.

Then for all 0 < p, q < ∞, 0 < s ≤ ∞, and ω ∈ A∞, there exists a constant Cω such
that

∥∥∥∥
( ∑

j

|fj |q
)1/q∥∥∥∥

Lp,s(ω)

≤ Cω

∥∥∥∥
( ∑

j

|gj |q
)1/q∥∥∥∥

Lp,s(ω)

,

for all (fj , gj) ∈ F, j ∈ N+.

3. A key Lemma.

As mentioned in the introduction, Theorem 1.1 will be a consequence of a Fefferman–
Stein function estimate. To state it, we first define a maximal commutator. Let Kη satisfy
(2.1) and (2.2) uniformly for any η > 0. Define
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W ∗
~b,S

(~f )(x) = sup
η>0

∣∣∣∣
∫

Rn

∏

(i,j)∈S

(bi(x)− bi(yj))Kη(x, y1, . . . , ym)
m∏

j=1

fj(yj)d~y

∣∣∣∣

= sup
η>0

∣∣W~b,S,η(~f )(x)
∣∣ (3.1)

and again write W ∗
~b,∅(

~f ) = W ∗(~f ). The following inequality provides a foundation for
our analysis.

Lemma 3.1. Let 0 < δ < 1/m, then for any number δ0, δ < δ0 < ∞, there exists a
constant C such that for any bounded and compact supported functions fj (j = 1, . . . , m),
one can obtain

M#
δ

(
W ∗

~b,S
(~f )

)
(x) ≤ C‖W ∗‖|S|+1ML(logL)

~RS
(~f )(x)

∏

(i,j)∈S

‖bi‖Osc
expL

rij

+ C
∑

D⊂S

Mδ0

(
T~b,D(~f )

)
(x)

∏

(i,j)∈S\D
‖bi‖BMO.

To prove Lemma 3.1, we will use the following elementary lemma.

Lemma 3.2. Let S be a set of Z+ × Z+, xij be a sequence of real numbers for
(i, j) ∈ S. Then the identity

∏

(i,j)∈S

(xi0 − xij)

=
∏

(i,j)∈S

(λi − xij) +
∑

D⊂S

(−1)|S\D|+1

( ∏

(i,j)∈D

(xi0 − xij)
)( ∏

(i,j)∈S\D
(xi0 − λi)

)

holds for any constants λi.

Proof. Note first that, in general, for an arbitrary finite set E,

∏

i∈E

(ai + bi) =
∑

A⊆E

∏

i∈A

ai

∏

i∈E/A

bi. (3.2)

Using (3.2) twice, we can write for any λi,

∏

(i,j)∈S

(xi0 − xij) =
∏

(i,j)∈S

(xi0 − λi + λi − xij)

=
∏

(i,j)∈S

(λi − xij) +
∑

A⊂S

∏

(i,j)∈A

(λi − xi0 + xi0 − xij)
∏

(i,j)∈S/A

(xi0 − λi)

=
∏

(i,j)∈S

(λi − xij) +
∑

A⊂S

∑

D⊆A

∏

(i,j)∈D

(xi0 − xij)
∏

(i,j)∈A/D

(λi − xi0)
∏

(i,j)∈S/A

(xi0 − λi)
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=
∏

(i,j)∈S

(λi − xij) +
∑

D⊂S

∑

A:D⊆A⊂S

(−1)|A/D| ∏

(i,j)∈D

(xi0 − xij)
∏

(i,j)∈S\D
(xi0 − λi).

As for any subset D ⊂ S,

∑

A:D⊆A⊂S

(−1)|A/D| =
∑

D:D⊂S\D
(−1)|D| =

|S\D|−1∑

k=0

Ck
|S\D|(−1)k = (−1)|S\D|+1,

Lemma 3.2 is thus proved. ¤

Proof of Lemma 3.1. Fix a point x ∈ Rn and a cube Q containing x, and let
0 < δ < 1/m. We need to show that there exists a constant c∗Q such that

(
1
|Q|

∫

Q

∣∣|W ∗
~b,S

(~f )(z)|δ − |c∗Q|δ
∣∣dx

)1/δ

≤ C‖W ∗‖|S|+1ML(log L)
~RS

(~f )(x)
∏

(i,j)∈S

‖bi‖Osc
expL

rij

+ C
∑

D⊂S

Mδ0

(
W ∗

~b,D
(~f )

)
(x)

∏

(i,j)∈S\D
‖bi‖BMO,

where C is independent of x and Q.
Let c∗Q = supη>0 |cQ,η| (cQ,η will be choosen later) and define

I∗(z) = sup
η>0

∣∣W~b,S,η(~f )(z)− cQ,η

∣∣.

It suffices to show that
(
(1/|Q|) ∫

Q
|I∗(z)|δdx

)1/δ is to be controlled by the right side of
the above inequality.

Note W~b,S,η(~f )(z) =
∫
Rnm Kη(z, ~y )

∏
(i,j)∈S(bi(z) − bi(yj))

∏m
j=1 fj(yj)d~y. For the

product
∏

(i,j)∈S(bi(z)− bi(yj)), apply Lemma 3.2 by viewing bi(z) as xi0, bi(yj) as xij ,
and letting λi = (bi)Q be the average of bi on Q to get

∏

(i,j)∈S

(bi(z)− bi(yj))

=
∏

(i,j)∈S

((bi)Q − bi(yj)) +
∑

D⊂S

(−1)|D
c|+1

∏

(i,j)∈S\D
(bi(z)− (bi)Q)

∏

(i,j)∈D

(bi(z)− bi(yj)).

Then we have

I∗(z) ≤ sup
η>0

∣∣∣∣
∫

Rnm

Kη(z, ~y )
∏

(i,j)∈S

((bi)Q − bi(yj))
m∏

j=1

fj(yj)d~y − cQ,η

∣∣∣∣
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+
∑

D⊂S

∏

(i,j)∈S\D
|(bi(z)− (bi)Q)| ·K∗

~b,D
(~f )(z),

with K∗
~b,D

(~f )(z) is defined by supη>0

∣∣ ∫
Rnm Kη(z, ~y )

∏
(i,j)∈D(bi(z) − bi(yj))

·∏m
j=1 fj(yj)d~y

∣∣.
For the first term of the right-hand side of the above inequality, split each fj as

fj = fjχQ + fjχQc = f0
j + f∞j and write

m∏

j=1

fj(yj) =
m∏

j=1

(f0
j + f∞j ) =

∑

α1,...,αm∈{0,∞}

m∏

j=1

f
αj

j (yj)

=
m∏

j=1

f0
j (yj) +

∑

α1,...,αm∈{0,∞},∃αj ,αj=∞

m∏

j=1

f
αj

j (yj) = ~f
~0 +

∑

~α,~α 6=~0

~f ~α, (3.3)

where ~α = (α1, . . . , αm), αi = 0 or ∞, ~f ~α =
∏m

j=1 f
αj

j (yi).
Set cQ,η =

∑
~α,~α 6=~0

∫
Rnm Kη(x, ~y )

∏
(i,j)∈S((bi)Q − bi(yj))

∏m
j=1 fj(yj)d~y. By (3.3),

I∗(z) ≤ I∗~0 (z) +
∑

~α,~α 6=~0

I∗~α(z) +
∑

D⊂S

∏

(i,j)∈S\D
|(bi(z)− (bi)Q)| · ∣∣K∗

~b,D
(~f )(z)

∣∣,

with I∗~0 (z) defined by supη>0

∣∣ ∫
Rnm Kη(z, ~y )

∏
(i,j)∈S((bi)Q − bi(yj))

∏m
j=1 f0

j (yj)d~y
∣∣

and I∗~α(z) defined by supη>0

∣∣ ∫
Rnm(Kη(z, ~y ) − Kη(x, ~y ))

∏
(i,j)∈S((bi)Q − bi(yj))

·∏m
j=1 f

αj

j (yj)d~y
∣∣.

Thus

(
1
|Q|

∫

Q

|I∗(z)|δdz

)1/δ

≤ C

(
1
|Q|

∫

Q

∣∣I∗~0 (z)
∣∣δ(z)dz

)1/δ

+ C
∑

~α,~α 6=~0

(
1
|Q|

∫

Q

|I∗~α(z)|δ(z)dz

)1/δ

+ C
∑

D⊂S

(
1
|Q|

∫

Q

∏

(i,j)∈S\D
|(bi(z)− (bi)Q)|δ ·

∣∣W ∗
~b,D

(~f )(z)
∣∣δdz

)1/δ

=: CI∗~0 + C
∑

~α,~α 6=~0

I∗~α + C
∑

D⊂S

I∗D. (3.4)

By Hölder’s inequality,

I∗D ≤
∏

(i,j)∈S\D

(
1
|Q|

∫

Q

|bi(z)− (bi)Q|δij dz

)1/δij
(

1
|Q|

∫

Q

∣∣W ∗
~b,D

(~f )(z)
∣∣δ0

dz

)1/δ0

≤ C
∏

(i,j)∈S\D
‖bi‖BMOMδ0

(
W ∗

~b,D
(~f )

)
(x), (3.5)
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where δij ≥ 1, δ0 ≥ 0 and
∑

(i,j)∈Dc(1/δij) + (1/δ0) = 1/δ.
By the weak type endpoint boundedness of W ∗ and the generalized Hölder’s inequal-

ity (2.3),

I∗~0 ≤ C

∥∥∥∥W ∗
(

f1

∏

(i,1)∈S

((bi)Q − bi(y1)), . . . , fm

∏

(i,m)∈S

((bi)Q − bi(ym))
)∥∥∥∥

L1/m,∞(Q,dx/|Q|)

≤ C‖W ∗‖L1×···×L1→L1/m,∞

m∏

j=1

1
|Q|

∫

Q

|fj |
∏

(i,j)∈S

|(bi)Q − bi(yj)|dyj

≤ C‖W ∗‖M
L(log L)

~RS
(~f )(x)

∏

(i,j)∈S

‖bi‖Osc
expL

rij
. (3.6)

We are now in a position to estimate I∗~α with ~α 6= ~0. Without loss of generality, we
assume that αj1 = · · · = αjl

= 0 and αj = ∞ if j /∈ {j1, . . . , jl}, 0 ≤ l < m. By (2.1), we
have

I∗~α ≤ Aε

∏

j∈{j1,...,jl}

∫

Q

|fj(yj)|
∏

(i,j)∈S

|(bi)Q − bi(yj)|dyj

×
∞∑

k=1

|Q|ε/n

(3k|Q1/n|)nm+ε

∫

3kQ

∏

j /∈{j1,...,jl}

(
|fj(yj)|

∏

(i,j)∈S

|(bi)Q − bi(yj)|
)

dyj

≤ Aε

∞∑

k=1

1
3kε

m∏

j=1

1
|3kQ|

∫

3kQ

|fj(yj)|
∏

(i,j)∈S

|bi(yj)− (bi)Q|dyj . (3.7)

Applying the generalized Hölder’s inequality (2.3), and noting that∑∞
k=1(k

|S|/3kε) ≤ 2
∫∞
0

(x|S|/3εx)dx = (2/(ε ln 3)|S|+1)
∫∞
1

((ln y)|S|/y2)dy, one ob-
tain

I∗~α ≤ Aε

∞∑

k=1

1
3kε

m∏

j=1

‖fj‖L(log L)1/rj ,3kQ

∏

(i,j)∈S

‖bi − (bi)Q‖expLrij ,3kQ

≤ Aε

∞∑

k=1

k|S|

3kε

m∏

j=1

‖fj‖L(log L)1/rj ,3kQ

∏

(i,j)∈S

‖bi − (bi)3kQ‖expLrij ,3kQ

≤ C

ε|S|+1
AεML(log L)

~RS
(~f )(x)

∏

(i,j)∈S

‖bi‖Osc
expL

rij
. (3.8)

By (3.4), (3.5), (3.6) and (3.8), Lemma 3.1 is proved. ¤

Remark 3.1. By the proof of Lemma 3.1, it is easy to show that the same estimate
holds for M#

δ (W ∗,+
~b,S

~f )(x) with
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W ∗,+
~b,S

(~f )(x) = sup
η>0

∫

Rnm

∏

(i,j)∈S

|bi(x)− bi(yj)|Kη(x, y1, . . . , ym)
m∏

j=1

fj(yj)d~y,

when K(x, ~y ) and fj(yj) (1 ≤ j ≤ m) are all positive functions. We will use this fact in
the next section.

4. Weighted estimates.

We first show how to apply Lemma 3.1 to prove these estimates. As in [31] and also
[37], let u, v ∈ C∞([0,∞)) such that |u′(t)| ≤ Ct−1, v′(t) ≤ Ct−1 and satisfy

χ[2,∞) ≤ u(t) ≤ χ[1,∞), χ[1,2) ≤ v(t) ≤ χ[1/2,3).

Denote Uη(x, y1, . . . , ym) = K(x, y1, . . . , ym)u
(√|x− y1|2 + · · ·+ |x− ym|2/η) and

Vη(x, y1, . . . , ym) =
∣∣K(x, y1, . . . , ym)v

(√|x− y1|2 + · · ·+ |x− ym|2/η)
∣∣. Define

U∗~b,S
(~f )(x) = sup

η>0

∣∣∣∣
∫

(Rn)m

∏

(i,j)∈S

(bi(x)− bi(yj))Uη(x, y1, . . . , ym)
m∏

i=1

fi(yi)d~y

∣∣∣∣,

V∗~b,S
(~f )(x) = sup

η>0

∫

(Rn)m

∣∣∣∣
∏

(i,j)∈S

(bi(x)− bi(yj))Vη(x, y1, . . . , ym)
m∏

i=1

fi(yi)
∣∣∣∣d~y.

If S = ∅, U∗~b,S
(~f )(x) and V∗~b,S

(~f )(x) are defined in a similar way as before.
By arguments similar to [31], Uη(x, y1, . . . , ym) and Vη(x, y1, . . . , ym) satisfy (2.1)

and (2.2) with Aε replaced by 2Aε uniformly in η. It is clear that for any finite set S,
T ∗~b,S

~f(x) ≤ U∗~b,S
(~f )(x) + V∗~b,S

(~f )(x), which also implies ‖T ∗‖ ≤ ‖U∗‖+ ‖V∗‖.
Thus instead of estimating T ∗~b,S

~f(x) directly, it suffices to estimate U∗~b,S
(~f ) and

V∗~b,S
(~f ) respectively. The key point would be a Fefferman–Stein function estimate. The

one for M#
δ

(U∗~b,S
~f
)

follows from Lemma 3.1. For M#
δ

(V∗~b,S
~f
)
, we only need to consider

positive functions fj . It will then suffice to estimate M#
δ

(V∗,+~b,S
~f
)

with V∗,+~b,S
(f1, . . . , fm)

defined by

V∗~b,S
(~f )(x) = sup

η>0

∫

(Rn)m

∏

(i,j)∈S

∣∣bi(x)− bi(yj)
∣∣Vη(x, y1, . . . , ym)

m∏

i=1

fi(yi)d~y.

However by Remark 3.1, similar estimate for M#
δ

(V∗,+~b,S,q
~f
)

also holds. For simplicity, we

will only prove these estimates for U∗~b,S
(~f ).

Proof of Theorem 1.1. Assume ‖M
L(log L)

~RS
(~f )‖Lp(ω) < ∞. Admit first the

following:
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Claim A. There exists some δ with 0 < δ < 1/m such that for any finite subset D

of Z+ × {1, . . . , m} and any bounded and compact supported functions fi (i = 1, . . . , m),
‖Mδ(U∗~b,D(~f ))‖Lp(ω) < ∞.

By Lemma 2.1 and Claim A, it suffices to show that there exists δ0 with 0 < δ0 <

δ < ∞ such that

∥∥M#
δ0

(U∗~b,S
(~f ))

∥∥
Lp(ω)

≤ C
(‖U∗‖[ω]|S|A∞ + ‖K‖|S|+1

) ∏

(i,j)∈S

‖bi‖Osc
expL

rij

∥∥M
L(log L)

~RS
(~f )

∥∥
Lp(ω)

. (4.1)

We prove this by induction. Consider first the case |S| = 1 and let S = (1, j) for
some 1 ≤ j ≤ m. By Lemma 3.1, for any δ1 with δ0 < δ1 < δ, we have

M#
δ0

(U∗~b,S
~f
)
(x)

≤ C‖U∗‖2ML(log L)
~RS

(~f )(x)‖b1‖Osc
expL

r1j
+ CMδ1(U∗(~f ))(x)‖b1‖BMO.

By Lemma 2.1 and Claim A, using the estimate M#
δ1

(U∗ ~f )(x) ≤ C‖U∗‖1M(~f )(x), we
have

∥∥M#
δ0

(U∗~b,S
~f )

∥∥
Lp(ω)

≤ C‖U∗‖2
∥∥M

L(log L)
~RS

(~f )
∥∥

Lp(ω)
‖b1‖Osc

expL
r1j

+ C‖Mδ1(U∗(~f ))‖Lp(ω)‖b1‖BMO

≤ C
(‖U∗‖[ω]|S|A∞ + ‖K‖2

)‖b1‖Osc
expL

r1j

∥∥M
L(log L)

~RS
(~f )

∥∥
Lp(ω)

,

where ~RS = (0, . . . , 1/r1j , . . . , 0). This is (4.1) when |S| = 1.
Now assume (4.1) holds for any S with 0 ≤ |S| ≤ N − 1, and we are in a position

to prove it holds for any S with 0 ≤ |S| = N . By Lemma 2.1 (and Claim A again) and
Lemma 3.1, there exists δ1 with δ0 < δ1 < δ such that

∥∥M#
δ0

(U∗~b,S
~f )

∥∥
Lp(ω)

≤ C‖U∗‖|S|+1

∏

(i,j)∈S

‖bi‖Osc
expL

rij

∥∥M
L(log L)

~RS
(~f )

∥∥
Lp(ω)

+ C
∑

D⊂S

∏

(i,j)∈Dc

‖bi‖BMO

∥∥Mδ1(U∗~b,D(~f ))
∥∥

Lp(ω)

≤ C‖U∗‖|S|+1

∏

(i,j)∈S

‖bi‖Osc
expL

rij

∥∥M
L(log L)

~RS
(~f )

∥∥
Lp(ω)

+ C[ω]A∞
∑

D⊂S

∏

(i,j)∈Dc

‖bi‖BMO

∥∥M#
δ1

(U∗~b,D(~f ))
∥∥

Lp(ω)
. (4.2)

As D ⊂ S, |D| ≤ N − 1, by assumption, we have
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∥∥M#
δ1

(U∗~b,D(~f ))
∥∥

Lp(ω)

≤ C
(‖U∗‖[ω]|D|A∞ + ‖K‖|D|+1

) ∏

(i,j)∈D

‖bi‖Osc
expL

rij

∥∥M
L(log L)

~RD
(~f )

∥∥
Lp(ω)

.

Combine this with (4.2),

∥∥M#
δ0

(U∗~b,S
~f )

∥∥
Lp(ω)

≤ C
(‖U∗‖|S|+1 + [ω]A∞‖K‖|S| + [ω]|S|A∞‖U∗‖

)

×
∏

(i,j)∈S

‖bi‖Osc
expL

rij

∥∥M
L(log L)

~RS
(~f )

∥∥
Lp(ω)

≤ C
(‖K‖|S|+1 + [ω]|S|A∞‖U∗‖

) ∏

(i,j)∈S

‖bi‖Osc
expL

rij

∥∥M
L(log L)

~RS
(~f )

∥∥
Lp(ω)

.

This is exactly (4.1).
Now we are left to prove Claim A when

∥∥M
L(log L)

~RS
(~f )

∥∥
Lp(ω)

< ∞. As ω ∈ A∞,
there exists p0 with max{pm, 1} < p0 < ∞ such that ω ∈ Ap0 . We have

∥∥Mδ(U∗~b,D(~f ))
∥∥

Lp(ω)
=

∥∥Mp/p0(U∗~b,D
(~f ))

∥∥
Lp(ω)

=
∥∥M(U∗~b,D

(~f )p/p0)
∥∥p0/p

Lp0 (ω)

≤ C
∥∥U∗~b,D

(~f )p/p0
∥∥p0/p

Lp0 (ω)
= C

∥∥U∗~b,D
(~f )

∥∥
Lp(ω)

.

It is sufficient to show for any finite subset D of Z+ × {1, . . . , m}, ‖U∗~b,D
(~f )‖Lp(ω) < ∞.

Note that if S is an empty set, (U∗~b,D
(~f ))(x) = U∗(~f )(x). If 0 ≤ |D| ≤ 1, ‖U∗~b,D

(~f )‖Lp(ω)

has been shown to be finite [15]. For general D, the same sketch as in the case |D| = 1
applies too. ¤

The proof of the Corollary 1.2 is almost the same as the argument of Theorem 3.18
in [15] and we omit its proof.

Proof of Theorem 1.3. We may assume the right-hand side of (1.8) is finite,
since otherwise there is nothing needed to prove. As in [15], we may also assume first
that ω is bounded. Then the Monotone Convergence Theorem will justify the theorem
by first proving (1.8) for ωr = min{ω, r} and taking the limit r →∞.

We assume momentarily that the following:

Claim B. For some δ with 0 < δ < 1/m and for each D ⊆ S, it holds that

sup
λ>0

ϕ

(
λ

∏

(i,j)∈S/D

‖bi‖BMO

)
ω
(
y ∈ Rn : Mδ0(U∗~b,D

(~f ))(y) > λm
)

< ∞.

As ϕ : (0,∞) → (0,∞) is doubling, by Lemma 2.1 and Lemma 3.1, for any δ and δ0 with
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0 < δ < δ0 < 1/m,

sup
λ>0

ϕ(λ)ω
({y ∈ Rn : |U∗~b,S

(~f )(y)| > λm})

≤ C sup
λ>0

ϕ(λ)ω
(
y ∈ Rn : M#

δ U∗~b,S
(~f )(y) > λm

)

≤ C sup
λ>0

ϕ

(
λ ‖U∗‖1/m

|S|+1

∏

(i,j)∈S

‖bi‖1/m
Osc

expL
rij

)
ω
(
y ∈ Rn : M

L(log L)
~RS

(~f )(y) > λm
)

+ C
∑

D1⊂S

sup
λ>0

ϕ

(
λ

∏

(i,j)∈S/D1

‖bi‖1/m
BMO

)
ω
(
y ∈ Rn : Mδ0(U∗~b,D

(~f ))(y) > λm
)
.

For the second term in the right side of the last inequality, we can apply Lemma 2.1
by Claim B and then Lemma 3.1 to control it by

C sup
λ>0

ϕ

(
λ‖U∗‖1/m

|S|+1

∏

(i,j)∈S

‖bi‖1/m
Osc

expL
rij

)
ω
(
y ∈ Rn : M

L(log L)
~RS

(~f )(y) > λm
)

+ C
∑

D1⊂S

∑

D2⊂D1

sup
λ>0

ϕ

(
λ

∏

(i,j)∈S/D2

‖bi‖1/m
BMO

)
ω
(
y ∈ Rn : CMδ0(U∗~b,D2

(~f ))(x) > λm
)
.

For every family of subsets D1 ⊂ S, every family of subsets Dk+1 ⊂ Dk, 1 ≤ k ≤ |S|,
we continue to apply Lemma 2.1 to decompose these subsets until |Dk| = 0. This can be
done in finite steps as every time we use Lemma 2.1, we get a strictly proper subset.

Then we will obtain

sup
λ>0

ϕ(λ)ω
({y ∈ Rn : |U∗~b,S

(~f )(y)| > λm})

≤ Cω
(
y ∈ Rn : M

L(log L)
~RS

(~f )(y) > λm
) ∑

D1⊂S

· · ·
∑

D|S|⊂D|S|−1

sup
λ>0

ϕ

(
λ‖U∗‖1/m

|S|+1

∏

(i,j)∈Dc
1

‖bi‖1/mOscexpLrij

|S|−1∏

k=1

∏

(i,j)∈Dk/Dk+1

‖bi‖1/m
Osc

expL
rij

)

= C sup
λ>0

ϕ

(
λ‖U∗‖1/m

|S|+1

∏

(i,j)∈S

‖bi‖1/m
Osc

expL
rij

)
ω
(
y ∈ Rn : M

L(log L)
~RS

(~f )(y) > λm
)
.

It is now enough to prove Claim B. If 0 ≤ |D| ≤ 1, this again have been shown to
be finite in [15], which also applies for the case of general set D. We omit the details
and will specify a little more in the following section. ¤

Proof of Theorem 1.5. The basic idea is taken from the proof of Theorem 3.17
in [15]. Assume without loss of generality that t = 1. Define the open set
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Ω =
{
x ∈ Rn : ML(log L)~α(~f )(x) > 1

}
.

Assume moreover it is not empty and for any compact sbuset F ⊂ Ω, we can cover it by
a finite family of cubes Qk with finite overlap for which

1 <
m∏

j=1

‖fj‖Φj ,Qk
.

Denote Φj(t) = t(1 + log+ t)αj . Note that Φj(t) ≥ t, and

Φj1(t) ◦ Φj2(t) = t(1 + log+ t)αj2
(
1 + log+(t(1 + log+ t))αj2

)αj1

≤ Ct(1 + log+ t)αj2 (1 + log+ t)αj1 = C2(1 + log+ t)αj1+αj2 .

We have for any j ∈ {1, . . . , m} and any set β ∈ B{1,...,m},

Φβ,j = Φβ(1) ◦ · · · ◦ Φβ(j) ≤ Φβ,m ≤ Φ(t).

By Lemma 2.2,

m∏

j=1

‖fj‖Φj ,Qk
≤ C max

{ m∏

j=1

1
|Qk|

∫

E

Φβ,j(|fβ(j)(x)|)dx : β ∈ B{1,...,m}

}

≤ C
m∏

j=1

1
|Qk|

∫

Qk

Φ(fj(x))dx.

Then we have

vω(F ) ≤
∑

k

vω(Qk) ≤ C[~ω]1/m
A~1

∑

k

m∏

j=1

inf
Qk

ω
1/m
j |Qk|1/m

( m∏

j=1

1
|Qk|

∫

Qk

Φ(fj(x))dx

)1/m

≤ C[~ω]1/m
A~1

∑

k

( m∏

j=1

∫

Qk

Φ(fj(x))ωjdx

)1/m

≤ C[~ω]1/m
A~1

m∏

j=1

( ∑

k

∫

Qk

Φ(fj(x))ωjdx

)1/m

≤ C[~ω]1/m
A~1

m∏

j=1

( ∫

Ω

Φ(fj(x))ωjdx

)1/m

,

where the second last inequality is due to Hölder’s inequality, and the last inequality is
due to the finite overlap of the family of sets Qk.

As the set F is arbitrary in Ω, the conclusion is obtained. ¤
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Proof of Theorem 1.4. By homogeneity, we only need to prove (1.9) when
t = 1. It is easily checked that 1/(Φ(1/t)) is doubling and controlled by g(t) = Ct for
some C > 0. By Theorem 1.3 and Theorem 1.5,

vω

{
x ∈ Rn : |U∗~b,S

(~f )(x)| > 1
}

≤ C sup
t>0

1
Φ(1/t)

vω

{
x ∈ Rn : Mδ

(U∗~b,S
(~f )

)
(x) > tm

}

≤ C sup
t>0

1
Φ(1/t)

vω

(
y ∈ Rn : M

L(log L)
~RS

(~f )(y) >
tm∏

(i,j)∈S ‖bi‖Osc
expL

rij

)

≤ C sup
t>0

1
Φ(1/t)

m∏

j=1

( ∫

Rn

Φ
(∏

i:(i,j)∈S ‖bi‖Osc
expL

rij
|fj(x)|

t

)
ωj(x)dx

)1/m

.

Considering the multiplicative of Φ, this implies the theorem.
To show the sharpness of Theorem 1.4, take n = 1, fj = χ(0,1) and bi(x) = log |1+x|.

This example is due to Pérez [25], where he considered the sharpness for the operator in
(1.4). The general case follows in a similar way. ¤

5. Vector-valued extension.

The above theorems can be extended to the vector-valued case.

Definition 5.1. For any k ∈ N+, let Tk be an m-linear Calderón–Zygmund oper-
ator with kernel Kk and Sk be an finite subset of Z+ × {1, . . . , m}. For 0 < q < ∞, the
vector-valued maximal commutator T ∗~b,~S,q

is defined by

T ∗~b,~S,q
(~f )(x) =

∥∥{T ∗
k,~b,Sk

( ~fk)(x)}∥∥
lq

=
( ∞∑

k=1

∣∣T ∗
k,~b,Sk

( ~fk)(x)
∣∣q

)1/q

=
( ∞∑

k=1

∣∣T ∗
k,~b,Sk

(f1k, . . . , fmk)(x)
∣∣q

)1/q

, (5.1)

where

T ∗
k,~b,S

(f1k, . . . , fmk)(x)

= sup
δ>0

∣∣∣∣
∫

(
Pm

j=1 |x−yj |2)1/2>δ

∏

(i,j)∈Sk

(bi(x)− bi(yj))Kk(x, y1, . . . , ym)
m∏

j=1

fjk(yj)d~y

∣∣∣∣.

Again we write T ∗~b,∅,q = T ∗q . We can define T~b,S,q(~f ) in a similar way.

When Sk1 = Sk2 = S and Kk1 = Kk2 = K for any k1, k2 ∈ N+, m = 1, and |S| = 1,
Pérez and Trujillo-González [28] gave the weighted strong and endpoint boundedness of
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T~b,S,q(~f ). Grafakos and Martell [10] gave the weighted strong boundedness in the case of
|S| = 0 for general m ≥ 1. The endpoint estimate was obtained by Cruz-Uribe, Martell
and Pérez in [8], also under the case of |S| = 0. In [34], Tang considered

T~b,Sk
(f1k, . . . , fmk)(x) =

∫

Rnm

l∏

j=1

(bj(x)− bj(yj))K(x, y1, . . . , ym)
m∏

j=1

fjk(yj)d~y,

where 1 ≤ l ≤ m, and gave some weighted and endpoint estimates. In a recent paper
[33], Si and Xue considered the vector-valued maximal operators

T ∗Q b,q(~f )(x) =
( ∞∑

k=1

|T ∗Q b,S( ~fk)(x)|q
)1/q

=
( ∞∑

k=1

|T ∗Q b,S(f1k, . . . , fmk)(x)|q
)1/q

.

Based on an estimate for the sharp Feffermann–Stein function of this vector-valued
commutator, we can obtain the following theorems. Similar estimates for T~b,S,q(~f ) will
follow along the same line.

For any k ∈ N+, let Rk be a map from Sk to the set of positive numbers which
are all bigger than one. Denote rij,k = Rk(i, j), 1/rj,k =

∑
i:(i,j)∈Sk

(1/rij,k) and ~RSk
=

(1/r1,k, . . . , 1/rm,k).

Theorem 5.1. Let 0 < p, q < ∞, 0 < s ≤ ∞ and ω ∈ A∞. Let bi ∈ OscexpLrij,k .
Assume |S| = supk≥1{|Sk|} < ∞. Then there exists a constant C such that

∥∥T ∗~b,S,q
(~f )

∥∥
Lp,s(ω)

≤ C

∥∥∥∥
( ∞∑

k=1

((‖T ∗k ‖[ω]|Sk|
A∞ + ‖Kk‖|Sk|+1

)
[ω]A∞

∏

(i,j)∈Sk

‖bi‖Osc
expL

rij,k

×M
L(log L)

~RSk
(f1k, . . . , fmk)

)q)1/q∥∥∥∥
Lp,s(ω)

for any bounded and compact supported functions fjk, j = 1, . . . , m, k ∈ N+.

Theorem 5.1 follows from the extrapolation Lemma 2.3 proved in [8]. Although a
strong weighted boundedness involving A~p is expectable by studying the weighed bounds
of vector-valued maximal operator M, we do not know how to obtain the weak endpoint
estimate via such extrapolation for |S| > 0. However, if we take Sk1 = Sk2 = S and
Kk1 = Kk2 = K for any k1, k2 ∈ N+, we can get both the strong and weak type endpoint
weighted estimates.

Theorem 5.2. Let 0 < p < ∞, ω ∈ A∞, 1/q =
∑m

j=1(1/qj) with 1 < qj < ∞.
Then there exists a constant C > 0 depending on T such that

∥∥T ∗~b,S,q
~f
∥∥

Lp(ω)
≤ C[ω]|S|A∞

∏

(i,j)∈S

‖bi‖OscLrij

∥∥M
L(log L)

~RS
(~f~q)

∥∥
Lp(ω)

. (5.2)
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Corollary 5.3. Let 1 < pj < ∞, 1 < qj < ∞ for j = 1, . . . , m with 1/p =∑m
j=1(1/pj) and 1/q =

∑m
j=1(1/qj). Let ~ω ∈ A~p. Then there exists a constant C

depending on ~ω and T such that

∥∥T ∗~b,S,q
(~f )

∥∥
Lp(v~ω)

≤ C
∏

(i,j)∈S

‖bi‖Osc
expL

rij

m∏

j=1

∥∥∥∥
( ∞∑

k=1

|fjk|qj

)1/qj
∥∥∥∥

Lpj (ωj)

.

Theorem 5.4. Let ω ∈ A∞ and 1/q =
∑m

j=1(1/qj) with 1 < qj < ∞. Let R be a
map from S to the set of positive numbers that are bigger than 1. Let ϕ : (0,∞) → (0,∞)
be doubling and for some constant C, ϕ(t) < Ct for any t ∈ (0,∞). Then there exists a
constant C > 0,depending on T and the A∞ constant of ω, such that

sup
λ>0

ϕ(λ)ω
({

y ∈ Rn : |T ∗~b,S,q
(~f )(y)| > λm

})

≤ C sup
λ>0

ϕ(λ)ω
(

y ∈ Rn : M
L(log L)

~RS
(~f~q)(y) >

λm

∏
(i,j)∈S ‖bi‖Osc

expL
rij

)
, (5.3)

for any bounded and uniform compact supported functions fjk, j = 1, . . . , m, k ∈ N+.

The following theorem to Theorem 5.4 is Theorem 1.4 to Theorem 1.3. We state it
without specifying the proof.

Theorem 5.5. Let (ω1, . . . , ωm) ∈ A(1,...,1) and 1/q =
∑m

j=1(1/qj) with 1 < qj <

∞. Let bi ∈ OscexpLrij , rij ≥ 1, i = 1, . . . , m. 1/rj =
∑

(i,j)∈S(1/rij). Denote Φj(t) =

t(1 + log+ t)1/rj and Φ(t) = t(1 + log+ t)
Pm

j=1(1/rj). Then there exists a constant C
depending on ~ω and T such that for any bounded and uniform compact supported functions
fjk, j = 1, . . . , m, k ∈ N+,

vω

{
x ∈ Rn :

∣∣T ∗~b,S,q
(~f )(x)

∣∣ > tm
}

≤ C

m∏

j=1

( ∫

Rn

Φ
(( ∑

k |fjk|qj
)1/qj ∏

i:(i,j)∈S ‖bi‖Osc
expL

rij

t

)
ωj(x)dx

)1/m

. (5.4)

Moreover, when rij ≡ 1 for any (i, j) ∈ S, this result is sharp in the sense that it does
not hold for any Φ(t) = t(1 + log+ t)α with α <

∑m
j=1(1/rj).

To prove Theorem 5.2 and Theorem 5.4, define U∗~b,S
(~f )(x) and V∗~b,S

(~f )(x) as in
Section 4. Define the vector-valued operator U∗~b,S,q

by

U∗~b,S,q
(~f )(x) =

∥∥{U∗~b,S
( ~fk)(x)

}∥∥
lq

=
( ∞∑

k=1

∣∣T ∗~b,S
( ~fk)(x)

∣∣q
)1/q

=
( ∞∑

k=1

∣∣U∗~b,S
(f1k, . . . , fmk)(x)

∣∣q
)1/q
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and V∗~b,S,q
(~f ) in a similar way.

As T ∗~b,S
~f(x) ≤ U∗~b,S

(~f )(x) + V∗~b,S
(~f )(x), we have

T ∗~b,S,q
~f(x) ≤ min{1, 2(1−q)/q}(U∗~b,S,q

(~f )(x) + V∗~b,S,q
(~f )(x)

)
.

As mentioned before, the following lemma will be crucial in this part.

Lemma 5.6. Let 0 < δ < 1/m. For any number δ0, δ < δ0 < ∞, there exists a
constant C depending on U∗ such that for any bounded and compact supported functions
fi (i = 1, . . . , m),

M#
δ

(U∗~b,S,q
~f
)
(x) ≤ C

∏

(i,j)∈S

‖bi‖OscLrijM
L(log L)

~RS
(~f~q)(x)

+ C
∑

D⊂S

∏

(i,j)∈S\D
‖bi‖BMOMδ0

(U∗~b,D,q
(~f )

)
(x). (5.5)

The same inequality also holds for M#
δ (V∗~b,S,q

~f )(x).

The proof of Lemma 5.6 will be similar to the one of Lemma 3.1, although the
vector-valued operator adds more terms and with that, more complexities. The key for
tackling the new complexities is a very careful application of Hölder’s inequality and
Minkowski’s inequality. For reader’s convenience, we give a rather completed proof.

Proof of Lemma 5.6. We are only going to estimate M#
δ (U∗~b,S,q

~f )(x). The es-

timate of M#
δ (V∗~b,S

~f )(x) is almost the same.
By definition of the Fefferman–Stein function, our aim is to show that, for any

point x ∈ Rn, any cube Q containing x and 0 < δ < δ0 < 1/m, there exists a con-
stant cQ such that for any bounded and compact supported functions fi (i = 1, . . . , m),(
(1/|Q|) ∫

Q

∣∣|U∗~b,S,q
(~f )(z)|δ − |c∗Q|δ

∣∣dx
)1/δ is bounded by the right side of the above in-

equality.
Let c∗Q = (

∑∞
k=1 |c∗Q,k|q)1/q = ‖{c∗Q,k}‖lq , where c∗Q,k = supη>0 |cQ,k,η|. As δ <

1/m ≤ q, and by
∣∣‖f‖L∞ − ‖g‖L∞

∣∣ ≤ ‖f − g‖L∞ , we have

∣∣∥∥{U∗~b,S
( ~fk)(z)}∥∥δ

lq
− ‖{c∗Q,k}‖δ

lq

∣∣ ≤ ∥∥{U∗~b,S
( ~fk)(z)− c∗Q,k

}∥∥δ

lq

≤
∥∥∥
{

sup
η>0

∣∣U~b,S,η( ~fk)(z)− cQ,k,η

∣∣
}∥∥∥

δ

lq
= ‖{I∗k(z)}‖δ

lq ,

where I∗k(z) = supη>0

∣∣U~b,S,η( ~fk)(z)− cQ,k,η

∣∣.
By setting cQ,k,η =

∑
~α,~α 6=~0

∫
Rnm Uη(x, ~y )

∏
(i,j)∈S((bi)Q − bi(yj))

∏m
j=1 fjk(yj)d~y,

applying Lemma 3.1 and splitting
∏m

j=1 fjk(yj) as (3.3), we have
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I∗k(z) ≤ sup
η>0

∣∣∣∣
∫

Rnm

Uη(z, ~y )
∏

(i,j)∈S

((bi)Q − bi(yj))
m∏

j=1

f0
jk(yj)d~y

∣∣∣∣

+
∑

~α,~α 6=~0

sup
η>0

∣∣∣∣
∫

Rnm

(Uη(z, ~y )− Uη(x, ~y ))
∏

(i,j)∈S

((bi)Q − bi(yj))
m∏

j=1

f
αj

jk (yj)d~y

∣∣∣∣

+
∑

D⊂S

∏

(i,j)∈S\D
|(bi(z)− (bi)Q)|

× sup
η>0

∣∣∣∣
∫

Rnm

Uη(z, ~y ))
∏

(i,j)∈D

(bi(z)− bi(yj))
m∏

j=1

fj(yjk)d~y

∣∣∣∣

=: I∗~0,k
(z) +

∑

~α,~α 6=~0

I∗~α,k(z) +
∑

D⊂S

∏

(i,j)∈S\D
|(bi(z)− (bi)Q)| ·

∣∣U∗~b,D
( ~fk)(z)

∣∣.

Therefore

‖{I∗k(z)}‖lq ≤ C

(
1
|Q|

∫

Q

‖{I∗~0,k
(z)}‖δ

lqdz

)1/δ

+ C
∑

~α,~α 6=~0

(
1
|Q|

∫

Q

‖{I∗~α,k(z)}‖δ
lqdz

)1/δ

+ C
∑

D⊂S

(
1
|Q|

∫

Q

∏

(i,j)∈S\D
|(bi(z)− (bi)Q)|δ · ∥∥{U∗~b,D

( ~fk)(z)}∥∥δ

lq
dz

)1/δ

=: CI∗~0 + C
∑

~α,~α 6=~0

I∗~α + C
∑

D⊂S

I∗D. (5.6)

As 0 < δ < 1/m, by Kolmogrov’s inequality and Corollary 3.3 in [8] which proved an
endpoint weighted boundedness of T ∗, we have

I∗~0 ≤ C

∥∥∥∥U∗q
(

f0
1

∏

i:(i,1)∈S

((bi)Q − bi(y1)), . . . , f0
m

∏

i:(i,m)∈S

((bi)Q − bi(ym))
)∥∥∥∥

L1/m,∞(Q,dx/|Q|)

≤ C

m∏

j=1

∥∥∥∥
( ∞∑

k=1

( ∏

i:(i,j)∈S

|(bi)Q − bi(y1)| · |f0
jk|

)qj
)1/qj

∥∥∥∥
L1(Rn,dx/|Q|)

≤ C
∏

(i,j)∈S

‖bi‖Osc
expL

rij
ML(log L)~α(~f~q)(x). (5.7)

For any ~α 6= ~0, by (3.7) and the fact that Uη(x, y1, . . . , ym) of Uη(~f ) satisfies (2.1)
uniformly, we have

I∗~α,k(z) ≤ C
∞∑

t=1

1
3tε

m∏

j=1

1
|3tQ|

∫

3tQ

|fjk(yj)|
∏

i:(i,j)∈S

|bi(yj)− (bi)Q|dyj .
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Then

I∗~α
q ≤ C

∞∑

k=1

( ∞∑
t=1

1
3tε

m∏

j=1

1
|3tQ|

∫

3tQ

|fjk(yj)|
∏

i:(i,j)∈S

|bi(yj)− (bi)Q|dyj

)q

≤ C

∞∑

k=1

∞∑
t=1

(
1

2tε

m∏

j=1

1
|3tQ|

∫

3tQ

|fjk(yj)|
∏

i:(i,j)∈S

|bi(yj)− (bi)Q|dyj

)q

,

by Hölder’s inequality (1 ≤ q ≤ ∞) or Minkowski’s inequality (0 < q < 1). Apply
Hölder’s inequality again, we can control I∗~α

q further by

C
∞∑

t=1

1
2tεq

m∏

j=1

(
1

|3tQ|
∫

3tQ

( ∞∑

k=1

|fjk(yj)|qj

)1/qj ∏

i:(i,j)∈S

|bi(yj)− (bi)Q|dyj

)q

.

By the generalized Hölder’s inequality (2.3),

I∗~α
q ≤ C

∞∑
t=1

1
2tεq

m∏

j=1

∥∥∥∥
( ∞∑

k=1

|fjk(yj)|qj

)1/qj
∥∥∥∥

q

L(log L)1/rj ,3tQ

×
∏

i:(i,j)∈S

‖bi − (bi)3tQ‖q
expLrij ,3tQ

≤ C
∏

(i,j)∈S

‖bi‖q
OscLrijMq

L(log L)~α(~f~q)(x). (5.8)

We now estimate I∗D for D ⊆ S. By Hölder’s inequality,

I∗D ≤
∏

(i,j)∈S\D

(
1
|Q|

∫

Q

|(bi(z)− (bi)Q)|δij

)1/δij
(

1
|Q|

∫

Q

∥∥{U∗~b,D
( ~fk)(z)

}∥∥δ0

lq
dz

)1/δ0

≤ C
∏

(i,j)∈S\D
‖bi‖BMOMδ0

(U∗~b,D,q
(~f )

)
(x). (5.9)

Combine (5.7), (5.8) and (5.9), we finish the proof of this lemma by (5.6). ¤

Theorem 5.2 can be directly obtained by the above lemma, we omit the proofs and
proceed to the proof of Theorem 5.4.

Proof of Theorem 5.4. As T ∗~b,S,q
~f(x) ≤ min{1, 2(1−q)/q}(U∗~b,S,q

(~f )(x) +

V∗~b,S,q
(~f )(x)

)
, we only need to prove this theorem for U∗~b,S,q

(~f ) and V∗~b,S,q
(~f ). The

proof is almost identical with that of Theorem 1.4, where we use Lemma 5.6 instead of
Lemma 3.1. We omit the details. The only place we need to pay attention is that this
time, to apply Lemma 2.1, we need to show for any subset D ⊂ S, bi bounded, and any
bounded fj with compact support,



1186 Q. Xue and J. Yan

sup
λ>0

ϕ(λ)ω
{
y ∈ Rn :

∣∣T ∗~b,D,q
(~f )(y)

∣∣ > λm
}

< ∞, (5.10)

whenever

sup
λ>0

ϕ(λ)ω
(

y ∈ Rn : M
L(log L)

~RS
(~fT,~q)(y) >

λm

∏
(i,j)∈S ‖bi‖Osc

expL
rij

)
< ∞.

By the uniform compactness of fjk, assume that supp fjk ⊂ B(0, R).

sup
λ>0

ϕ(λ)ω
{
y ∈ Rn :

∣∣T ∗~b,D,q
(~f )(y)

∣∣ > λm
}

≤ sup
λ>0

ϕ(λ)ω
{
y ∈ B(0, 2R) :

∣∣T ∗~b,D,q
(~f )(y)

∣∣ > λm
}

+ sup
λ>0

ϕ(λ)ω
{
y ∈ Rn/B(0, 2R) :

∣∣T ∗~b,D,q
(~f )(y)

∣∣ > λm
}

=: I + II.

We can assume ω is bounded. By the fact that ϕ(t) ≤ Ct and Hölder’s inequality, let
1 < p < ∞,

I ≤ C sup
λ>0

λ
∣∣{y ∈ B(0, 2R) :

∣∣T ∗~b,D,q
(~f )(y)

∣∣ > λm
}∣∣

≤ C

∫

B(0,2R)

∣∣T ∗~b,D,q
(~f )(y)

∣∣1/m
dy ≤ CR(1−(1/p))n

( ∫

Rn

∣∣T ∗~b,D,q
(~f )(y)

∣∣p/m
)1/p

. (5.11)

By Corollary 5.3, the last term is finite. For the term II, since y /∈ B(0, 2R),

T ∗~b,D,q
(~f )(y) ≤

( ∞∑

k=1

( ∫

B(0,R)m

Ak

∏
(i,j)∈S |bi(y)− bi(yj)|∏m

j=1 |y − yj |n
m∏

j=1

|fjk(yj)|d~y

)q)1/q

≤ C
∏

(i,j)∈S

‖bi‖L∞

m∏

j=1

1
|y|n

∫

B(0,|y|)

( ∞∑

k=1

|Ak|qj/m|fjk|qj

)1/qj

dyj

≤ C
∏

(i,j)∈S

‖bi‖L∞ML(log L)
~RS

(~fT,~q)(y).

Then

II ≤ sup
λ>0

ϕ(λ)ω
{

y ∈ Rn :
∣∣∣∣C

∏

(i,j)∈S

‖bi‖L∞ML(log L)
~RS

(~fT,~q)(y)
∣∣∣∣ > λm

}

≤ C sup
λ>0

ϕ(λ)ω
(

y ∈ Rn : M
L(log L)

~RS
(~fT,~q)(y) >

λm

∏
(i,j)∈S ‖bi‖Osc

expL
rij

)
< ∞.

(5.12)

By (5.11) and (5.12), we get (5.10). Thus we finish the proof. ¤
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[16] J. Mateu, J. Orobitg, C. Pérez and J. Verdera, New estimates for the maximal singular integral,

Int. Math. Res. Not. IMRN, (2010) Vol. 2010, 3658–3722.

[17] A. Micheal Alphonse, An end point estimate for maximal commutators, J. Fourier Anal. Appl.,

6 (2000), 449–456.

[18] B. Moukenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Am. Math.

Soc., 165 (1972), 207–226.

[19] C. Ortiz-Caraballo, Quadratic A1 bounds for commutators of singular integrals with BMO func-

tions, Indiana Univ. Math. J., 60 (2011), 2107–2130.
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