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Abstract. Stokes phenomena with respect to parameters are investi-
gated for the Gauss hypergeometric differential equation with a large parame-
ter. For this purpose, the notion of the Voros coefficient is introduced for the
equation. The explicit forms of the Voros coefficients are given as well as their
Borel sums. By using them, formulas which describe the Stokes phenomena
are obtained.

1. Introduction.

The purpose of this article is to describe parametric Stokes phenomena of the Gauss
hypergeometric differential equation with a large parameter from a viewpoint of the exact
WKB analysis. Parametric Stokes phenomena mean Stokes phenomena associated with
a change of parameters contained in the equation. The classical Gauss hypergeometric
differential equation has three complex parameters. We introduce a large parameter η

so that the difference of two characteristic exponents at every regular singular point is
proportional to η. We consider formal series solutions in η−1 of the Riccati equation
associated with the hypergeometric equation and corresponding formal solutions of the
hypergeometric equation which are called WKB solutions. We will describe the paramet-
ric Stokes phenomena of the hypergeometric equation in terms of the WKB solutions.
The WKB solutions are Borel summable in a region surrounded by Stokes curves if the
Stokes geometry is non-degenerate. If it is the case, we can obtain analytic solutions by
taking the Borel sums of the WKB solutions. These analytic solutions can be analyti-
cally continued with respect to the parameters. If the parameters have moved and the
Stokes geometry changes via a degeneration, the Borel sums of the WKB solutions are,
in general, not equal to the analytic continuation of the original Borel sums even if the
region where we take the Borel resummation has been deformed consistently with the
analytic continuation. The discrepancy between the latter Borel sums and the continua-
tion of the former Borel sums is called a parametric Stokes phenomenon. To analyze the
phenomena, we will make use of Voros coefficients. The notion of Voros coefficients was
introduced by Voros [17] for the Weber equation and for quartic oscillator. It plays a role
in the analysis of the Stokes phenomena of WKB solutions with respect to parameters in
equations (see [6], [7] also). Concrete forms of the Voros coefficients have been obtained
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by Shen and Silverstone [13] and Takei [14] for the Weber equation and by Koike and
Takei [12] for the Whittaker equation of a degenerated type. We note that the Jost func-
tion for the Weber equation was computed in [17] first and as an asymptotic expansion
of it, the explicit form of the Voros coefficient was obtained there. On the other hand,
[13], [14] and [12] defined the Voros coefficients directly by using formal solutions of the
Riccati equations associated with their equations and computed them as a formal series.

In this paper, we firstly show that we can define the Voros coefficients for the Gauss
hypergeometric equation. Our definition follows that of [14] and [12] with suitable mod-
ifications. Secondly we compute the explicit forms of them. We use an extension of the
method developed by [14] and [12], that is, we derive systems of difference equations
that characterize the Voros coefficients and solve them. In our case, the method used in
[14], [12] cannot be applied directly because the number of the difference equations for a
Voros coefficient are three, which is the number of the parameters of the hypergeometric
equation. To solve the systems, we employ formal differential operators of infinite order
used by Candelpergher, Coppo and Delabaere [5]. Thirdly we see that the Voros coef-
ficients are Borel summable in suitable regions in the space of parameters and compute
the explicit forms of the Borel sums. Using the Borel sums, we describe the parametric
Stokes phenomena for the WKB solutions. We restrict ourselves to discuss paramet-
ric Stokes phenomena associated with the Weber-type degeneration of Stokes geometry,
namely, the case where two distinct turning points are connected by a Stokes segment
(cf. [6], [7], [14]). There is another type of degeneration where a Stokes curve forms a
loop. The parametric Stokes phenomena associated with this type of degeneration will
be discussed in our forthcoming paper.

The relation between the Borel sums of the WKB solutions to the hypergeometric
equation and the hypergeometric function is given by the second author [16] up to mul-
tiplicative constants. Hence we can obtain, in principle, parametric Stokes phenomena
for asymptotic expansions of the hypergeometric function with respect to the inverse of
the large parameter. This subject will be discussed also in our forthcoming article as
well as determining the multiplicative constants mentioned above.

The authors express their sincere thanks to Professor A. Voros for stimulating dis-
cussions. They also thank Professor T. Kawai and Professor Y. Takei for valuable advices
and comments.

2. Voros coefficients for the Gauss hypergeometric differential equation
with a large parameter.

2.1. The Gauss hypergeometric differential equation with a large pa-
rameter.

Let us consider the following Schrödinger-type equation with a large parameter η > 0
and complex parameters α, β, γ:

(
− d2

dx2
+ η2Q(x)

)
ψ = 0, (1)

where we set Q(x) = Q0(x) + η−2Q1(x) with
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Q0(x) = Q0(α, β, γ;x) =
(α− β)2x2 + 2(2αβ − αγ − βγ)x + γ2

4x2(x− 1)2
(2)

and

Q1(x) = − x2 − x + 1
4x2(x− 1)2

. (3)

Equation (1) comes from the Gauss hypergeometric differential equation with complex
parameters a, b and c:

x(1− x)
d2w

dx2
+ (c− (a + b + 1)x)

dw

dx
− abw = 0. (4)

If we introduce a large parameter η by setting

a =
1
2

+ αη, (5)

b =
1
2

+ βη, (6)

c = 1 + γη, (7)

we have

x(1− x)
d2w

dx2
+ (1 + γη − ((α + β)η + 2)x)

dw

dx
−

(
1
2

+ αη

)(
1
2

+ βη

)
w = 0. (8)

Next we eliminate the first-order term of (8) by taking

ψ = x(1+γη)/2(1− x)(1+(α+β−γ)η)/2w, (9)

as an unknown function. Then we have (1). In this paper, (1) is also called the Gauss
hypergeometric differential equation. Equation (1) has the formal power series solutions
which are called the WKB solutions

ψ± =
1√
Sodd

exp
(
±

∫ x

x0

Sodd dx

)
, (10)

where x0 is a fixed point and Sodd denotes the odd-order part of formal solution

S(x) = Sodd + Seven = ηS−1(x) + S0(x) + η−1S1(x) + η−2S2(x) + · · · (11)

in η−1 of the Riccati equation

dS

dx
+ S2 = η2Q(x) (12)
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associated with (1). (See also [3], [12], [10], [16] for the notation.) Here we have taken
a branch of S−1 =

√
Q0 suitably. Equation (1) has singular points b0 = 0, b1 = 1 and

b2 = ∞. A turning point of (1) is, by definition, a zero point or of a simple pole of Q0.
Let a be a turning point. A Stokes curve emanating from the turning point a is a curve
defined by

Im
∫ x

a

√
Q0 dx = 0. (13)

A Stokes curve flows into a singular point or a turning point. We assume that (α, β, γ)
is not contained in the following set E0:

E0 = {(α, β, γ) ∈ C3 | α · β · γ · (α− β) · (α− γ) · (β − γ) · (α + β − γ) = 0}. (14)

This implies that there are two distinct turning points a0 and a1 which do not coincide
with 0, 1, ∞. The Stokes graph (cf. [1]) of (1) is, by definition, a two-colored sphere
graph consisting of all Stokes curves (emanating from a0 and a1) as edges, {a0, a1} as
vertices of the first color and {b0, b1, b2} as vertices of the second color. The Stokes graph
of (4) is, by definition, that of (1). We set

E1 = {(α, β, γ) ∈ C3 | Re α · Re β · Re(γ − α) · Re(γ − β) = 0}, (15)

E2 = {(α, β, γ) ∈ C3 | Re(α− β) · Re(α + β − γ) · Re γ = 0}. (16)

If one of Stokes curves flows into a turning point, (α, β, γ) is contained in the set E1∪E2

(cf. [16, Theorem 3.1]). In this case, we say that the Stokes geometry is degenerate. The
sets ωh (h = 1, 2, 3, 4) of the parameters (α, β, γ) are defined by

ω1 = {(α, β, γ) ∈ C3 | 0 < Re α < Re γ < Re β}, (17)

ω2 = {(α, β, γ) ∈ C3 | 0 < Re α < Re β < Re γ < Re α + Re β}, (18)

ω3 = {(α, β, γ) ∈ C3 | 0 < Re γ < Re α < Re β}, (19)

ω4 = {(α, β, γ) ∈ C3 | 0 < Re γ < Re α + Re β < Re β}. (20)

Let G denote the group generated by the involutions ιj (j = 0, 1, 2) which are defined in
the space C3 of parameters (α, β, γ) as follows:

ι0 : (α, β, γ) 7→ (−α,−β,−γ), (21)

ι1 : (α, β, γ) 7→ (γ − β, γ − α, γ), (22)

ι2 : (α, β, γ) 7→ (β, α, γ). (23)

Moreover, we define open subsets Πh (h = 1, 2, 3, 4) in C3 by
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Πh =
⋃

r∈G

r(ωh). (24)

We assume that (α, β, γ) is not contained in the sets E0 ∪ E1 ∪ E2. A Stokes graph can
be classified by its order sequence n̂ = (n0, n1, n2), where n0, n1 and n2 are numbers of
Stokes curves that flow into 0, 1 and ∞, respectively (cf. [3]).

Theorem 2.1 ([3, Theorem 3.2]). Let n̂ = (n0, n1, n2) denote the order sequences
of the Stokes graph with parameters (α, β, γ).

(1) If (α, β, γ) ∈ Π1, then n̂ = (2, 2, 2).
(2) If (α, β, γ) ∈ Π2, then n̂ = (4, 1, 1).
(3) If (α, β, γ) ∈ Π3, then n̂ = (1, 4, 1).
(4) If (α, β, γ) ∈ Π4, then n̂ = (1, 1, 4).

We introduce the following notations:

ι3 = ι1ι2 : (α, β, γ) 7→ (γ − α, γ − β, γ), (25)

ι4 = ι0ι2 : (α, β, γ) 7→ (−β,−α,−γ), (26)

ι5 = ι0ι1 : (α, β, γ) 7→ (β − γ, α− γ,−γ), (27)

ι6 = ι0ι1ι2 : (α, β, γ) 7→ (α− γ, β − γ,−γ). (28)

Then we have G = {id, ι0, . . . , ι6}. When τ runs over G and h on {1, 2, 3, 4}, ιm(ωh)
(m = 0, 1, . . . , 6; h = 1, . . . , 4) covers most of C3:

⋃

τ∈G

4⋃

h=1

τ(ωh) = C3 − {(α, β, γ) | Re α Re β Re γ Re(γ − α)Re(γ − β)

· Re(α− β)Re(α + β − γ) = 0}.

We denote ιm(ωh) by ωhm(m = 0, 1, . . . , 6; h = 1, . . . , 4). For a fixed Re γ > 0 (resp.
Re γ < 0), the configurations of ωh and ωhm in the Re α-Re β plane are as follows:

2.2. Voros coefficients.
In this section, we assume that (α, β, γ) is not contained in the set E0 ∪ E1 ∪ E2.

Let a be a turning point of (1). Let Cj (j = 0, 1, 2) be a closed path going around a with
the base point bj in a counterclockwise manner. We can take Cj so that the inside of Cj

does not contain another turning point or singular points.

Definition 2.2 ([2]). We define the following integrals:

V0 = V0(α, β, γ; η) :=
1
2

∫

C0

(Sodd − ηS−1) dx, (29)

V1 = V1(α, β, γ; η) :=
1
2

∫

C1

(Sodd − ηS−1) dx, (30)
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Figure 1.1. Re γ > 0. Figure 1.2. Re γ < 0.

V2 = V2(α, β, γ; η) :=
1
2

∫

C2

(Sodd − ηS−1) dx. (31)

Then Vj (j = 0, 1, 2) are formal power series in η−1. We call Vj the Voros coefficients of
(1) with respect to bj .

Since the residues of Sodd and ηS−1 at the singular points coincide (see [10] for
the computation of residues of Sodd), these integrals are well-defined for every homotopy
class of the path of integration and they do not depend on the choice of the turning point
a. Thanks to the square root character of Sodd at x = a, we can rewrite the right-hand
side of (29), (30) and (31) as

1
2

∫

Cj

(Sodd − ηS−1) dx =
∫ a

bj

(Sodd − ηS−1) dx. (32)

Hereafter, ψ± denote the WKB solutions normalized a turning point a (a = a0 or a = a1):

ψ± =
1√
Sodd

exp
(
±

∫ x

a

Sodd dx

)
. (33)

Let

ψ
(j)
± =

1√
Sodd

exp
(
±

∫ x

bj

(Sodd − ηS−1) dx± η

∫ x

a

S−1 dx

)
(34)

be the WKB solutions normalized at the singular point bj (cf. [7]). For j = 0, 1 and 2,
Vj(α, β, γ; η) describe the discrepancy between WKB solutions ψ± and ψ

(j)
± , that is, we

factorize ψ± as

ψ± = exp(∓Vj)ψ
(j)
± . (35)
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Here the paths of integration should be chosen suitably.
To give the explicit form of Vj , we specify the branch of S−1(x) =

√
Q0(x) precisely.

For this purpose we consider the case where (α, β, γ) is contained in ω2. Firstly we take
a point (α, β, γ) = (0.5 + δ′i, 1 − ε − δi, 1) in ω2. Here δ′, ε and δ are sufficiently small
positive numbers. We show a configuration of the Stokes curves for this case in Figure
2.1. Here bullets and white bullets designate turning points a0, a1 and singular points
0, 1, respectively. We take a segment connecting two turning points as a branch cut for√

Q0. This is shown by the wavy line in Figure 2.1.

Figure 2.1.

We specify the branch of
√

Q0 on the first sheet of the Riemann surface of
√

Q0 so that

√
Q0 ∼ β − α

2x
(36)

holds near x = ∞. In this case, the behavior of
√

Q0 near 0 and 1 are

√
Q0 ∼ γ

2x
, (37)

√
Q0 ∼ −α + β − γ

2(x− 1)
, (38)

respectively. This can be observed by the following discussion: We consider that Q0(x) =
Q0(0.5, 1− ε− δi, x) is a perturbation of

Q0(0.5, 1, 1;x) =
(x− 2)2

(4x(x− 1))2
. (39)

These values of parameters are located on the boundary between ω1 and ω2. The Stokes
curves of the equation

(
− d2

dx2
+ η2 (x− 2)2

16x2(x− 1)2
+ Q1

)
ψ = 0 (40)

can be described explicitly, namely,
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{u + iv | 1 < u, v = 0} ∪ {u + iv | (u− 1)2 + v2 = 1, 0 < u}, (41)

where x = u + iv (u, v ∈ R) (Figure 2.2).

Figure 2.2.

Here x = 2 is a double turning point. We take the branch

√
Q0(0.5, 1, 1;x) =

x− 2
4x(x− 1)

. (42)

We have

Re
∫ x

2

√
Q0(0.5, 1, 1;x) dx ≥ 0 (43)

on the Stokes curve {x | x ≥ 2} (see Figure 2.2). Hence

Re
∫ x

2

√
Q0(0.5, 1− ε− δi, 1;x) dx ≥ 0 (44)

on the Stokes curve emanating from a1 and going to the infinity (see Figure 2.1). This
is consistent with the choice of the branch satisfying (36). This implies ψ+ is dominant
to ψ− on the Stokes curve. Similarly, we can see that ψ− (resp. ψ+) is dominant to ψ+

(resp. ψ−) on the Stokes curve(s) flowing into b0 = 0 (resp. b1 = 1). Thus we have (37)
and (38).

Under the above choice of the branch of
√

Q0, the explicit forms of Vj are given in
the following theorem which has been announced in [2] (up to the multiplicative factor
±1 coming from the choice of the branch).

Theorem 2.3. The Voros coefficients Vj have the following forms:

V0(α, β, γ; η)

=
1
2

∞∑
n=2

Bnη1−n

n(n− 1)

{
(1− 21−n)

(
1

αn−1
+

1
βn−1

+
1

(γ − α)n−1
+

1
(γ − β)n−1

)
+

2
γn−1

}
,

(45)
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V1(α, β, γ; η) = −1
2

∞∑
n=2

Bnη1−n

n(n− 1)

×
{

(1− 21−n)
(

1
αn−1

+
1

βn−1
− 1

(γ − α)n−1
− 1

(γ − β)n−1

)
+

2
(α + β − γ)n−1

}
,

(46)

V2(α, β, γ; η) =
1
2

∞∑
n=2

Bnη1−n

n(n− 1)

×
{

(1− 21−n)
(

1
αn−1

− 1
βn−1

− 1
(γ − α)n−1

+
1

(γ − β)n−1

)
− 2

(β − α)n−1

}
. (47)

Here Bn are the Bernoulli numbers defined by

tet

et − 1
=

∞∑
n=0

Bn

n!
tn.

Proof. We only prove (46). Others can be proved similarly. A key of the proof
is to use the method developed by Takei [14], which employs the ladder operator for the
Weber equation. For the Gauss equation, we have the following three operators which
play the role of the ladder operator for the parameters a, b and c in (4) (cf. [9]):

H1(a, b, c) = x
d

dx
+ a : S(a, b, c) → S(a + 1, b, c), (48)

H2(a, b, c) = x
d

dx
+ b : S(a, b, c) → S(a, b + 1, c), (49)

B3(a, b, c) = x
d

dx
+ c : S(a, b, c + 1) → S(a, b, c). (50)

Here S(a, b, c) denotes the solution space of (4). Using (48), (49) and (50), we can prove
the following lemma.

Lemma 2.4. The solution S(x) = S(α, β, γ;x, η) of (12) satisfies the following
system of difference equations:

S(α + η−1, β, γ;x, η)− S(α, β, γ;x, η)

= − 1
2(1− x)

+
d

dx
log

{
−1

2
γη +

x

2(1− x)
(1 + (α + β − γ)η) + xS(α, β, γ;x, η) + αη

}
,

(51)

S(α, β + η−1, γ;x, η)− S(α, β, γ;x, η)

= − 1
2(1− x)

+
d

dx
log

{
−1

2
γη +

x

2(1− x)
(1 + (α + β − γ)η) + xS(α, β, γ;x, η) + βη

}
,

(52)
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S(α, β, γ + η−1;x, η)− S(α, β, γ;x, η)

=
1

2(1− x)
+

1
2x

− d

dx
log

{
1
2
γη +

x

2(1− x)
(α + β − γ)η + xS(α, β, γ + η−1;x, η)

}
.

(53)

Proof. To prove (51), we use the operator (48). As we have introduced the large
parameter η by setting (5), (6) and (7), we have the following operator:

H1

(
1
2

+ αη,
1
2

+ βη, 1 + γη; η
)

= x
d

dx
+

1
2

+ αη :

S(α, β, γ; η) → S(α + η−1, β, γ; η). (54)

Here we have abbreviated S(1/2 + αη, 1/2 + βη, 1 + γη; η) to S(α, β, γ; η). Let
T (α, β, γ;x, η) be a solution of the Riccati equation

x(1− x)
(

dT

dx
+ T 2

)
+ (1 + γη − ((α + β)η + 2)x)T −

(
1
2

+ αη

)(
1
2

+ βη

)
w = 0 (55)

associated with (8) and T̂ the logarithmic derivative of

(
x

d

dx
+ αη +

1
2

)
exp

∫
T dx =

(
xT + αη +

1
2

)
exp

∫
T dx, (56)

namely,

T̂ = T +
d

dx
log

(
xT + αη +

1
2

)
. (57)

We can confirm that T̂ satisfies the equation obtained from (55) by replacing α by α+η−1.
If S is a formal solution of (12), then

T = S − 1 + γη

2x
+

1 + (α + β − γ)η
2(1− x)

(58)

becomes a formal solution of (55) and

Ŝ = T̂ +
1 + γη

2x
− 1 + (α + η−1 + β − γ)η

2(1− x)
(59)

is a formal solution of the equation obtained from (12) by replacing α by α+η−1. Hence
we have

Ŝ = S(α + η−1, β, γ;x, η). (60)
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Combining (57), (58), (59) and (60), we obtain

S(α + η−1, β, γ;x, η)− S(α, β, γ;x, η)

= − 1
2(1− x)

+
d

dx
log

(
x

(
S(α, β, γ;x, η)− 1 + γη

2x
+

1 + (α + β − γ)η
2(1− x)

)
+ αη +

1
2

)
,

(61)

namely, (51). Similarly, we have (53). We obtain (52) by exchanging α for β in (51). ¤

Since each coefficient of Seven = S − Sodd is single valued at x = a and

Res
x=a

Seven = Res
x=a

S0 = −1
4

(62)

hold in view of (12), we have

1
2

∫

C1

(Sodd − ηS−1) dx =
1
2

∫

C1

(S − ηS−1 − S0) dx. (63)

Let x0 be a point sufficiently close to b1 = 1. To specify the value of log(x0− 1), we
assume that −π < arg(x0 − b1) ≤ π. Let Cx0 be a path that runs from x0, encircles a in
a counterclockwise manner and returns to x0. We can take Cx0 so that another turning
point and singular points are not contained inside Cx0 . Note that the branch of S−1 at
the starting point x0 is different from that of S−1 at the final point x0. To distinguish
these two different branches, we use the notation x̂0 to specify x0 on the second sheet
(cf. Figure 2.3).

Figure 2.3.

We set

I(α, β, γ;x0, η) =
1
2

∫

Cx0

(S(α + η−1, β, γ;x, η)− S(α, β, γ;x, η)) dx, (64)

J(α, β, γ;x0, η) =
1
2

∫

Cx0

(S(α, β + η−1, γ;x, η)− S(α, β, γ;x, η)) dx, (65)

K(α, β, γ;x0, η) =
1
2

∫

Cx0

(S(α, β, γ + η−1;x, η)− S(α, β, γ;x, η)) dx, (66)

I−1(α, β, γ;x0, η) =
1
2

∫

Cx0

(S−1(α + η−1, β, γ;x, η)− S−1(α, β, γ;x, η)) dx, (67)
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J−1(α, β, γ;x0, η) =
1
2

∫

Cx0

(S−1(α, β + η−1, γ;x, η)− S−1(α, β, γ;x, η)) dx, (68)

K−1(α, β, γ;x0, η) =
1
2

∫

Cx0

(S−1(α, β, γ + η−1;x, η)− S−1(α, β, γ;x, η)) dx. (69)

By using Lemma 2.4, we obtain

I(α, β, γ;x0, η)

=
1
2

log
{
− 1

2
γη +

x0

2(1− x0)
(1 + (α + β − γ)η) + x0S(α, β, γ; x̂0, η) + αη

}

− 1
2

log
{
− 1

2
γη +

x0

2(1− x0)
(1 + (α + β − γ)η) + x0S(α, β, γ;x0, η) + αη

}
, (70)

J(α, β, γ;x0, η)

=
1
2

log
{
− 1

2
γη +

x0

2(1− x0)
(1 + (α + β − γ)η) + x0S(α, β, γ; x̂0, η) + βη

}

− 1
2

log
{
− 1

2
γη +

x0

2(1− x0)
(1 + (α + β − γ)η) + x0S(α, β, γ;x0, η) + βη

}
, (71)

K(α, β, γ;x0, η)

= −1
2

log
{

1
2
γη +

x0

2(1− x0)
(α + β − γ)η + x0S(α, β, γ + η−1; x̂0, η)

}

+
1
2

log
{

1
2
γη +

x0

2(1− x0)
(α + β − γ)η + x0S(α, β, γ + η−1;x0, η)

}
. (72)

We chose the semiaxis Re(x− 1) < 0 as a branch cut of the logarithmic function. We fix
the arguments of α, β, γ, γ−α, γ−β, α+β−γ and β−α. In the following computation,
we use the conventions

−α = e−πiα, (73)

−β = eπiβ, (74)

−γ = eπiγ, (75)

α− γ = eπi(γ − α), (76)

β − γ = e−πi(γ − β), (77)

γ − α− β = eπi(α + β − γ), (78)

α− β = eπi(β − α) (79)

which are corresponding to the conditions
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0 < arg α ≤ π, (80)

−π < arg β ≤ 0, (81)

−π < arg γ ≤ 0, (82)

−π < arg(γ − α) ≤ 0, (83)

0 < arg(γ − β) ≤ π, (84)

−π < arg(α + β − γ) ≤ 0, (85)

−π < arg(β − α) ≤ 0, (86)

respectively. By the definition of the Voros coefficients, Vj (j = 0, 1, 2) are determined
once the branch of

√
Q0 is fixed and they do not depend on the arguments of parameters

α, β, γ. Hence we can compute the concrete form of Vj under the above conventions
without loss of generality.

To compute the leading terms and subleading terms of the Laurent expansion of S

at x = b1 on the Riemann surface of
√

Q0, we use a method given in [10] (see Section
3.1). On the first sheet, we have near x = 1:

x0S(α, β, γ;x0, η) = x0

{
1− (α + β − γ)η

2(x0 − 1)
− (2γ2 + p)η2 − 1

4(1− (α + β − γ)η)
+ O(x0 − 1)

}
, (87)

where the branch of S−1 is chosen as (38) and where p denotes 2(2αβ − αγ − βγ). On
the second sheet, we have

x0S(α, β, γ; x̂0, η) = x0

{
1 + (α + β − γ)η

2(x0 − 1)
− (2γ2 + p)η2 − 1

4(1 + (α + β − γ)η)
+ O(x0 − 1)

}
(88)

near x = 1. Using (87) and (88), we obtain as x0 → 1

I(α, β, γ;x0, η) =
1
2

log
(α + (η−1/2))(γ − α− (η−1/2))
(α + β − γ)(α + β − γ + η−1)

+
1
2

log(x0 − 1) + O(x0 − 1), (89)

J(α, β, γ;x0, η) =
1
2

log
(β + (η−1/2))(γ − β − (η−1/2))
(α + β − γ)(α + β − γ + η−1)

+
1
2

log(x0 − 1) + O(x0 − 1), (90)

K(α, β, γ;x0, η) =
1
2

log
(α + β − γ)(α + β − γ − η−1)

(γ − α + (η−1/2))(γ − β + (η−1/2))

− 1
2

log(x0 − 1) + O(x0 − 1), (91)
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and the indefinite integral of S−1 can be computed explicitly as follows:

∫ x

S−1(α, β, γ;x, η) dx

=
1
2

{
γ log

2γ2 + px + 2γ
√

δ2x2 + px + γ2

x

−
√

δ2 + p + γ2 log
p + px + 2γ2 + 2δ2x + 2

√
δ2 + p + γ2

√
δ2x2 + px + γ2

x− 1

+ δ log
(
p + 2δ2x + 2δ

√
δ2x2 + px + γ2

)}
. (92)

Here δ = β − α. Hence we can evaluate the contour integral of S−1 on Cx0 :

1
2

∫

Cx0

S−1(α, β, γ;x, η) dx

=
γ

4
log

2γ2 + px0 + eπi2γ
√

δ2x2
0 + px0 + γ2

2γ2 + px0 + 2γ
√

δ2x2
0 + px0 + γ2

−
√

δ2 + p + γ2

4
log

p + px0 + 2γ2 + 2δ2x0 + eπi2
√

δ2 + p + γ2
√

δ2x2
0 + px0 + γ2

p + px0 + 2γ2 + 2δ2x0 + 2
√

δ2 + p + γ2
√

δ2x2
0 + px0 + γ2

+
δ

4
log

p + 2δ2x0 + eπi2δ
√

δ2x2
0 + px0 + γ2

p + 2δ2x0 + 2δ
√

δ2x2
0 + px0 + γ2

. (93)

Let M1(α, β, γ;x0, η), M2(α, β, γ;x0, η) and M3(α, β, γ;x0, η) be the first term, the sec-
ond term and the third term of right-hand side of (93), respectively. We investigate the
asymptotic behavior for I−1(α, β, γ;x0, η) as x0 → 1. We compute the difference of M1

in α variable to obtain

M1(α + η−1, β, γ;x0, η)−M1(α, β, γ;x0, η)

=
γ

4
log

(2γ2 + p̂ + eπi2γ
√

δ̂2 + p̂ + γ2)(2γ2 + p + 2γ
√

δ2 + p + γ2)

(2γ2 + p + eπi2γ
√

δ2 + p + γ2)(2γ2 + p̂ + 2γ
√

δ̂2 + p̂ + γ2)
+ O(x0 − 1),

(94)

where we set p̂ = 2(2(α + η−1)β− (α + η−1)γ−βγ), δ̂ = β−α− η−1. Similarly, we have

M2(α + η−1, β, γ;x0, η)−M2(α, β, γ;x0, η)

= −
√

δ2 + p + γ2

4
log

(
4δ̂2(δ̂2 + p̂ + γ2)− (2δ̂2 + p̂)2

)
(δ2 + p + γ2)2

(
4δ2(δ2 + p + γ2)− (2δ2 + p)2

)(
δ̂2 + p̂ + γ2

)2

+
η−1

4
log

eπi
(
4δ̂2(δ̂2 + p̂ + γ2)− (2δ̂2 + p̂)2

)

16
(
δ̂2 + p̂ + γ2

)2 +
η−1

4
log(1− x0) + O(x0 − 1),

(95)
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M3(α + η−1, β, γ;x0, η)−M3(α, β, γ;x0, η)

=
δ

4
log

(
p + 2δ2 + 2δ

√
δ2 + p + γ2

)(
p̂ + 2δ̂2 + eπi2δ̂

√
δ̂2 + p̂ + γ2

)
(
p̂ + 2δ̂2 + 2δ̂

√
δ̂2 + p̂ + γ2

)(
p + 2δ2 + eπi2δ

√
δ2 + p + γ2

)

− η−1

4
log

p̂ + 2δ̂2 + eπi2δ̂
√

δ̂2 + p̂ + γ2

p̂ + 2δ̂2 + 2δ̂
√

δ̂2 + p̂ + γ2
+ O(x0 − 1). (96)

In our computation, we have used reductions:

p + 2δ2 + 2δ
√

δ2 + p + γ2 = 4e−πiα(γ − α), (97)

p + 2δ2 − 2δ
√

δ2 + p + γ2 = 4e−πiβ(γ − β), (98)

p + 2γ2 − 2γ
√

δ2 + p + γ2 = 4αβ, (99)

p + 2γ2 + 2γ
√

δ2 + p + γ2 = 4(γ − α)(γ − β). (100)

Hence we have

M1(α + η−1, β, γ;x0, η)−M1(α, β, γ;x0, η) =
γ

4
log

(γ − α)(α + η−1)
α(γ − α− η−1)

+ O(x0 − 1),

(101)

M2(α + η−1, β, γ;x0, η)−M2(α, β, γ;x0, η)

=
α + β − γ

4
log

(α + β − γ)4(α + η−1)(γ − α− η−1)
α(γ − α)(α + η−1 + β − γ)4

+
η−1

4
log

β(γ − β)(α + η−1)(γ − α− η−1)
(α + η−1 + β − γ)4

+
η−1

2
log(x0 − 1) + O(x0 − 1), (102)

M3(α + η−1, β, γ;x0, η)−M3(α, β, γ;x0, η)

=
β − α

4
log

α(γ − α)
(α + η−1)(γ − α− η−1)

− η−1

4
log

β(γ − β)
(α + η−1)(γ − α− η−1)

+ O(x0 − 1). (103)

Then we obtain

I−1(α, β, γ;x0, η)

=
1
2
{
η−1 log (x0 − 1)− α log α + (α + η−1) log(α + η−1)

+ (γ − α) log(γ − α)− (γ − α− η−1) log(γ − α− η−1)

+ 2(α + β − γ) log(α + β − γ)− 2(α + η−1 + β − γ) log(α + η−1 + β − γ)
}

+ O(x0 − 1). (104)
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To obtain the asymptotic behavior for J−1(α, β, γ;x0, η) as x0 → 1, we exchange α and
eπi in (104) for β and e−πi, respectively:

J−1(α, β, γ;x0, η)

=
1
2
{
η−1 log (x0 − 1) + β log β + (β + η−1) log(β + η−1)

+ (γ − β) log(γ − β)− (γ − β − η−1) log(γ − β − η−1)

+ 2(α + β − γ) log(α + β − γ)− 2(α + β + η−1 − γ) log(α + β + η−1 − γ)
}

+ O(x0 − 1). (105)

In a similar manner, we have

K−1(α, β, γ;x0, η)

=
1
2
{− η−1 log(x0 − 1) + (γ − α) log(γ − α)− (γ − α + η−1) log(γ − α + η−1)

+ (γ − β) log(γ − β)− (γ − β + η−1) log(γ − β + η−1)

+ (α + β − γ) log(α + β − γ)− 2(α + β − γ − η−1) log(α + β − γ − η−1)
}

+ O(x0 − 1). (106)

Similarly, we can compute the asymptotic behavior of I, J , K, I−1, J−1 and K−1 near
x = 0 (resp. x = ∞). Hence we have the following

Proposition 2.5. The Voros coefficient V1 satisfies the following system of differ-
ence equations as a formal power series solution in η−1:

V1(α + η−1, β, γ; η)− V1(α, β, γ; η)

=
1
2

log
(α + (η−1/2))(γ − α− (η−1/2))
(α + β − γ)(α + β − γ + η−1)

+
η

2
{
α log α− (α + η−1) log(α + η−1)− (γ − α) log(γ − α)

+ (γ − α− η−1) log(γ − α− η−1)− 2(α + β − γ) log(α + β − γ)

+ 2(α + η−1 + β − γ) log(α + η−1 + β − γ)
}
, (107)

V1(α, β + η−1, γ; η)− V1(α, β, γ; η)

=
1
2

log
(β + (η−1/2))(γ − β − (η−1/2))
(α + β − γ)(α + β − γ + η−1)

+
η

2
{
β log β − (β + η−1) log(β + η−1)− (γ − β) log(γ − β)

+ (γ − β − η−1) log(γ − β − η−1)− 2(α + β − γ) log(α + β − γ)

+ 2(α + β + η−1 − γ) log(α + β + η−1 − γ)
}
, (108)
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V1(α, β, γ + η−1; η)− V1(α, β, γ; η)

=
1
2

log
(α + β − γ)(α + β − γ − η−1)

(γ − α + (η−1/2))(γ − β + (η−1/2))

+
η

2
{− (γ − α) log(γ − α) + (γ − α + η−1) log(γ − α + η−1)− (γ − β) log(γ − β)

+ (γ − β + η−1) log(γ − β + η−1)− 2(α + β − γ) log(α + β − γ)

+ 2(α + β − γ − η−1) log(α + β − γ − η−1)
}
. (109)

Similarly, we obtain

Proposition 2.6. The Voros coefficient V0 satisfies the following system of differ-
ence equations as a formal power series solution in η−1:

V0(α + η−1, β, γ; η)− V0(α, β, γ; η)

=
1
2

log
γ − α− (η−1/2)

α + (η−1/2)

− η

2
{
α log α− (α + η−1) log(α + η−1) + (γ − α) log(γ − α)

− (γ − α− η−1) log(γ − α− η−1)
}
, (110)

V0(α, β + η−1, γ; η)− V0(α, β, γ; η)

=
1
2

log
γ − β − (η−1/2)

β + (η−1/2)

− η

2
{
β log β − (β + η−1) log(β + η−1) + (γ − β) log(γ − β)

− (γ − β − η−1) log(γ − β − η−1)
}
, (111)

V0(α, β, γ + η−1; η)− V0(α, β, γ; η)

=
1
2

log
γ(γ + η−1)

(γ − α + (η−1/2))(γ − β + (η−1/2))

− η

2
{
(γ − α) log(γ − α)− (γ − α + η−1) log(γ − α + η−1)

+ (γ − β) log(γ − β)− (γ − β + η−1) log(γ − β + η−1)

− 2γ log γ + 2(γ + η−1) log(γ + η−1)
}
. (112)

Proposition 2.7. The Voros coefficient V2 satisfies the following system of differ-
ence equations as a formal power series solution in η−1:
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V2(α + η−1, β, γ; η)− V2(α, β, γ; η)

=
1
2

log
(β − α)(β − α− η−1)

(α + (η−1/2))(γ − α− (η−1/2))

+
η

2
{− α log α + (α + η−1) log(α + η−1) + (γ − α) log(γ − α)

− (γ − α− η−1) log(γ − α− η−1)− 2(β − α) log(β − α)

+ 2(β − η−1 − α) log(β − η−1 − α)
}
, (113)

V2(α, β + η−1, γ; η)− V2(α, β, γ; η)

=
1
2

log
(β + (η−1/2))(γ − β − (η−1/2))

(β − α)(β − α + η−1)

+
η

2
{
β log β − (β + η−1) log(β + η−1)− (γ − β) log(γ − β)

+ (γ − β − η−1) log(γ − β − η−1)− 2(β − α) log(β − α)

+ 2(β + η−1 − α) log(β + η−1 − α)
}
, (114)

V2(α, β, γ + η−1; η)− V2(α, β, γ; η)

=
1
2

log
γ − α + (η−1/2)
γ − β + (η−1/2)

+
η

2
{
(γ − α) log (γ − α)− (γ + η−1 − α) log(γ + η−1 − α)

− (γ − β) log(γ − β) + (γ + η−1 − β) log(γ + η−1 − β)
}
. (115)

Proposition 2.8. The system of difference equations (110), (111), (112) (resp.
(107), (108), (109), resp. (113), (114), (115)) satisfies the compatibility conditions and it
has a unique formal power series solution V0 (resp. V1, resp. V2) in η−1 without constant
term which is homogeneous in (α, β, γ; η−1).

Proof. Since V1 (resp. V0, resp. V2) satisfies (107), (108), (109) (resp. (110), (111),
(112), resp. (113), (114), (115)), the compatibility conditions trivially hold. We consider
the following equation

V (α + η−1, β, γ; η)− V (α, β, γ; η) = 0. (116)

Assume that V has an expansion of the form:

V (α, β, γ; η) =
∞∑

n=1

vn(α, β, γ)η−n, (117)

where vn is a homogeneous rational function of order −n (n = 1, 2, 3, . . . ). Since the first
term of the left-hand side of (116) has an expansion



Parametric Stokes phenomena 1117

V (α + η−1, β, γ; η) =
∞∑

n=1

∞∑

k=0

∂k
αvn(α, β, γ)

ηk+nk!
=

∞∑

l=1

( ∑

k+n=l

∂k
αvn(α, β, γ)

ηlk!

)
, (118)

we obtain

V (α + η−1, β, γ; η)− V (α, β, γ; η) =
∞∑

l=1

l∑

k=1

∂k
αvl−k(α, β, γ)

k!
1
ηl

= 0. (119)

Hence vn is a function which is independent of α. In a similar way, we can prove that vn

does not depend on β and γ. Since vn is homogeneous of order −n in (α, β, γ), we have
vn ≡ 0. This completes the proof of Proposition 2.8. ¤

We consider V1. In our computation, we tentatively admit formal power series in
η−1 starting from the first power:

∞∑
n=−1

vn(α, β, γ)η−n (120)

with the coefficients v−1 and v0 containing logarithms of α, β, γ. These extra terms will
disappear in the final result. The right-hand side of (107) can be written in the form

f(α, β, γ; η) + g(α, β, γ; η) (121)

with

f(α, β, γ; η) =
1
2

log
(α + (η−1/2))(γ − α− (η−1/2))
(α + β − γ)(α + β − γ + η−1)

(122)

and

g(α, β, γ; η) =
η

2
{
α log α− (α + η−1) log(α + η−1)− (γ − α) log(γ − α)

+ (γ − α− η−1) log(γ − α− η−1)− 2(α + β − γ) log(α + β − γ)

+ 2(α + η−1 + β − γ) log(α + η−1 + β − γ)
}
. (123)

Then (107) is decomposed into the following two equations:

V11(α + η−1, β, γ; η)− V11(α, β, γ; η) = f(α, β, γ; η), (124)

V12(α + η−1, β, γ; η)− V12(α, β, γ; η) = g(α, β, γ; η). (125)

If we find solutions V11 and V12, then V1 = V11 + V12 satisfies (107). We can easily solve
(125):
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V12(α, β, γ; η)

=
η

2
(−α log α + (γ − α) log(γ − α) + 2(α + β − γ) log(α + β − γ)). (126)

To solve (124), we employ an idea developed by Candelpergher–Coppo–Delabaere [5].
We rewrite the left-hand side of (124) as follows:

V11(α + η−1, β, γ; η)− V11(α, β, γ; η) = (eη−1∂α − 1)V11(α, β, γ; η). (127)

Here ∂α = ∂/∂α. The inverse of the difference operator eη−1∂α − 1 can be expanded in
the form

(eη−1∂α − 1)−1 = η∂−1
α

∞∑
n=0

(−1)nBn

n!
η−n∂n

α, (128)

where Bn denotes n-th Bernoulli number and ∂−1
α the indefinite integration operator in

α. Using operator (128), we have a solution of (124):

V11(α, β, γ; η) = (eη−1∂α − 1)−1f(α, β, γ; η−1) + f0(β, γ; η−1), (129)

where f0(β, γ) is an arbitrary formal power series in η−1 which does not depend on α.
To compute the first term of the right-hand side of (129), we use the following lemma.

Lemma 2.9. We have the following two formulas:

∂α(eη−1∂α − 1)−1 log
(

1 +
1

αη

)
=

1
α

, (130)

∂α(eη−1∂α/2 − 1)−1 log
(

1 +
1

2ηα

)
=

1
α

. (131)

Proof. The first formula immediately follows from

∂α log
(

1 +
1

ηα

)
=

1
α + η−1

− 1
α

= (eη−1∂α − 1)
1
α

. (132)

Similarly, we have (131). ¤

We consider the α-derivative of V11:

∂αV11 = −∂α(eη−1∂α − 1)−1 1
2

{
log(α + β − γ) + log(α + β − γ + η−1)

− log
(

α +
η−1

2

)
− log

(
γ − α− η−1

2

)}
. (133)
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The right-hand side can be written in the form:

∂α

2
(eη−1∂α − 1)−1(−2 log(α + β − γ) + log α + log(γ − α))

+
∂α

2
(e(1/2)η−1∂α + 1)−1(e(1/2)η−1∂α − 1)−1

(
log

(
1 +

1
2αη

)
+ log

(
1− 1

2(γ − α)η

))

− ∂α

2
(eη−1∂α − 1)−1 log

(
1 +

1
η(α + β − γ)

)
. (134)

The first term turns out to be

− η

2

∞∑
n=0

(−1)nBn

n!
η−n∂n

α (2 log(α + β − γ)− log α− log(γ − α))

= −η

2
(2 log(α + β − γ)− log α− log(γ − α)) +

B1

2

(
− 2

α + β − γ
+

1
α
− 1

γ − α

)

+
1
2

∞∑
n=2

Bn

n
η1−n

(
− 2

(α + β − γ)n
+

1
αn

− 1
(γ − α)n

)
. (135)

Using the identity

(e(1/2)η−1∂α + 1)−1 = (e(1/2)η−1∂α − 1)−1 − 2(eη−1∂α − 1)−1 (136)

and Lemma 2.9, we can rewrite the second and third terms of (134) in the form:

− 1
2
(
(e(1/2)η−1∂α − 1)−1 − 2(eη−1∂α − 1)−1

)(− 1
α

+
1

γ − α

)
− 1

2(α + β − γ)

= − 1
2

∞∑
n=1

(−1)nBn

n!
η1−n(21−n − 2)∂n−1

α

(
− 1

α
− 1

γ − α

)
+

1
2(α + β − γ)

= − B1

2

(
− 1

α
+

1
γ − α

)
− 1

2(α + β − γ)

− 1
2

∞∑
n=2

Bn

n
η1−n(21−n − 2)

(
1

αn
+

1
(γ − α)n

)
. (137)

Hence we obtain

∂αV11(α, β, γ) = −1
2

{
η(2 log(α + β − γ)− log α− log(γ − α))

+
∞∑

n=2

Bn

n
η1−n

(
(21−n − 1)

(
1

αn
+

1
(γ − α)n

)
− 2

(α + β − γ)n

)}
.

(138)
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Thus we have

V1(α, β, γ; η) = −1
2

∞∑
n=2

Bn

n(n− 1)
η1−n

×
((

1− 1
2n−1

)(
1

αn−1
− 1

(γ − α)n−1

)
+

2
(α + β − γ)n

)
+ f0(β, γ).

(139)

Here f0 is an arbitrary formal power series in η−1 whose coefficients depend only on β

and γ. Solving (108), we have

V1(α, β, γ; η) = −1
2

∞∑
n=2

Bnη1−n

n(n− 1)

×
(

(1− 21−n)
(

1
βn−1

− 1
(γ − β)n−1

+
2

(α + β − γ)n

))
+ f1(α, γ),

(140)

where f1(α, γ) is an arbitrary formal power series in η−1 whose coefficients depend only
on α and γ. On the other hand, solving (109), we have

V1(α, β, γ; η) = −1
2

∞∑
n=2

Bnη1−n

n(n− 1)

×
(

(1− 21−n)
(
− 1

(γ − α)n−1
− 1

(γ − β)n−1

)
+

2
(α + β − γ)n

)

+ f2(α, β), (141)

where f2(α, β) is an arbitrary formal power series in η−1 whose coefficients depend only
on α and β. Combining (139), (140) and (141) yields (46). In a similar manner, we
obtain V0 and V2. This completes the proof of Theorem 2.3. ¤

In the above computation, we have assumed that (α, β, γ) is contained in ω2. For
the other cases, the same discussion works and the explicit forms of Vj are the same as
those given in Theorem 2.3 if the branch of S−1(x) =

√
Q0(x) is specified as (36), (37),

(38). Note that for the choice of the branch in each case, we have to place the branch cut
suitably. Some examples of the branch cuts are shown by wavy curves in Figures 2.4–2.8.
For later use, we denote by L1 the branch cut shown by the wavy curve in Figure 2.5.

3. Borel sums of the Voros coefficients.

In this section, we examine the Borel summability of Vj in ωh and compute the Borel
sums V h

j (j = 0, 1, 2) of the Voros coefficients Vj in ωh (h = 1, . . . , 4). We use the branch
of S−1 defined by (36), (37) and (38). The following theorem has been announced in [2].
Note that the choice of the branch of S−1 at the origin in [2] is opposite of the current
choice.
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Figure 2.4. (α, β, γ) = (0.5,
1− ε− δi, 1) in ω1.

Figure 2.5. (1−ε+δi, 2, 1)
in ω1.

Figure 2.6. (ε + δi, 2, 1)
in ω1.

Figure 2.7. (α, β, γ) = (1 + ε + δi, 1) in ω3. Figure 2.8. (−ε + δi, 2, 1) in ω4.

Theorem 3.1. For each j = 0, 1, 2 and h = 1, . . . , 4, the Voros coefficient Vj is
Borel summable in ωh. The Borel sums V h

j of Vj in ωh have the following forms:

V 1
0 =

1

2
log

Γ(1/2 + (β − γ)η)Γ2(γη)ααηββη(γ − α)(γ−α)ηη

Γ(1/2 + αη)Γ(1/2 + βη)Γ(1/2 + (γ − α)η)(β − γ)(β−γ)ηγ2γη−1
, (142)

V 2
0 =

1

2
log

Γ2(γη)ααηββη(γ − α)(γ−α)η(γ − β)(γ−β)η2πη

Γ(1/2 + αη)Γ(1/2 + βη)Γ(1/2 + (γ − α)η)Γ(1/2 + (γ − β)η)γ2ηγ−1
, (143)

V 3
0 =

1

2
log

Γ(1/2 + (α− γ)η)Γ(1/2 + (β − γ)η)Γ2(γη)ααηββηη

Γ(1/2 + αη)Γ(1/2 + βη)(α− γ)(α−γ)η(β − γ)(β−γ)ηγ2γη−12π
, (144)

V 4
0 =

1

2
log

Γ(1/2− αη)Γ(1/2 + (β − γ)η)Γ2(γη)ββη(γ − α)(γ−α)ηη

Γ(1/2 + βη)Γ(1/2 + (γ − α)η)(−α)−αη(β − γ)(β−γ)ηγ2γη−12π
, (145)

V 1
1 =

1

2
log

Γ(1/2 + αη)Γ(1/2 + βη)Γ(1/2 + (β − γ)η)(γ − α)(γ−α)η(α + β − γ)2(α+β−γ)η−1

Γ(1/2 + (γ − α)η)Γ2((α + β − γ)η)ααηββη(β − γ)(β−γ)ηη
,

(146)

V 2
1 =

1

2
log

Γ(1/2 + αη)Γ(1/2 + βη)(γ − α)(γ−α)η(γ − β)(γ−β)η(α + β − γ)2(α+β−γ)η−12π

Γ(1/2 + (γ − α)η)Γ(1/2 + (γ − β)η)Γ2((α + β − γ)η)ααηββηη
,

(147)

V 3
1 =

1

2
log

Γ(1/2 + αη)Γ(1/2 + βη)Γ(1/2 + (α− γ)η)Γ(1/2 + (β − γ)η)(α + β − γ)2(α+β−γ)η−1

2πΓ2((α + β − γ)η)ααηββη(α− γ)(α−γ)η(β − γ)(β−γ)ηη
,

(148)
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V 4
1 =

1

2
log

Γ(1/2 + βη)Γ(1/2 + (β − γ)η)(−α)−αη(γ − α)(γ−α)η(α + β − γ)2(α+β−γ)η−12π

Γ(1/2− αη)Γ(1/2 + (γ − α)η)Γ2((α + β − γ)η)ββη(β − γ)(β−γ)ηη
,

(149)

V 1
2 =

1

2
log

Γ(1/2 + βη)Γ(1/2 + (γ − α)η)Γ(1/2 + (β − γ)η)ααη(β − α)2(β−α)η−1

Γ(1/2 + αη)Γ2((β − α)η)ββη(γ − α)(γ−α)η(β − γ)(β−γ)ηη
, (150)

V 2
2 =

1

2
log

Γ(1/2 + βη)Γ(1/2 + (γ − α)η)ααη(γ − β)(γ−β)η(β − α)2(β−α)η−12π

Γ(1/2 + αη)Γ(1/2 + (γ − β)η)Γ2((β − α)η)ββη(γ − α)(γ−α)ηη
, (151)

V 3
2 =

1

2
log

2πΓ(1/2 + βη)Γ(1/2 + (β − γ)η)ααη(α− γ)(α−γ)η(β − α)2(β−α)η−1

Γ(1/2 + αη)Γ(1/2 + (α− γ)η)Γ2((β − α)η)ββη(β − γ)(β−γ)ηη
, (152)

V 4
2 =

1

2
log

Γ(1/2− αη)Γ(1/2 + βη)Γ(1/2 + (γ − α)η)Γ(1/2 + (β − γ)η)(β − α)2(β−α)η−1

Γ2((β − α)η)(−α)−αηββη(γ − α)(γ−α)η(β − γ)(β−γ)η2πη
.

(153)

Proof. Our proof follows from the proof of Theorem 2.1 in [14], but the compu-
tation is slightly more complicated than that of [14]. We now compute the Borel sums
V h

0 of V0. To find the Borel sums V h
0 , we first take the Borel transform V0,B(α, β, γ; y)

of V0. By the definition, we have

V0,B(α, β, γ; y) =
1
2

∞∑
n=2

Bnyn−2

n!

×
{

(1− 21−n)
(

1
αn−1

+
1

βn−1
+

1
(γ − α)n−1

+
1

(γ − β)n−1

)
+

2
γn−1

}
.

(154)

We use the following functions:

g̃(t) =
∞∑

n=2

Bn

n!

(
y

t

)n

=
y/t

exp(y/t)− 1
− 1 +

y

2t

=
y

2t

(
1

exp(y/2t)− 1
− 1

exp(y/2t) + 1

)
− 1 +

y

2t
, (155)

g0(t) = g̃(t)
t

y2
=

1
y

(
1

exp(y/t)− 1
+

1
2
− t

y

)
(156)

and

g1(t) =
1

exp(y/2t)− 1
+

1
exp(y/2t) + 1

− 2t

y
. (157)

Then we have

V0,B(α, β, γ; y) = − 1
4y
{g1(α) + g1(β) + g1(γ − α) + g1(γ − β)}+ g0(γ). (158)
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Simplifying computation, we introduce the following auxiliary infinite series:

Ṽ0 = V0 + µ(α) + µ(β) + µ(γ − α) + µ(γ − β), (159)

where

µ(t) = −1
4

+
tη

2
log

(
1 +

1
2tη

)
=

1
4

∞∑
n=0

1
n + 2

(−2tη)−(n+1). (160)

The Borel transform µB(t; y) of µ(t) is

µB(t; y) = − 1
8t

∞∑
n=0

1
(n + 2)n!

(
− y

2t

)n

= − t

4y2

{(
− y

t
− 2

)
exp

(
− y

2t

)
+ 2

}
. (161)

The Borel transform Ṽ0,B of Ṽ0 is related to V0,B by

Ṽ0,B = V0,B + µB(α) + µB(β) + µB(γ − α) + µB(γ − β). (162)

In view of (162), we define

g(t) =
1
4y

{(
1

exp(y/2t)− 1
+

1
exp(y/2t) + 1

)
−

(
1 +

2t

y

)
exp

(
− y

2t

)}
. (163)

The function g(t) rewrites as follows:

g(t) =
1
2y

exp
(
− y

2t

)(
1

exp(y/t)− 1
+

1
2
− t

y

)
.

Then we have

Ṽ0,B = −g(α)− g(β)− g(γ − α)− g(γ − β) + g0(γ). (164)

We can compute the Borel transforms Ṽ1,B of Ṽ1 and Ṽ2,B of Ṽ2 in a similar manner as
the computation of the Borel transform Ṽ0,B of Ṽ0 and we have the following proposition.

Proposition 3.2. The Borel transforms Ṽ 1
j,B of the Voros coefficients Ṽj have the

following forms:

Ṽ0,B = −g(α)− g(β)− g(γ − α)− g(γ − β) + g0(γ), (165)

Ṽ1,B = g(α) + g(β)− g(γ − α)− g(γ − β) + g0(α + β − γ), (166)

Ṽ2,B = −g(α)− g(β) + g(γ − α)− g(γ − β)− g0(β − α). (167)

Next we consider the Borel sums V 1
0 of V0. We use the following integral represen-

tation of the logarithm of the Γ-function [8].
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∫ ∞

0

(
1

exp s− 1
+

1
2
− 1

s

)
exp(−θs)

s
ds = log

Γ(θ)√
2π

−
(

θ − 1
2

)
log θ + θ, (168)

where Re θ is positive. Let L(θ) denote the left-hand side of (168). We can compute the
Laplace transform

∫ ∞

0

g(α) exp(−yη) dy (169)

of g(α) by using (168) if Reα is positive. If Reα is negative, we make use of the relation

g1(α) = −g1(−α). (170)

The Laplace transforms of g(β), g(γ−α) and g(γ−β) are obtained by replacing α by β,
γ − α and γ − β, respectively. Similarly we can compute the Laplace transform of g0(γ)
and we have:

Ṽ 1
0 = −L

(
1
2

+ αη

)
− L

(
1
2

+ βη

)
− L

(
1
2

+ (γ − α)η
)

+ L

(
1
2

+ (β − γ)η
)

+ L(γη). (171)

Since µ is a convergent power series of η−1, we have

V 1
0 =Ṽ 1

0 − µ(α)− µ(β)− µ(γ − α) + µ(β − γ). (172)

Noting that the right-hand side of (171) can be written in terms of gamma functions
and logarithms, we obtain (142). In a similar way, we can compute the Borel sums V 2

0 ,
V 3

0 , V 4
0 , V h

1 , V h
2 (h = 1, . . . , 4) and we have (142)–(153). This completes the proof of

Theorem 3.1. ¤

4. Parametric Stokes phenomena.

4.1. The relations between the Borel resummed Voros coefficients in
adjacent Stokes regions.

First we consider the relations between V 1
j and V h

j (j = 0, 1, 2;h = 2, 3, 4). We take
an analytic continuation of V 1

j to ωh(h = 2, 3, 4). Using (73), (76) and (77), we have the
following theorem which has been announced in [2].

Theorem 4.1. The Borel sums V 1
j of Voros coefficients Vj can be analytically

continued over ωh (h = 2, 3, 4). The analytic continuations of the Borel sums V 1
j to ωh

are related to V h
j as follows:
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V 1
j = V 2

j −
1
2

log(exp 2(γ − β)ηπi + 1) (j = 0, 1, 2), (173)

V 1
2 = V 3

2 −
1
2

log(exp 2(α− γ)ηπi + 1), (174)

V 1
j = V 3

j +
1
2

log(exp 2(α− γ)ηπi + 1) (j = 0, 1), (175)

V 1
1 = V 4

1 −
1
2

log(exp(−2αηπi) + 1), (176)

V 1
j = V 4

j +
1
2

log(exp(−2αηπi) + 1) (j = 0, 2). (177)

Proof. By the explicit forms of V 1
j given in Theorem 3.1, analytic continuability

to ωh is clear. We give the proof of (173) (j = 0) only. Using β − γ = (γ − β)e−πi, we
rewrite the analytic continuation of V 1

0 to ω2 as follows:

V 1
0 =

1
2

log
Γ(1/2 + (β − γ)η)Γ2(γη)ααηββη(γ − α)(γ−α)ηη

Γ(1/2 + αη)Γ(1/2 + βη)Γ(1/2 + (γ − α)η)(γ − β)(β−γ)ηγ2γη−1

+
(β − γ)ηπi

2
, (178)

Combining (143) and (178), we obtain

V 1
0 − V 2

0 =
1
2

log
Γ(1/2 + (γ − β)η)Γ(1/2 + (β − γ)η)

2π
+

(β − γ)ηπi

2
.

In a similar manner, we have (173), (174), (175), (176) and (177). ¤

Next we examine the Borel summability of Voros coefficients Vj in ωhm (h −
1, . . . , 4; m = 0, 1, . . . , 6) and relate the Borel sum V h

j of Vj and the Borel sum of Vj

in ωhm (j = 0, 1, 2). We define the action of τ ∈ G on V h
j (α, β, γ; η) by

τ∗V h
j (α, β, γ; η) = V h

j (τ(α, β, γ; η)). (179)

To unify the notation, we denote V hm
j by V hτ

j for τ = ιm ∈ G (m = 0, 1, . . . , 6) and V h
j

by V hτ
j for τ = id ∈ G.

Theorem 4.2. Let τ be an element of G of the form:

τ = ιε00 ιε11 ιε22 (εj = 0 or 1). (180)

We define sgn(τ, j) by

{
sgn(τ, 0) = (−1)ε0 ,

sgn(τ, j) = (−1)ε0+εj (j = 1, 2).
(181)
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The Borel resummed Voros coefficients V hτ
j in τ(ωh) are related to τ∗V h

j by

V hτ
j = sgn(τ, j)τ∗V h

j (182)

for j = 0, 1, 2; h = 1, 2, 3, 4.

Proof. We take τ = ι1 and compare V 4τ
j = V 41

j with ι1∗V 4
j . In a similar manner

to the computation of V h
j (j = 0, 1, 2; h = 1, 2, 3, 4), we obtain

V 41
0 = V 4

0

=
1

2
log

Γ(1/2− αη)Γ(1/2 + (β − γ)η)Γ2(γη)ββη(γ − α)(γ−α)ηη

Γ(1/2 + βη)Γ(1/2 + (γ − α)η)(−α)−αη(β − γ)(β−γ)ηγ2γη−12π
, (183)

V 41
1 =

1

2
log

Γ(1/2 + βη)Γ(1/2 + (β − γ)η)Γ2((γ − α− β)η)(−α)−αη(γ − α)(γ−α)ηη

Γ(1/2− αη)Γ(1/2 + (γ − α)η)ββη(β − γ)(β−γ)η(γ − α− β)2(γ−α−β)η−12π
, (184)

V 41
2 = V 4

2

=
1

2
log

Γ(1/2− αη)Γ(1/2 + βη)Γ(1/2 + (γ − α)η)Γ(1/2 + (β − γ)η)(β − α)2(β−α)η−1

Γ2((β − α)η)(−α)−αηββη(γ − α)(γ−α)η(β − γ)(β−γ)η2πη
.

(185)

By the definition, we have

ι1∗V
4
0 =

1

2
log

Γ(1/2− αη)Γ(1/2 + (β − γ)η)Γ2(γη)ββη(γ − α)(γ−α)ηη

Γ(1/2 + βη)Γ(1/2 + (γ − α)η)(−α)−αη(β − γ)(β−γ)ηγ2γη−12π
, (186)

ι1∗V
4
1 =

1

2
log

Γ(1/2− αη)Γ(1/2 + (γ − α)η)ββη(β − γ)(β−γ)η(γ − α− β)2(γ−α−β)η−12π

Γ(1/2 + βη)Γ(1/2 + (β − γ)η)Γ2((γ − α− β)η)(−α)−αη(γ − α)(γ−α)ηη
,

(187)

ι1∗V
4
2 =

1

2
log

Γ(1/2− αη)Γ(1/2 + βη)Γ(1/2 + (γ − α)η)Γ(1/2 + (β − γ)η)(β − α)2(β−α)η−1

Γ2((β − α)η)(−α)−αηββη(γ − α)(γ−α)η(β − γ)(β−γ)η2πη
.

(188)

Comparing the above equations (186), (187) and (188) with (183)–(185), we obtain

V 41
j = ι1∗V 4

j (j = 0, 2), (189)

V 41
1 = −ι1∗V 4

1 . (190)

In a similar way, we can obtain the relations for the other cases. ¤

4.2. Parametric Stokes phenomena for the WKB solution.
We consider the analytic continuation of the WKB solution ψ+ with respect to the

parameters. Stokes phenomena occur for ψ+ when the triplet of parameter (α, β, γ)
crosses E1 or E2 (cf. (15), (16)). We call them parametric Stokes phenomena. When
(α, β, γ) lies on E1 or E2, the Stokes geometry degenerates:

Theorem 4.3 ([16, Theorem 3.1]). We assume that (α, β, γ) is not contained in
E0.
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(i) If two distinct turning points are connected by a Stokes curve, then (α, β, γ) belongs
to E1.

(ii) If a Stokes curve forms a closed curve with a single turning point as the base point,
then (α, β, γ) belongs to E2.

Hereafter, we assume that (α, β, γ) is not contained in E0. There are two distinct
turning points a0, a1. We consider the case where (α, β, γ) moves from ω1 to ωh (h =
2, 3, 4). There are two choices of ways when (α, β, γ) goes from ω1 to ω2 (resp. ω3,
resp. ω4) crossing E1 avoiding E0 which correspond to the signature of Im(γ − β) (resp.
Im(α − γ), resp. Im α). We assume that Im(γ − β) > 0 (resp. Im(α − γ) > 0, resp.
Im α > 0).

Let us specify the regions in x-space which are surrounded by Stokes curves.
(1) The case where (α, β, γ) ∈ ω1. Then there are three Stokes curves skj (j = 0, 1, 2)

emanating from ak which flow respectively into bj for k = 0, 1. Let RI
ω1

(resp. RII
ω1

, resp.
RIII

ω1
) denote the open set surrounded by s00, s01, s10, s11 (resp. by s00, s02, s10, s12,

resp. by s01, s02, s11, s12). (cf. Figures 4.1, 4.4, 4.7.)
(2) The case where (α, β, γ) ∈ ω2. There is a unique Stokes curve s01 which flows into

b1. We may assume that s01 emanates from a0 and that a0 is the analytic continuation
of that in the first case. The other Stokes curves emanating from a0 flow into b0 which
are labeled s1

00 and s2
00. From another turning point a1, three Stokes curves emanate.

One of them flows into b2, which is denoted by s12. Others flow into b0 and they are
labeled s1

10 and s2
10. Let RI

ω2
(resp. RII

ω2
, resp. RIV

ω2
) denote the open set surrounded by

s1
00, s2

00, s01 (resp. by s1
10, s2

10, s12, resp. by s1
00, s2

00, s2
10, s1

10). (cf. Figure 4.3.)
(3) The case where (α, β, γ) ∈ ω3. There is a unique Stokes curve s00 which flows into

b0. We may assume that s00 emanates from a0 and that a0 is the analytic continuation
of that in the first case. The other Stokes curves emanating from a0 flow into b1 which
are labeled s1

01 and s2
01. From another turning point a1, three Stokes curves emanate.

One of them flows into b2, which is denoted by s12. Others flow into b1 and they are
labeled s1

11 and s2
11. Let RI

ω3
(resp. RIII

ω3
, resp. RV

ω3
) denote the open set surrounded by

s00, s1
01, s2

01 (resp. by s1
11, s2

11, s12, resp. by s1
01, s2

01, s1
11, s2

11). (cf. Figure 4.6.)
(4) The case where (α, β, γ) ∈ ω4. There is a unique Stokes curve s00 (resp. s11)

which flows into b0 (resp. b1). We may assume that s00 (resp. s11) emanates from a0

(resp. a1) and that a0 is the analytic continuation of that in the first case. The other
Stokes curves emanating from a0 (resp. a1) flow into b2 which are labeled s1

02 and s2
02

(resp. s1
12 and s2

12). Let RII
ω4

(resp. RIII
ω4

, resp. RVI
ω4

) denote the open set surrounded by
s00, s1

02, s2
02 (resp. by s11, s1

12, s2
12, resp. by s1

02, s2
02, s1

12, s2
12). (cf. Figure 4.9.)

(i) If (α, β, γ) is contained in ω1 and it is sufficiently close to the boundary between
ω1 and ω2, we take the same branch cut of

√
Q0 as Figure 2.4. Then we specify the

branch of S−1 =
√

Q0 as (37). In this case, we consider the WKB solution

ψk =
1√
Sodd

exp
( ∫ x

ak

Sodd dx

)
(191)

in a neighborhood of ak (k = 0, 1), where we take the straight line connecting ak to x as
the path of the integration.
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Let DI
ω1

(resp. DII
ω1

) denote the intersection of RI
ω1

(resp. RII
ω1

) and a small neigh-
borhood of a0 (resp. a1). The WKB solution ψ0 (resp. ψ1) is Borel summable in
DI

ω1
(resp. DII

ω1
) (cf. [11]). We take the Borel sum of the WKB solution ψ0 in DI

ω1

(resp. ψ1 in DII
ω1

). It can be analytically continued with respect to x variable to RI
ω1

(resp. RII
ω1

), which we denote by ψI
ω1

(resp. ψII
ω1

).
Next we assume that (α, β, γ) is contained in ω2 and it is close to the point (α, β, γ)

taken in the preceding case. We take the same branch cut as Section 2.2. Then we specify
the branch of S−1 =

√
Q0 as (37). Let us consider the intersection of RI

ω2
(resp. RII

ω2
)

and a small neighborhood of a0 (resp. a1). It has two connected components. We choose
one of them which has a portion of s1

00 (resp. s2
10) as a part of its boundary. Let us

denote it by DI,1
ω2

(resp. by DII,2
ω2

). The WKB solution ψ0 (resp. ψ1) is Borel summable
in DI,1

ω2
(resp. DII,2

ω2
). We take the Borel sum of ψ0 (resp. ψ1) in DI,1

ω2
(resp. DII,2

ω2
). It

can be analytically continued in x to RI
ω2

(resp. RII
ω2

), which we denote by ψI
ω2

(resp. by
ψII

ω2
).
Let us show examples of Stokes curves of those two cases and a degenerate case

between them in Figures 4.1, 4.2 and 4.3 below, where ε > 0 and δ > 0 are sufficiently
small.

Figure 4.1. (α, β, γ) = (0.5,
1 + ε− δi, 1) in ω1.

Figure 4.2. (0.5, 1− δi, 1). Figure 4.3. (0.5, 1−ε−δi, 1)
in ω2.

(ii) We assume that (α, β, γ) is contained in ω1 and it is sufficiently close to the
boundary between ω1 and ω3. In this case, the Stokes geometry is shown in Figure 4.4.
We take a curve connecting a0 and a1 in RII

ω1
(denote by L2 and shown by the wavy

segment in Figure 4.4) as a branch cut of
√

Q0 and specify the branch of
√

Q0 so that√
Q0 ∼ (β − α)/(2x) holds near x = ∞. In this case, the behavior of

√
Q0 near 0 and

1 are
√

Q0 ∼ −γ/(2x) and
√

Q0 ∼ (α + β − γ)/(2(x− 1)), respectively. Note that these
are different from (37) and (38) because the singular points 0 and 1 are surrounded by
the union of L1 (cf. Section 2.2) and L2 (cf. Figure 4.4). We denote by DI

ω1
(resp. by

DIII
ω1

) the intersection of RI
ω1

(resp. RIII
ω1

) and a small neighborhood of a0 (resp. a1). The
WKB solution ψ0 (resp. ψ1) is Borel summable in DI

ω1
(resp. in DIII

ω1
). We take the Borel

sum of the WKB solution ψ0 (resp. ψ1) in DI
ω1

(resp. in DIII
ω1

). It can be analytically
continued in x to RI

ω1
(resp. RIII

ω1
), which we denote by ψI

ω1
(resp. ψIII

ω1
).

Next we consider the case where (α, β, γ) is contained in ω3 and it is close to the
point (α, β, γ) taken in the preceding case. We specify a curve in RIV

ω3
which connects

a0 and a1 as a branch cut of
√

Q0. In this case, we specify the branch of S−1 =
√

Q0

so that
√

Q0 ∼ (α + β − γ)/(2(x − 1)) holds near x = 1. This is different from (38) as
the above discussion. Let us consider the intersection of RI

ω3
(resp. RIII

ω3
) and a small
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Figure 4.4. (α, β, γ) = (1− ε + δi, 2, 1) in ω1.

neighborhood of a0 (resp. a1). It has two connected components. We choose one of
them which has a portion of s1

01 (resp. s2
11) as a part of its boundary. Let us denote it

by DI,1
ω3

(resp. by DIII,2
ω3

). The WKB solution ψ0 (resp. ψ1) is Borel summable in DI,1
ω3

(resp. in DIII,2
ω3

). We take the Borel sum of ψ0 (resp. ψ1) in DI,1
ω3

(resp. in DIII,2
ω3

). It can
be analytically continued with respect to x variable to RI

ω3
(resp. RIII

ω3
), which we denote

by ψI
ω3

(resp. by ψIII
ω3

).

Figure 4.5. (α, β, γ) = (1 + δi, 2, 1). Figure 4.6. (1 + ε + δi, 2, 1) in ω3.

(iii) If (α, β, γ) is contained in ω1 and it is sufficiently close to the boundary between
ω1 and ω4, we specify a curve in RI

ω1
which connects a0 and a1 as a branch cut of

√
Q0.

In this case, we specify the branch of S−1 =
√

Q0 as (36). We denote by DII
ω1

(resp. by
DIII

ω1
) the intersection of RII

ω1
(resp. RIII

ω1
) and a small neighborhood of a0 (resp. a1). The

WKB solution ψ0 (resp. ψ1) is Borel summable in DII
ω1

(resp. in DIII
ω1

). We take the Borel
sum of ψ0 (resp. ψ1) in DII

ω1
(resp. in DIII

ω1
). It can be analytically continued with respect

to x variable to RII
ω1

(resp. RIII
ω1

), which we denote by ψII
ω1

(resp. by ψIII
ω1

).
If (α, β, γ) is contained in ω4 and it is close to the point (α, β, γ) taken in the

preceding case, we specify a curve in RVI
ω4

which connects a0 and a1 as a branch cut of√
Q0. In this case, we specify the branch of S−1 =

√
Q0 as (36). Let us consider the

intersection of RII
ω4

(resp. RIII
ω4

) and a small neighborhood of a0 (resp. a1). It has two
connected components. We choose one of them which has a portion of s1

02 (resp. s2
12)

as a part of its boundary. We denote it by DII,1
ω4

(resp. by DIII,2
ω4

). The WKB solution
ψ0 (resp. ψ1) is Borel summable in DII,1

ω4
(resp. in DIII,2

ω4
). We take the Borel sum of the

WKB solution ψ0 (resp. ψ1) in DII,1
ω4

(resp. in DIII,2
ω4

). It can be analytically continued
in x to RII

ω4
(resp. RIII

ω4
), which is denoted by ψII

ω4
(resp. by ψIII

ω4
).
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Let us show examples of Stokes curves of those two cases and a degenerate case
between them in Figures 4.7, 4.8 and 4.9.

Figure 4.7. (α, β, γ) =
(ε + δi, 2, 1) in ω1.

Figure 4.8. (δi, 2, 1). Figure 4.9. (−ε + δi, 2, 1)
in ω4.

The Stokes regionRI
ω1

(resp.RII
ω1

, resp.RIII
ω1

) is continuously deformed toRI
ωh

(resp.RII
ωh

,
resp. RIII

ωh
) through the variation of (α, β, γ) from ω1 to ωh (h = 2, 3, 4). Under the

notation given above, we have the following theorem.

Theorem 4.4. (i) Between the Borel sums ψI
ω1

and ψI
ω2

of the WKB solution ψ0

defined by (191) the following relation holds:

ψI
ω1

= (1 + exp(2πi(γ − β)η))1/2ψI
ω2

. (192)

Between the Borel sums ψII
ω1

and ψII
ω2

of the WKB solution ψ1 the following relation
holds:

ψII
ω1

= (1 + exp(2πi(γ − β)η))1/2ψII
ω2

. (193)

(ii) Between the Borel sums ψI
ω1

and ψI
ω3

of the WKB solution ψ0 the following relation
holds:

ψI
ω1

= (1 + exp(2πi(α− γ)η))1/2ψI
ω3

. (194)

Between the Borel sums ψIII
ω1

and ψIII
ω3

of the WKB solution ψ1 the following relation
holds:

ψIII
ω1

= (1 + exp(2πi(α− γ)η))1/2ψIII
ω3

. (195)

(iii) Between the Borel sums ψII
ω1

and ψII
ω4

of the WKB solution ψ0 the following relation
holds:

ψII
ω1

= (1 + exp(2πiαη))−1/2ψII
ω4

. (196)

Between the Borel sums ψIII
ω1

and ψIII
ω4

of the WKB solution ψ1 the following relation
holds:
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ψIII
ω1

= (1 + exp(2πiαη))−1/2ψIII
ω4

. (197)

Proof. We now compare ψI
ω1

with ψI
ω2

. We consider the WKB solution normal-
ized at b0:

ψ(0) =
1√
Sodd

exp
( ∫ x

b0

(Sodd − ηS−1) dx + η

∫ x

a0

S−1 dx

)
. (198)

If (α, β, γ) ∈ ω1, ψ(0) is Borel summable in DI
ω1

. We take the Borel sum of ψ(0) in DI
ω1

and
its analytic continuation to RI

ω1
, which we denote by ψ

(0),I
ω1 . Similarly, if (α, β, γ) ∈ ω2,

we can take the Borel sum of ψ(0) in DI
ω2

and its analytic continuation to RI
ω2

, which we
denote by ψ

(0),I
ω2 . It follows from a result by Koike and Schäfke [11] (see [6] also) that

ψ(0),I
ω1

= ψ(0),I
ω2

(199)

holds. Combining (35), (173) and (199), we have

ψI
ω1

= (exp(−V 1
0 ))ψ(0),I

ω1

= (1 + exp(2πi(γ − β)η))1/2(exp(−V 2
0 ))ψ(0),I

ω2

= (1 + exp(2πi(γ − β)η))1/2ψI
ω2

.

In a similar manner, we have the other relations. ¤

Finally we consider the parametric Stokes phenomena for (191) between ω1m and
ωhm (h = 2, 3, 4; m = 0, . . . , 6). Note that since the potential Q is invariant under
involution ιm, the Stokes geometry of (1) for ιm(α, β, γ) ∈ ωhm is the same as that for
(α, β, γ) ∈ ωh. Applying ιm to the relations (192)–(197), we have the formulas which
describe the parametric Stokes phenomena between ω1m and ωhm. For example, we
consider the parametric Stokes phenomena for (191) between ω11 and ω12. We apply ι1
to the relations (192) and (193), then we have the following relations:

ψI
ω11

= (1 + exp(2πi(−α)η))−1/2ψI
ω21

(200)

and

ψII
ω11

= (1 + exp(2πi(−α)η))−1/2ψII
ω21

, (201)

respectively.
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Sect. A (N.S.), 39 (1983), 211–338.

Takashi Aoki

Department of Mathematics

School of Science and Engineering

Kindai University

Higashi-Osaka

Osaka 577-8502, Japan

E-mail: aoki@math.kindai.ac.jp

Mika Tanda

Faculty of Medicine

Kansai Medical University

Hirakata

Osaka 573-1010, Japan

E-mail: tanda.mika@gmail.com

http://dx.doi.org/10.2977/prims/1199403816
http://dx.doi.org/10.5802/aif.1326
http://dx.doi.org/10.2977/PRIMS/39
http://dx.doi.org/10.2977/PRIMS/39

