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Abstract. In this paper, we study geometry of conformal minimal two-
spheres immersed in complex hyperquadric Q3. We firstly use Bahy-El-Dien
and Wood’s results to obtain some characterizations of the harmonic sequences
generated by conformal minimal immersions from S? to G(2,5;R). Then we
give a classification theorem of linearly full totally unramified conformal min-
imal immersions of constant curvature from S? to G(2,5;R), or equivalently,
a complex hyperquadric Q3.

1. Introduction.

The classification of minimal surfaces of constant curvature is an important topic of
differential geometry. Bryant [4] gave a classification of minimal surfaces with constant
curvature in S™(1). Kenmotsu and Masuda [12] classified all minimal surfaces of con-
stant curvature in two-dimensional complex space forms. Bolton et al. [3] proved that a
linearly full conformal minimal immersion of S? in CP™ with constant curvature belongs
to the Veronese sequence, up to a holomorphic isometry of CP™. Generally, if the am-
bient space is not a real (or complex) space form, for example, complex Grassmannian
G(k,n;C), complex hyperquadric @,, and quaternionic projective space HP™ and so on,
the classification of minimal 2-spheres of constant curvature in them is not easy. It is well
known that Hoffman and Osserman [9] gave some results about minimal surfaces in R”
whose Gaussian image in @),,—o has constant curvature, and Chi and Zheng [7] classified
all holomorphic curves from Riemann spheres into G(2,4) whose curvature is equal to
2 into two families. Recently, J. Wang and the second author ([10], [13]) determined
curvatures and Kahler angles of conformal minimal 2-spheres in @5 if their curvature is
constant and all the totally real conformal minimal two-spheres of constant curvature in
Q@ (only when n = 2,3,4,5). Previously, in [8], the authors gave a classification theorem
of linearly full totally unramified conformal minimal immersions of constant curvature
from S? to HP?. Here our interest is to study conformal minimal 2-spheres immersed in
Q,, with constant curvature.

As is well known, G(2,n;R) may be identified with complex hyperquadric Q,—_2 in
CP"~ ! (for detailed descriptions see the Preliminaries below). In 1989 Bahy-El-Dien
and Wood [2] gave the explicit construction of all harmonic two-spheres in G(2,n;R),
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which is considered as totally geodesic submanifolds in complex Grassmann manifolds
G(2,n;C). In this paper we study classification of conformal minimal immersions of
constant curvature from S? to G(2,5;R) by theory of harmonic maps, and discuss the
Kihler angle of conformal minimal immersions of S? in Q,,.

Our arrangement is as follows.

In the second section of this paper, firstly we identify @, _2 and G(2,n;R), then we
give some fundamental results concerning G(k, n; C) from the view of harmonic sequences,
at last we give some brief descriptions of Veronese sequence and the rigidity theorem in
CP™. In the third section, we use Bahy-El-Dien and Wood’s results to study some
properties of the harmonic sequence generated by a harmonic map from S? to G(2, 5; R)
and obtain some characteristics of the corresponding harmonic map in G(2,5;R). In the
last section, we discuss geometric properties of conformal minimal 2-spheres immersed in
G(2,5;R) with constant curvature and give a classification theorem of linearly full totally
unramified conformal minimal immersions of constant curvature from S? to G(2,5;R)
(see Theorem 4.9). In addition, we give a formula about Kéahler angle of conformal
minimal immersions from S2 to Q..

2. Preliminaries.

(A) For 0 < k <mn, let G(k,n;R) denote the Grassmannian of all real k-dimensional
subspaces of R™ and

o:G(k,n;C) — G(k,n;C)

denote the complex conjugation of G(k,n;C). It is easy to see that o is an isometry
with the standard Riemannian metric of G(k,n; C). Its fixed point set is G(k, n;R), thus
G(k,n;R) lies totally geodesically in G(k,n;C).

Map

Qn—2 - G(27 n; R)

V=1

—ZNZ
qr— 9 )

where ¢ € ,,—2 and Z is a homogeneous coordinate vector of ¢. It is clear that the map
is well defined. We can easily check that the map is one-to-one and onto, and it is an
isometry. Thus we can identify @Q,_2 and G(2,n;R) (for more details see [14]). Here we
suppose that the metric on G(2,n;R) is given by Section 2 of [11], then the metric is twice
as much as the standard metric on @Q,_» induced by the inclusion 7 : Q,,_o — CP" 1,
where this latter space is given the Fubini-Study metric of constant holomorphic sectional
curvature 4.

(B) In this section we simply introduce harmonic maps and harmonic sequences in
G(k,n;C) and calculate some corresponding geometric quantities.
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Let M be an arbitrary Riemann surface and let ¢ : M — G(k,n;C) be a map.
We shall frequently use one-to-one correspondence between maps ¢ : M — G(k,n;C)
and rank k subbundles ¢ of the trivial bundle C* = M x C™ given by setting the fibre
¢, =¢(x) forall z € M. Then  is called (a) harmonic ((sub-) bundle) whenever ¢ is a
harmonic map (cf. [5]).

Let (z,%) be a complex coordinate on M. We take the metric ds3, = dzdz on M.
Denote

_ 9
0=5-. =7

Let ¢ : S2 — G(k,n;C) be a smooth harmonic map. Then from ¢ two harmonic
sequences are derived as follows:

o' o' o4 o'

f:£0—>£1—>~--—>£a—>~-~, (21)
9" o 9" 9"
£:£0—>£_1—>...—>£_a—>..., (22)

where ¢ = 0  and p = 9"y are Hermitian orthogonal projections from

—a+1
52 x C" onto Im (Lpalfl&pa_l) and Im (<pfa+15<p_a+1) respectively, « = 1,2,.. ..

As in [2] call a harmonic map ¢ : S? — G(k,n;C) (strongly) isotropic if pu L
Ya €Z, a#0.

For an arbitrary harmonic map ¢ : S? — G(k,n;C), define its isotropy order (cf.
[5]) to be the greatest integer r such that ¢, Lg for all o with 1 < o < 7y if ¢ is isotropic,

set r = 0.

DEFINITION 2.1.  Let ¢ : S — G(k,n;C) be a map. ¢ is linearly full if ¢ cannot
be contained in any proper trivial subbundle S? x C™ of S? x C" (m < n).

In this paper, we always assume that ¢ is linearly full.
Suppose that ¢ : S2 — G(2,n;C) is a linearly full harmonic map and belongs to the
following harmonic sequence:

o o' o' o' o' o'
e S S (2.3)

0

fora =0,...,ap. We choose the local unit orthogonal frame ega), eéa), R e,(i) such that
they locally span subbundle ¢  of S* x C", where k, = rank ¢ _.

Let W, = (e(la), el ...,e,(gi)) be (n X kg )-matrix. Then we have

7

Pa = WocW;a
WiWe = I xks, WoWay1 =0, WiW,_1 =0. (2.4)

By (2.4), a straightforward computation shows that
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OWy = Wei1Qa + WV,
(2.5)

5‘/Va = - a—lQZ_l - Waquu
where Q, is a (ka+1 X ko )-matrix and ¥, is a (ko X ko )-matrix.
Set L, = tr(Q,7). By a straightforward calculation, the metric induced by ¢, is
given by

ds? = (La_1 + Lo)dzdZ. (2.6)

The Laplacian A, and the curvature K, of ds? are given by

4 _ 2 _
Ny=———00, K,=—————00log(L,_ L,). 2.7
Lot L. Lo tL. og( 1+ La) (2.7)

Set

1

o= ——— | LodzAdz. 2.8
om/—1 Jg O (2:8)

In the following, we give a definition of the unramified harmonic map as follows:

DEFINITION 2.2 ([11]). If det(Q,0)dzFa+1dzR+1 o 0 everywhere on S? in (2.3),
we say that ¢, : S2 — G(ka,n;C) is unramified. If det(Q,Q})dz e+1dzre+1 £ 0 every-
where on S? in (2.1) (resp. (2.2)) for each a = 0,1,2,..., we say that the harmonic
sequence (2.1) (resp. (2.2)) is totally unramified. If (2.1) and (2.2) are both totally
unramified, we say that ¢ is totally unramified.

Now recall ([5, Section 3A]) that a harmonic map ¢ : S? — G(k,n;C) in (2.1) (resp.
(2.2)) is said to be 9'-irreducible (vesp. 0"-irreducible) if rank ¢ = rank ¢ (resp. rank
¢ =rank p_ ) and 0'-reducible (vesp. 9"-reducible) otherwise. In particular, let ¢ be
a harmonic map from S? to G(2,n;R), then ¢ is &-irreducible (resp. &'-reducible) if
and only if ¢ is §”-irreducible (resp. 9”-reducible). In this case we simply call that ¢ is
irreducible (resp. reducible). Assume that ¢, in (2.3) is d'-irreducible and unramified,
then | det Q,|2dzF=dz" is a well-defined invariant and has no isolated zeros on S2, then
we have

1
2/ —1

/ 90 log | det Q,|?dz A dz = —2k,. (2.9)
SZ

(C) In this section, we review the rigidity theorem of conformal minimal immersions
with constant curvature from S? to CP".
Let ¢ : S2 — CP" be a linearly full conformal minimal immersion, a harmonic
sequence is derived as follows
Oi>¢é")ﬂ...iw:w”)i’,...i%ﬁ)L(L (2.10)
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for some p=10,1,...,n.

We define a sequence f(g"), -, £ of local sections of yé"), . ,ggl") inductively such
that fé") is a nowhere zero local section of g(()") (without loss of generality, we assume
that 9™ = 0 ) and fz()i)l = i@ ™) for p = 0,...,n — 1. Then we have some
formulae as follows

@, 15

af;(;n):fjgi)1+ fp(n)a p=0,...,n,

152
(n)2
of, |f(”) |2fp71, p=1,...,n.
p—1
Let
1 = SRR p=0,n—1, 1" =1 =0. (2.11)

Then Bolton et al ([3]) proved the following unintegrated Pliicker formula

99 log 1M =10V, — 20 +1, p=0,...,n— 1.
Let F,§") = fon) Ao A fén) be a local lift of the p-th osculating curve, where
p=0,....,n. Wewrite F\") = g(2)F{", where g(z) is the greatest common divisor of

the (ZI;) components of Fzﬁ"). Then F’IS") is a nowhere zero holomorphic curve, and the

degree 65 of F{™ is given by 60" = (1/2ry/=1) Jg2 001og |F{"™|2dz A dz, which is equal

to the degree of the polynomial function 13‘15”). By a simple calculation we have

1
5 = IMdz A d 2.12
N ) P Bk (2.12)

which is consistent with (2.8) in the case k = 1.

Moreover, if (2.10) is a totally unramified harmonic sequence (i.e. w:,(,n) is unramified,

p=0,...,n), then (cf. [3])

5 = (p+1)(n - p). (2.13)
Let
0—vf) Sy S Sy o,
which is called the Veronese sequence, defined by Vp(") = (p,0s---Vpn)T, where, for

2z € 52,
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max{0,p—r} < k <min{p,n—r}, and |V(")\2 (n!p!/(n — p)!)(1+ 22)"~2P. Each map
KZ(,") has induced metric

g2 = M =D) (2.14)
p (14 2%)?

the corresponding constant curvature K, and constant Kahler angle 6, are given by

B 4 1\ pln—p+1)
Kp_n+2p(n*p)’ (tan?ep) (p+D(n—p) (2.15)

By Calabi’s rigidity theorem, Bolton et al proved the following rigidity result (cf.

[3])-

LEMMA 2.3 ([3]). Let: S? — CP" be a linearly full conformal minimal immer-
sion of constant curvature. Then, up to a holomorphic isometry of CP™, the harmonic
sequence determined by v is the Veronese sequence.

3. Characterization of harmonic maps from S2? to G(2, 5;R).

We analyze harmonic maps from S? to G(2,5;R) by reducible and irreducible case
respectively. It follows from [2] that all reducible harmonic maps from S? to G(2,5;R)
with finite isotropy order have been characterized by harmonic maps from S? to CP*,
and for the strongly isotropic ones we will discuss in detail in Subsection 4.1 below.

Now we only consider irreducible harmonic maps ¢ : S? — G(2,5;R) of isotropy
order r. If ¢ has finite isotropy order, then » = 1 by (]2, Proposition 2.8 and Lemma
2.15]); if ¢ is strongly isotropic, then r = co. But for any irreducible harmonic map from
S? to G(2,n;R), if it is strongly isotropic, then we have n > 6. Therefore the isotropy
order r of ¢ must be finite and r = 1.

Here we state one of Bahy-El-Dien and Wood’ results (|2, Theorem 4.7]) as follows:

LEMMA 3.1 ([2]). Let ¢ : S — G(2,5R) be an irreducible harmonic map of
isotropy order r. We know that r = 1. Then there is a unique sequence of harmonic
maps @' : S? — G(2,5;C), (i =0,1,2) such that

is a real mized pair, in fact <p = f 69 f , where fé4) € Hi;
02

(i) &
(ii E

(ii g 18 obtamed from <p0 by forward replacement of f(4)

(iv) ¢? is obtained from gol by backward replacement of V. VJ‘ N <p where V_is a holo-

morphic line subbundle ofg not equal to the image of the first & -return map of
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Firstly we recall ([2, Section 4]) that H denote the set of all holomorphic maps
fém) : 82 - CP™ Cc CP" !, m < n satisfying

UMT =0 (0<i<2s ),
. FS™) #0

9’

AN fom o2
2 2s+1

for any integers n > 3, s > 0, where 0 o, iém) N igm)

fqu) 2, 0 is a harmonic sequence in CP™ c CP" 1.
Let ¢ : S2 — G(2,5;R) be a linearly full irreducible harmonic map of isotropy order
1. In the following we characterize ¢ explicitly by Lemma 3.1.
In (i) of Lemma 3.1, ©° with isotropy order 3 belongs to the harmonic sequence as

follows:

Qiff)i...ﬁ_ﬁf?)ﬁ_/lgoiig@i...iﬁf)io’ (3.1)
where <p = f(4) EBL(;L) and
9 o' o' 9 9’ o'
02 19 2 g 2 g0 2 g 20 2 (2)

is a harmonic sequence in CP*. Since fé4) € H2, then we have

TP P =0 for0<i<s,
70,
Jo' 11%) #0.

Thus we get

f f(4) f f(4) f f(4)
and
S R (S

By (iii) of Lemma 3.1, gl is obtained from EO by forward replacement of i(()4), using
(3.1) we have

—(4)
=7, @f".
The isotropy order of ¢! is 2, and a harmonic sequence is derived as follows:

8// 7(4) 8// 7(4) a// 7(4) 6// 6// 8/ 8/ 6/ 8/
0 f, e fy <[ ¢, ¢ — i§4) _>ié4) —>L(14) —0, (34

1
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where 7' | = o'

From (3.4), the image of the first '-return map of o' is Egl). By (iv) of Lemma
3.1, let V = f1(4) + xof((;i), where x is a smooth function on 52 expect some isolated
points. Moreover, let X = —|f0(4)|2§0 1(4) + |f1(4)|2?(()4), it satisfies X = V- N @' Since
£2 is obtained from fl by backward replacement of X, then we have Ez =V & W where
W = ¢ 0X. Moreover, p? with isotropy order 1 belongs to the harmonic sequence as

follows:
8// 7(4) 8// 7(4) a// 7(4) 8// 8/ — 8/ 6/ 8[
Oe—f, Iy —Yaof < ¢’ _’X@ié4) _’L(s4) _’L(:L) —0, (3.5)
where Y = W' Nng'. Applying the equation W = ©'19X we obtain
PR
w ="V, (3.6)

which implies that

w:

<l

7X:

<

Obviously, X, X,V and V are mutually orthogonal. Then we have p= V@V and (3.5)
becomes

0 1) LY X)) E e S xef S f0 2 0 Lo

Since V is a holomorphic line subbundle of gl, we get
el(OV) e V. (3.7)
Through a direct computation, condition (3.7) is equivalent to the following equation
0Ty + To0log | f{M)2 = 0. (3.8)

Then we have

PROPOSITION 3.2.  The map ¢ : S* — G(2,5;R) is a linearly full irreducible har-
monic map if and only if ¢ = VoV, where V = f1(4) + a:ofgl), 54) € H}, and the
corresponding coefficient xo satisfies the equation (3.8).

ProoF. Through the construction of ¢ as shown above, the necessity is obvious.
Since f¥ € H!, using (3.8), this is a straightforward computation ¢-989pp = 0, which
implies that ¢ is harmonic. Thus we get the sufficiency. O
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4. Conformal minimal immersions of constant curvature from S? to
G(2,5;R).

In this section, we regard harmonic maps from S? to G(2,5;R) as conformal min-
imal immersions of S? in G(2,5;R). Then we consider the harmonic maps of constant
curvature from S? to G(2,5; R) by reducible case and irreducible case. So we divide these
two cases into the following two subsections.

4.1. Reducible harmonic maps of constant curvature from S? to
G(2,5;R).

Let ¢ : S2 — G(2,5;R) be a linearly full reducible harmonic map, then by ([2,
Proposition 2.12]) we know that ¢ is a real mixed pair with finite isotropy order 1 or 3,
or ¢ is strongly isotropic. In the following we discuss these three cases with ¢ of constant
curvature respectively.

(I) If ¢ is a linearly full real mixed pair with isotropy order 1, then

—(m)
p=17, ®f"

for 2 < m < 4. By using ¢, a harmonic sequence is derived as follows

07

m

where

oiigmiﬁwim‘liﬁj)&o

is a harmonic sequence in CP™ C CP* satisfies

—(m) —(m)

G 1y =0, Gy =0, FO MY #o0. (4.1)

The induced metric of ¢ is given by
ds? = 2™ dzdz, (4.2)

where l(()m)dzd? is the induced metric of fo(m)
Then we prove

LEMMA 4.1.  There does not exist linearly full real mixzed pair of constant curvature
from S? to G(2,5;R) with isotropy order 1.

PROOF. Since p is of constant curvature, using (4.2) we get that the constant
curvature K of ¢ satisfies K = 2/m. By Lemma 2.3, up to a holomorphic isometry of
CP4, fém) is a Veronese surface. We can choose a complex coordinate z on C = S?\{pt}
so that f™ = UV™ where U € U(5) and V\™ has the standard expression given in
part (C) of Section 2 (adding zeros to Vo(m) such that Vo(m) € C5). Then from (4.1) we
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have
—=(m)

(uvi™ vy = o,

(Uv{™ TV =,
which is equivalent to

WV, VT =0,

. (4.3)
e vy T = o,
where W = UT'U, it satisfies W € U(5) and WT =W.
Define a set
Gw 2{U cUGB)UTU =W}. (4.4)

For a given W, the following can be easily checked

(1) VU € Gw, A € SO(5), we have AU € Gw;
(2) VU,V € Gw,3 A€ SO(5), s.t. U= AV.

In the following we discuss W in cases m = 2, 3, 4 respectively.

(Taym=4, K =1/2.

By the standard expression of V0(4) and V1(4), we get V1(4)V0(4)T is a polynomial
matrix in z and Z. But W is a constant matrix. Using the method of indeterminate
coefficients by (4.3), assume W = (a;;), 1 <14,j <5, we get

0 0 a3 —V6ass ais
0 (—V6/2)ais ass a24 —V6asa
W = a3 az3 ass asq ass )
—V/6ass a4 azs (—V6/2)azs 0
a5 —\/66134 ass 0 0

where

a1s + 3ass + 4agy = 0.

Applying the equation ai5 + 3assz + 4as4 = 0, using the property of the unitary matrix,
this is a straightforward computation

0 0 0 0 —aoa

0 0 0 a24 0

0 0 —a94 0

0 a4 0 0
—a24 0 0 0

eU(5).

o O O
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With a simple test we have

aW VOV AT

ie. (784), 2(4)> = 0, which contradicts r = 1. Thus this case does not exist.

(Ib) m =3, K =2/3.
Similar to (Ia), we have

0 0 a13 a14 Q15
0 (=2/V3)ais (=1/3)ars azs ass
W= as (-1/3)ais (-2/V3)azs 0 ass
aisa a24 0 0 aus

ais a25 ass 45 G55

Moreover, using the property of the unitary matrix, we have

0 0 ai13 0 0
0 (=2/V3)aiz 0 0 0
W = ais 0 0 0 0 5
0 0 0 0 ays
0 0 0 Q45 0

which contradicts W € U(5), thus this case does not exist.

(Ic)y m=2, K=1.
From (4.3), this is a straightforward computation

0 0 a3 aus as
0 —aiz 0 ag aos
W = a3 0 0 az4 ass

a14 Q24 (34 Q44 O45
a15 Q25 G35 Q45 0As55

Moreover, using the property of the unitary matrix, we have

0 0 ai13 0 0
0 —ai3 0 0 0

W=|az 0 0 0 0 [, (4.5)
0 0 0 A4 Qg5
0 0 0 Q45 Qs5

where |a13] = 1 and (g4 §2) € U(2). Obviously ¢ is not linearly full in this condition.

a45 ass5
In summary we get the conclusion. O
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(IT) If ¢ is a linearly full real mixed pair with isotropy order 3, then we have ¢ =
Egl) @ f (()4) belongs to the following harmonic sequence:

0 LT DG e 0w 0 (g

where
O(Liﬁf) Lﬁ@ ‘L...iﬁ) 200

is a harmonic sequence in CP* satisfies

—(4) —(4) —(4)
Lo =10 1 =1Y 5 =1 (4.7)

The induced metric of ¢ is given by ds? = 2l(()4)dzd§. Since ¢ is of constant curvature,
then the constant curvature K of ¢ is 1/2. By Lemma 2.3, up to a holomorphic isometry
of CP4, 54) is a Veronese surface. We can choose a complex coordinate z on C = S2\{pt}
so that f(§4) =U V0(4), where U € U(5) and VO(4) has the standard expression given in
part (C) of Section 2.

Then we have

LEMMA 4.2.  Let p: S? — G(2,5;R) be a linearly full real mized pair with isotropy
order 3. If the curvature K of ¢ is constant, then up to an isometry of G(2,5;R),
Y = @(()4) @ﬂgl) with K = 1/2 for some U € G = {U € U(5)|U = UWy}, where
Wy = antidiag{1,—1,1,—1,1}.

—(4
Proor. Equation ié ) if;l) is equivalent to

v = auv®, (4.8)
where A is a parameter.
00020
Set Wy = (8 010 8)' From part (C) of Section 2, we get
10000
V0(4) = (1, 22, V622, 22%, M7
and
v o A o 62 oz 1)
4 (1 + 25)4 I 9 ) ) 9

which implies V4(4) = (4!/(1+ z§)4)WOVé4). Then condition (4.8) becomes

U =UW,,
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Define a set
G2 {UeUB)|U=UW,},

then the following can be easily checked

(1) YU € G, A€ SO(5), we have AU € G;
(2) VU, VeG3IAeSOB5), st. U= AV.

So we get the conclusion. O

1/V2 0 0 0 1/V2

vV=I/vV/2 0 0 0 —V/=1/V2
REMARK 4.3. G # (). Simply choose Uy = 0/ UVZ 0 —1/v3 0/ ,

0 F/fof/f 0

we have Uy € G and V U € G can be obtained from Uo by an SO( )- motlon Then up
to an isometry of G(2,5;R),

—(4)
e=1, &fY

with
A = (L4 VET = 2, 20— ), 2T+ 20, 23T (19)

(III) If ¢ is a linearly full reducible harmonic map with isotropy order co. By using
©, a harmonic sequence is derived as follows

i

— 1’ 17 /17 /
0 if;n) AR m) 9 b5}

7( m a/ a/ m 6,
<—ip+1<—£—>i;+)1—>..._)ifn)_>07 (410)

where m < 4 and E:ln), .. ’I;nﬁ’ ©, i;”j)l, . ,if;”) are mutually orthogonal. Since ¢ is

a map from S? to G(2,5;R), then m —p < 1.
Then we have

LEMMA 4.4. There does not exist linearly full harmonic map of constant curvature
from S? to G(2,5;R) with isotropy order co.

PrOOF. From (4.10) we know that f(m) and ?;m) are two local sections of .

If L()m) = i;m), applying the inequality m — p < 1, we have p = 1,m = 2. Then
(4.10) becomes

02y 2, 2 p Py, (4.11)

From (4.11), by a straightforward calculation, we have

(p:i§2)@g7
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where g is a constant vector in C® and f?) = i?). Obviously ¢ is included in G(2,4;R),
so it is not linearly full.

If L(Dm) #* i;m), this is a straightforward computation
tropdp = 21;7”),

i.e. the induced metric of ¢ is given by ds? = QZi(Dm)dsz. Since ¢ is of constant curvature,
then the constant curvature K of ¢ satisfies K = 2/(m — p)(p + 1). By Lemma 2.3, up
to a holomorphic isometry of CP?, ém) is a Veronese surface. We can choose a complex
coordinate z on C = S?\{pt} so that fom) = UV(m), where U € U(5) and Vo(m) has
the standard expression given in part (C) of Section 2 (adding zeros to Vo(m) such that
Vo(m) € C5). Here m = 3 or 4.

For m = 4, p = 3, we can easily check that for any U € U(5) satisﬁes
trUTUV4(4)V4(4)T = 0, we also have trUTUV(4)V(4)T 0. Thus we have ¢ = f EB f
which implies that ¢ is irreducible. For m = 3, p = 2, a straightforward calculatlon
shows that UTU does not exist.

In summary we get the conclusion. O

REMARK 4.5. In the case f( ™ _ f(m) in Lemma 4.4, we have ¢ = f(2) ® g, where

g is a constant vector in C® and i L f (2) Since ¢ is of constant curvature, then the

curvature of igz) is also a constant. By Lemma 2.3, there exists some U € U(5) so that
[P -uv®, oy - uv®,
By a straightforward calculation, we have, up to an isometry of G(2, 5;R),
@~ (VE(z—2), 22-1, 2+37)",

and the curvature of ¢ is 1. Here ¢ = f 52) @ g is a linearly full harmonic map from 52
into G(2,4;R). Moreover we can check that ¢ is totally geodesic.

From Lemma 4.1, 4.2 and 4.4 we have

PROPOSITION 4.6. Let ¢ : S? — G(2,5;R) be a linearly full reducible harmonic
map with constant curvature K. Then, up to an isometry of G(2,5;R), ¢ = Z(:L) &) L(]4)
with K = 1/2, where fé4) satisfies (4.9).

4.2. Irreducible harmonic maps of constant curvature from S? to
G(2,5;R).
In this section, we discuss linearly full irreducible harmonic maps from S? to
G(2,5;R) with constant curvature in Section 3.
Let ¢ : 2 — G(2,5;R) be a linearly full irreducible harmonic map of isotropy order
r. From the discussion of Section 3, we know that = 1. By Proposition 3.2, we choose
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local frame

Vv X 5

- —(4)
2

=T = Ty 4= T 65 = T
14 X1 175

4
X €g — 22 (&rd f?E i
X 1757

€1 1,
1157

ey =
, €2 |V|7

where V = f1(4) + xofgl) and xg is a smooth function on S? except some isolate points.
Since the isotropy order of ¢ is 1, the local frame we choose here is not unitary frame.

Set Wy = (e1,e2), W1 = (e3,e4), W_1 = (es,¢e5), and Wy = (e7), then by (2.5), we
obtain

AT ovx) @V, X) £
@ X|[V XV v )
p=| ] | ”4 | y = @ = ( f?@))
o 1Y 1A 1£5)
V] 15"
(4.12)

From (4.12), applying the equation L, = tr(2,27), a straightforward computation shows

OV, X)(x,0V) | [f5V)?

To=la=""rkopp  + et (419)
Ly =1{Y, (4.14)
| det Q|2d22dz2 = W(zg“)%g‘%z%{ (4.15)
det Q, Q5 dzdz = 1§V dzdz. (4.16)

Since ¢_1,©g, 1 are not mutually orthogonal, we can’t use the unintegrated Pliicker
formula directly. But using (4.13) and (4.14), by a straightforward calculation, we also
have

d0log |det Q|?> = Ly — 2Lo + L. (4.17)

If ¢ is totally unramified, then |det Qg|?d22dz? # 0 and det Q,Q%dzdz # 0 every-
where on S?. It follows from (4.15) and (4.16) that l§,4)dzd2 #0 (p=0,1,2) everywhere
on S? and (|fé4)|2/|V|2)l(()4) is well-defined on S2. In Section 3 we have l(()4) = l§4) and
154) = lgl). So lggdzd? #0 (p=0,1,2,3) everywhere on S2. Then the harmonic sequence

oiigl)iﬁ‘l)i...iif)io

is also totally unramified.
In this case, we prove
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PROPOSITION 4.7.  Let ¢ : S — G(2,5;R) be a linearly full irreducible totally un-
ramified harmonic map with constant curvature K. Then, up to an isometry of G(2,5; R),

QZEYL) @ﬂ%) with K = 1/5 for some U € G.

PrOOF. Since the harmonic sequence i(()4), e ,L(;l) : 82 — CP* is totally unrami-
fied, it follows from (2.13) that

50 =60 =4, 6 =5V = (4.18)
From (2.8) and (2.9) we have
51— 200 + 01 = —4, (4.19)

where 6, = (1/27v/—1) [42 LadZ A dz, a = —1,0,1. It follows from (4.13) and (4.14)
that §o = 6_1 and &; = 65" = 6. So that

5o = 10. (4.20)
Since ¢ is of constant curvature K, using (4.20) we know that K = 1/5, and we can

choose a complex coordinate z on C = S%\{pt} so that the induced metric ds*> = 2Lodzdz
of ¢ is given by

2
ds?® = 707d2d5,
(14 2z)?
which implies
10

Consider the local lift of the p-th osculating curve F1§4) = fé4) ARERWA fz§4) (p =
0,...,4). We choose a nowhere zero holomorphic C°-valued function 64), then F,§4)

is a nowhere zero holomorphic curve and is a polynomial function on C of degree (5,(,4)
satisfying 90 log |F,§4)|2 = 11(,4). So using (4.13) (4.14) (4.15) and (4.17), we obtain

— 4
(L+22)" 112

90 lo
[FsV 6|V ]2

(4.22)

By (4.15) we know that (|f$”[2/[V]2)1{") is a globally defined function without zeros on
S2. Then it follows from (4.18) that (1 + zE)lO|f(§4)|2/|Fé4)|6\V\2 is globally defined on
C and has a positive constant limit 1/c as z — oco. Thus from (4.22) we obtain

(1+22)0 Y12 1

[FsV |V ]2 c
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Moreover we have

o c(1+ 2z)10

Vit = S (4.23)
Applying the equation V = £ + xof(()4), (4.23) becomes
c(1 + zz)10
w210 + PP = L) (124)
175717

By equation (3.8) we get 5(w0|f(§4)|2) = 0. Observing (4.24), we find that 900|f(§4)|2
is a holomorphic function on C at most with the pole z = oco. So it is a polynomial
function about z. Without loss of generality, we set

wolfs” | = h2), (4.25)
then (4.24) becomes
c(1+ 2z)10
L +|F1? = ST (4.26)
oI

Since both sides of (4.26) are polynomial functions and 5(()4) =4, then we have
IF$V1 = p(1 4 22)%, (4.27)

where p is a real parameter.
If h # 0, then 1+ 2% is a factor of it, which contradicts the fact that h is holomorphic.
Thus we have h = 0, which implies that xqg = 0. Then we get

—(a)
V=F" o=7"ef®.

From (4.27), by Lemma 2.3, up to a holomorphic isometry of CP*, fé4) is a Veronese
surface. We can choose a complex coordinate z on C = S?\{pt} so that f(§4) = UVO(4),
where U € U(5) and V0(4) has the standard expression given in part (C) of Section 2.
Thus we have p = @(14) @ﬂ@. To determine ¢, we just need to determine the matrix
U. Since f((;l) = L(:l), using the standard expression of ‘/})(4), we have U = UW;. Similar

to Lemma 4.2, we get the conclusion. O

REMARK 4.8.  We choose the same U; as the one shown in Remark 4.3, then

o= :54) o f e G(2,5R)

with
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W (202 —2), —2V/=1(z* +32), (1-322) — 223 — 22),
VEI[(1 - 322) + 2%(3 — 22)], 2v32(1 — 27)) " (4.28)
Moreover we can check that ¢ is totally geodesic.

By Proposition 4.6 and Proposition 4.7, we obtain a classification of conformal min-
imal immersions of constant curvature from S? to G(2,5;R) as follows:

THEOREM 4.9. Let ¢ : S? — G(2,5;R) be a linearly full conformal minimal im-
mersion of constant curvature. Then, up to an isometry of G(2,5;R),

(i) If ¢ is reducible, ¢ = E?) @ié4) with constant curvature 1/2, where fé4) satisfies
(4.9);

(ii) If ¢ is totally unramified irreducible, ¢ = z§4) @ig‘l) with constant curvature 1/5,
where f1(4) satisfies (4.28).

Theorem 4.9 shows that all linearly full totally unramified conformal minimal im-
mersions of two-spheres in (3 with constant curvature are presented by the Veronese
curves in CP%. We believe that these maps are homogeneous.

For the isotropy order r of ¢, we have

REMARK 4.10. Let ¢ : S? — G(2,5;R) be a linearly full conformal minimal im-
mersion with constant curvature. Suppose that the isotropy order of ¢ is 7. We then
have

(1) If ¢ is reducible, then r = 3;
(ii) If ¢ is irreducible, then r = 1.

In the following, we discuss the Kihler angle of a curve from S? to @,,. Throughout
this section, we agree on the following ranges of indices

1<a,8,7,...<n, 1<ABC ...<n+1.

Let f : S — Q, be a map, and 7 : Q,, — CP"*! denote the inclusion. The
algebraic variety is given by

(wo)? + (w1)* + - + (wn41)* =0,

where (wg, w1, ..., w,11) are homogeneous coordinate system on CP**1. If w® # 0, let
21 = W1 /W, - -+, Znt1 = Wyt1/wo, then we have

L4 27 +25+ 422, =0, (4.29)
where (21, ..., z,41) are inhomogeneous coordinate system on CP"*1. A natural complex

structure J on CP™*! is defined by J(0/0z4) = /—1(0/0z4). Suppose 2,41 # 0, then
we have complex coordinate system (Z1,...,2,) of @, such that z1 = 21,...,2, = z,.
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Therefore a natural complex structure J on Q,, is given by J(8/0%.) = vV—1(8/9%4).
By differentiating (4.29) we obtain

OZn41 . Za

~ - b
0Za Zna1

which implies that

ON_ 9 2 O
"\0%. ) T 0za  Zni10zpii

Then we have

O\ _~ (%7 0 0w 9 97 0 O . o
(rof )*<8z> = %:( 02 D2 07 zpe1 Ozmis | 02 9. 07 Zor aznﬂ)’ (4.30)

and
ON_ (/0 9f 2 O OF 9 O Za O
(ref )*<8z> - ;( 07 9o 07 oot Ooens T 07 970 07 Taa 0y ) B

where f(z) = (f1(2),..., f"(2)).

For a conformal immersion f : S?2 — Q,,, we define the Kéhler angle of f to be the
function 0 : S? — [0, 7] given in terms of a complex coordinate z = x + /=1y on S2,
where 6 is the angle between J f,(9/0z) and f,(0/8y). Since 7 is a holomorphic isometry,
by a simple calculation, 8 is also the angle between J(7of).(9/0x) and (7 o f).(9/dy).
It is clear that 6 is globally defined. Thus we have

() - o0 () =0 (52)
Y wen(B) +atren.(2)

Let L = 1 + |z1)> + -+ + |za*> + |2n41]?, from the metric ds? =
>ap((Ldas — z2428)/L?)dz4dzP of CP™*!, using (4.30) and (4.31), we directly com-
pute to obtain

2

R

2

Z’fﬂfa_ A

a 82 Zn+1 6Zn-‘,—l

- (4.32)

()

Z %7_ Z 8
0z 0zo Oz Zn+1 02Zn+41

Since
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2

of* 8  Of* z, 0 1 2 g ,
Z 0z 8Za 0z Zn+1 82n+1 L2 ;afAfA + 7 (zA: |8f,4\ R

8fa 0 8?6“ Za o 2 B 1 2 1 o
Z 0z 0Za 02 Zni1 0Zni1 T2 zA:afAfA + i XA:|8fA\ ;

then (4.32) becomes

2

> 0fafa
A

2 L(;am) -
: L(;afm) -

5. (4.33)

()

Take ¢ = i(14) — U,V as an example, where U is the one in Remark 4.3 and f{*)

satisfies (4.28). We can easily checked that ff4) is an immersion of S? in Q3. A straight-
forward calculation shows that

> 0fafa
A

2

—\6
L(ZWJ”AQ) 1> 0fafal = ?M7
A A
2 =\6
L(Z |8fA2> - ngA?A = (i3+_zz|>4~
A A

Using (4.33), the Kahler angle 6 of ) = ig‘l) is given by

6 2
tan® - = . 4.34
an” 5 = 3 (4.34)
REMARK 4.11.  For the example above, we can check that the Kéhler angle in (4.34)
satisfies (2.15). In fact, the conformal immersion from S? into @, is also a conformal
immersion from S? into CP™*!, it is not difficult to check that their Kihler angles are
equal.
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