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Abstract. In this paper we consider a novel type of cubature formulas
called operator-type cubature formulas. The notion originally goes back to
a famous work by G. D. Birkhoff in 1906 on Hermite interpolation problem.
A well-known theorem by Sobolev in 1962 on invariant cubature formulas is
generalized to operator-type cubature, which provides a systematic treatment
of Lebedev’s works in the 1970s and some related results by Shamsiev in 2006.
We give a lower bound for the number of points needed, and discuss analytic
conditions for equality, together with tight illustrations for Laplacian-type
cubature.

1. Introduction.

In this paper, we define operator-type cubature formulas as a generalization of
Laplacian-type cubature formulas and classical polynomial-type cubature formulas, and
study the following three topics:

• A Stroud-type inequality for operator-type cubature. Especially a lower bound for
Laplacian-type cubature is given.

• A series of Laplacian-type cubature attaining the bound.
• Generalizing Sobolev’s Theorem on invariant polynomial-type cubature to

operator-type cubature.

A cubature formula is an approximation of the definite integral of a multivariate
function, expressed as a weighted average of the function values at finitely many specified
points within the domain of integration. The term quadrature is often used to refer
to one-dimensional cubature formulas. A t-point Gaussian quadrature is a quadrature
formula of degree 2t − 1, meaning, a formula that is exact for all polynomials of degree
at most 2t − 1. A Euclidean t-design, an important research object in combinatorics
and statistics, can be regarded as a cubature formula of degree t for an integral with a
rotational symmetry property; for example, see [4].

A t-point Gaussian quadrature is “tight” among all quadrature formulas of the same
degree, that is, the number of points in any quadrature of degree 2t− 1 is bounded from
below by t. This bound is often called Stroud bound in analysis, or Fisher-type bound
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in combinatorics and statistics. It is well known (cf. [6]) that the points of a Gaussian
quadrature are uniquely expressed by zeros of an orthogonal polynomial. Similarly, the
theory of cubature has been developed in analysis and related areas, in parallel with
the study of common zeros of multivariate orthogonal polynomials; for the details, we
refer the reader to the comprehensive textbooks by Dunkl and Xu [6] and Sobolev and
Vaskevich [15]. Specifically, a cubature with equality in the Stroud bound naturally
carries rich algebraic and geometric structures [2], [5], [10], [19].

One of the most important problems in numerical analysis, combinatorics and other
related areas is, to find a cubature formula with the smallest possible number of points for
a rotationally symmetric integral. Many publications have been devoted to this subject
[1], [3], [5], [19], [20]. However, only a few such examples have been reported in high
dimension.

In this paper we consider a novel type of cubature formula which we call an operator-
type cubature formula. Such a cubature often has fewer points, compared with the usual
cubature of the same degree; see Remark 3.4 of this paper.

Historically, Turán [17, Problem XXXIII] has initiated the question of the exis-
tence of a special class of operator-type quadrature formulas, motivated by a classical
work of G. D. Birkhoff on Hermite interpolation. Varma [18] gave a positive answer to
Turán’s problem. Moreover, in higher dimension, Pizzetti’s formula for polyharmonic
functions, a natural generalization of Gauss mean-value property for harmonic functions,
is a particular case of operator-type cubature formulas.

The existence of operator-type cubature formulas was extensively studied by Lebe-
dev [7], [8] who considered the Laplacian operator and found many interesting examples
of such formulas for the uniform measure on the unit sphere S2. Following the work of
Lebedev, Shamsiev [13] took a linear combination of powers of the Laplacian operator
and determined the maximum degree of a “Laplacian-type cubature” on the unit disk
B2. The results by Lebedev and Shamsiev are based on Sobolev’s Theorem for the usual
cubature formula [14].

This paper is organized as follows. In Section 2 we introduce some basic notions
and related facts that are often used throughout this paper. In Section 3 a Stroud-type
inequality is proved for operator-type cubature formulas, which in particular provides the
first theoretic lower bound for Laplacian-type cubature formulas. In Section 4 Sobolev’s
Theorem is generalized to operator-type cubature formulas, to present a systematic treat-
ment of the works of Lebedev and Shamsiev. In Section 5 a new family of Laplacian-type
cubature is given in two dimension, together with a geometric characterization.

2. Definitions.

Let Rn be the n-dimensional Euclidean space and ‖x‖ =
√

x2
1 + · · ·+ x2

n for x =
(x1, . . . , xn) ∈ Rn. We denote the set of polynomials on Rn of degree at most t by Pt(Rn).
Let Ω be a subset of Rn and µ be a finite, strictly positive measure on Ω defined on the
Borel σ-algebra of Ω. We assume that for any f ∈ Pt(Rn), the restricted function f |Ω is
L1-integrable on (Ω, µ).

Definition 2.1. Let t be a non-negative integer and A be a subspace of Pt(Rn).
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A pair of a finite subset X of Rn and a set T = {Tx ∈ EndR(Pt(Rn)) | x ∈ X} of linear
operators on Pt(Rn) is called an operator-type cubature formula for A if

∫

x∈Ω

f(x) dµ(x) =
∑

x∈X

(Txf)(x)

for every f ∈ A; in particular, (X, T ) is said to have degree t if A = Pt(Rn).

If X is contained in Ω and Tx is a positive scalar multiplication on Pt(Rn) for any
x ∈ X, then (X, T ) is the usual cubature formula.

Historically, Turán [17, Problem XXXIII] has raised the question of the existence
of a quadrature formula of type (0, 2) for the Lebesgue measure on the interval [−1, 1],
meaning,

∫ 1

−1

f(x) dx =
N∑

i=1

(
aif(xi) + bi

d2

dx2
f(x)

∣∣∣∣
x=xi

)
for every f ∈ P2N (R). (2.1)

There are many papers that describe an affirmative answer to Turán’s problem; for
example, see [18]. A quadrature formula of type (0, 2) is a special case of Birkhoff-
type quadrature formula whose motivation lies in the study of Hermite interpolation.
Note that, in (2.1), we can never replace the second derivatives d2f/dx2 with the first
derivatives, that is, there is no quadrature formula of the form

∫ 1

−1

f(x) dx =
N∑

i=1

(
aif(xi) + bi

d
dx

f(x)
∣∣∣∣
x=xi

)
for every f ∈ P2N (R).

This observation will clarify the importance of which operators we choose, even in the
one-dimensional case.

In higher dimension, Lebedev [7], [8] took the Laplacian operator for Tx and con-
structed many examples of such formulas for the uniform measure on the sphere S2. The
points of Lebedev’s formulas are invariant under the Weyl group of type B. Following
the work of Lebedev, Shamsiev [13] took a linear combination of powers of the Lapla-
cian operator at the origin and determined the maximum degree of a “Laplacian-type
cubature formula” on the unit disk B2, with points invariant under a dihedral group (see
Example 4.4 in Section 4).

The following terminology will often appear in this paper:

Definition 2.2. Let us denote the Laplacian on Rn by ∆ =
∑n

i=1(∂
2/∂x2

i ). We
say that an operator-type cubature (X, T ) on (Ω, µ) for A ⊂ Pt(Rn) is of Laplacian-type
of order 2s if the following holds:

• 0 ∈ X and T0 = T :=
∑s

k=0 λk∆k for a positive integer s and some real numbers
λi, and

• Tx is a positive scalar multiplication on Pt(Rn) for each x ∈ X \ {0}.
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Let us recall Pizzetti’s formula as a typical example of Laplacian-type cubature
formula on the unit ball Bn := {x ∈ Rn | ‖x‖ < 1} equipped with the Lebesgue
measure:

Theorem 2.3 (Pizzetti’s formula).

∫

Bn

f(x) dx = πn/2
s∑

k=0

1
k!22kΓ(n/2 + k + 1)

(∆kf)
∣∣∣∣
x=0

for each polynomial f with ∆s+1f = 0, where Γ means the gamma function.

Pizzetti’s formula gives a Laplacian-type cubature formula (X, T ) of order 2s and
degree at least 2s, with X = {0} and

T =
{

T0 = πn/2
s∑

k=0

1
k!22kΓ(n/2 + k + 1)

∆k

}
.

It is easily checked that a Laplacian-type cubature of order 2s and degree 2s with X = {0}
is uniquely determined.

In Section 3.2 (see Corollary 3.8), for fixed positive integers e and s, we give a lower
bound for the cardinality of X in a Laplacian-type cubature (X, T ) of order 2s and
degree 2e, when n = 2. In Section 5 we study “tight” Laplacian-type cubature formula
for e− s = 2.

3. Stroud-type inequality for operator-type cubature.

In this section we generalize the Stroud bound for classical polynomial-type cubature
to operator-type cubature:

Theorem 3.1 (The Stroud bound (cf. [16])). Let (X, λ) be a cubature formula of
degree 2e on (Ω, µ). Then

|X| ≥ dimR Pe(Ω),

where Pe(Ω) denotes the restriction of Pe(Rn) to a subset Ω of Rn.

Note that dimR Pe(Ω) ≤ dimR Pe(Rn) in general.
By Theorem 3.1, for each pair of positive integers e and s, we obtain a lower bound

for the cardinality of X in a Laplacian-type cubature formula (X, T ) of order 2s and
degree 2e in R2 (see Corollary 3.8).

3.1. Stroud-type inequality.
In this subsection we present a Stroud-type inequality for an operator-type cubature

of even degree. We use the notation Ω, µ as in Definition 2.1.
In order to describe our theorem, let us fix a terminology as follows: Let V be an N -

dimensional real vector space equipped with a (possibly degenerate) symmetric bilinear
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form (·, ·). Sylvester’s law of inertia states that there exists a unique triple (p, q, r) of
non-negative integers for which

( i ) p + q + r = N ,
( ii ) there exists an ordered basis v1, . . . , vN such that

(vi, vj) =





δij if i ≤ p,

−δij if p + 1 ≤ i ≤ p + q,

0 otherwise,

where δij = 1 or 0 according on whether i = j or not. The triple (p, q, r) is called the
signature of the symmetric form (·, ·).

Let us take a non-negative integer e, a point x ∈ Rn and an R-linear operator T on
P2e(Rn). We define a (possibly degenerate) symmetric form (·, ·)x,T on Pe(Rn) by

(f, f ′)x,T := (T (f · f ′))(x) (3.1)

where f · f ′ is the product of polynomials f and f ′ on Rn. We denote the signature of
(·, ·)x,T on Pe(Rn) by (p(e,x, T ), q(e,x, T ), r(e,x, T )). Note that

dimR Pe(Rn) = p(e,x, T ) + q(e,x, T ) + r(e,x, T ).

Clearly, (p(e,x, 0), q(e,x, 0)) = (0, 0).
The following inequality for operator-type cubature generalizes the Stroud bound

given in Theorem 3.1.

Theorem 3.2 (Stroud-type inequality for operator-type cubature). Let e be a non-
negative integer and (X, T ) be an operator-type cubature formula of degree 2e. Then the
following inequality holds:

∑

x∈X

p(e,x, Tx) ≥ dimR Pe(Ω). (3.2)

As a corollary to Theorem 3.2, we give a lower bound of Laplacian-type cubature
formulas on R2 (see Corollary 3.8).

Note that if Tx is a positive scalar multiplication for any x ∈ X, then the right hand
side of (3.2) is the cardinality of X by the example below. This implies Theorem 3.1.

Example 3.3. Let us fix a non-negative integer e, x ∈ Rn and λ ∈ R \ {0}. If T

is the scalar multiplication λ on Pe(Rn), then

(f, f ′)x,λ = λf(x) · f ′(x)

for f, f ′ ∈ Pe(Rn). Then we have
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(p(e,x, λ), q(e,x, λ)) =

{
(1, 0) if λ > 0,

(0, 1) if λ < 0.

This can be easily seen by taking an orthogonal decomposition

Pe(Rn) = R{1} ⊕ {f ∈ Pe(Rn) | f(x) = 0}

with respect to the form (·, ·)x,λ, where 1 ∈ Pe(Rn) is the constant polynomial taking
value 1 everywhere.

Remark 3.4. Our theorem is designed only for even-degree operator-type cuba-
ture. Then, what a lower bound should be for the odd degree cases? A good answer
for this was given by Möller [10] for classical polynomial-type cubature formulas. In
Appendix A, we give some examples of operator-type cubature of odd degree for Gaus-
sian integrals, all of which have smaller number of points than classical polynomial-type
cubature of the same degree. These illustrations will lead to a question of what a Möller-
type bound should be for operator-type cubature, which will be left for future works.
Just for reader’s informations, cubature for Gaussian integrals are of particular interest
in algebraic combinatorics [1] and probability theory [9].

Now, we prove Theorem 3.2.

Lemma 3.5. Let V, W be finite-dimensional real [resp. complex ] vector spaces
equipped with (possibly degenerate) symmetric [resp. Hermitian] bilinear forms (·, ·)V

on V and (·, ·)W on W , respectively. We denote the signature of (·, ·)V and (·, ·)W

by (pV , qV , rV ) and (pW , qW , rW ), respectively. If there exists an R-linear [resp. C-
linear ] map L : V → W such that (v, v′)V = (Lv, Lv′)W for every v, v′ ∈ V , then
pV ≤ pW and qV ≤ qW . Furthermore, if L is surjective, then pV = pW and qV = qW .

The above lemma is easy and so proof is omitted.

Lemma 3.6. Let V be a finite-dimensional real [resp. complex ] vector space, and
for each i = 1, . . . , m, let Vi be a copy of V with symmetric [resp. Hermitian] forms (·, ·)i

of signatures (pi, qi, ri). We define a symmetric [resp. Hermitian] form (·, ·)V by

(v, w)V :=
m∑

i=1

(v, w)i,

and denote the signature of (·, ·)V by (pV , qV , rV ). Then pV ≤ ∑m
i=1 pi and qV ≤ ∑m

i=1 qi.

Proof. Let us take a direct sum
⊕m

i=1 Vi of them. Then
⊕m

i=1 Vi has a form

( m∑

i=1

vi,
m∑

i=1

wi

)
:=

m∑

i=1

(vi, wi)i

where vi, wi ∈ Vi. One can easily show that the signature of the form on
⊕m

i=1 Vi is
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(
∑m

i=1 pi,
∑m

i=1 qi,
∑m

i=1 ri). By applying Lemma 3.5 to the diagonal embedding V →⊕m
i=1 Vi, we have pV ≤ ∑m

i=1 pi and qV ≤ ∑m
i=1 qi. ¤

Lemma 3.7. For a non-negative integer e, consider the restriction map

π : Pe(Rn) → Pe(Ω), f 7→ f |Ω

and define a symmetric form (·, ·)π on Pe(Rn) by

(f, f ′)µ :=
∫

Ω

π(f · f ′) dµ. (3.3)

Then the signature of (·, ·)µ is (dimR Pe(Ω), 0,dimRKerπ).

Proof. Since any polynomial is continuous on Ω and µ is a positive Borel measure
on Ω, we see that (f, f)µ ≥ 0 for any f ∈ Pe(Rn), and (f, f)µ = 0 implies that f |Ω = 0
in Pe(Ω). Hence Ker π is the radical of (·, ·)µ. Let us fix any complement V of Kerπ in
Pe(Rn). Then π|V : V → Pe(Ω) is bijective and (·, ·)µ is positive definite on V . This
completes the proof of Lemma 3.7. ¤

Proof of Theorem 3.2. Since (X, T ) is a cubature formula for P2e(Rn),

(f, f ′)µ =
∑

x∈X

(f, f ′)x,Tx

for every f, f ′ ∈ Pe(Rn) (see (3.1) and (3.3) for the notation). Thus, the theorem follows
by Lemma 3.6 and Lemma 3.7. ¤

3.2. A lower bound for Laplacian-type cubature in two dimension.
In this subsection, we present a lower bound for the cardinality of even-degree

Laplacian-type cubature formulas on R2:

Corollary 3.8 (Corollary of Theorem 3.2). Let us consider 2-dimensional Eu-
clidean space R2 and take a measure space (Ω, µ) as in Definition 2.1. Then for any
Laplacian-type cubature formula (X, T ) of order 2s and degree 2e on (Ω, µ) (see Defini-
tion 2.2 for the definition of Laplacian-type cubature), the following inequality holds:

|X \ {0}| ≥ dimR Pe(Ω)− 1
2
(s + 1)(s + 2).

In particular, if Ω has an interior point, then

|X \ {0}| ≥ 1
2
(e− s)(e + s + 3). (3.4)

Definition 3.9. A Laplacian-type cubature (X, T ) with equality in (3.4) is said
to be tight.
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Remark 3.10. (i) As far as the authors know, the bound in Corollary 3.8 is the
first theoretic lower bound for Laplacian-type cubature of even degree. (ii) In (3.4), if
e = s then |X \ {0}| = 0. Recall that Pizzetti’s formula (see Theorem 2.3) gives a
Laplacian-type cubature formula (X, T ) with e = s and |X \ {0}| = 0, which is a unique
tight Laplacian-type cubature with X = {0}. In Section 5, we study tight Laplacian-type
cubature formulas in two dimension.

Now, we show that

p(e,0, T ) ≤ 1
2
(s + 1)(s + 2) (3.5)

for T :=
∑s

k=0 λk∆k (see Section 3.1 for the notation); if this is the case, then by
combining this with Theorem 3.2, we obtain Corollary 3.8.

To establish (3.5), we need some preparations. For each t, we denote the complexifi-
cation of Pt(R2) by PCt (R2), meaning, PCt (R2) is the set of polynomials over C of degree
at most t in variables x and y. By TC we also denote the complexification, which is a
C-linear operator on PC2e(R2), of the operator T on P2e(R2). Then

(f, f ′)0,TC := (TC(f · f ′))(0), f, f ′ ∈ PCe (R2)

defines a Hermitian form on PCe (R2), where f ′ is the complex conjugation of the poly-
nomial f ′ over C. By (p(e,0, TC), q(e,0, TC), r(e,0, TC)) we denote the signature of the
Hermitian form (·, ·)0,TC on PCe (R2). Clearly,

(p(e,0, TC), q(e,0, TC), r(e,0, TC)) = (p(e,0, T ), q(e,0, T ), r(e,0, T )).

Let us put

∂ :=
∂

∂x
+
√−1

∂

∂y
, ∂̄ :=

∂

∂x
−√−1

∂

∂y
.

Then ∆ = ∂∂̄ and

∂f = ∂̄f̄ , ∂̄f = ∂f

for any polynomial f over C. By using the Leibniz rule, we have

(TC(f · f ′))(0) =
s∑

k=0

λk

∑

0≤i,j≤k

(
k

i

)(
k

j

)
(∂i∂̄jf)

∣∣
(x,y)=(0,0)

· (∂k−i∂̄k−jf ′)
∣∣
(x,y)=(0,0)

=
s∑

k=0

λk

∑

0≤i,j≤k

(
k

i

)(
k

j

)
(∂i∂̄jf)

∣∣
(x,y)=(0,0)

· (∂k−j ∂̄k−if ′)
∣∣
(x,y)=(0,0)

for f, f ′ ∈ PCe (R2).
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For each integer 0 ≤ k ≤ s, let Ik := {0, 1, . . . , k}. Let CIs×Is be the direct product
of copies of C indexed by Is × Is, which is an (s + 1)2-dimensional C-vector space. We
define a Hermitian form (·, ·)T on CIs×Is by

(v, v′)T :=
s∑

k=0

λk

∑

(i,j)∈Ik×Ik

(
k

i

)(
k

j

)
vi,jv′k−j,k−i (3.6)

for v := (vi,j)i,j∈Is
, v′ := (v′i,j)i,j∈Is

∈ CIs×Is . Then the C-linear map

L : PCe (Rn) → CIs×Is , f 7→ ((∂i∂̄jf)|(x,y)=(0,0))i,j∈Is (3.7)

preserves the Hermitian forms.

Lemma 3.11. Let V be a finite-dimensional C-vector space equipped with a (possibly
degenerate) Hermitian form (·, ·) of signature (p, q, r). Let U be a totally isotropic sub-
space of V . Then

dimC UC ≤ min{p, q}+ r.

In particular, p ≤ dimC V − dimC U .

Proof. Let U be a maximal totally isotropic subspace of V . Then the radical
V0 of (·, ·) is included in U , and U/V0 is also a totally isotropic subspace of V/V0 with
respect to the non-degenerate form (·, ·)V/V0 on V/V0 induced by the form on V . For
simplicity, let V ′ := V/V0 and U ′ := U/V0. It suffices to show that

dimC U ′ ≤ min{p, q}.

Since (·, ·)V ′ is a non-degenerate form with signature (p, q), we obtain a decomposition
V ′ = V ′

p ⊕ V ′
q with dimC V ′

p = p and dimC V ′
q = q, such that (·, ·)V ′ is positive definite

on V ′
p and negative definite on V ′

q . By πp : V ′ → V ′
p and πq : V ′ → V ′

q we denote the
projection with respect to the decomposition. Let us take any u ∈ U ′. Then (·, ·)V ′ = 0.
Let us consider the case where πp(u) = 0. Then u ∈ V ′

q and hence u = 0 since the form
(·, ·)V ′ on V ′

q is negative definite. Therefore, πp|U ′ is injective and dimC U ′ ≤ p. The
same arguments show that πq|U ′ is injective and dimC U ′ ≤ q. ¤

Now we denote the signature of (·, ·)T on CIs×Is by (pT , qT , rT ). Since the map L

defined by (3.7) preserves the Hermitian forms, we have p(e, 0, T ) ≤ pT . Let us take

U := {v ∈ CIs×Is | vi,j = 0 for 0 ≤ i + j ≤ s}.

Then, dimC U = s(s + 1)/2 and

dimC CIs×Is − dimC U =
1
2
(s + 1)(s + 2).
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Clearly, U is a totally isotropic subspace of CIs×Is with respect to (·, ·)T . Therefore, by
Lemma 3.11,

p(e,0, T ) ≤ pT ≤ 1
2
(s + 1)(s + 2),

which completes the proof of (3.5).

Example 3.12. Let us consider the case where x = 0 ∈ R2, 2s ≤ e, and T = ∆s.
We shall prove that

(p(e,0, T ), q(e,0, T )) =
(

1
2
(s + 1)(s + 2),

1
2
s(s + 1)

)
.

First, note that the map L is surjective since 2s ≤ e. Thus Lemma 3.5 implies that
(p(e,0, T ), q(e,0, T )) = (pT , qT ). Here we denote the standard basis of CIs×Is by {ei,j |
i, j ∈ Is}. Then the Hermitian form (·, ·)T defined by (3.6) is positive definite on

Vp := SpanC({ei,j + es−j,s−i | i + j < s} ∪ {el,s−l | l ∈ Is})

and negative definite on

Vq := SpanC{ei,j − es−j,s−i | i + j < s}.

Since CIs×Is = Vp ⊕ Vq, we have

(p(e,0, T ), q(e,0, T )) = (pT , qT ) =
(

1
2
(s + 1)(s + 2),

1
2
s(s + 1)

)
.

Remark 3.13. In the proof of the bound (3.4), the choice of the totally isotropic
subspace U is key. Then, what about higher-dimensional cases? In this case, the authors
gave a choice of U in Appendix B, but we suspect that the resulting bound would not be
best and it might be possible to pick up a “better” totally isotropic subspace U . It seems
that to choose a good totally isotropic subspace U is hard, which is thus beyond the scope
of this paper and left for future work. We note that a family of two-dimensional “tight”
Laplacian-type cubature is given, which implies our bound is good in two dimension; see
Section 5 for the details.

4. Sobolev’s theorem for operator-type cubature.

In this section we generalize a famous theorem due to Sobolev [14] on invariant cuba-
ture formulas to operator-type invariant cubature, in order to construct tight Laplacian-
type cubature formulas on R2 (see Theorem 5.3).

Let G be a finite subgroup of the orthogonal group O(Rn), and let f ∈ Pt(Rn). We
consider the action of g ∈ G on f as follows:
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fg(x) = f(xg−1
), x ∈ Rn.

A polynomial f is said to be G-invariant if fg = f for every g ∈ G. By Pt(Rn)G we
denote the set of G-invariant polynomials in Pt(Rn); a similar notation will be used for
other polynomial spaces later.

For a measure space (Ω, µ) in Rn as in Definition 2.1, we say that (Ω, µ) is G-
invariant if Ω and µ are invariant under G, respectively. The similar notation is used for
a pair (X, λ) of a finite subset X and a positive weight function λ on X.

The following is known as Sobolev’s theorem [14].

Theorem 4.1 (Sobolev’s theorem). Let us take a G-invariant measure space (Ω, µ)
in Rn and a G-invariant pair (X, λ) as above. Then the following conditions on (X, λ)
are equivalent :

1. (X, λ) is a cubature formula of degree t.
2. (X, λ) is a cubature formula for Pt(Rn)G.

Let us generalize Theorem 4.1 for operator-type cubature formulas.
For a linear operator T on Pt(Rn) and g ∈ G, we define a linear operator T g on

Pt(Rn) by

T gf = (T (fg−1
))g, f ∈ Pt(Rn).

Note that the Laplacian ∆ = ∂2/∂x2
1 + · · ·+ ∂2/∂x2

n is O(Rn)-invariant, i.e., ∆g = ∆ for
any g ∈ O(Rn).

We say that a pair (X, T ) of a finite subset X of Rn and a set of linear operator
T = {Tx | x ∈ X} on Pt(Rn) indexed by X is G-invariant if X is a union of G-orbits
and T g

x = Txg for any x ∈ X and g ∈ G.
Sobolev’s theorem can be generalized for operator-type cubature.

Theorem 4.2. Let us take a G-invariant measure space (Ω, µ) in Rn and a G-
invariant pair (X, T ) as above. Then the following conditions on (X, T ) are equivalent :

1. (X, T ) is an operator-type cubature formula of degree t.
2. (X, T ) is an operator-type cubature formula for Pt(Rn)G.

Since the Laplacian operator ∆ on Rn is O(n)-invariant, we get the following corol-
lary for Laplacian-type cubature formulas:

Corollary 4.3. Let us take a G-invariant measure space (Ω, µ) in Rn, a G-
invariant finite subset X ′ in Ω with G-invariant positive weights {λx | x ∈ X ′} on X ′

and an operator T0 := T =
∑s

k=0 λk∆k for real coefficients λ1, . . . , λs. Let X := X ′∪{0}
and T := {λx | x ∈ X ′} ∪ {T0 = T}. Then the following conditions on (X, T ) are
equivalent :

1. (X, T ) is a Laplacian-type cubature formula of degree t.
2. (X, T ) is a Laplacian-type cubature formula for Pt(Rn)G (see Definition 2.2 for the

notation).
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We recall Shamsiev’s results in [13] as an example of Corollary 4.3:

Example 4.4. Let l and s be non-negative integers no more than k. Sham-
siev found real coefficients λ1, . . . , λ2s, positive weights W1, . . . , Wl, W̃1, . . . , W̃l+k−s and
positive radii r1, . . . , rl, r̃1, . . . , r̃l+k−s such that the following equation holds for every
f ∈ P4k+4l+1(R2):

∫

B2
f(x) dx =

2s∑

k=0

λk∆kf(x, y)
∣∣∣∣
(x,y)=(0,0)

+
l∑

i=1

Wi

4k+1∑
m=0

f

(
ri cos

2mπ

4k + 2
, ri sin

2mπ

4k + 2

)

+
l+k−s∑

i=1

W̃i

4k+1∑
m=0

f

(
r̃i cos

(2m + 1)π
4k + 2

, r̃i sin
(2m + 1)π

4k + 2

)
.

Shamsiev found the above Laplacian-type cubature formula by implicitly using Corollary
4.3 with respect to the dihedral group G = D4k+2. He also found many other examples
of Laplacian-type cubature formulas in [13].

We shall prove Theorem 4.2.

Proof of Theorem 4.2. The implication “(1) to (2)” is trivial and so we may
assume (2). For f ∈ Pt(Rn), define

φ =
1
|G|

∑

g∈G

fg−1
.

Clearly, φ is G-invariant and
∫
Ω

f dµ =
∫
Ω

φ dµ. By the assumption, we have

∫

Ω

f dµ =
∫

Ω

φ dµ

=
∑

x∈X

(Txφ)(x)

=
1
|G|

∑

x∈X

∑

g∈G

(Txfg−1
)(x)

=
1
|G|

∑

x∈X

∑

g∈G

(T g
xf)(xg)

=
∑

x∈X

(Txf)(x),

which completes the proof. ¤
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5. Some results for tight Laplacian-type cubature formulas in two-
dimension.

In this section, we study tight Laplacian-type cubature on a certain domain in R2

(see Definition 3.9 for the notation).

5.1. A characterization of tight Laplacian-type cubature.
Let a, b be are real numbers with 0 ≤ a < b, and Ω be the annulus domain in R2

defined by

Ω := {x ∈ R2 | a ≤ ‖x‖ < b}.

Let W (‖x‖) be a rotationally invariant probability density function on Ω (cf. [11, p. 325]).
Let e, s be integers with e > s ≥ 0. Let X ′ be a finite subset of Ω \ {0}, where Ω

may not possibly contain the origin, with a positive weight function λ on X. Fix a linear
operator T :=

∑s
k=0 λk∆k. We denote

X := X ′ ∪ {0} and T := {T0 := T} ∪ {λx | x ∈ X ′}.

For each non-negative integer l, we write Homl(R2) for the set of homogeneous
polynomials on R2 of homogeneous degree l and put

Harml(R2) := {f ∈ Homl(R2) | ∆f = 0}.

Sometimes we use the symbol ‖x‖2 to mean the polynomial x2 + y2 in Hom2(R2) (when
a point x ∈ R2 is fixed, ‖x‖2 means the square of the norm).

Then we get the following easy (albeit important) result.

Proposition 5.1. The following conditions on (X, T ) are equivalent :

( i ) (X, T ) is a Laplacian-type cubature formula of order 2s and degree 2e for∫
Ω
· W (‖x‖) dx.

( ii ) For each k,

λk =
1

(k!)222k

(
2π

∫ b

a

r2k+1W (r) dr −
∑

x∈X\{0}
‖x‖2kλx

)

and (X ′, λ) is a cubature formula for the space

2e⊕

l=2s+2

Homl(R2)⊕
s⊕

k=0

2s+1−2k⊕
m=1

‖x‖2k Harmm(R2). (5.1)

We are interested in a Laplacian-type cubature formula (X, T ) of degree 2e with
equality in the bound of Corollary 3.8, or equivalently, a cubature (X ′, λ) for the space
(5.1) with



724 M. Hirao, T. Okuda and M. Sawa

|X ′| = 1
2
(e− s)(e + s + 3) (5.2)

points.
Now, we establish a characterization of the Laplacian-type cubature of Theorem 5.3

by investigating the structure of a cubature formula for

2e⊕

l=2s+2

Homl(R2)

with (e− s)(e + s + 3)/2 points. A useful tool for this purpose is the reproducing kernel
of

⊕e
l=s+1 Homl(R2). Let us consider a scalar product on Pe(R2), defined by

(f, g) =
∫

Ω

f(x)g(x)W (‖x‖) dx.

For each x ∈ R2, the point evaluation of f is continuous. Hence by Riesz’s representation
theorem, there exists a function fx ∈ ⊕e

l=s+1 Homl(R2) such that f(x) = (f, fx) for
every f ∈ ⊕e

l=s+1 Homl(R2). The function K : Ω× Ω → R defined by

K(x,y) = (fx, fy) for x,y ∈ Ω

is called the reproducing kernel of the space
⊕e

l=s+1 Homl(R2). Clearly we have
K(x,y) = fx(y) = fy(x).

The following proposition gives a characterization of cubature formulas (X ′, λ) for⊕2e
l=2s+2 Homl(R2) with |X ′| = (e− s)(e + s + 3)/2:

Proposition 5.2. Let X ′ be a finite subset of Ω \ {0}, where Ω may not possibly
contain the origin. Let λ be a positive weight function on X ′. Suppose that (X ′, λ) is a
cubature formula for

⊕2e
l=2s+2 Homl(R2). Then

1
2
(e− s)(e + s + 3) ≤ |X ′|

and the equality holds in this bound if and only if

√
λxλx′K(x,x′) = δxx′ for x,x′ ∈ X ′.

The above proposition can also be proved in more general settings [12].

Proof. First, note that

2e⊕

l=2s+2

Homl(R2) =
e⊕

l=s+1

Homl(R2) ·
e⊕

l=s+1

Homl(R2).
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So (X ′, λ) is a cubature formula for
⊕2e

l=2s+2 Homl(R2) if and only if the restriction map

ρ :
e⊕

l=s+1

Homl(R2) → `2(X ′, λ)

is an isometry, where `2(X ′, λ) denotes the Hilbert space of R-valued functions on X ′,
with scalar product defined by

〈f, g〉 =
∑

x∈X′
λxf(x)g(x).

We thus obtain

1
2
(e− s)(e + s + 3) =

e∑

l=s+1

(l + 1)

= dimR
e⊕

l=s+1

Homl(R2)

≤ dimR `2(X ′, λ) = |X ′|.

The equality implies that ρ is an isomorphism of metric linear spaces, and so is the
adjoint map ρ∗. It is easily seen that the point-wise Dirac measures δx for all x ∈ X ′

form a basis of `2(X ′, λ) and ρ∗(δx) = λxfx. In summary, for every x, y ∈ X ′,

√
λxλyδxy = 〈δx, δy〉

= (ρ∗(δx), ρ∗(δy))

= λxλy(fx, fy)

= λxλyK(x,y),

which completes the proof. ¤

How to use the above result will soon be clear in Subsection 5.2.

5.2. A family of tight Laplacian-type cubature formulas.
In this subsection, we fix an integer e ≥ 2 and provide a family of tight Laplacian-

type cubature (X, T ) with e − s = 2, together with a geometric characterization. The
readers may be first interested in what would happen for e − s = 1; the answer will be
given in the next subsection. Remember that Pizzetti’s formula (Theorem 2.3) gives a
unique tight Laplacian-type cubature with e− s = 0 and X = {0}.

Recall that Corollary 3.8 gives a lower bound

|X \ {0}| ≥ 2e + 1, (5.3)
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and a Laplacian-type cubature formula (X, T ) of order 2e − 4 and degree 2e is said to
be tight if the equation above holds.

Theorem 5.3. Let X ′ be the set of vertices of a regular (2e + 1)-gon inscribed in
the circle of radius

√
ιe/ιe−1 where

ιe :=
∫

x∈Ω

‖x‖2eW (‖x‖) dx,

and X = X ′ ∪ {0}. For each 0 ≤ k ≤ e− 2, let

wk =
1

(k!)222k

(
ιk −

ιe−k
e−1

ιe−k−1
e

)

and T = {Tx | x ∈ X} be such that

Tx =





e−2∑

k=0

wk∆k if x = 0,

1
2e + 1

· ιee−1

ιe−1
e

if x ∈ X ′.

Then (X, T ) is a tight Laplacian-type cubature formula of order 2e− 4 and degree 2e.

Proof. We only need to show that (X, T ) is a Laplacian-type cubature formula
since |X \ {0}| = |X ′| = 2e + 1. Let G be the cyclic group of 2e + 1 rotations about the
origin through angles that are multiples of 2π/(2e + 1). Since (X, T ) is G-invariant, it
suffices by Theorem 4.2 to show that

∑

x∈X

(Txf)(x) =
∫

x∈Ω

f(x)W (‖x‖) dx

for every f ∈ P2e(R2)G. Note that

P2e(R2)G = SpanR{‖x‖2m | 0 ≤ m ≤ e},

where we use the symbol ‖x‖2 as the polynomial x2 + y2 in Hom2(R2). Moreover, by
elementary calculations, we have

(∆k‖x‖2m)|x=0 = (k!)222kδk,m.

Therefore, it suffices to prove that for every 0 ≤ m ≤ e,

∑

x∈X′

1
2e + 1

· ιee−1

ιe−1
e

‖x‖2m + (m!)222mwm = ιm,



Some remarks on cubature formulas with linear operators 727

where wm = 0 for m = e− 1, e. The theorem thus follows by the definition of X ′ and T .
¤

Hereafter we focus on an open unit ball B2 := {x ∈ R2 | ‖x‖ < 1}. In this case,

ιe :=
∫

B2
(x2 + y2)e dxdy =

π

e + 1
.

So, our example of tight Laplacian-type cubature formula in Theorem 5.3 has points
consisting the origin and vertices of a regular (2e + 1)-gon on the circle of radius√

ιe/ιe−1 =
√

e/(e + 1).
Now, a natural question asks whether there exists other examples of tight Laplacian-

type cubature formulas (X, T ) such that X \ {0} is contained in the circle of radius√
e/(e + 1). Below we give the following negative answer:

Theorem 5.4. Let (X, T ) be a tight Laplacian-type cubature formula of order
2e − 4 and degree 2e on B2 (see Definition 3.9 for the notation of tightness). Suppose
that ‖x‖ =

√
e/(e + 1) for any x ∈ X \ {0}. Then the point set X \ {0} consists of the

vertices of a regular (2e + 1)-gon and the positive weights Tx are a constant on X \ {0}.

Proof. First, for each x = (x, y) ∈ B2 \ {(0, 0)}, let

zx = rx exp
(√−1θx

)
:= x +

√−1y ∈ C,

where rx := |zx| = ‖x‖ and θx := Arg zx. Note that

{zi
xzx

e−i, zj
xzx

e−1−j | i = 0, . . . , e, j = 0, . . . , e− 1}

is an orthogonal basis of
⊕e

l=e−1 HomCl (R2), where HomCl (R2) := Homl(R2)⊗RC. There-
fore the reproducing kernel is given by

K(x,x′) =
1
π

e∑

l=e−1

(l + 1)
l∑

i=0

zi
xzx

l−izl−i
x′ zx′

i

=
1
π

e∑

l=e−1

(l + 1)rl
xrl

x′

l∑

i=0

exp
(√−1(2i− l)(θx − θx′)

)

=
1
π

e∑

l=e−1

(l + 1)rl
xrl

x′

l∑

i=0

cos(2i− l)(θx − θx′). (5.4)

Since the point set X ′ is contained in the circle of radius
√

e/(e + 1), the kernel (5.4)
can be simplified as follows: For any distinct x,x′ with ‖x‖ = ‖x′‖ =

√
e/(e + 1) and

cos α = 〈x,x′〉/(‖x‖‖x′‖),
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πK(x,x′) = er2e−2
x

e−1∑

i=0

T2i−e+1(cos α) + (e + 1)r2e
x

e∑

i=0

T2i−e(cos α)

=
ee

(e + 1)e−1

{ e−1∑

i=0

T2i−e+1(cos α) +
e∑

i=0

T2i−e(cos α)
}

=
ee

(e + 1)e−1
(Ue−1(cos α) + Ue(cos α)),

where Ti, Ui denote the first and second Chebyshev polynomial of degree i, respectively.
We note that

T2e+1(cos α)− 1 = (cos α− 1)(Ue(cos α) + Ue−1(cos α))2,

by suitably “perturbing” x and x′, and by using the fact that Un(cos α) = sin(n +
1)α/ sinα. This implies, by Proposition 5.2, that X ′ is the set of vertices of a regular
(2e + 1)-gon inscribed in the circle of radius

√
e/(e + 1). Finally by using Proposition

5.2 again, we have λx = λx′ for every x,x′ ∈ X ′, which proves Theorem 5.4. ¤

5.3. Some results on tight Laplacian-type cubature with e − s 6= 2.
In the previous subsection we study tight Laplacian-type cubature for e−s = 2, but

the readers may be first interested in what would happen for e−s = 1. In this subsection
we give an answer for this and provide some related remarks.

Before mentioning the main result in this subsection (Theorem 5.6), we give the
definition of Euclidean design. For i = 1, . . . , p, let Si be the sphere with radius ri.
Without loss of generality, we may assume r1 > · · · > rp ≥ 0. Let S =

⋃p
i=1 Si, and

Xi = X ∩Si. By σi we denote the normalized surface measure on Si; in particular when
rp = 0, we let

∫
Sp

f(x) dσp(x) = f(0). The pair (X, λ) is called a Euclidean t-design
supported by p concentric spheres S if

∑

x∈X

λxf(x) =
p∑

i=1

( ∑

x∈Xi

λx

) ∫

x∈Si

f(x) dσi(x)

for every polynomial f in Pt(S).

Lemma 5.5 ([11]). Let X be a finite subset, which may possibly contain 0, with a
weight function w. Then the following (1) and (2) are equivalent :

( i ) (X, λ) is a Euclidean t-design.
( ii )

∑
x∈X λxf(x) = 0 for any polynomial f ∈ ‖x‖2jHarml(Rn) with 1 ≤ l ≤ t,

0 ≤ j ≤ b(t− l)/2c.

Theorem 5.6. There exists no tight Laplacian-type cubature formula (X, T ) of
order 2e− 2 and degree 2e on B2.

Proof. Assume there exists a tight Laplacian-type cubature formula (X, T ) of
order 2e− 2 and degree 2e on B2. Then, it follows from (5.2) that
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|X ′| = e + 1,

and

∫

B2
f(x) dx =

e−1∑

k=0

λk(∆kf)
∣∣∣∣
x=0

+
∑

x∈X′
λxf(x), (5.5)

for any polynomial f ∈ P2e(R2).
For each l ≥ 1, f ∈ Harml(R2), and m ≥ 1, we have

∆(‖x‖2mf) = 2m(m + 1 + 2l)‖x‖2(m−1)f. (5.6)

Since f(0) = 0 and ∆f ≡ 0 for any f ∈ Harml(R2), it holds that for 0 ≤ k ≤ e− 1,

(∆kf)|x=0 = 0 (5.7)

for every polynomial f ∈ A :=
⊕e−1

m=0

⊕2e−2m
l=1 ‖x‖2mHarml(R2) ⊂ P2e(R2). Thus, by

(5.5) and (5.7), we have

∑

x∈X′
λxf(x) =

∫

B2
f(x) dx = 0

for every polynomial f ∈ A, which implies by Lemma 5.5 that X ′ is a Euclidean 2e-
design. However, a lower bound for number of points of a Euclidean 2e-design is given
by

|X ′| ≥ 2e + 1

(cf. [11]), which is a contradiction. ¤

In general, let us assume that (X, w) is a tight Laplacian-type cubature formula of
(order 2s and) degree 2e on p concentric spheres. Then, by the similar arguments, we can
prove that e ≤ p, and therefore there exists no tight Laplacian-type cubature formula on
2 concentric spheres for e− s = 3 with e ≥ 3. Then, what about other cases of p, e and
s? Though we investigated many triples of small p, e and s, we could not get systematic
results on the existence/non-existence of tight formulas. To study such general cases are
left for future work.

Finally, in Corollary 3.8, we explicitly calculated the Stroud bound only for
Laplacian-type cubature formulas. However, similar calculations will also work for other
types of operator-type cubature formulas. For example, if one considers an operator-type
cubature formula for P2e(B2) given by

∫

B2
f(x) dx =

∑

x∈X

(∆2f)(x), (5.8)
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then by the same argument as in Example 3.12 we get

|X| ≥ (e + 1)(e + 2)
6

.

We shall call (5.8) a cubature formula of type (0, 2), following the one-dimensional termi-
nology by Turán [17].

The authors do not know whether there exists a high-dimensional Turán-type cuba-
ture formula with equality in the above lower bound.

Remark 5.7. As mentioned before, there exists no tight Laplacian-type cubature
formula (X, T ) with e − s = 1. But, after many trial and errors, we have found several
examples of a Laplacian-type cubature formula which seem to nearly attain the Stroud-
type bound, some of which are given as follows:

• For the case (e, s) = (2, 1), the following holds for every polynomial at most 4:

∫

B2
f(x, y) dxdy = Λ0f(0, 0) + Λ1∆f(x, y)|(x,y)=(0,0)

+
2∑

l=0

Λ2f

(√
R1 cos

2lπ

3
,
√

R1 sin
2lπ

3

)

+
2∑

l=0

Λ3f

(√
R2 cos

(2l + 1)π
3

,
√

R2 sin
(2l + 1)π

3

)
,

where 0 < Λ0,Λ1,Λ2,Λ3 < 1, 0 < R1, R2, and

Λ0 =
(R1R2)1/2 −R1 −R2 + 3(R1R2)3/2

3(R1R2)3/2
, Λ1 =

3(R1R2)1/2 − 2
24(R1R2)1/2

,

Λ2 =
1

9R
3/2
1 (

√
R1 +

√
R2)

, Λ3 =
1

9R
3/2
2 (

√
R1 +

√
R2)

.

The constructed formula has 7 points, which is larger than the Stroud-type bound
by 4 points, and which has the structure of tight Euclidean 4-designs without the
origin.

• For the case (e, s) = (3, 2), the following holds for every polynomial at most 6:

∫

B2
f(x, y) dxdy = Λ0f(0, 0) + Λ1∆f(x, y)|(x,y)=(0,0) + Λ2∆f(x, y)|(x,y)=(0,0)

+
2∑

l=0

Λ3f

(√
R1 cos

2lπ

5
,
√

R1 sin
2lπ

5

)

+
2∑

l=0

Λ4f

(√
R2 cos

(2l + 1)π
5

,
√

R2 sin
(2l + 1)π

5

)
,
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where 0 < Λ0,Λ1,Λ2,Λ3,Λ4 < 1, 0 < R1, R2, and

Λ0 =
−R2

1 + R
3/2
1

√
R2 −R1R2 +

√
R1R

3/2
2 −R2

2 + 4(R1R2)5/2

4(R1R2)5/2
,

Λ1 =
−R1 +

√
R1R2 −R2 + 2(R1R2)3/2

16(R1R2)3/2
, Λ2 =

−3 + 4
√

R1R2

768
√

R1R2

,

Λ3 =
1

20R
5/2
1 (

√
R1 +

√
R2)

, Λ4 =
1

20R
5/2
2 (

√
R1 +

√
R2)

.

The constructed formula has 11 points, which is larger than the Stroud-type bound
by 5 points, and which has the structure of tight Euclidean 6-designs without the
origin.

A. Some new examples of Laplacian-type cubature.

We give some new examples of Laplacian-type cubature of degrees 7, 9, 11 for Gaus-
sian integral

I[f ] :=
∫

R2
f(x, y)π−1e−(x2+y2) dxdy.

• The following holds for every polynomial f(x, y) of degree at most 7:

I[f ] = Λ0f(0, 0) + Λ1∆f(x, y)|(x,y)=(0,0) +
5∑

l=0

Λ2f

(√
R1 cos

2lπ

6
,
√

R1 sin
2lπ

6

)

+
5∑

l=0

Λ3f

(√
R2 cos

(2l + 1)π
6

,
√

R2 sin
(2l + 1)π

6

)
,

where 3(2−√2) < R1 < 3(2+
√

2), R2 = 3R1/(−3+2R1), and Λ0 = (−54+36R1+
R2

1)/9R2
1, Λ1 = (−18 + 12R1 −R2

1)/12R2
1, Λ2 = 1/2R3

1, Λ3 = (−3 + 2R1)3/54R3
1.

• The following holds for every polynomial f(x, y) of degree at most 9:

I[f ] = Λ0f(0, 0) + Λ1∆f(x, y)|(x,y)=(0,0) +
7∑

l=0

Λ2f

(√
R1 cos

2lπ

8
,
√

R1 sin
2lπ

8

)

+
7∑

l=0

Λ3f

(√
R2 cos

(2l + 1)π
8

,
√

R2 sin
(2l + 1)π

8

)
,

where R1 = 2(3 +
√

3), R2 = 2(3 − √
3), and Λ0 = 17/24, Λ1 = 13/16, Λ2 =

(7− 4
√

3)/384, Λ3 = (7 + 4
√

3)/384.
• The following holds for every polynomial f(x, y) of degree at most 11:
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I[f ] = Λ0f(0, 0) + Λ1∆f(x, y)|(x,y)=(0,0) +
7∑

l=0

Λ2f

(√
R1 cos

2lπ

8
,
√

R1 sin
2lπ

8

)

+
7∑

l=0

Λ3f

(√
R2 cos

(2l + 1)π
8

,
√

R2 sin
(2l + 1)π

8

)

+
7∑

l=0

Λ4f

(√
R3 cos

2lπ

8
,
√

R3 sin
2lπ

8

)

where R1 = 5(10 +
√

34)/11, R2 = 5, R3 = 5(10−√34)/11, and Λ0 = 3334/5625,

Λ1 = 29/750, Λ2 = (74222 − 12557
√

34)/3060000, Λ3 = 3/1250, Λ4 = (74222 +
12557

√
34)/3060000.

B. Lower bounds for Laplacian-type cubature in higher dimensional
space.

Theorem B.1. Let us consider the n-dimensional Euclidean space Rn and take a
measure space (Ω, µ) as in Definition 2.1. Then, for any Laplacian-type cubature formula
(X, T ) of order 2s and degree 2e on (Ω, µ), the following inequality holds:

|X \ {0}| ≥ dimR Pe(Ω)−
bs/2c∑
m=0

2e− 4m + n− 1
e− 2m + n− 1

(
e− 2m + n− 1

n− 1

)
.

In particular, if Ω has an interior point, then

|X \ {0}| ≥
be/2c∑

m=d(s+1)/2e

2e− 4m + n− 1
e− 2m + n− 1

(
e− 2m + n− 1

n− 1

)
.

By Theorem 3.2, we only need to show

p(e,0, T ) ≥
bs/2c∑
m=0

2e− 4m + n− 1
e− 2m + n− 1

(
e− 2m + n− 1

n− 1

)

for T :=
∑s

k=0 λk∆k (see Section 3.1 for the notation).
Recall that

Pe(Rn) =
e⊕

l=0

Homl(Rn)

=
e⊕

l=0

bl/2c⊕
m=0

‖x‖2m Harml−2m(Rn)
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=
be/2c⊕
m=0

e−2m⊕

j=0

‖x‖2m Harmj(Rn).

Let us take

U :=
be/2c⊕

m=d(s+1)/2e

e−2m⊕

j=0

‖x‖2m Harmj(Rn)

as a subspace of Pe(Rn).
We note that, by recalling (5.6), if m > k,

(∆k(‖x‖2mf))|x=0 = 0

for any f ∈ Harml(Rn). So, we can easily check that U is a totally isotropic subspace of
Pe(Rn) for the bilinear form (·, ·)0,T . Now, by the argument similar to that of Lemma
3.11, we have

dimU ≤ min{p(e,0, T ), q(e,0, T )}+ r(e,0, T )

It thus follows that

p(e,0, T ) ≤ dimPe(Rn)− dimU

= dim
bs/2c⊕
m=0

e−2m⊕

j=0

‖x‖2m Harmj(Rn)

=
bs/2c∑
m=0

e−2m∑

j=0

((
j + n− 1

n− 1

)
−

(
j + n− 3

n− 1

))

=
bs/2c∑
m=0

((
e− 2m + n− 1

n− 1

)
+

(
e− 2m + n− 2

n− 1

))

=
bs/2c∑
m=0

2e− 4m + n− 1
e− 2m + n− 1

(
e− 2m + n− 1

n− 1

)
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for integrals with circular symmetry, Numer. Math., 61 (1992), 395–407.

[20] Y. Xu, Minimal cubature formulae for a family of radial weight functions, Adv. Comput. Math.,

8 (1998), 367–380.

http://dx.doi.org/10.1007/s10801-005-2505-3
http://dx.doi.org/10.2969/jmsj/06341359
http://dx.doi.org/10.2969/jmsj/06341359
http://dx.doi.org/10.1016/j.ejc.2009.03.035
http://dx.doi.org/10.1007/BF03187604
http://dx.doi.org/10.1007/BF03187604
http://dx.doi.org/10.1098/rspa.2003.1239
http://dx.doi.org/10.1016/S1385-7258(88)80011-8
http://dx.doi.org/10.1134/S0965542506070050
http://dx.doi.org/10.1111/j.1749-6632.1960.tb42842.x
http://dx.doi.org/10.1111/j.1749-6632.1960.tb42842.x
http://dx.doi.org/10.1016/0021-9045(80)90138-0
http://dx.doi.org/10.2307/1999133
http://dx.doi.org/10.2307/1999133
http://dx.doi.org/10.1007/BF01385517
http://dx.doi.org/10.1023/A:1018964818105
http://dx.doi.org/10.1023/A:1018964818105


Some remarks on cubature formulas with linear operators 735

Masatake Hirao

School of Information and Science Technology

Aichi Prefectural University

1522-3 Ibaragabasama, Nagakute

Aichi 480-1198, Japan

E-mail: hirao@ist.aichi-pu.ac.jp

Takayuki Okuda

Department of Mathematics

Hiroshima University

1-3-1 Kagamiyama

Higashihiroshima 739-8526, Japan

E-mail: okudatak@hiroshima-u.ac.jp

Masanori Sawa

Graduate School of System Informatics

Kobe University

1-1 Rokkodai-cho, Nada-ku

Kobe 657-8501, Japan

E-mail: sawa@people.kobe-u.ac.jp




