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Abstract. For all left-invariant Riemannian metrics on three-
dimensional unimodular Lie groups, there exist particular left-invariant or-
thonormal frames, so-called Milnor frames. In this paper, for any left-invariant
Riemannian metrics on any Lie groups, we give a procedure to obtain an anal-
ogous of Milnor frames, in the sense that the bracket relations among them
can be written with relatively smaller number of parameters. Our procedure is
based on the moduli space of left-invariant Riemannian metrics. Some explicit
examples of such frames and applications will also be given.

1. Introduction.

For every left-invariant Riemannian metrics on three-dimensional unimodular Lie
groups, Milnor ([14]) constructed certain orthonormal basis of the corresponding metric
Lie algebras. Such bases are nowadays called the Milnor frames, and have played crucial
roles in many branches of geometry. For example, the curvatures of left-invariant Rie-
mannian metrics on such Lie groups can be calculated explicitly in terms of the Milnor
frames. As a consequence, one can determine all possible signatures for the Ricci cur-
vatures in this case ([14]). Furthermore, in terms of Milnor frames, one can also study
the Ricci flow and Ricci solitons ([2, Chapter 1], see [13] for more information and ref-
erences). For left-invariant Einstein and Ricci soliton metrics on Lie groups, we refer to,
for example, [5], [10], [11], [12], [16], [17], [18].

Since Milnor frames are quite powerful tools, it is desired to construct a generaliza-
tion of Milnor frames for other Lie groups, which might be useful for studies in many
areas. Note that Milnor’s original arguments strongly depend on dimension three, but
some generalizations have been known: for example, Chebarikov ([1]), and Ha and Lee
([3]) studied three-dimensional non-unimodular Lie groups, and Kremlev and Nikonorov
([8], [9]) studied four-dimensional cases. There are some related studies for nilpotent
Lie algebras, in the framework of “Ricci-diagonal basis”, which we refer to Payne ([15]),
Lauret and Will ([13]), and references therein.

In this paper, we consider an arbitrary Lie group G with Lie algebra g, and give
a procedure to construct an analogous of Milnor frames. More precisely, we give a
procedure to obtain the following kind of theorem:
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For any inner product 〈, 〉 on g, there exists an orthonormal basis {x1, . . . , xn}
with respect to 〈, 〉 (up to scaling) such that the bracket relations among them can
be written with relatively smaller number of parameters.

In this paper, this kind of theorem is called a Milnor-type theorem for g. Our procedure
will be described in Section 2. In fact, it is based on the moduli space of left-invariant
metrics, and is a generalization of the methods in [1], [3], [8], [9].

By applying our procedure, in Section 3, we obtain Milnor-type theorems for two
n-dimensional Lie algebras, namely gRH2 ⊕ Rn−2 and gRHn−1 ⊕ R. Furthermore, we
study the curvatures of these Lie algebras in Section 4. In particular, we determine all
possible signatures for the Ricci curvatures of these Lie algebras, and also study whether
they admit left-invariant Ricci solitons. We note that these two Lie algebras are just
toy models, but already show that Milnor-type theorems are useful for studying some
higher-dimensional Lie algebras.

Finally in this section, we emphasize that our procedure can be applied, at least the-
oretically, to an arbitrary Lie algebras. For example, by using our procedure, Milnor-type
theorems for all three-dimensional solvable Lie algebras are obtained in the forthcoming
paper [4].

The authors would like to thank Yoshio Agaoka and Kazuhiro Shibuya for useful
comments and suggestions. They are also grateful to Akira Kubo for some discussions.
Finally, the authors would like to thank the referee for pointing out the reference [1].

2. A general procedure.

In this section, we describe a procedure to obtain a Milnor-type theorem for an
arbitrary Lie algebra g. Our main theorem states that, a Milnor-type theorem for g can
be obtained from the moduli space PM of left-invariant Riemannian metrics. Note that
the space PM has been introduced and studied in [7].

2.1. Preliminaries.
First of all, we recall the moduli space of left-invariant Riemannian metrics. We

refer to [7] for details.
Let G be a Lie group, and g be the Lie algebra of G. We consider the set of all

left-invariant Riemannian metrics on G, which can naturally be identified with

M̃ := {〈, 〉 | an inner product on g}. (2.1)

Let n := dim g, and identify g ∼= Rn as vector spaces. For 〈, 〉 ∈ M̃ and g ∈ GLn(R), we
define

g.〈·, ·〉 := 〈g−1(·), g−1(·)〉. (2.2)

This induces a transitive action of GLn(R) on M̃. We thus have an identification

M̃ ∼= GLn(R)/O(n). (2.3)
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Note that M̃ is a noncompact Riemannian symmetric space, by equipping with a certain
GLn(R)-invariant metric (for example, see [7, Subsection 4.1]).

In order to define the moduli space PM, let us consider the automorphism group
and the scalar group:

Aut(g) := {ϕ ∈ GLn(R) | ϕ[·, ·] = [ϕ(·), ϕ(·)]}, (2.4)

R× := {c · id : g → g | c ∈ R \ {0}}. (2.5)

The group R×Aut(g) naturally acts on M̃. Note that the action of R× gives rise to a
scaling, and the action of Aut(g) induces an isometry of the corresponding left-invariant
metrics.

Definition 2.1. The orbit space of the action of R×Aut(g) on M̃ is called the
moduli space of left-invariant Riemannian metrics, and denoted by

PM := R×Aut(g)\M̃. (2.6)

Note that the action of R×Aut(g) on M̃ is isometric with respect to GLn(R)-invariant
metrics. Hence, in order to study PM (for example, possible topological type), one can
use general theories of isometric actions on symmetric spaces.

2.2. A set of representatives.
Our main theorem states that an expression of PM derives a Milnor-type theo-

rem. Here, by an expression of PM, we mean a set of representatives is given. In this
subsection, we formulate a set of representatives.

Let 〈, 〉0 be the canonical inner product on g ∼= Rn. For simplicity of the notation,
the orbit of R×Aut(g) through 〈, 〉 is denoted by

[〈, 〉] := R×Aut(g).〈, 〉 := {ϕ.〈, 〉 | ϕ ∈ R×Aut(g)}. (2.7)

Definition 2.2. A subset U ⊂ GLn(R) is called a set of representatives of PM if
it satisfies

PM = {[h.〈, 〉0] | h ∈ U}. (2.8)

By a set of representatives, we do not mean that it is a complete set of representa-
tives. But of course, it is expected that U is chosen to be as small as possible.

We here have a criteria for U to be a set of representatives. Let [[g]] denote the
double coset of g ∈ GLn(R), defined by

[[g]] := R×Aut(g) g O(n) := {ϕgk | ϕ ∈ R×Aut(g), k ∈ O(n)}. (2.9)

Lemma 2.3. Let U ⊂ GLn(R). Then the following are mutually equivalent :

(1) U is a set of representatives of PM.
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(2) For every g ∈ GLn(R), there exists h ∈ U such that [h.〈, 〉0] = [g.〈, 〉0].
(3) For every g ∈ GLn(R), there exists h ∈ U such that h ∈ [[g]].

Proof. It is easy to see that (1) and (2) are equivalent. In order to prove that
(2) and (3) are equivalent, we have only to show that [h.〈, 〉0] = [g.〈, 〉0] and h ∈ [[g]] are
equivalent.

Assume [h.〈, 〉0] = [g.〈, 〉0]. Then there exists ϕ ∈ R×Aut(g) such that

h.〈, 〉0 = ϕ.(g.〈, 〉0) = (ϕg).〈, 〉0. (2.10)

This yields that (ϕg)−1h ∈ O(n). One thus has

h = ϕg((ϕg)−1h) ∈ R×Aut(g) g O(n) = [[g]]. (2.11)

Conversely, assume h ∈ [[g]]. Hence there exist ϕ ∈ R×Aut(g) and k ∈ O(n) such
that h = ϕgk. This yields that

h.〈, 〉0 = (ϕgk).〈, 〉0 = ϕ.(g.〈, 〉0). (2.12)

This shows [g.〈, 〉0] = [h.〈, 〉0]. ¤

2.3. Main theorem.
We are now in the position to prove our main theorem of this paper. Namely, a set

of representatives of PM derives a Milnor-type theorem. Recall that 〈, 〉0 is the canonical
inner product on g ∼= Rn. Denote by {e1, . . . , en} the canonical orthonormal basis.

Theorem 2.4. Let U be a set of representatives of PM. Then, for every inner
product 〈, 〉 on g, there exist h ∈ U , ϕ ∈ Aut(g), and k > 0 such that {ϕhe1, . . . , ϕhen}
is an orthonormal basis of g with respect to k〈, 〉.

Proof. Take any inner product 〈, 〉 on g. Since U is a set of representatives of
PM, there exists h ∈ U such that

[〈, 〉] = [h.〈, 〉0]. (2.13)

Recall that [·] denotes the orbit of R×Aut(g). Hence, there exist c ∈ R× and ϕ ∈ Aut(g)
such that

〈, 〉 = (cϕ).(h.〈, 〉0) = (cϕh).〈, 〉0. (2.14)

Take any i, j. Then, it follows from the definition of the action that

〈ϕhei, ϕhej〉 = (cϕh).〈ϕhei, ϕhej〉0
= 〈(cϕh)−1ϕhei, (cϕh)−1ϕhej〉0
= c−2δij . (2.15)
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Hence, by putting k := c2 > 0, we complete the proof. ¤

When we apply this theorem for a given Lie algebra g, we put xi := ϕhei and study
the bracket relations among them. Note that ϕ preserves the bracket product. Hence, if
U contains only l parameters, then so do the bracket relations among {x1, . . . , xn}. This
is a procedure to obtain Milnor-type theorems. Examples of Milnor-type theorems will
be given in the following section.

3. Examples of Milnor-type theorems.

In this section, we apply our main theorem to two particular Lie algebras, namely
gRH2 ⊕ Rn−2 and gRHn−1 ⊕ R, and derive Milnor-type theorems for them.

3.1. Preliminaries.
In this subsection, we recall known facts on the Lie algebras gRH2 ⊕ Rn−2 and

gRHn−1 ⊕ R. We refer to [7].
Recall that a Lie algebra of dimension k > 2 is called the Lie algebra of the real

hyperbolic space RHk, denoted by gRHk , if it has a basis {e1, . . . , ek} whose bracket
relations are given by

[e1, ei] = ei (i = 2, . . . , k). (3.1)

We consider the direct sums of such Lie algebras and abelian Lie algebras. For the later
convenience, we use the following bases:

gRH2 ⊕ Rn−2 = spanR{e1, . . . , en | [e1, e2] = e2},
gRHn−1 ⊕ R = spanR{e1, . . . , en | [e1, ei] = ei (i = 3, . . . , n)}.

(3.2)

In order to express PM, one needs R×Aut(g). Hence, let us study its Lie algebra
R⊕Der(g). Recall that

Der(g) := {D ∈ gl(g) | D[·, ·] = [D(·), ·] + [·, D(·)]}, (3.3)

R := {c · id : g → g | c ∈ R}. (3.4)

Note that the above two Lie algebras have been studied in [7]. In fact, the deriva-
tion algebras Der(g) have been described in the proof of [7, Proposition 4.6]. It then
shows, under a suitable change of basis, the following (one can also check it by direct
calculations). Recall that we identify g ∼= Rn. We say that a linear map ϕ : g → g has a
matrix expression A with respect to a basis {x1, . . . , xn} if it satisfies

(ϕ(x1), . . . , ϕ(xn)) = (x1, . . . , xn)A. (3.5)

Lemma 3.1 (cf. [7, Proposition 4.6]). Let g = gRH2 ⊕Rn−2 or gRHn−1 ⊕R. Then,
with respect to the bases in (3.2), we have the following matrix expressions:
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Der(g) =








0 0 0 · · · 0
∗ ∗ 0 · · · 0
∗ 0
...

... ∗
∗ 0








. (3.6)

It is remarkable that these Lie algebras have the same R⊕Der(g). This is a reason
for the choice of the bases in (3.2).

3.2. A set of representatives.
In this subsection, we give a set of representatives of PM for g = gRH2 ⊕ Rn−2

and gRHn−1 ⊕R. Let (R×Aut(g))0 be the connected component of R×Aut(g) containing
the identity. By Lemma 3.1, one knows R ⊕ Der(g) for our Lie algebras. Hence, by
exponentiating it, we obtain

(R×Aut(g))0 =








x1 0 0 · · · 0
∗ x2 0 · · · 0
∗ 0
...

... B

∗ 0




∣∣∣∣∣∣∣∣∣∣∣∣

x1, x2 > 0, det B > 0





. (3.7)

The next proposition gives a set of representatives of PM. Let 〈, 〉0 be the inner
products such that the bases in (3.2) are orthonormal. Denote by In the identity matrix,
and by Ei,j the matrix whose (i, j)-entry is 1 and others are 0.

Proposition 3.2. Let g = gRH2 ⊕ Rn−2 or gRHn−1 ⊕ R. Then the following U is
a set of representatives of PM:

U := {gλ := In − λEn,2 | λ ≥ 0}. (3.8)

Proof. We prove this simultaneously for g = gRH2 ⊕Rn−2 and gRHn−1 ⊕R, since
they have the same R⊕Der(g). Take any g ∈ GLn(R). By Lemma 2.3, we have only to
prove that

∃gλ ∈ U : gλ ∈ [[g]]. (3.9)

First of all, from linear algebra, there exists ϕ1 ∈ O(n) such that gϕ1 is lower triangular,
and all diagonal entries are positive. We denote this by

(
A1 0
A3 A4

)
:= gϕ1 ∈ [[g]], (3.10)

where A1 ∈ GL2(R) and A4 ∈ GLn−2(R). Note that A1 and A4 are lower triangular,
and all diagonal entries are positive. Then, it follows from (3.7) that
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ϕ2 :=
(

A−1
1 0
0 A−1

4

)
∈ R×Aut(g). (3.11)

This gives

[[g]] 3 ϕ2gϕ1 =
(

I2 0
A−1

4 A3 In−2

)
=: g(1). (3.12)

We put (v1, v2) := A−1
4 A3, where v1, v2 ∈ Rn−2. Then again (3.7) yields that

[[g]] 3




1 0 0
0 1 0
−v1 0 In−2


 g(1) =




1 0 0
0 1 0
0 v2 In−2


 =: g(2). (3.13)

Here one know that there exist B ∈ SO(n− 2) and λ ≥ 0 such that

Bv2 = t(0, . . . , 0,−λ). (3.14)

Note that

ϕ3 :=
(

I2 0
0 B

)
∈ (R×Aut(g)) ∩O(n). (3.15)

This concludes that

[[g]] 3 ϕ3g
(2)ϕ−1

3 = gλ, (3.16)

which completes the proof of the proposition. ¤

3.3. Examples of Milnor-type theorems.
In this subsection, we obtain Milnor-type theorems for our two Lie algebras. Here

we need to study them individually. We start with the case g = gRH2 ⊕ Rn−2.

Proposition 3.3. Let g = gRH2 ⊕ Rn−2. Then, for every inner product 〈, 〉 on g,
there exist λ ≥ 0, k > 0, and an orthonormal basis {x1, . . . , xn} with respect to k〈, 〉 such
that the bracket relations are given by

[x1, x2] = x2 + λxn. (3.17)

Proof. Let {e1, . . . , en} be the canonical basis of g defined in (3.2), and 〈, 〉0 be
the inner product so that this basis is orthonormal. Recall that, by Proposition 3.2, the
set

U = {gλ = In − λEn,2 | λ ≥ 0} (3.18)



676 T. Hashinaga, H. Tamaru and K. Terada

is a set of representatives of PM. Take any inner product 〈, 〉 on g. By Theorem 2.4,
there exist gλ ∈ U , k > 0, and ϕ ∈ Aut(g) such that {ϕgλe1, . . . , ϕgλen} is orthonormal
with respect to k〈, 〉. We put xi := ϕgλei for i ∈ {1, . . . , n}. It is clear that the basis
{x1, . . . , xn} is orthonormal with respect to k〈, 〉. Hence, we have only to check the
bracket relations among them. Note that

gλei =

{
ei (i 6= 2),

e2 − λen (i = 2).
(3.19)

Recall that [e1, e2] = e2 is the only nonzero bracket relation with respect to {e1, . . . , en}.
We thus obtain

[gλe1, gλe2] = [e1, e2 − λen] = e2 = gλe2 + λgλen. (3.20)

Since ϕ ∈ Aut(g), we obtain

[x1, x2] = [ϕgλe1, ϕgλe2] = ϕ[gλe1, gλe2] = x2 + λxn. (3.21)

It remains to show that this is the only nonzero bracket relation. Take any i < j, and
assume that j ≥ 3. Then one has

[gλei, gλej ] = [gλei, ej ] = 0. (3.22)

This yields [xi, xj ] = 0, which completes the proof. ¤

We next study the case g = gRHn−1 ⊕ R. The argument is the same as the former
case.

Proposition 3.4. Let g = gRHn−1 ⊕ R. Then, for every inner product 〈, 〉 on g,
there exist λ ≥ 0, k > 0, and an orthonormal basis {x1, . . . , xn} with respect to k〈, 〉 such
that the bracket relations are given by

[x1, x2] = −λxn, [x1, xi] = xi (for i ∈ {3, . . . , n}). (3.23)

Proof. Let {e1, . . . , en} be the canonical basis of g defined in (3.2). Let gλ ∈ U .
Note that (3.19) also holds for this case. Then, one has

[gλe1, gλe2] = [e1, e2 − λen] = −λen = −λgλen,

[gλe1, gλei] = [e1, ei] = ei = gλei

(3.24)

for i ∈ {3, . . . , n}, and others are equal to zero. By applying ϕ ∈ Aut(g), one can
complete the proof. ¤

Remark 3.5. For the case of n = 3, the Lie algebra gRH2 ⊕R has been studied in
[3]. In the proofs of [3, Lemma 5.3, Theorem 5.6], they showed the following: for every
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inner product 〈, 〉 on gRH2 ⊕R, there exist µ, ν > 0 and an orthonormal basis {Y1, Y2, Y3}
whose bracket relations are given by

[Y1, Y2] = (
√

µ/
√

ν)Y3, [Y1, Y3] = (2/
√

ν)Y3, (3.25)

or, by putting κ := 1/(2
√

ν),

[Y1, Y2] = κY2 −
√

3 κY3, [Y1, Y3] = −
√

3 κY2 + 3κY3. (3.26)

By comparing with these relations, we could say that the case of n = 3 of our Milnor-type
theorem has a simpler expression. The Lie algebra gRH2 ⊕R has been also studied in [1].
For more details, we refer to [1, Lemma 5].

Remark 3.6. For the case of n = 4, the geometry of left-invariant Riemannian
metrics have been studied in [8], [9]. For the Lie algebra gRH2 ⊕ R2, in [9, Lemma 6],
they showed the following: for every inner product 〈, 〉 on gRH2 ⊕ R2, there exist a > 0,
b ≥ 0, and an orthonormal basis {f1, f2, f3} whose bracket relations are given by

[f1, f2] = af2 + bf3. (3.27)

For the Lie algebra gRH3 ⊕R, in [9, Lemma 9], they also showed the following: for every
inner product 〈, 〉 on gRH3 ⊕ R, there exist a > 0, b ≥ 0, and an orthonormal basis
{f1, f2, f3} whose bracket relations are given by

[f1, f3] = af1, [f2, f3] = af2 + bf4. (3.28)

These results are quite similar to ours. In fact, our results imply that, up to scaling, we
can assume a = 1 in both cases.

We recall that Theorem 2.4 gives a procedure to obtain a Milnor-type theorem for
any Lie algebra. As mentioned above, it recovers (and sometimes simplifies) some known
results in [1], [3], [8], [9]. Moreover, we emphasize that it will provide a new Milnor-
type theorem, which would be useful to study the geometry of left-invariant Riemannian
metrics.

4. Applications.

A Milnor-type theorem can be applied to study the geometry of left-invariant met-
rics. In this section, we see examples of such studies. Namely, for our two Lie algebras,
we determine the possible Ricci signatures, and classify solvsolitons on them.

Throughout this section, we identify a metric Lie algebra (g, 〈, 〉) with the simply-
connected Lie group equipped with the induced left-invariant Riemannian metric.

4.1. Calculations of the curvatures.
In this subsection, we calculate the Ricci operators of gRH2 ⊕Rn−2 and gRHn−1 ⊕R

with respect to arbitrary inner products.
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First of all, we recall the curvatures of a metric Lie algebra (g, 〈, 〉). Let X, Y, Z ∈ g.
Then the Levi-Civita connection ∇ is given by

2〈∇XY, Z〉 = 〈[Z, X], Y 〉+ 〈X, [Z, Y ]〉+ 〈[X, Y ], Z〉. (4.1)

The Riemannian curvature R is defined by

R(X, Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (4.2)

Let {e1, . . . , en} be an orthonormal basis of g with respect to 〈, 〉. The Ricci operator
Ric〈,〉 : g → g is defined by

Ric〈,〉(X) :=
∑

R(X, ei)ei. (4.3)

We now consider the case of g = gRH2 ⊕ Rn−2. For any inner product 〈, 〉 on it, we
calculate the curvatures in terms of the basis given in Proposition 3.3.

Proposition 4.1. Let 〈, 〉 be an inner product on gRH2 ⊕ Rn−2, and assume that
there exist λ ≥ 0 and an orthonormal basis {x1, . . . , xn} with respect to 〈, 〉 such that the
bracket relations are given by

[x1, x2] = x2 + λxn. (4.4)

Then the Ricci operator satisfies

Ric〈,〉(xi) =





−(1 + (λ2/2))xi (i = 1, 2),

0 (i = 3, . . . , n− 1),

(λ2/2) xn (i = n).

(4.5)

Proof. First of all, we calculate the Levi-Civita connection ∇. By the bracket re-
lations, one can see that x3, . . . , xn−1 do not give any effects on∇. Namely, 〈∇xi

xj , xk〉 6=
0 implies i, j, k ∈ {1, 2, n}. A direct calculation shows that nonzero components of ∇ are
precisely

∇x1x2 = (λ/2)xn, ∇x2x1 = −x2 − (λ/2)xn,

∇x1xn = −(λ/2)x2, ∇xn
x1 = −(λ/2)x2,

∇x2x2 = x1,

∇x2xn = (λ/2)x1, ∇xn
x2 = (λ/2)x1.

Note that, by using the torsion-free condition ∇xy−∇yx = [x, y], the right-hand columns
can be obtained from the left-hand ones.

One can thus calculate the Riemannian curvatures R. The nonzero components of
R, which we need for calculating the Ricci operator, are
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R(x1, x2)x2 = −(1 + (3/4)λ2)x1, R(x1, xn)xn = (1/4)λ2x1,

R(x2, x1)x1 = −(1 + (3/4)λ2)x2, R(x2, xn)xn = (1/4)λ2x2,

R(xn, x1)x1 = (1/4)λ2xn, R(xn, x2)x2 = (1/4)λ2xn.

By summing up these components, one can calculate the Ricci operator, which completes
the proof of the proposition. ¤

Next we consider the case of g = gRHn−1⊕R. The calculation is similar to the former
case.

Proposition 4.2. Let 〈, 〉 be an inner product on gRHn−1 ⊕ R, and assume that
there exist λ ≥ 0 and an orthonormal basis {x1, . . . , xn} with respect to 〈, 〉 such that the
bracket relations are given by

[x1, x2] = −λxn, [x1, xi] = xi (for i ∈ {3, . . . , n}). (4.6)

Then the Ricci operator satisfies

Ric〈,〉(xi) =





−(n− 2 + (λ2/2))x1 (i = 1),

−(λ2/2) x2 + ((n− 1)λ/2) xn (i = 2),

−(n− 2) xi (i = 3, . . . , n− 1),

((n− 1)λ/2) x2 + ((λ2/2)− (n− 2))xn (i = n).

(4.7)

Proof. First of all, we calculate nonzero components of ∇. Let i ∈ {3, . . . , n−1}.
By a similar calculation as before, we have

∇x1x2 = −(λ/2)xn, ∇x2x1 = (λ/2)xn,

∇xi
x1 = −xi,

∇x1xn = (λ/2)x2, ∇xnx1 = (λ/2)x2 − xn,

∇x2xn = −(λ/2)x1, ∇xn
x2 = −(λ/2)x1,

∇xixi = x1, ∇xnxn = x1.

Then one has

R(x1, x2)x2 = −(3/4)λ2x1,

R(x1, xi) xi = −x1 (for i = 3, . . . , n− 1),

R(x1, xn) xn = −(1− (1/4)λ2)x1.

By summing up them, one can show the assertion on Ric〈,〉(x1). Similarly, direct calcu-
lations yield that
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R(x2, x1)x1 = −(3/4)λ2x2 + λxn,

R(x2, xi)xi = (λ/2)xn (for i = 3, . . . , n− 1),

R(x2, xn)xn = (1/4)λ2x2.

This proves the assertion on Ric〈,〉(x2). The remaining assertions follow from

R(xi, xj)xj = −xi (for i = 3, . . . , n− 1 and j 6= 2, i),

R(xn, x1)x1 = λx2 − (1− (1/4)λ2)xn,

R(xn, x2)x2 = (1/4)λ2xn,

R(xn, xi)xi = (λ/2)x2 − xn (for i = 3, . . . , n− 1).

This completes the proof of the proposition. ¤

4.2. Ricci signatures.
In this subsection, we determine all possible signatures for the Ricci curvatures of

gRH2 ⊕ Rn−2 and gRHn−1 ⊕ R. For the notational conventions, we say that a metric
Lie algebra (g, 〈, 〉) has the Ricci signature (−, 0,+) = (m1,m2,m3) if the numbers of
negative, zero and positive eigenvalues of the Ricci operator Ric〈,〉 are equal to m1, m2

and m3, respectively.

Proposition 4.3. We have the following :

(1) For g = gRH2 ⊕ Rn−2, the possible Ricci signatures are (−, 0,+) = (2, n − 2, 0) and
(2, n− 3, 1).

(2) For g = gRHn−1 ⊕ R, the possible Ricci signatures are (−, 0,+) = (n − 1, 1, 0) and
(n− 1, 0, 1).

Proof. We show (1). Take any inner product 〈, 〉 on gRH2⊕Rn−2. Recall that, by
the Milnor-type theorem (Proposition 3.3), there exist λ ≥ 0, k > 0 and an orthonormal
basis {x1, . . . , xn} with respect to k〈, 〉 such that the bracket relations are given by

[x1, x2] = x2 + λxn. (4.8)

We can assume k = 1 because the Ricci signature is invariant under scaling. By Propo-
sition 4.1, it is easy to see that

(−, 0,+) =

{
(2, n− 2, 0) if λ = 0,

(2, n− 3, 1) if λ 6= 0.
(4.9)

This proves (1). In order to show (2), take any 〈, 〉 on gRHn−1 ⊕ R. Without loss of
generality, we can take an orthonormal basis as described in Proposition 4.2. Then
x1, x3, . . . , xn−1 are eigenvectors with negative eigenvalues. It remains to see the
span{x2, xn}-direction. For this direction, it suffices to calculate the eigenvalues of
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A :=
( −λ2/2 ((n− 1)λ/2)

((n− 1)λ/2) ((λ2/2)− (n− 2))

)
. (4.10)

Then, the eigen-polynomial of 2A is

det(tI2 − 2A) = t2 + 2(n− 2)t− (n− 1)2λ2. (4.11)

One thus can see that the eigenvalues of 2A are (−,+) if λ > 0, and (−, 0) if λ = 0. This
completes the proof. ¤

As a corollary of Proposition 4.3, one can immediately see that gRH2 ⊕ Rn−2 and
gRHn−1 ⊕ R with n ≥ 3 do not admit left-invariant Einstein metrics.

Possible Ricci signatures in the cases of n = 3, 4 have been known by [1], [3], [9].

4.3. Solvsolitons.
In this subsection, we classify solvsolitons on the Lie algebras gRH2 ⊕ Rn−2 and

gRHn−1 ⊕ R. In fact, they admit solvsolitons for any n ≥ 3.
First of all, we recall the notion of solvsolitons following Lauret [11].

Definition 4.4. An inner product 〈, 〉 on a solvable Lie algebra g is called a
solvsoliton if there exist c ∈ R and D ∈ Der(g) such that

Ric〈,〉 = cI + D, (4.12)

where I is the identity map of g.

It is remarkable that solvsolitons give rise to left-invariant Ricci solitons. For deeper
discussions and further results on solvsolitons, we refer the reader to [11] and references
therein.

Our Milnor-type theorems are useful to classify solvsolitons on a given Lie algebra.
We demonstrate it by our two Lie algebras, g = gRH2 ⊕ Rn−2 and gRHn−1 ⊕ R. Recall
that 〈, 〉0 is the inner product such that the canonical basis {e1, . . . , en} is orthonormal.

Proposition 4.5. Let g = gRH2 ⊕ Rn−2 or gRHn−1 ⊕ R. Then, an inner product
〈, 〉 on g is a solvsoliton if and only if [〈, 〉] = [〈, 〉0].

Proof. We first prove the case g = gRH2 ⊕ Rn−2. Take any inner product 〈, 〉
on g. Then, by Proposition 3.3, there exist λ ≥ 0, k > 0, and an orthonormal basis
{x1, . . . , xn} with respect to k〈, 〉 such that the bracket relations are given by

[x1, x2] = x2 + λxn. (4.13)

Our first claim is that the matrix expression of Der(g) with respect to the basis
{x1, . . . , xn} is
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Der(g) =








0 0 0 · · · · · · 0
x21 x22 0 · · · · · · 0
x31 −λx3n x33 · · · · · · x3n

...
...

...
. . .

...
... −λxn−1,n

...
. . .

...
xn1 λ(x22 − xnn) xn3 · · · · · · xnn








. (4.14)

We use Lemma 3.1, which gives the matrix expression of Der(g) with respect to
{e1, . . . , en}. In order to describe the change of basis matrix, we recall that gλ :=
In − λEn,2. Let us define

(x′1, . . . , x
′
n) := (e1, . . . , en)gλ. (4.15)

Then, the bases {x′1, . . . , x′n} and {x1, . . . , xn} have the same bracket relations. Hence,
it is sufficient to calculate the matrix expression of Der(g) with respect to {x′1, . . . , x′n}.
Let f : g → g be a linear map, and denote by D the matrix expression of f with respect
to {e1, . . . , en}. Then, we have

(f(x′1), . . . , f(x′n)) = (f(e1), . . . , f(en))gλ = (x′1, . . . , x
′
n)g−1

λ Dgλ. (4.16)

That is, g−1
λ Dgλ is the matrix expression of f with respect to {x′1, . . . , x′n}. By using

this, one can complete the proof of our claim.
We show the “only if”-part. Assume that 〈, 〉 is a solvsoliton. We can assume k = 1

because the solvsoliton is preserved by scaling. Hence, by Proposition 4.1, the matrix
expression of Ric〈,〉 is




−1− (λ2/2)
−1− (λ2/2)

0
. . .

0
λ2/2




. (4.17)

By assumption on 〈, 〉, there exist c ∈ R and D ∈ Der(g) such that

Ric〈,〉 = cI + D. (4.18)

Then, by comparing (4.17) and (4.14), we obtain c = −1−(λ2/2), and λ = 0. This yields
that two bases {x1, . . . , xn} and {e1, . . . , en} have the same bracket relations. Recall that
these bases are orthonormal with respect to 〈, 〉 and 〈, 〉0, respectively. This concludes
[〈, 〉] = [〈, 〉0].

We show the “if”-part. Assume that [〈, 〉] = [〈, 〉0]. Then, one can take the basis
{x1, . . . , xn} so that λ = 0. Hence, by substituting λ = 0 into (4.17) and (4.14), one can
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easily see that 〈, 〉 is a solvsoliton with c = −1.
The proof of the case g = gRHn−1⊕R is similar to the former case. Let {x1, . . . , xn} be

a basis whose bracket relations are given in Proposition 3.4. Then, by the same argument
as above, the matrix expression of Der(g) with respect to this basis coincides with (4.14).
Hence, by using Proposition 4.2, one can classify solvsolitons on g = gRHn−1 ⊕ R. ¤
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