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Generalized coderivations of bicomodules
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Abstract. We introduce a generalized coderivation from a bicomodule
to a bicomodule over corings, which is a generalization of a coderivation. For
each (D, C)-bicomodule N over corings C and D, we construct the universal
generalized coderivation υN : U(N) → N such that every generalized coderiva-
tion from a (D, C)-bicomodule M to N is uniquely expressed as υN ◦ f with
some (D, C)-bicomodule map f : M → U(N). U(N) is isomorphic to the
cotensor product of N and U(D ⊗R C). We show that a coring C is cosep-
arable if and only if, for any coring D, all generalized coderivations from a
(D, C)-bicomodule to a (D, C)-bicomodule are inner.

1. Introduction.

A coderivation of a coalgebra was introduced by Doi [3] and Nakajima [8]. This
notion was extended by Guzman [5] to a cointegration from a bicomodule to another
bicomodule over corings. Recently, a generalized coderivation of a coalgebra was intro-
duced by Nakajima [10], which is a dual notion of a generalized derivation of an algebra
defined by Nakajima [9]. In [6] the author of this paper extended a generalized deriva-
tion to a map from a bimodule to a bimodule. Dualizing this notion, we can extend the
definition of a generalized coderivation to a map from a bicomodule to a bicomodule over
corings.

In this paper, we investigate this new generalized coderivation. The definition is
given in Section 2. In Section 3, we construct a universal generalized coderivation. For
each (D, C)-bicomodule N over corings C and D, there exists a (D, C)-bicomodule U(N)
and a generalized coderivation υN : U(N) → N such that every generalized coderivation
from a (D, C)-bicomodule M to N is uniquely expressed as υN ◦ f with some (D, C)-
bicomodule map f : M → U(N). Moreover, in Section 4, we show that U(N) is isomor-
phic to N¤Dcop⊗RCU(D⊗RC) as (D, C)-bicomodule. Finally, in Section 5, we characterize
a coseparable coring. A coderivation was introduced in the context of cohomology theory
of coalgebras in [3], and it was proved that a coalgebra is coseparable if and only if all
coderivations are inner. This result was extended in [5] for cointegrations. We prove a
corresponding result for our generalized coderivations.

Throughout this paper, R denotes a commutative ring with an identity element,
every algebra is an associative R-algebra with an identity element, and every module is
unitary. Every coring has a counit and every comodule is counitary. Notations are based
on [2]. For an R-algebra A, the category of right A-modules is denoted by MA. For
R-algebras A and B, the category of (B,A)-bimodules on which right and left actions
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of R coincide is denoted by BMA. If X, Y ∈ BMA, then the set of all (B,A)-bimodule
maps from X to Y is denoted by BHomA(X, Y ). For a coring C, its coproduct is denoted
by ∆C , its counit is denoted by εC , and the category of right C-comodules is denoted by
MC . For corings C and D, the category of (D, C)-bicomodules is denoted by DMC . For
M ∈ DMC , the right and left coactions on M are denoted by ρM and Mρ, respectively,
and we set MρM = (Mρ ⊗ IC) ◦ ρM . If C is an A-coring and D is a B-coring, then, for
M , N ∈ DMC , DHomC(M, N), BHomC(M, N), and DHomA(M, N) denote the set of all
(D, C)-bicomodule maps, the set of all right C-comodule left B-module maps, and the
set of all left D-comodule right A-module maps from M to N , respectively. The identity
map of a set X is denoted by IX .

2. Definition of generalized coderivations.

In this section, A and B will represent R-algebras, C an A-coring, and D a B-coring.

Definition 2.1. For each M , N ∈ DMC , we shall define an R-linear map

QM,N : BHomA(M, N) → BHomA(M, D ⊗B N ⊗A C).

For f ∈ BHomA(M, N), we can consider the following diagram:

M N

M ⊗A C N ⊗A C

D ⊗B M D ⊗B N

D ⊗B M ⊗A C D ⊗B N ⊗A C

f //

f⊗IC //

ID⊗f
//

ID⊗f⊗IC
//

Mρ
²²

Mρ⊗IC

²²

Nρ
²²

Nρ⊗IC

²²

ρM

__??????

ID⊗ρM

ÄÄÄÄ
ÄÄ

ÄÄ

ρN

??ÄÄÄÄÄÄ

ID⊗ρN

ÂÂ?
??

??
?

Using maps appeared in this diagram, we set

QM,N (f) = (ID ⊗ ρN ) ◦ Nρ ◦ f − (ID ⊗ ρN ) ◦ (ID ⊗ f) ◦Mρ

− (Nρ⊗ IC) ◦ (f ⊗ IC) ◦ ρM + (ID ⊗ f ⊗ IC) ◦ (Mρ⊗ IC) ◦ ρM .

In other words, using the maps M → D ⊗B N ⊗A C appeared in the above diagram, we
set

QM,N (f) = (a map through f)− (a map through ID ⊗ f)

− (a map through f ⊗ IC) + (a map through ID ⊗ f ⊗ IC).

If f is a (D, C)-bicomodule map, then the above diagram is commutative. Hence we
get the next
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Lemma 2.2. Let A and B be R-algebras, C an A-coring, D a B-coring, L, M ,
N ∈ DMC, and f ∈ BHomA(M, N). Then

(1) QL,N (f ◦ g) = QM,N (f) ◦ g for all g ∈ DHomC(L,M).
(2) QM,L(h ◦ f) = (ID ⊗ h⊗ IC) ◦QM,N (f) for all h ∈ DHomC(N, L).

The next is an immediate consequence of Lemma 2.2.

Corollary 2.3. Q is a natural transformation.

Definition 2.4. We define the functor

DGCoderC :
(DMC)op × DMC → MR

as the kernel of the natural transformation Q, i.e., DGCoderC is the subfunctor of

BHomA :
(DMC)op×DMC → MR determined by DGCoderC(M, N) = Ker QM,N for M ,

N ∈ DMC . An element of DGCoderC(M, N) is called a generalized coderivation.

Theorem 2.5. Let A and B be R-algebras, C an A-coring, and D a B-coring. Let
M =

∐
i∈I Mi be a coproduct in DMC with the structure maps ιi : Mi → M (i ∈ I) and

N =
∏

j∈J Nj a finite product in DMC with the structure maps πj : N → Nj (j ∈ J).
Then, the R-linear map

DGCoderC(M, N) 3 f 7→ (πj ◦ f ◦ ιi) ∈
∏

(i,j)∈I×J

DGCoderC(Mi, Nj)

is an isomorphism.

Proof. It is well-known that the R-linear map

BHomA(M, N) 3 f 7→ (πj ◦ f ◦ ιi) ∈
∏

(i,j)∈I×J

BHomA(Mi, Nj)

is an isomorphism. Let f ∈ BHomA(M, N). Then, by Lemma 2.2, we have

QMi,Nj (πj ◦ f ◦ ιi) = (ID ⊗ πj ⊗ IC) ◦QM,N (f) ◦ ιi

for all i ∈ I and j ∈ J . Since ID ⊗ πj ⊗ IC (j ∈ J) are the structure maps of the
finite product D ⊗B N ⊗A C =

∏
j∈J D ⊗B Nj ⊗A C, QM,N (f) = 0 is equivalent to

QMi,Nj (πj ◦ f ◦ ιi) = 0 for all i ∈ I and j ∈ J . Hence, we get the assertion. ¤

Definition 2.6. For each M , N ∈ DMC , we set

DGInCoderC(M, N) = BHomC(M, N) + DHomA(M, N).

An element of DGInCoderC(M, N) is called a generalized inner coderivation.
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We can easily see the next

Lemma 2.7. DGInCoderC(M, N) ’s determine a subfunctor of DGCoderC.

We shall show that our generalized coderivation is a generalization of a generalized
coderivation introduced in Nakajima [10].

Let M ∈ CMC . According to [5], a map f in AHomA(M, C) is called a coderivation
if ∆C ◦f = (f⊗IC)◦ρM +(IC⊗f)◦Mρ. A map f in AHomA(M, C) is called a Nakajima’s
generalized coderivation if ∆C ◦ f − (f ⊗ IC) ◦ ρM − (IC ⊗ f) ◦ Mρ is a (C, C)-bicomodule
map.

Theorem 2.8. Let A be an R-algebra, C an A-coring, M ∈ CMC, and f ∈
AHomA(M, C). Then f ∈ CGCoderC(M, C) if and only if f is a Nakajima’s general-
ized coderivation.

Proof. We set

h = ∆C ◦ f − (f ⊗ IC) ◦ ρM − (IC ⊗ f) ◦Mρ.

Then we see that

(IC ⊗∆C) ◦ h = (IC ⊗∆C) ◦∆C ◦ f − (IC ⊗∆C) ◦ (f ⊗ IC) ◦ ρM

− (IC ⊗∆C) ◦ (IC ⊗ f) ◦Mρ (2.1)

and

(h⊗ IC) ◦ ρM

= (∆C ⊗ IC) ◦ (f ⊗ IC) ◦ ρM − (f ⊗ IC ⊗ IC) ◦ (ρM ⊗ IC) ◦ ρM

− (IC ⊗ f ⊗ IC) ◦ (Mρ⊗ IC) ◦ ρM . (2.2)

By definition we have

QM,C(f) = (IC ⊗∆C) ◦∆C ◦ f − (IC ⊗∆C) ◦ (IC ⊗ f) ◦Mρ

− (∆C ⊗ IC) ◦ (f ⊗ IC) ◦ ρM + (IC ⊗ f ⊗ IC) ◦ (Mρ⊗ IC) ◦ ρM . (2.3)

The commutative diagram

M M ⊗A C C ⊗A C

M ⊗A C M ⊗A C ⊗A C C ⊗A C ⊗A C

ρM

// f⊗IC //

ρM⊗IC
//

f⊗IC⊗IC
//

ρM

²²
IM⊗∆C

²²
IC⊗∆C

²²

shows that
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(IC ⊗∆C) ◦ (f ⊗ IC) ◦ ρM = (f ⊗ IC ⊗ IC) ◦ (ρM ⊗ IC) ◦ ρM . (2.4)

Combining the equations (2.1), (2.2), (2.3), and (2.4), we get

QM,C(f) = (IC ⊗∆C) ◦ h− (h⊗ IC) ◦ ρM .

Hence f ∈ CGCoderC(M, C) if and only if h is a right C-comodule map. Similarly f ∈
CGCoderC(M, C) if and only if h is a left C-comodule map. ¤

Let M ∈ CMC . We consider well-known R-isomorphisms

RM : AHomA(M, A) → AHomC(M, C) and

LM : AHomA(M, A) → CHomA(M, C).

For ξ ∈ AHomA(M, A), RM (ξ) is the composition map

M M ⊗A C A⊗A C CρM

// ξ⊗IC // canonical isom. //

and LM (ξ) is the composition map

M C ⊗A M C ⊗A A C.
Mρ // IC⊗ξ // canonical isom. //

Usually RM (ξ) and LM (ξ) are represented by (ξ⊗IC)◦ρM and (IC⊗ξ)◦Mρ, respectively.
According to [5], a map of the form RM (ξ) − LM (ξ) with some ξ ∈ AHomA(M, A) is
called an inner coderivation. Obviously every inner coderivation is a generalized inner
coderivation.

3. Universal generalized coderivation.

In this section, we construct the universal coderivations. We will use the following
notations. Let A and B be R-algebras, C an A-coring, D a B-coring, and M ∈ DMC .
We denote by εM the composition map

M ⊗A C M ⊗A A M.
IM⊗εC // canonical isom. //

Similarly, we denote by Mε the composition map

D ⊗B M B ⊗B M M.
εD⊗IM // canonical isom. //

We denote by MεM the composition map

D ⊗B M ⊗A C B ⊗B M ⊗A A M.
εD⊗IM⊗εC // canonical isom. //
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Usually, εM , Mε, and MεM are represented by IM ⊗ εC , εD ⊗ IM , and εD ⊗ IM ⊗ εC ,
respectively. We set

eM = ρM ◦ εM , Me = Mρ ◦Mε, and MeM = MρM ◦MεM .

Definition 3.1. Let A and B be R-algebras, C an A-coring, and D a B-coring. We
define the natural transformation E : D⊗B ( )⊗A C → D⊗B ( )⊗A C of (B,A)-bimodule
maps by setting

EM = ID⊗BM⊗AC − ID ⊗ eM −Me⊗ IC + MeM

for every M ∈ DMC . We define the functor U : DMC → BMA as the kernel of the
natural transformation E. For each M ∈ DMC , let

υM : U(M) → M

denote the restriction map of MεM to U(M).

By definition, for any M , N ∈ DMC and f ∈ DHomC(M, N), the diagram of (B,A)-
bimodule maps

0 U(N) D ⊗B N ⊗A C D ⊗B N ⊗A C

0 U(M) D ⊗B M ⊗A C D ⊗B M ⊗A C// inclusion // EM //

U(f)
²²

//
inclusion

//
EN

//

ID⊗f⊗IC
²²

ID⊗f⊗IC
²²

is commutative and two rows are exact.

Lemma 3.2. Let A and B be R-algebras, C an A-coring, and D a B-coring. For
every M ∈ DMC, there hold the following.

(1) Me ⊗ IC and ID ⊗ eM are commuting idempotents in the endomorphism ring

BHomA(D ⊗B M ⊗A C, D ⊗B M ⊗A C) and MeM = (Me⊗ IC) ◦ (ID ⊗ eM ) holds.
(2) EM = (ID⊗BM⊗AC −Me⊗ IC) ◦ (ID⊗BM⊗AC − ID ⊗ eM ).
(3) EM ◦ EM = EM .
(4) U(M) is a direct summand of D ⊗B M ⊗A C as a (B,A)-bimodule.
(5) EM = QD⊗BM⊗AC, M (MεM ).

Proof. (1) Since εM ◦ ρM = IM , Mε ◦ Mρ = IM , and MεM ◦ MρM = IM , we have
eM ◦ eM = eM , Me ◦Me = Me, and MeM ◦MeM = MeM . In the commutative diagram
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D ⊗B M ⊗A C D ⊗B M D ⊗B M ⊗A C

M ⊗A C M M ⊗A C

D ⊗B M ⊗A C D ⊗B M D ⊗B M ⊗A C,

ID⊗eM

))

Me⊗IC

¤¤

Me⊗IC

¿¿

ID⊗eM

55

ID⊗εM

// ID⊗ρM

//

εM
// ρM

//

ID⊗εM

//
ID⊗ρM

//

Mε⊗IC
²²

Mρ⊗IC
²²

Mε
²²

Mρ
²²

Mε⊗IC
²²

Mρ⊗IC
²²

MεM

))SSSSSSSSSSSSSSS

MρM

))SSSSSSSSSSSSSS

the commutativity of the outer rectangle and the diagonal shows that

MeM = (Me⊗ IC) ◦ (ID ⊗ eM ) = (ID ⊗ eM ) ◦ (Me⊗ IC).

(2) is immediate from (1) and the definition of EM .
(3) is clear by (1) and (2).
(4) is clear by (3) and the definition of U(M).
(5) We consider the following diagram.

D⊗BM⊗AC⊗AC

D⊗BM⊗AC M

M⊗AC

D⊗BD⊗BM⊗AC⊗AC

D⊗BD⊗BM⊗AC D⊗BM

D⊗BM⊗AC

MεM
//

MεM⊗IC //

ID⊗MεM

//

ID⊗MεM⊗IC
//

∆D⊗IM⊗IC
²²

∆D⊗IM⊗IC⊗IC

²²

Mρ
²²

Mρ⊗IC

²²

ID⊗IM⊗∆C

bbEEEEEEE

ID⊗ID⊗IM⊗∆C
||yy

yy
yy

y

ρM

<<yyyyyyy

ID⊗ρM

""EE
EE

EE
E

Then we see that

(ID ⊗ ρM ) ◦Mρ ◦MεM = MρM ◦MεM = MeM ,

(ID ⊗ ρM ) ◦ (ID ⊗MεM ) ◦ (∆D ⊗ IM ⊗ IC)

= (ID ⊗ ρM ) ◦ (ID ⊗ εM ) = ID ⊗ eM ,

(Mρ⊗ IC) ◦ (MεM ⊗ IC) ◦ (ID ⊗ IM ⊗∆C)

= (Mρ⊗ IC) ◦ (Mε⊗ IC) = Me⊗ IC , and

(ID ⊗MεM ⊗ IC) ◦ (∆D ⊗ IM ⊗ IC ⊗ IC) ◦ (ID ⊗ IM ⊗∆C) = ID⊗BM⊗AC .

Combining these equations, we get the assertion. ¤
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In Definition 3.1, U is a functor from DMC to BMA. The next theorem shows that
U is a functor from DMC to DMC .

Theorem 3.3. Let A and B be R-algebras, C an A-coring, and D a B-coring. Then
U is a subfunctor of the functor D⊗B ( )⊗A C : DMC → DMC, and υM ’s determine the
natural transformation υ : U → IDMC .

To prove Theorem 3.3, we use the well-known fact that every bicomodule can be
viewed as a one-sided comodule. Let A and B be R-algebras, C an A-coring, and D a
B-coring. Consider the coring F = Dcop ⊗R C over the R-algebra Λ = Bop ⊗R A, where
Bop is the opposite algebra of B and Dcop is the opposite Bop-coring of D defined in [4,
Opposite coring 1.7]. Then, by [4, Proposition 1.8], a (D, C)-bicomodule is no other than
a right F-comodule. Actually, for M ∈ DMC , the right coaction ρM

F of F on M is the
composition map

M D ⊗B M ⊗A C M ⊗Λ F ,
MρM

// t //

where t is defined by t(d ⊗ m ⊗ c) = m ⊗ (d ⊗ c). Similarly, for N ∈ CMD, the left
coaction NρF of F on N is given by the composition map

N C ⊗A N ⊗B D F ⊗Λ N,
NρN

// t′ //

where t′ is defined by t′(c⊗ n⊗ d) = (d⊗ c)⊗ n.
We prepare an easy lemma.

Lemma 3.4. Let Λ be an R-algebra, F a Λ-coring, and h : M → N a morphism
in MF . Let N ′ be an F-subcomodule of N with h(M) ⊆ N ′. If N ′ is an F-pure Λ-
submodule of N , then the map h′ : M 3 x 7→ h(x) ∈ N ′ is an F-comodule map.

Proof. Let ι : N ′ → N denote the inclusion map. Then, in the diagram

N ′ N ′ ⊗Λ F

N N ⊗Λ F

M M ⊗Λ F
ρM

//

h′⊗IF

²²

h′

²²

ρN′
//

ρN

//

h

ÂÂ?
??

??
h⊗IF

||zz
zz

z

ι

??ÄÄÄÄÄ ι⊗IF

bbDDDDD

all subdiagrams except the outer rectangle are commutative. Since ι⊗ IF is an injective
map, the outer rectangle is commutative. ¤

Proof of Theorem 3.3. Let M ∈ DMC . As a map D ⊗B M ⊗A C → D ⊗B

M ⊗A C ⊗A C, we see that
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(ID ⊗ IM ⊗∆C) ◦ (Me⊗ IC) = Me⊗∆C = (Me⊗ IC ⊗ IC) ◦ (ID ⊗ IM ⊗∆C).

Since EM ◦ (Me⊗ IC) = 0 by (1) and (2) of Lemma 3.2, we have

(EM ⊗ IC) ◦ (ID ⊗ IM ⊗∆C) ◦ (Me⊗ IC) = 0. (3.1)

By composing (3.1) with ID ⊗ eM on the right, and using Lemma 3.2 (1), we get

(EM ⊗ IC) ◦ (ID ⊗ IM ⊗∆C) ◦MeM = 0. (3.2)

On the other hand, as a map M ⊗A C → M ⊗A C ⊗A C, we see that

(eM ⊗ IC) ◦ (IM ⊗∆C) = (ρM ⊗ IC) ◦ (εM ⊗ IC) ◦ (IM ⊗∆C) = ρM ⊗ IC (3.3)

and

(ρM ⊗ IC) ◦ eM = (ρM ⊗ IC) ◦ ρM ◦ εM = (IM ⊗∆C) ◦ ρM ◦ εM = (IM ⊗∆C) ◦ eM . (3.4)

Combining the equations (3.3) and (3.4), we have

(eM ⊗ IC) ◦ (IM ⊗∆C) ◦ eM = (IM ⊗∆C) ◦ eM ,

and hence

(IM⊗AC⊗AC − eM ⊗ IC) ◦ (IM ⊗∆C) ◦ eM = 0.

It follows that

((ID⊗BM⊗AC − ID ⊗ eM )⊗ IC) ◦ (ID ⊗ IM ⊗∆C) ◦ (ID ⊗ eM ) = 0.

By (1) and (2) of Lemma 3.2, we have

(EM ⊗ IC) ◦ (ID ⊗ IM ⊗∆C) ◦ (ID ⊗ eM ) = 0. (3.5)

By the equations (3.1), (3.2), and (3.5), we have

(EM ⊗ IC) ◦ (ID ⊗ IM ⊗∆C) ◦ (ID⊗BM⊗AC − EM ) = 0. (3.6)

Noting (3) and (4) of Lemma 3.2, the equation (3.6) means that (ID ⊗ IM ⊗∆C)(U(M))
is contained in U(M) ⊗A C. Hence, U(M) is a right C-subcomodule of D ⊗B M ⊗A C.
Similarly, U(M) is a left D-subcomodule.

Let M , N ∈ DMC and f ∈ DHomC(M, N). Let h denote the composition map

U(M) D ⊗B M ⊗A C D ⊗B N ⊗A Cinclusion // ID⊗f⊗IC //
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of (D, C)-bicomodule maps. We consider the coring F = Dcop ⊗R C over the R-algebra
Λ = Bop ⊗R A. Then, h is an F-comodule map and U(N) is a pure Λ-submodule of
D⊗B N ⊗A C by Lemma 3.2 (4). Therefore, by Lemma 3.4, U(f) is an F-comodule map.
Hence U is a functor from DMC to DMC . ¤

Theorem 3.5. Let A and B be R-algebras, C an A-coring, D a B-coring, and M ,
N ∈ DMC. Then the R-linear map

DHomC(M, U(N)) 3 f 7→ υN ◦ f ∈ DGCoderC(M, N)

is a natural isomorphism. In particular, υN belongs to DGCoderC(U(N), N).

Proof. As is well-known, the R-linear map

DHomC(M, D ⊗B N ⊗A C) 3 f 7→ NεN ◦ f ∈ BHomA(M, N)

is an isomorphism with the inverse map g 7→ (ID⊗g⊗IC)◦MρM . Let f ∈ DHomC(M, D⊗B

N ⊗A C). By Lemma 2.2 (1) and Lemma 3.2 (5), we have QM,N (NεN ◦ f) = EN ◦ f .
Therefore, NεN ◦f ∈ DGCoderC(M, N) is equivalent to f(M) ⊆ KerEN = U(N). Noting
Lemma 3.4, we get the assertion. ¤

4. A property of the functor U .

Let A and B be R-algebras, C an A-coring, and D a B-coring. Consider the coring
F = Dcop ⊗R C over the R-algebra Λ = Bop ⊗R A. As usual, V = D ⊗B D ⊗R C ⊗A C
is a (D, C)-bicomodule, and hence V is a right F-comodule. We can consider V as an
(A,B)-bimodule, with left action of A on the first C factor, and right action of B on
the second D factor. As such, it is (A,B)-isomorphic to V o = C ⊗A C ⊗R D ⊗B D via
the twist map V 3 d ⊗ d′ ⊗ c ⊗ c′ 7→ c ⊗ c′ ⊗ d ⊗ d′ ∈ V o. We can transfer the (C,D)-
bicomodule structure of V o to V , making it into a left F-comodule. It is clear that V is
an (F ,F)-bicomodule. Under these notations, we have the next

Lemma 4.1. U(D ⊗R C) is an (F ,F)-sub-bicomodule of V .

Proof. By Theorem 3.3, U(D⊗RC) is a (D, C)-sub-bicomodule of V , i.e., U(D⊗R

C) is a right F-subcomodule of V . We use two maps

eC : C ⊗A C 3 x⊗ y 7→ ∆C(x)εC(y) ∈ C ⊗A C and

De : D ⊗B D 3 x⊗ y 7→ εD(x)∆D(y) ∈ D ⊗B D

defined at the first part of the previous section. By Lemma 3.2 (2), we have

ED⊗RC = (IV − De⊗ IC ⊗ IC) ◦ (IV − ID ⊗ ID ⊗ eC).

Since eC is a left C-comodule map and De is a right D-comodule map, ED⊗RC is a (C,D)-



Generalized coderivations of bicomodules 435

bicomodule map. By Lemma 3.2 (4) and [5, Proposition 1.1 2], U(D ⊗R C) is a (C,D)-
sub-bicomodule of V , i.e., U(D ⊗R C) is a left F-subcomodule of V . ¤

Theorem 4.2. Let A and B be R-algebras, C an A-coring, and D a B-coring.
Consider the coring F = Dcop ⊗R C over the R-algebra Λ = Bop ⊗R A, where Bop is
the opposite algebra of B and Dcop is the opposite Bop-coring of D. Then, for every
M ∈ DMC, U(M) is isomorphic to M ¤F U(D ⊗R C) as a right F-comodule.

Proof. We set M1 = D⊗B M⊗AC and M2 = D⊗BD⊗B M⊗AC⊗AC, and define
the (D, C)-bicomodule map ω : M1 → M2 by setting ω = ID⊗MρM ⊗IC−∆D⊗IM ⊗∆C .
We consider the commutative diagram

0 U(M2) D ⊗B M2 ⊗A C D ⊗B M2 ⊗A C

0 U(M1) D ⊗B M1 ⊗A C D ⊗B M1 ⊗A C

0 U(M) D ⊗B M ⊗A C D ⊗B M ⊗A C

0 0 0

// ιM // EM //

//
ιM1 //

EM1 //

//
ιM2

//
EM2

//

²²

U(MρM )
²²

U(ω)
²²

²²

ID⊗MρM⊗IC
²²

ID⊗ω⊗IC
²²

²²

ID⊗MρM⊗IC
²²

ID⊗ω⊗IC
²²

(4.1)

of (B,A)-bimodule maps, where ιM , ιM1 , and ιM2 are inclusion maps. By definition, all
rows are exact. Since MρM is a section in BMA, ID ⊗ MρM ⊗ IC is also a section. The
(D, C)-bicomodule structure of M yields the commutative diagram

M1 M2.

M M1

MρM

//

∆D⊗IM⊗∆C
²²

MρM

²²

ID⊗MρM⊗IC
//

It follows that ω ◦MρM = 0. Hence we have

Im (ID ⊗MρM ⊗ IC) ⊆ Ker (ID ⊗ ω ⊗ IC). (4.2)

It is easy to see that the diagram

M M1

M1 M2
ID⊗MρM⊗IC //

Dε⊗IM⊗εC
²²

MεM

²²
MρM

//

is commutative. Since (Dε⊗ IM ⊗ εC) ◦ (∆D ⊗ IM ⊗∆C) = IM1 , we have
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(Dε⊗ IM ⊗ εC) ◦ ω = MρM ◦MεM − IM1 .

It follows that

(ID ⊗ Dε⊗ IM ⊗ εC ⊗ IC) ◦ (ID ⊗ ω ⊗ IC) = (ID ⊗MρM ⊗ IC) ◦ (ID ⊗MεM ⊗ IC)− IM2 .

This yields that

Ker (ID ⊗ ω ⊗ IC) ⊆ Im (ID ⊗MρM ⊗ IC). (4.3)

By the equations (4.2) and (4.3), we have

Im (ID ⊗MρM ⊗ IC) = Ker (ID ⊗ ω ⊗ IC).

Therefore the middle column and the right column of the diagram (4.1) are exact. Hence
the left column of (4.1) is also exact.

By Lemma 4.1, U = U(D ⊗R C) is an (F ,F)-sub-bicomodule of V = D ⊗B D ⊗R

C ⊗A C. The right F-comodule isomorphism T1 : D ⊗B M1 ⊗A C → M ⊗Λ V defined by
T1(d⊗ d′ ⊗m⊗ c⊗ c′) = m⊗ (d⊗ d′ ⊗ c⊗ c′) yields the diagram

0 M ⊗Λ U M ⊗Λ V M ⊗Λ V

0 U(M1) D ⊗B M1 ⊗A C D ⊗B M1 ⊗A C//
ιM1 //

EM1 //

//
IM⊗ι

//
IM⊗ED⊗RC

//

ϕ

²²
T1

²²
T1

²²

with commutative right square, where ι : U → V is the inclusion map. Since top row
is exact in MΛ and ι is a section in MΛ by Lemma 3.2 (4), the bottom row is exact in
MΛ. Therefore, there exists a right Λ-module isomorphism ϕ : U(M1) → M ⊗Λ U such
that the left square is commutative. We consider the right F-comodule map

h = T1 ◦ ιM1 : U(M1) → M ⊗Λ V.

By Lemma 3.2 (4), M⊗ΛU is isomorphic to a pure Λ-submodule of M⊗ΛV . Therefore, by
Lemma 3.4, ϕ is a right F-comodule map. Similarly, the right F-comodule isomorphism
T2 : D ⊗B M2 ⊗A C → M ⊗Λ F ⊗Λ V defined by

T2(d⊗ d′ ⊗ d′′ ⊗m⊗ c⊗ c′ ⊗ c′′) = m⊗ (d′′ ⊗ c)⊗ (d⊗ d′ ⊗ c′ ⊗ c′′)

yields the commutative diagram

0 M⊗ΛF⊗ΛU M⊗ΛF⊗ΛV M⊗ΛF⊗ΛV

0 U(M2) D⊗BM2⊗AC D⊗BM2⊗AC//
ιM2 //

EM2 //

//
IM⊗IF⊗ι

//
IM⊗IF⊗ED⊗RC

//

ψ
²²

T2
²²

T2
²²
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with exact rows in MΛ and with a right F-comodule isomorphism ψ : U(M2) → M ⊗Λ

F ⊗Λ U .
Next, we define right Λ-module maps ωM,V : M ⊗Λ V → M ⊗Λ F ⊗Λ V and ωM,U :

M ⊗Λ U → M ⊗Λ F ⊗Λ U by setting ωM,V = ρM
F ⊗ IV − IM ⊗ VρF and ωM,U =

ρM
F ⊗ IU − IM ⊗ UρF . Then in the diagram

M ⊗Λ U M ⊗Λ F ⊗Λ U,

M ⊗Λ V M ⊗Λ F ⊗Λ V

D ⊗B M1 ⊗A C D ⊗B M2 ⊗A C

U(M1) U(M2)
U(ω) //

ψ

²²

ϕ

²²
ωM,U

//

ID⊗ω⊗IC //

T2
²²

T1
²²

ωM,V

//

ιM1

""EE
EE

EE
E

ιM2

||yyy
yy

yy

IM⊗ι

<<yyyyyyy
IM⊗IF⊗ι

bbEEEEEEE

all the subdiagrams except the outer rectangle are commutative. Since ι is a section
in MΛ by Lemma 3.2 (4), IM ⊗ IF ⊗ ι is also a section. Hence the outer rectangle is
commutative. Thus we get the exact sequence

0 U(M) M ⊗Λ U M ⊗Λ F ⊗Λ U// ϕ◦U(MρM ) // ωM,U //

in MΛ. Since ϕ ◦ U(
MρM

)
is a right F-comodule map, U(M) is isomorphic to M ¤F U

as a right F-comodule. ¤

5. Coseparable corings.

According to [7] and [5], an A-coring C is said to be coseparable if the coproduct
∆C : C → C ⊗A C of C splits as a (C, C)-bicomodule map.

Theorem 5.1. Let A be an R-algebra and C an A-coring. Then the following
conditions are equivalent :

(1) C is a coseparable A-coring.

(2) DGCoderC = DGInCoderC for any R-algebra B and any B-coring D.

(3) CGCoderC(M, M) = CGInCoderC(M, M) for all M ∈ CMC.

(4) CGCoderC(M, C) = CGInCoderC(M, C) for all M ∈ CMC.

Proof. (1) ⇒ (2). We use the separability of the forgetful functor MC → MA

which was proved in [1, Corollary 3.6]. Let B be an R-algebra, D a B-coring, and M ,
N ∈ DMC . By [5, Corollary 1.3], there exists a (D, C)-bicomodule map

ν : N ⊗A C → N
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such that ν ◦ ρN = IN . We define the R-linear map

Φ : BHomA(M, N) → BHomC(M, N)

by setting Φ(f) = ν ◦ (f ⊗ IC) ◦ ρM for f ∈ BHomA(M, N). For any f ∈ BHomC(M, N),
we see that

Φ(f) = ν ◦ (f ⊗ IC) ◦ ρM = ν ◦ ρN ◦ f = f.

Hence, we have

BHomA(M, N) = BHomC(M, N)⊕KerΦ.

It follows that

DGCoderC(M, N) = BHomC(M, N)⊕ (DGCoderC(M, N) ∩KerΦ
)
. (5.1)

For any f ∈ BHomA(M, N), we consider the following diagram.

M N

M ⊗A C N ⊗A C

D ⊗B M D ⊗B N

D ⊗B M ⊗A C D ⊗B N ⊗A C

N

D ⊗B N

f //

f⊗IC //

ID⊗f
//

ID⊗f⊗IC
//

Mρ
²²

Mρ⊗IC

²²

Nρ
²²

Nρ⊗IC

²²

ρM

__??????

ID⊗ρM

ÄÄÄÄ
ÄÄ

ÄÄ

ρN

??ÄÄÄÄÄÄ

ID⊗ρN

ÂÂ?
??

??
?

ν //

Nρ

²²

ID⊗ν
//

We can see the following.

(ID ⊗ ν) ◦ (ID ⊗ ρN ) ◦ Nρ ◦ f = Nρ ◦ f

(ID ⊗ ν) ◦ (ID ⊗ ρN ) ◦ (ID ⊗ f) ◦Mρ = (ID ⊗ f) ◦Mρ

(ID ⊗ ν) ◦ (Nρ⊗ IC) ◦ (f ⊗ IC) ◦ ρM = Nρ ◦ ν ◦ (f ⊗ IC) ◦ ρM = Nρ ◦ Φ(f)

(ID ⊗ ν) ◦ (ID ⊗ f ⊗ IC) ◦ (ID ⊗ ρM ) ◦Mρ =
(
ID ⊗ Φ(f)

) ◦Mρ

Combining these equations, we get

(ID ⊗ ν) ◦QM,N (f)

= Nρ ◦ f − (ID ⊗ f) ◦Mρ− Nρ ◦ Φ(f) +
(
ID ⊗ Φ(f)

) ◦Mρ.

If f belongs to DGCoderC(M, N) ∩ KerΦ, then we have Nρ ◦ f = (ID ⊗ f) ◦ Mρ, and
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hence f ∈ DHomA(M, N). By the equation (5.1), we conclude that DGCoderC(M, N) =
DGInCoderC(M, N).

(2) ⇒ (3) is trivial.
(3) ⇒ (4). Let M ∈ CMC and f ∈ CGCoderC(M, C). Set N = M ⊕C and define f̃ ∈

AHomA(N, N) by setting f̃(m, c) =
(
0, f(m)

)
for m ∈ M and c ∈ C. By Theorem 2.5,

f̃ belongs to CGCoderC(N, N). By the assumption, f̃ can be written as f̃ = g + h with
some g ∈ AHomC(N, N) and h ∈ CHomA(N, N). Let ι : M → N denote the injection
map and π : N → C the projection map. Then, we have f = π ◦ g ◦ ι + π ◦ h ◦ ι. Since
π◦g◦ι ∈ AHomC(M, C) and π◦h◦ι ∈ CHomA(M, C), f is a generalized inner coderivation.

(4) ⇒ (1). Let M ∈ CMC and f : M → C be a coderivation. Let ε
(2)
C denote the

composition map

C ⊗A C A⊗A A A.
εC⊗εC // canonical isom. //

We can see that ε
(2)
C ◦∆C = εC , ε

(2)
C ◦(f⊗IC)◦ρM = εC ◦f , and ε

(2)
C ◦(IC⊗f)◦Mρ = εC ◦f .

It follows that ε
(2)
C ◦ (

∆C ◦ f − (f ⊗ IC) ◦ ρM − (IC ⊗ f) ◦Mρ
)

= −εC ◦ f . Hence εC ◦ f = 0.
Since f belongs to CGCoderC(M, C) by Theorem 2.8, there exist g ∈ AHomC(M, C) and
h ∈ CHomA(M, C) such that f = g + h. Then we have

f = RM ◦ (RM )−1(g) + LM ◦ (LM )−1(h) = RM (εC ◦ g) + LM (εC ◦ h).

Since εC ◦ g + εC ◦ h = εC ◦ f = 0, we have f = RM (εC ◦ g)− LM (εC ◦ g). Hence, f is an
inner coderivation. By [5, Theorem 3.10], C is a coseparable A-coring. ¤

Acknowledgments. The author would like to express his gratitude to the referee
for his valuable comments.
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[ 1 ] T. Brzeziński, The structure of corings, Induction functors, Maschke-type theorem, and Frobenius

and Galois-type properties, Algebr. Represent. Theory, 5 (2002), 389–410.
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