Generalized coderivations of bicomodules

By Hiroaki Komatsu

(Received May 2, 2014)

Abstract

We introduce a generalized coderivation from a bicomodule to a bicomodule over corings, which is a generalization of a coderivation. For each $(\mathcal{D}, \mathcal{C})$-bicomodule N over corings \mathcal{C} and \mathcal{D}, we construct the universal generalized coderivation $v_{N}: \mathcal{U}(N) \rightarrow N$ such that every generalized coderivation from a $(\mathcal{D}, \mathcal{C})$-bicomodule M to N is uniquely expressed as $v_{N} \circ f$ with some $(\mathcal{D}, \mathcal{C})$-bicomodule map $f: M \rightarrow \mathcal{U}(N) . \mathcal{U}(N)$ is isomorphic to the cotensor product of N and $\mathcal{U}\left(\mathcal{D} \otimes_{R} \mathcal{C}\right)$. We show that a coring \mathcal{C} is coseparable if and only if, for any coring \mathcal{D}, all generalized coderivations from a (\mathcal{D}, \mathcal{C})-bicomodule to a $(\mathcal{D}, \mathcal{C})$-bicomodule are inner.

1. Introduction.

A coderivation of a coalgebra was introduced by Doi [3] and Nakajima [8]. This notion was extended by Guzman [5] to a cointegration from a bicomodule to another bicomodule over corings. Recently, a generalized coderivation of a coalgebra was introduced by Nakajima [10], which is a dual notion of a generalized derivation of an algebra defined by Nakajima [9]. In [6] the author of this paper extended a generalized derivation to a map from a bimodule to a bimodule. Dualizing this notion, we can extend the definition of a generalized coderivation to a map from a bicomodule to a bicomodule over corings.

In this paper, we investigate this new generalized coderivation. The definition is given in Section 2. In Section 3, we construct a universal generalized coderivation. For each $(\mathcal{D}, \mathcal{C})$-bicomodule N over corings \mathcal{C} and \mathcal{D}, there exists a $(\mathcal{D}, \mathcal{C})$-bicomodule $\mathcal{U}(N)$ and a generalized coderivation $v_{N}: \mathcal{U}(N) \rightarrow N$ such that every generalized coderivation from a $(\mathcal{D}, \mathcal{C})$-bicomodule M to N is uniquely expressed as $v_{N} \circ f$ with some $(\mathcal{D}, \mathcal{C})$ bicomodule map $f: M \rightarrow \mathcal{U}(N)$. Moreover, in Section 4, we show that $\mathcal{U}(N)$ is isomorphic to $N \square_{\mathcal{D}^{\operatorname{cop}} \otimes_{R} \mathcal{C}} \mathcal{U}\left(\mathcal{D} \otimes_{R} \mathcal{C}\right)$ as $(\mathcal{D}, \mathcal{C})$-bicomodule. Finally, in Section 5, we characterize a coseparable coring. A coderivation was introduced in the context of cohomology theory of coalgebras in [3], and it was proved that a coalgebra is coseparable if and only if all coderivations are inner. This result was extended in [5] for cointegrations. We prove a corresponding result for our generalized coderivations.

Throughout this paper, R denotes a commutative ring with an identity element, every algebra is an associative R-algebra with an identity element, and every module is unitary. Every coring has a counit and every comodule is counitary. Notations are based on [2]. For an R-algebra A, the category of right A-modules is denoted by \mathbf{M}_{A}. For R-algebras A and B, the category of (B, A)-bimodules on which right and left actions

[^0]of R coincide is denoted by ${ }_{B} \mathbf{M}_{A}$. If $X, Y \in{ }_{B} \mathbf{M}_{A}$, then the set of all (B, A)-bimodule maps from X to Y is denoted by ${ }_{B} \operatorname{Hom}_{A}(X, Y)$. For a coring \mathcal{C}, its coproduct is denoted by $\Delta_{\mathcal{C}}$, its counit is denoted by $\varepsilon_{\mathcal{C}}$, and the category of right \mathcal{C}-comodules is denoted by $\mathbf{M}^{\mathcal{C}}$. For corings \mathcal{C} and \mathcal{D}, the category of $(\mathcal{D}, \mathcal{C})$-bicomodules is denoted by ${ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$. For $M \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$, the right and left coactions on M are denoted by ρ^{M} and ${ }^{M} \rho$, respectively, and we set ${ }^{M} \rho^{M}=\left({ }^{M} \rho \otimes I_{\mathcal{C}}\right) \circ \rho^{M}$. If \mathcal{C} is an A-coring and \mathcal{D} is a B-coring, then, for $M, N \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}},{ }^{\mathcal{D}} \operatorname{Hom}^{\mathcal{C}}(M, N),{ }_{B} \operatorname{Hom}^{\mathcal{C}}(M, N)$, and ${ }^{\mathcal{D}} \operatorname{Hom}_{A}(M, N)$ denote the set of all $(\mathcal{D}, \mathcal{C})$-bicomodule maps, the set of all right \mathcal{C}-comodule left B-module maps, and the set of all left \mathcal{D}-comodule right A-module maps from M to N, respectively. The identity map of a set X is denoted by I_{X}.

2. Definition of generalized coderivations.

In this section, A and B will represent R-algebras, \mathcal{C} an A-coring, and \mathcal{D} a B-coring.
Definition 2.1. For each $M, N \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$, we shall define an R-linear map

$$
Q_{M, N}:{ }_{B} \operatorname{Hom}_{A}(M, N) \rightarrow{ }_{B} \operatorname{Hom}_{A}\left(M, \mathcal{D} \otimes_{B} N \otimes_{A} \mathcal{C}\right)
$$

For $f \in{ }_{B} \operatorname{Hom}_{A}(M, N)$, we can consider the following diagram:

Using maps appeared in this diagram, we set

$$
\begin{aligned}
Q_{M, N}(f)= & \left(I_{\mathcal{D}} \otimes \rho^{N}\right) \circ{ }^{N} \rho \circ f-\left(I_{\mathcal{D}} \otimes \rho^{N}\right) \circ\left(I_{\mathcal{D}} \otimes f\right) \circ{ }^{M_{\rho}} \\
& -\left({ }^{N} \rho \otimes I_{\mathcal{C}}\right) \circ\left(f \otimes I_{\mathcal{C}}\right) \circ \rho^{M}+\left(I_{\mathcal{D}} \otimes f \otimes I_{\mathcal{C}}\right) \circ\left({ }^{M^{M}} \otimes I_{\mathcal{C}}\right) \circ \rho^{M} .
\end{aligned}
$$

In other words, using the maps $M \rightarrow \mathcal{D} \otimes_{B} N \otimes_{A} \mathcal{C}$ appeared in the above diagram, we set

$$
\begin{aligned}
Q_{M, N}(f)= & (\text { a map through } f)-\left(\text { a map through } I_{\mathcal{D}} \otimes f\right) \\
& -\left(\text { a map through } f \otimes I_{\mathcal{C}}\right)+\left(\text { a map through } I_{\mathcal{D}} \otimes f \otimes I_{\mathcal{C}}\right)
\end{aligned}
$$

If f is a $(\mathcal{D}, \mathcal{C})$-bicomodule map, then the above diagram is commutative. Hence we get the next

Lemma 2.2. Let A and B be R-algebras, \mathcal{C} an A-coring, \mathcal{D} a B-coring, L, M, $N \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$, and $f \in{ }_{B} \operatorname{Hom}_{A}(M, N)$. Then
(1) $Q_{L, N}(f \circ g)=Q_{M, N}(f) \circ g$ for all $g \in{ }^{\mathcal{D}} \operatorname{Hom}^{\mathcal{C}}(L, M)$.
(2) $Q_{M, L}(h \circ f)=\left(I_{\mathcal{D}} \otimes h \otimes I_{\mathcal{C}}\right) \circ Q_{M, N}(f)$ for all $h \in{ }^{\mathcal{D}} \operatorname{Hom}^{\mathcal{C}}(N, L)$.

The next is an immediate consequence of Lemma 2.2.
Corollary 2.3. $\quad Q$ is a natural transformation.
Definition 2.4. We define the functor

$$
{ }^{\mathcal{D}} \mathrm{GCoder}^{\mathcal{C}}:\left({ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}\right)^{o p} \times{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}} \rightarrow \mathbf{M}_{R}
$$

as the kernel of the natural transformation Q, i.e., ${ }^{\mathcal{D}} \mathrm{GCoder}{ }^{\mathcal{C}}$ is the subfunctor of ${ }_{B} \operatorname{Hom}_{A}:\left({ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}\right)^{o p} \times{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}} \rightarrow \mathbf{M}_{R}$ determined by ${ }^{\mathcal{D}} \mathrm{GCoder}^{\mathcal{C}}(M, N)=\operatorname{Ker} Q_{M, N}$ for M, $N \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$. An element of ${ }^{\mathcal{D}} \mathrm{GCoder}^{\mathcal{C}}(M, N)$ is called a generalized coderivation.

Theorem 2.5. Let A and B be R-algebras, \mathcal{C} an A-coring, and \mathcal{D} a B-coring. Let $M=\coprod_{i \in I} M_{i}$ be a coproduct in ${ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$ with the structure maps $\iota_{i}: M_{i} \rightarrow M(i \in I)$ and $N=\prod_{j \in J} N_{j}$ a finite product in ${ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$ with the structure maps $\pi_{j}: N \rightarrow N_{j}(j \in J)$. Then, the R-linear map

$$
{ }^{\mathcal{D}} \operatorname{GCoder}^{\mathcal{C}}(M, N) \ni f \mapsto\left(\pi_{j} \circ f \circ \iota_{i}\right) \in \prod_{(i, j) \in I \times J}{ }^{\mathcal{D}} \operatorname{GCoder}^{\mathcal{C}}\left(M_{i}, N_{j}\right)
$$

is an isomorphism.
Proof. It is well-known that the R-linear map

$$
{ }_{B} \operatorname{Hom}_{A}(M, N) \ni f \mapsto\left(\pi_{j} \circ f \circ \iota_{i}\right) \in \prod_{(i, j) \in I \times J}{ }_{B} \operatorname{Hom}_{A}\left(M_{i}, N_{j}\right)
$$

is an isomorphism. Let $f \in{ }_{B} \operatorname{Hom}_{A}(M, N)$. Then, by Lemma 2.2, we have

$$
Q_{M_{i}, N_{j}}\left(\pi_{j} \circ f \circ \iota_{i}\right)=\left(I_{\mathcal{D}} \otimes \pi_{j} \otimes I_{\mathcal{C}}\right) \circ Q_{M, N}(f) \circ \iota_{i}
$$

for all $i \in I$ and $j \in J$. Since $I_{\mathcal{D}} \otimes \pi_{j} \otimes I_{\mathcal{C}}(j \in J)$ are the structure maps of the finite product $\mathcal{D} \otimes_{B} N \otimes_{A} \mathcal{C}=\prod_{j \in J} \mathcal{D} \otimes_{B} N_{j} \otimes_{A} \mathcal{C}, Q_{M, N}(f)=0$ is equivalent to $Q_{M_{i}, N_{j}}\left(\pi_{j} \circ f \circ \iota_{i}\right)=0$ for all $i \in I$ and $j \in J$. Hence, we get the assertion.

Definition 2.6. For each $M, N \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$, we set

$$
{ }^{\mathcal{D}} \mathrm{GInCoder}{ }^{\mathcal{C}}(M, N)={ }_{B} \operatorname{Hom}^{\mathcal{C}}(M, N)+{ }^{\mathcal{D}} \operatorname{Hom}_{A}(M, N) .
$$

An element of ${ }^{\mathcal{D}} \mathrm{GInCoder}{ }^{\mathcal{C}}(M, N)$ is called a generalized inner coderivation.

We can easily see the next
Lemma 2.7. ${ }^{\mathcal{D}}$ GInCoder ${ }^{\mathcal{C}}(M, N)$'s determine a subfunctor of ${ }^{\mathcal{D}} \mathrm{GCoder}^{\mathcal{C}}$.
We shall show that our generalized coderivation is a generalization of a generalized coderivation introduced in Nakajima [10].

Let $M \in{ }^{\mathcal{C}} \mathbf{M}^{\mathcal{C}}$. According to [5], a map f in ${ }_{A} \operatorname{Hom}_{A}(M, \mathcal{C})$ is called a coderivation if $\Delta_{\mathcal{C}} \circ f=\left(f \otimes I_{\mathcal{C}}\right) \circ \rho^{M}+\left(I_{\mathcal{C}} \otimes f\right) \circ{ }^{M_{\rho}} \rho$. A map f in $_{A} \operatorname{Hom}_{A}(M, \mathcal{C})$ is called a Nakajima's generalized coderivation if $\Delta_{\mathcal{C}} \circ f-\left(f \otimes I_{\mathcal{C}}\right) \circ \rho^{M}-\left(I_{\mathcal{C}} \otimes f\right) \circ{ }^{M_{\rho}}$ is a $(\mathcal{C}, \mathcal{C})$-bicomodule map.

Theorem 2.8. Let A be an R-algebra, \mathcal{C} an A-coring, $M \in{ }^{\mathcal{C}} \mathbf{M}^{\mathcal{C}}$, and $f \in$ ${ }_{A} \operatorname{Hom}_{A}(M, \mathcal{C})$. Then $f \in{ }^{\mathcal{C}} \operatorname{GCoder}^{\mathcal{C}}(M, \mathcal{C})$ if and only if f is a Nakajima's generalized coderivation.

Proof. We set

$$
h=\Delta_{\mathcal{C}} \circ f-\left(f \otimes I_{\mathcal{C}}\right) \circ \rho^{M}-\left(I_{\mathcal{C}} \otimes f\right) \circ{ }^{M} \rho .
$$

Then we see that

$$
\begin{align*}
\left(I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}\right) \circ h= & \left(I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}\right) \circ \Delta_{\mathcal{C}} \circ f-\left(I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}\right) \circ\left(f \otimes I_{\mathcal{C}}\right) \circ \rho^{M} \\
& -\left(I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}\right) \circ\left(I_{\mathcal{C}} \otimes f\right) \circ{ }^{M} \rho \tag{2.1}
\end{align*}
$$

and

$$
\begin{align*}
(h \otimes & \left.I_{\mathcal{C}}\right) \circ \rho^{M} \\
= & \left(\Delta_{\mathcal{C}} \otimes I_{\mathcal{C}}\right) \circ\left(f \otimes I_{\mathcal{C}}\right) \circ \rho^{M}-\left(f \otimes I_{\mathcal{C}} \otimes I_{\mathcal{C}}\right) \circ\left(\rho^{M} \otimes I_{\mathcal{C}}\right) \circ \rho^{M} \\
& -\left(I_{\mathcal{C}} \otimes f \otimes I_{\mathcal{C}}\right) \circ\left({ }^{M} \rho \otimes I_{\mathcal{C}}\right) \circ \rho^{M} . \tag{2.2}
\end{align*}
$$

By definition we have

$$
\begin{align*}
Q_{M, \mathcal{C}}(f)= & \left(I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}\right) \circ \Delta_{\mathcal{C}} \circ f-\left(I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}\right) \circ\left(I_{\mathcal{C}} \otimes f\right) \circ{ }^{M_{\rho}} \\
& -\left(\Delta_{\mathcal{C}} \otimes I_{\mathcal{C}}\right) \circ\left(f \otimes I_{\mathcal{C}}\right) \circ \rho^{M}+\left(I_{\mathcal{C}} \otimes f \otimes I_{\mathcal{C}}\right) \circ\left({ }^{M^{\prime}} \otimes I_{\mathcal{C}}\right) \circ \rho^{M} \tag{2.3}
\end{align*}
$$

The commutative diagram

shows that

$$
\begin{equation*}
\left(I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}\right) \circ\left(f \otimes I_{\mathcal{C}}\right) \circ \rho^{M}=\left(f \otimes I_{\mathcal{C}} \otimes I_{\mathcal{C}}\right) \circ\left(\rho^{M} \otimes I_{\mathcal{C}}\right) \circ \rho^{M} . \tag{2.4}
\end{equation*}
$$

Combining the equations (2.1), (2.2), (2.3), and (2.4), we get

$$
Q_{M, \mathcal{C}}(f)=\left(I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}\right) \circ h-\left(h \otimes I_{\mathcal{C}}\right) \circ \rho^{M} .
$$

Hence $f \in{ }^{\mathcal{C}} \mathrm{GCoder}^{\mathcal{C}}(M, \mathcal{C})$ if and only if h is a right \mathcal{C}-comodule map. Similarly $f \in$ ${ }^{\mathcal{C}} \operatorname{GCoder}^{\mathcal{C}}(M, \mathcal{C})$ if and only if h is a left \mathcal{C}-comodule map.

Let $M \in{ }^{\mathcal{C}} \mathbf{M}^{\mathcal{C}}$. We consider well-known R-isomorphisms

$$
\begin{aligned}
\mathfrak{R}_{M}:{ }_{A} \operatorname{Hom}_{A}(M, A) & \rightarrow{ }_{A} \operatorname{Hom}^{\mathcal{C}}(M, \mathcal{C}) \text { and } \\
\mathfrak{L}_{M}:{ }_{A} \operatorname{Hom}_{A}(M, A) & \rightarrow{ }^{\mathcal{C}} \operatorname{Hom}_{A}(M, \mathcal{C}) .
\end{aligned}
$$

For $\xi \in{ }_{A} \operatorname{Hom}_{A}(M, A), \mathfrak{R}_{M}(\xi)$ is the composition map

$$
M \xrightarrow{\rho^{M}} M \otimes_{A} \mathcal{C} \xrightarrow{\xi \otimes I_{\mathcal{C}}} A \otimes_{A} \mathcal{C} \xrightarrow{\text { canonical isom. }} \mathcal{C}
$$

and $\mathfrak{L}_{M}(\xi)$ is the composition map

$$
M \xrightarrow{M_{\rho}} \mathcal{C} \otimes_{A} M \xrightarrow{I_{\mathcal{C}} \otimes \xi} \mathcal{C} \otimes_{A} A \xrightarrow{\text { canonical isom. }} \mathcal{C} .
$$

Usually $\mathfrak{R}_{M}(\xi)$ and $\mathfrak{L}_{M}(\xi)$ are represented by $\left(\xi \otimes I_{\mathcal{C}}\right) \circ \rho^{M}$ and $\left(I_{\mathcal{C}} \otimes \xi\right) \circ{ }^{M} \rho$, respectively. According to [5], a map of the form $\mathfrak{R}_{M}(\xi)-\mathfrak{L}_{M}(\xi)$ with some $\xi \in{ }_{A} \operatorname{Hom}_{A}(M, A)$ is called an inner coderivation. Obviously every inner coderivation is a generalized inner coderivation.

3. Universal generalized coderivation.

In this section, we construct the universal coderivations. We will use the following notations. Let A and B be R-algebras, \mathcal{C} an A-coring, \mathcal{D} a B-coring, and $M \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$. We denote by ε^{M} the composition map

$$
M \otimes_{A} \mathcal{C} \xrightarrow{I_{M} \otimes \varepsilon_{\mathcal{C}}} M \otimes_{A} A \xrightarrow{\text { canonical isom. }} M
$$

Similarly, we denote by ${ }^{M} \varepsilon$ the composition map

$$
\mathcal{D} \otimes_{B} M \xrightarrow{\varepsilon_{\mathcal{D}} \otimes I_{M}} B \otimes_{B} M \xrightarrow{\text { canonical isom. }} M
$$

We denote by ${ }^{M} \varepsilon^{M}$ the composition map

$$
\mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C} \xrightarrow{\varepsilon_{\mathcal{D}} \otimes I_{M} \otimes \varepsilon_{\mathcal{C}}} B \otimes_{B} M \otimes_{A} A \xrightarrow{\text { canonical isom. }} M .
$$

Usually, $\varepsilon^{M},{ }^{M_{\varepsilon}}$, and ${ }^{M_{\varepsilon}}{ }^{M}$ are represented by $I_{M} \otimes \varepsilon_{\mathcal{C}}, \varepsilon_{\mathcal{D}} \otimes I_{M}$, and $\varepsilon_{\mathcal{D}} \otimes I_{M} \otimes \varepsilon_{\mathcal{C}}$, respectively. We set

$$
e^{M}=\rho^{M} \circ \varepsilon^{M}, \quad{ }^{M} e={ }^{M} \rho \circ{ }^{M} \varepsilon, \quad \text { and } \quad M^{M} e^{M}={ }^{M} \rho^{M} \circ{ }^{M^{M}} \varepsilon^{M} .
$$

Definition 3.1. Let A and B be R-algebras, \mathcal{C} an A-coring, and \mathcal{D} a B-coring. We define the natural transformation $E: \mathcal{D} \otimes_{B}() \otimes_{A} \mathcal{C} \rightarrow \mathcal{D} \otimes_{B}() \otimes_{A} \mathcal{C}$ of (B, A)-bimodule maps by setting

$$
E_{M}=I_{\mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C}}-I_{\mathcal{D}} \otimes e^{M}-{ }^{M} e \otimes I_{\mathcal{C}}+{ }^{M} e^{M}
$$

for every $M \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$. We define the functor $\mathcal{U}:{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}} \rightarrow{ }_{B} \mathbf{M}_{A}$ as the kernel of the natural transformation E. For each $M \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$, let

$$
v_{M}: \mathcal{U}(M) \rightarrow M
$$

denote the restriction map of ${ }^{M_{\varepsilon}}{ }^{M}$ to $\mathcal{U}(M)$.
By definition, for any $M, N \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$ and $f \in{ }^{\mathcal{D}} \operatorname{Hom}^{\mathcal{C}}(M, N)$, the diagram of (B, A) bimodule maps

is commutative and two rows are exact.
Lemma 3.2. Let A and B be R-algebras, \mathcal{C} an A-coring, and \mathcal{D} a B-coring. For every $M \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$, there hold the following.
(1) ${ }^{M_{e}} \otimes I_{\mathcal{C}}$ and $I_{\mathcal{D}} \otimes e^{M}$ are commuting idempotents in the endomorphism ring ${ }_{B} \operatorname{Hom}_{A}\left(\mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C}, \mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C}\right)$ and ${ }^{M} e^{M}=\left({ }^{M} e \otimes I_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D}} \otimes e^{M}\right)$ holds.
(2) $E_{M}=\left(I_{\mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C}}-{ }^{M} e \otimes I_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C}}-I_{\mathcal{D}} \otimes e^{M}\right)$.
(3) $E_{M} \circ E_{M}=E_{M}$.
(4) $\mathcal{U}(M)$ is a direct summand of $\mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C}$ as a (B, A)-bimodule.
(5) $E_{M}=Q_{\mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C}, M}\left({ }^{M} \varepsilon^{M}\right)$.

Proof. (1) Since $\varepsilon^{M} \circ \rho^{M}=I_{M},{ }^{M} \varepsilon \circ{ }^{M} \rho=I_{M}$, and ${ }^{M_{\varepsilon}}{ }^{M} \circ{ }^{M} \rho^{M}=I_{M}$, we have $e^{M} \circ e^{M}=e^{M},{ }^{M} e \circ{ }^{M} e={ }^{M} e$, and ${ }^{M} e^{M} \circ{ }^{M} e^{M}={ }^{M} e^{M}$. In the commutative diagram

the commutativity of the outer rectangle and the diagonal shows that

$$
{ }^{M^{M}} e^{M}=\left({ }^{M} e \otimes I_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D}} \otimes e^{M}\right)=\left(I_{\mathcal{D}} \otimes e^{M}\right) \circ\left({ }^{M} e \otimes I_{\mathcal{C}}\right) .
$$

(2) is immediate from (1) and the definition of E_{M}.
(3) is clear by (1) and (2).
(4) is clear by (3) and the definition of $\mathcal{U}(M)$.
(5) We consider the following diagram.

Then we see that

$$
\begin{aligned}
& \left(I_{\mathcal{D}} \otimes \rho^{M}\right) \circ{ }^{M} \rho \circ{ }^{M} \varepsilon^{M}={ }^{M} \rho^{M} \circ{ }^{M} \varepsilon^{M}={ }^{M} e^{M}, \\
& \left(I_{\mathcal{D}} \otimes \rho^{M}\right) \circ\left(I_{\mathcal{D}} \otimes{ }^{M^{M}} \varepsilon^{M}\right) \circ\left(\Delta_{\mathcal{D}} \otimes I_{M} \otimes I_{\mathcal{C}}\right) \\
& \quad=\left(I_{\mathcal{D}} \otimes \rho^{M}\right) \circ\left(I_{\mathcal{D}} \otimes \varepsilon^{M}\right)=I_{\mathcal{D}} \otimes e^{M}, \\
& \left({ }^{M} \rho \otimes I_{\mathcal{C}}\right) \circ\left({ }^{M} \varepsilon^{M} \otimes I_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D}} \otimes I_{M} \otimes \Delta_{\mathcal{C}}\right) \\
& \quad=\left({ }^{M} \rho \otimes I_{\mathcal{C}}\right) \circ\left({ }^{M} \varepsilon \otimes I_{\mathcal{C}}\right)={ }^{M} e \otimes I_{\mathcal{C}}, \text { and } \\
& \left(I_{\mathcal{D}} \otimes{ }^{M_{\varepsilon}}{ }^{M} \otimes I_{\mathcal{C}}\right) \circ\left(\Delta_{\mathcal{D}} \otimes I_{M} \otimes I_{\mathcal{C}} \otimes I_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D}} \otimes I_{M} \otimes \Delta_{\mathcal{C}}\right)=I_{D \otimes{ }_{B} M \otimes{ }_{A} \mathcal{C}} .
\end{aligned}
$$

Combining these equations, we get the assertion.

In Definition 3.1, \mathcal{U} is a functor from ${ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$ to ${ }_{B} \mathbf{M}_{A}$. The next theorem shows that \mathcal{U} is a functor from ${ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$ to ${ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$.

Theorem 3.3. Let A and B be R-algebras, \mathcal{C} an A-coring, and \mathcal{D} a B-coring. Then \mathcal{U} is a subfunctor of the functor $\mathcal{D} \otimes_{B}() \otimes_{A} \mathcal{C}:{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}} \rightarrow{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$, and v_{M} 's determine the natural transformation $v: \mathcal{U} \rightarrow I_{\mathcal{D}_{\mathbf{M}}}$.

To prove Theorem 3.3, we use the well-known fact that every bicomodule can be viewed as a one-sided comodule. Let A and B be R-algebras, \mathcal{C} an A-coring, and \mathcal{D} a B-coring. Consider the coring $\mathcal{F}=\mathcal{D}^{c o p} \otimes_{R} \mathcal{C}$ over the R-algebra $\Lambda=B^{o p} \otimes_{R} A$, where $B^{o p}$ is the opposite algebra of B and $\mathcal{D}^{c o p}$ is the opposite $B^{o p}$-coring of \mathcal{D} defined in [4, Opposite coring 1.7]. Then, by [4, Proposition 1.8], a (\mathcal{D}, \mathcal{C})-bicomodule is no other than a right \mathcal{F}-comodule. Actually, for $M \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$, the right coaction $\rho_{\mathcal{F}}^{M}$ of \mathcal{F} on M is the composition map

$$
M \xrightarrow{M_{\rho} M} \mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C} \xrightarrow{t} M \otimes_{\Lambda} \mathcal{F}
$$

where t is defined by $t(d \otimes m \otimes c)=m \otimes(d \otimes c)$. Similarly, for $N \in{ }^{\mathcal{C}} \mathbf{M}^{\mathcal{D}}$, the left coaction ${ }^{N} \rho_{\mathcal{F}}$ of \mathcal{F} on N is given by the composition map

$$
N \xrightarrow{N_{\rho^{N}}} \mathcal{C} \otimes_{A} N \otimes_{B} \mathcal{D} \xrightarrow{t^{\prime}} \mathcal{F} \otimes_{\Lambda} N
$$

where t^{\prime} is defined by $t^{\prime}(c \otimes n \otimes d)=(d \otimes c) \otimes n$.
We prepare an easy lemma.
Lemma 3.4. Let Λ be an R-algebra, \mathcal{F} a Λ-coring, and $h: M \rightarrow N$ a morphism in $\mathbf{M}^{\mathcal{F}}$. Let N^{\prime} be an \mathcal{F}-subcomodule of N with $h(M) \subseteq N^{\prime}$. If N^{\prime} is an \mathcal{F}-pure Λ submodule of N, then the map $h^{\prime}: M \ni x \mapsto h(x) \in N^{\prime}$ is an \mathcal{F}-comodule map.

Proof. Let $\iota: N^{\prime} \rightarrow N$ denote the inclusion map. Then, in the diagram

all subdiagrams except the outer rectangle are commutative. Since $\iota \otimes I_{\mathcal{F}}$ is an injective map, the outer rectangle is commutative.

Proof of Theorem 3.3. Let $M \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$. As a map $\mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C} \rightarrow \mathcal{D} \otimes_{B}$ $M \otimes_{A} \mathcal{C} \otimes_{A} \mathcal{C}$, we see that

$$
\left(I_{\mathcal{D}} \otimes I_{M} \otimes \Delta_{\mathcal{C}}\right) \circ\left({ }^{M_{e}} \otimes I_{\mathcal{C}}\right)={ }^{M_{e}} e \otimes \Delta_{\mathcal{C}}=\left({ }^{M_{e}} e I_{\mathcal{C}} \otimes I_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D}} \otimes I_{M} \otimes \Delta_{\mathcal{C}}\right)
$$

Since $E_{M} \circ\left({ }^{M} e \otimes I_{\mathcal{C}}\right)=0$ by (1) and (2) of Lemma 3.2, we have

$$
\begin{equation*}
\left(E_{M} \otimes I_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D}} \otimes I_{M} \otimes \Delta_{\mathcal{C}}\right) \circ\left({ }^{M} e \otimes I_{\mathcal{C}}\right)=0 \tag{3.1}
\end{equation*}
$$

By composing (3.1) with $I_{\mathcal{D}} \otimes e^{M}$ on the right, and using Lemma 3.2 (1), we get

$$
\begin{equation*}
\left(E_{M} \otimes I_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D}} \otimes I_{M} \otimes \Delta_{\mathcal{C}}\right) \circ{ }^{M} e^{M}=0 \tag{3.2}
\end{equation*}
$$

On the other hand, as a map $M \otimes_{A} \mathcal{C} \rightarrow M \otimes_{A} \mathcal{C} \otimes_{A} \mathcal{C}$, we see that

$$
\begin{equation*}
\left(e^{M} \otimes I_{\mathcal{C}}\right) \circ\left(I_{M} \otimes \Delta_{\mathcal{C}}\right)=\left(\rho^{M} \otimes I_{\mathcal{C}}\right) \circ\left(\varepsilon^{M} \otimes I_{\mathcal{C}}\right) \circ\left(I_{M} \otimes \Delta_{C}\right)=\rho^{M} \otimes I_{\mathcal{C}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\rho^{M} \otimes I_{\mathcal{C}}\right) \circ e^{M}=\left(\rho^{M} \otimes I_{\mathcal{C}}\right) \circ \rho^{M} \circ \varepsilon^{M}=\left(I_{M} \otimes \Delta_{\mathcal{C}}\right) \circ \rho^{M} \circ \varepsilon^{M}=\left(I_{M} \otimes \Delta_{\mathcal{C}}\right) \circ e^{M} \tag{3.4}
\end{equation*}
$$

Combining the equations (3.3) and (3.4), we have

$$
\left(e^{M} \otimes I_{\mathcal{C}}\right) \circ\left(I_{M} \otimes \Delta_{\mathcal{C}}\right) \circ e^{M}=\left(I_{M} \otimes \Delta_{\mathcal{C}}\right) \circ e^{M}
$$

and hence

$$
\left(I_{M \otimes_{A} \mathcal{C} \otimes_{A} \mathcal{C}}-e^{M} \otimes I_{\mathcal{C}}\right) \circ\left(I_{M} \otimes \Delta_{\mathcal{C}}\right) \circ e^{M}=0 .
$$

It follows that

$$
\left(\left(I_{\mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C}}-I_{\mathcal{D}} \otimes e^{M}\right) \otimes I_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D}} \otimes I_{M} \otimes \Delta_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D}} \otimes e^{M}\right)=0
$$

By (1) and (2) of Lemma 3.2, we have

$$
\begin{equation*}
\left(E_{M} \otimes I_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D}} \otimes I_{M} \otimes \Delta_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D}} \otimes e^{M}\right)=0 \tag{3.5}
\end{equation*}
$$

By the equations (3.1), (3.2), and (3.5), we have

$$
\begin{equation*}
\left(E_{M} \otimes I_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D}} \otimes I_{M} \otimes \Delta_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C}}-E_{M}\right)=0 . \tag{3.6}
\end{equation*}
$$

Noting (3) and (4) of Lemma 3.2, the equation (3.6) means that $\left(I_{\mathcal{D}} \otimes I_{M} \otimes \Delta_{\mathcal{C}}\right)(\mathcal{U}(M))$ is contained in $\mathcal{U}(M) \otimes_{A} \mathcal{C}$. Hence, $\mathcal{U}(M)$ is a right \mathcal{C}-subcomodule of $\mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C}$. Similarly, $\mathcal{U}(M)$ is a left \mathcal{D}-subcomodule.

Let $M, N \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$ and $f \in{ }^{\mathcal{D}} \operatorname{Hom}^{\mathcal{C}}(M, N)$. Let h denote the composition map

$$
\mathcal{U}(M) \xrightarrow{\text { inclusion }} D \otimes_{B} M \otimes_{A} \mathcal{C} \xrightarrow{I_{\mathcal{D}} \otimes f \otimes I_{\mathcal{C}}} D \otimes_{B} N \otimes_{A} \mathcal{C}
$$

of $(\mathcal{D}, \mathcal{C})$-bicomodule maps. We consider the coring $\mathcal{F}=\mathcal{D}^{c o p} \otimes_{R} \mathcal{C}$ over the R-algebra $\Lambda=B^{o p} \otimes_{R} A$. Then, h is an \mathcal{F}-comodule map and $\mathcal{U}(N)$ is a pure Λ-submodule of $\mathcal{D} \otimes_{B} N \otimes_{A} \mathcal{C}$ by Lemma 3.2 (4). Therefore, by Lemma 3.4, $\mathcal{U}(f)$ is an \mathcal{F}-comodule map. Hence \mathcal{U} is a functor from ${ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$ to ${ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$.

Theorem 3.5. Let A and B be R-algebras, \mathcal{C} an A-coring, \mathcal{D} a B-coring, and M, $N \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$. Then the R-linear map

$$
{ }^{\mathcal{D}} \operatorname{Hom}^{\mathcal{C}}(M, \mathcal{U}(N)) \ni f \mapsto v_{N} \circ f \in{ }^{\mathcal{D}} \operatorname{GCoder}^{\mathcal{C}}(M, N)
$$

is a natural isomorphism. In particular, v_{N} belongs to ${ }^{\mathcal{D}} \operatorname{GCoder}{ }^{\mathcal{C}}(\mathcal{U}(N), N)$.
Proof. As is well-known, the R-linear map

$$
{ }^{\mathcal{D}} \operatorname{Hom}^{\mathcal{C}}\left(M, \mathcal{D} \otimes_{B} N \otimes_{A} \mathcal{C}\right) \ni f \mapsto{ }^{N} \varepsilon^{N} \circ f \in{ }_{B} \operatorname{Hom}_{A}(M, N)
$$

is an isomorphism with the inverse map $g \mapsto\left(I_{\mathcal{D}} \otimes g \otimes I_{\mathcal{C}}\right) \circ{ }^{M_{\rho}}{ }^{M}$. Let $f \in{ }^{\mathcal{D}} \operatorname{Hom}^{\mathcal{C}}\left(M, \mathcal{D} \otimes_{B}\right.$ $\left.N \otimes_{A} \mathcal{C}\right)$. By Lemma 2.2 (1) and Lemma 3.2 (5), we have $Q_{M, N}\left({ }^{N} \varepsilon^{N} \circ f\right)=E_{N} \circ f$. Therefore, ${ }^{N} \varepsilon^{N} \circ f \in{ }^{\mathcal{D}} \mathrm{GCoder}{ }^{\mathcal{C}}(M, N)$ is equivalent to $f(M) \subseteq \operatorname{Ker} E_{N}=\mathcal{U}(N)$. Noting Lemma 3.4, we get the assertion.

4. A property of the functor \mathcal{U}.

Let A and B be R-algebras, \mathcal{C} an A-coring, and \mathcal{D} a B-coring. Consider the coring $\mathcal{F}=\mathcal{D}^{c o p} \otimes_{R} \mathcal{C}$ over the R-algebra $\Lambda=B^{o p} \otimes_{R} A$. As usual, $V=\mathcal{D} \otimes_{B} \mathcal{D} \otimes_{R} \mathcal{C} \otimes_{A} \mathcal{C}$ is a $(\mathcal{D}, \mathcal{C})$-bicomodule, and hence V is a right \mathcal{F}-comodule. We can consider V as an (A, B)-bimodule, with left action of A on the first \mathcal{C} factor, and right action of B on the second \mathcal{D} factor. As such, it is (A, B)-isomorphic to $V^{o}=\mathcal{C} \otimes_{A} \mathcal{C} \otimes_{R} \mathcal{D} \otimes_{B} \mathcal{D}$ via the twist map $V \ni d \otimes d^{\prime} \otimes c \otimes c^{\prime} \mapsto c \otimes c^{\prime} \otimes d \otimes d^{\prime} \in V^{o}$. We can transfer the (\mathcal{C}, \mathcal{D})bicomodule structure of V^{o} to V, making it into a left \mathcal{F}-comodule. It is clear that V is an $(\mathcal{F}, \mathcal{F})$-bicomodule. Under these notations, we have the next

Lemma 4.1. $\quad \mathcal{U}\left(\mathcal{D} \otimes_{R} \mathcal{C}\right)$ is an $(\mathcal{F}, \mathcal{F})$-sub-bicomodule of V.
Proof. By Theorem 3.3, $\mathcal{U}\left(\mathcal{D} \otimes_{R} \mathcal{C}\right)$ is a $(\mathcal{D}, \mathcal{C})$-sub-bicomodule of V, i.e., $\mathcal{U}\left(\mathcal{D} \otimes_{R}\right.$ \mathcal{C}) is a right \mathcal{F}-subcomodule of V. We use two maps

$$
\begin{aligned}
& e^{\mathcal{C}}: \mathcal{C} \otimes_{A} \mathcal{C} \ni x \otimes y \mapsto \Delta_{\mathcal{C}}(x) \varepsilon_{\mathcal{C}}(y) \in \mathcal{C} \otimes_{A} \mathcal{C} \text { and } \\
& \mathcal{D}_{e}: \mathcal{D} \otimes_{B} \mathcal{D} \ni x \otimes y \mapsto \varepsilon_{\mathcal{D}}(x) \Delta_{\mathcal{D}}(y) \in \mathcal{D} \otimes_{B} \mathcal{D}
\end{aligned}
$$

defined at the first part of the previous section. By Lemma 3.2 (2), we have

$$
E_{\mathcal{D} \otimes_{R} \mathcal{C}}=\left(I_{V}-{ }^{\mathcal{D}} e \otimes I_{\mathcal{C}} \otimes I_{\mathcal{C}}\right) \circ\left(I_{V}-I_{\mathcal{D}} \otimes I_{\mathcal{D}} \otimes e^{\mathcal{C}}\right)
$$

Since $e^{\mathcal{C}}$ is a left \mathcal{C}-comodule map and ${ }^{\mathcal{D}} e$ is a right \mathcal{D}-comodule map, $E_{\mathcal{D} \otimes_{R} \mathcal{C}}$ is a $(\mathcal{C}, \mathcal{D})$ -
bicomodule map. By Lemma 3.2 (4) and [5, Proposition 1.12], $\mathcal{U}\left(\mathcal{D} \otimes_{R} \mathcal{C}\right)$ is a $(\mathcal{C}, \mathcal{D})$ -sub-bicomodule of V, i.e., $\mathcal{U}\left(\mathcal{D} \otimes_{R} \mathcal{C}\right)$ is a left \mathcal{F}-subcomodule of V.

Theorem 4.2. Let A and B be R-algebras, \mathcal{C} an A-coring, and \mathcal{D} a B-coring. Consider the coring $\mathcal{F}=\mathcal{D}^{\text {cop }} \otimes_{R} \mathcal{C}$ over the R-algebra $\Lambda=B^{o p} \otimes_{R} A$, where $B^{o p}$ is the opposite algebra of B and $\mathcal{D}^{\text {cop }}$ is the opposite $B^{o p}$-coring of \mathcal{D}. Then, for every $M \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}, \mathcal{U}(M)$ is isomorphic to $M \square_{\mathcal{F}} \mathcal{U}\left(\mathcal{D} \otimes_{R} \mathcal{C}\right)$ as a right \mathcal{F}-comodule.

Proof. We set $M_{1}=\mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C}$ and $M_{2}=\mathcal{D} \otimes_{B} \mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C} \otimes_{A} \mathcal{C}$, and define the (\mathcal{D}, \mathcal{C})-bicomodule map $\omega: M_{1} \rightarrow M_{2}$ by setting $\omega=I_{\mathcal{D}} \otimes{ }^{M} \rho^{M} \otimes I_{\mathcal{C}}-\Delta_{\mathcal{D}} \otimes I_{M} \otimes \Delta_{\mathcal{C}}$. We consider the commutative diagram

of (B, A)-bimodule maps, where $\iota_{M}, \iota_{M_{1}}$, and $\iota_{M_{2}}$ are inclusion maps. By definition, all rows are exact. Since ${ }^{M_{\rho}}{ }^{M}$ is a section in ${ }_{B} \mathbf{M}_{A}, I_{\mathcal{D}} \otimes{ }^{M} \rho^{M} \otimes I_{\mathcal{C}}$ is also a section. The $(\mathcal{D}, \mathcal{C})$-bicomodule structure of M yields the commutative diagram

It follows that $\omega \circ{ }^{M} \rho^{M}=0$. Hence we have

$$
\begin{equation*}
\operatorname{Im}\left(I_{\mathcal{D}} \otimes{ }^{M_{\rho}}{ }^{M} \otimes I_{\mathcal{C}}\right) \subseteq \operatorname{Ker}\left(I_{\mathcal{D}} \otimes \omega \otimes I_{\mathcal{C}}\right) \tag{4.2}
\end{equation*}
$$

It is easy to see that the diagram

is commutative. Since $\left({ }^{\mathcal{D}} \varepsilon \otimes I_{M} \otimes \varepsilon^{\mathcal{C}}\right) \circ\left(\Delta_{\mathcal{D}} \otimes I_{M} \otimes \Delta_{\mathcal{C}}\right)=I_{M_{1}}$, we have

$$
\left({ }^{\mathcal{D}} \varepsilon \otimes I_{M} \otimes \varepsilon^{\mathcal{C}}\right) \circ \omega={ }^{M_{\rho}}{ }^{M} \circ{ }^{M_{\varepsilon}}{ }^{M}-I_{M_{1}} .
$$

It follows that

$$
\left(I_{\mathcal{D}} \otimes \mathcal{D}_{\varepsilon} \otimes I_{M} \otimes \varepsilon^{\mathcal{C}} \otimes I_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D}} \otimes \omega \otimes I_{\mathcal{C}}\right)=\left(I_{\mathcal{D}} \otimes{ }^{M_{\rho}}{ }^{M} \otimes I_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D}} \otimes{ }^{M_{\varepsilon}} \varepsilon^{M} \otimes I_{\mathcal{C}}\right)-I_{M_{2}} .
$$

This yields that

$$
\begin{equation*}
\operatorname{Ker}\left(I_{\mathcal{D}} \otimes \omega \otimes I_{\mathcal{C}}\right) \subseteq \operatorname{Im}\left(I_{\mathcal{D}} \otimes{ }^{M_{\rho}} \rho^{M} \otimes I_{\mathcal{C}}\right) \tag{4.3}
\end{equation*}
$$

By the equations (4.2) and (4.3), we have

$$
\operatorname{Im}\left(I_{\mathcal{D}} \otimes{ }^{M_{\rho}} \rho^{M} \otimes I_{\mathcal{C}}\right)=\operatorname{Ker}\left(I_{\mathcal{D}} \otimes \omega \otimes I_{\mathcal{C}}\right)
$$

Therefore the middle column and the right column of the diagram (4.1) are exact. Hence the left column of (4.1) is also exact.

By Lemma 4.1, $U=\mathcal{U}\left(\mathcal{D} \otimes_{R} \mathcal{C}\right)$ is an $(\mathcal{F}, \mathcal{F})$-sub-bicomodule of $V=\mathcal{D} \otimes_{B} \mathcal{D} \otimes_{R}$ $\mathcal{C} \otimes_{A} \mathcal{C}$. The right \mathcal{F}-comodule isomorphism $T_{1}: \mathcal{D} \otimes_{B} M_{1} \otimes_{A} \mathcal{C} \rightarrow M \otimes_{\Lambda} V$ defined by $T_{1}\left(d \otimes d^{\prime} \otimes m \otimes c \otimes c^{\prime}\right)=m \otimes\left(d \otimes d^{\prime} \otimes c \otimes c^{\prime}\right)$ yields the diagram

with commutative right square, where $\iota: U \rightarrow V$ is the inclusion map. Since top row is exact in \mathbf{M}_{Λ} and ι is a section in \mathbf{M}_{Λ} by Lemma 3.2 (4), the bottom row is exact in \mathbf{M}_{Λ}. Therefore, there exists a right Λ-module isomorphism $\varphi: \mathcal{U}\left(M_{1}\right) \rightarrow M \otimes_{\Lambda} U$ such that the left square is commutative. We consider the right \mathcal{F}-comodule map

$$
h=T_{1} \circ \iota_{M_{1}}: \mathcal{U}\left(M_{1}\right) \rightarrow M \otimes_{\Lambda} V .
$$

By Lemma 3.2 (4), $M \otimes_{\Lambda} U$ is isomorphic to a pure Λ-submodule of $M \otimes_{\Lambda} V$. Therefore, by Lemma 3.4, φ is a right \mathcal{F}-comodule map. Similarly, the right \mathcal{F}-comodule isomorphism $T_{2}: \mathcal{D} \otimes_{B} M_{2} \otimes_{A} \mathcal{C} \rightarrow M \otimes_{\Lambda} \mathcal{F} \otimes_{\Lambda} V$ defined by

$$
T_{2}\left(d \otimes d^{\prime} \otimes d^{\prime \prime} \otimes m \otimes c \otimes c^{\prime} \otimes c^{\prime \prime}\right)=m \otimes\left(d^{\prime \prime} \otimes c\right) \otimes\left(d \otimes d^{\prime} \otimes c^{\prime} \otimes c^{\prime \prime}\right)
$$

yields the commutative diagram

with exact rows in \mathbf{M}_{Λ} and with a right \mathcal{F}-comodule isomorphism $\psi: \mathcal{U}\left(M_{2}\right) \rightarrow M \otimes_{\Lambda}$ $\mathcal{F} \otimes_{\Lambda} U$.

Next, we define right Λ-module maps $\omega_{M, V}: M \otimes_{\Lambda} V \rightarrow M \otimes_{\Lambda} \mathcal{F} \otimes_{\Lambda} V$ and $\omega_{M, U}$: $M \otimes_{\Lambda} U \rightarrow M \otimes_{\Lambda} \mathcal{F} \otimes_{\Lambda} U$ by setting $\omega_{M, V}=\rho_{\mathcal{F}}^{M} \otimes I_{V}-I_{M} \otimes{ }^{V_{\mathcal{F}}}$ and $\omega_{M, U}=$ $\rho_{\mathcal{F}}^{M} \otimes I_{U}-I_{M} \otimes{ }^{U} \rho_{\mathcal{F}}$. Then in the diagram

all the subdiagrams except the outer rectangle are commutative. Since ι is a section in \mathbf{M}_{Λ} by Lemma $3.2(4), I_{M} \otimes I_{\mathcal{F}} \otimes \iota$ is also a section. Hence the outer rectangle is commutative. Thus we get the exact sequence

$$
0 \longrightarrow \mathcal{U}(M) \xrightarrow{\varphi \circ \mathcal{U}\left({ }^{M} \rho^{M}\right)} M \otimes_{\Lambda} U \xrightarrow{\omega_{M, U}} M \otimes_{\Lambda} \mathcal{F} \otimes_{\Lambda} U
$$

in \mathbf{M}_{Λ}. Since $\varphi \circ \mathcal{U}\left({ }^{M} \rho^{M}\right)$ is a right \mathcal{F}-comodule map, $\mathcal{U}(M)$ is isomorphic to $M \square_{\mathcal{F}} U$ as a right \mathcal{F}-comodule.

5. Coseparable corings.

According to [7] and [5], an A-coring \mathcal{C} is said to be coseparable if the coproduct $\Delta_{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C} \otimes_{A} \mathcal{C}$ of \mathcal{C} splits as a $(\mathcal{C}, \mathcal{C})$-bicomodule map.

Theorem 5.1. Let A be an R-algebra and \mathcal{C} an A-coring. Then the following conditions are equivalent:
(1) \mathcal{C} is a coseparable A-coring.
(2) ${ }^{\mathcal{D}}$ GCoder ${ }^{\mathcal{C}}={ }^{\mathcal{D}}$ GInCoder ${ }^{\mathcal{C}}$ for any R-algebra B and any B-coring \mathcal{D}.
(3) ${ }^{\mathcal{C}} \operatorname{GCoder}^{\mathcal{C}}(M, M)={ }^{\mathcal{C}} \mathrm{GInCoder}^{\mathcal{C}}(M, M)$ for all $M \in{ }^{\mathcal{C}} \mathbf{M}^{\mathcal{C}}$.
(4) ${ }^{\mathcal{C}} \operatorname{GCoder}^{\mathcal{C}}(M, \mathcal{C})={ }^{\mathcal{C}} \operatorname{GInCoder}^{\mathcal{C}}(M, \mathcal{C})$ for all $M \in{ }^{\mathcal{C}} \mathbf{M}^{\mathcal{C}}$.

Proof. (1) $\Rightarrow(2)$. We use the separability of the forgetful functor $\mathbf{M}^{\mathcal{C}} \rightarrow \mathbf{M}_{A}$ which was proved in [1, Corollary 3.6]. Let B be an R-algebra, \mathcal{D} a B-coring, and M, $N \in{ }^{\mathcal{D}} \mathbf{M}^{\mathcal{C}}$. By [5, Corollary 1.3], there exists a (\mathcal{D}, \mathcal{C})-bicomodule map

$$
\nu: N \otimes_{A} \mathcal{C} \rightarrow N
$$

such that $\nu \circ \rho^{N}=I_{N}$. We define the R-linear map

$$
\Phi:{ }_{B} \operatorname{Hom}_{A}(M, N) \rightarrow{ }_{B} \operatorname{Hom}^{\mathcal{C}}(M, N)
$$

by setting $\Phi(f)=\nu \circ\left(f \otimes I_{\mathcal{C}}\right) \circ \rho^{M}$ for $f \in{ }_{B} \operatorname{Hom}_{A}(M, N)$. For any $f \in{ }_{B} \operatorname{Hom}^{\mathcal{C}}(M, N)$, we see that

$$
\Phi(f)=\nu \circ\left(f \otimes I_{\mathcal{C}}\right) \circ \rho^{M}=\nu \circ \rho^{N} \circ f=f
$$

Hence, we have

$$
{ }_{B} \operatorname{Hom}_{A}(M, N)={ }_{B} \operatorname{Hom}^{\mathcal{C}}(M, N) \oplus \operatorname{Ker} \Phi .
$$

It follows that

$$
\begin{equation*}
{ }^{\mathcal{D}} \operatorname{GCoder}^{\mathcal{C}}(M, N)={ }_{B} \operatorname{Hom}^{\mathcal{C}}(M, N) \oplus\left({ }^{\mathcal{D}} \operatorname{GCoder}^{\mathcal{C}}(M, N) \cap \operatorname{Ker} \Phi\right) . \tag{5.1}
\end{equation*}
$$

For any $f \in{ }_{B} \operatorname{Hom}_{A}(M, N)$, we consider the following diagram.

We can see the following.

$$
\begin{aligned}
& \left(I_{\mathcal{D}} \otimes \nu\right) \circ\left(I_{\mathcal{D}} \otimes \rho^{N}\right) \circ{ }^{N} \rho \circ f={ }^{N_{\rho}} \circ f \\
& \left(I_{\mathcal{D}} \otimes \nu\right) \circ\left(I_{\mathcal{D}} \otimes \rho^{N}\right) \circ\left(I_{\mathcal{D}} \otimes f\right) \circ{ }^{M} \rho=\left(I_{\mathcal{D}} \otimes f\right) \circ{ }^{M_{\rho}} \rho \\
& \left(I_{\mathcal{D}} \otimes \nu\right) \circ\left({ }^{N} \rho \otimes I_{\mathcal{C}}\right) \circ\left(f \otimes I_{\mathcal{C}}\right) \circ \rho^{M}={ }^{N} \rho \circ \nu \circ\left(f \otimes I_{\mathcal{C}}\right) \circ \rho^{M}={ }^{N_{\rho}} \circ \Phi(f) \\
& \left(I_{\mathcal{D}} \otimes \nu\right) \circ\left(I_{\mathcal{D}} \otimes f \otimes I_{\mathcal{C}}\right) \circ\left(I_{\mathcal{D}} \otimes \rho^{M}\right) \circ{ }^{M_{\rho}} \rho\left(I_{\mathcal{D}} \otimes \Phi(f)\right) \circ{ }^{M_{\rho}} \rho
\end{aligned}
$$

Combining these equations, we get

$$
\begin{aligned}
& \left(I_{\mathcal{D}} \otimes \nu\right) \circ Q_{M, N}(f) \\
& \quad={ }^{N} \rho \circ f-\left(I_{\mathcal{D}} \otimes f\right) \circ{ }^{M} \rho-{ }^{N} \rho \circ \Phi(f)+\left(I_{\mathcal{D}} \otimes \Phi(f)\right) \circ{ }^{M_{\rho}} .
\end{aligned}
$$

If f belongs to ${ }^{\mathcal{D}} \mathrm{GCoder}{ }^{\mathcal{C}}(M, N) \cap \operatorname{Ker} \Phi$, then we have ${ }^{N} \rho \circ f=\left(I_{\mathcal{D}} \otimes f\right) \circ{ }^{M} \rho$, and
hence $f \in{ }^{\mathcal{D}} \operatorname{Hom}_{A}(M, N)$. By the equation (5.1), we conclude that ${ }^{\mathcal{D}} \operatorname{GCoder}{ }^{\mathcal{C}}(M, N)=$ ${ }^{\mathcal{D}}$ GInCoder ${ }^{\mathcal{C}}(M, N)$.
$(2) \Rightarrow(3)$ is trivial.
(3) \Rightarrow (4). Let $M \in{ }^{\mathcal{C}} \mathbf{M}^{\mathcal{C}}$ and $f \in{ }^{\mathcal{C}} \operatorname{GCoder}^{\mathcal{C}}(M, \mathcal{C})$. Set $N=M \oplus \mathcal{C}$ and define $\tilde{f} \in$ ${ }_{A} \operatorname{Hom}_{A}(N, N)$ by setting $\tilde{f}(m, c)=(0, f(m))$ for $m \in M$ and $c \in \mathcal{C}$. By Theorem 2.5, \tilde{f} belongs to ${ }^{\mathcal{C}} \mathrm{GCoder}^{\mathcal{C}}(N, N)$. By the assumption, \tilde{f} can be written as $\tilde{f}=g+h$ with some $g \in{ }_{A} \operatorname{Hom}^{\mathcal{C}}(N, N)$ and $h \in{ }^{\mathcal{C}} \operatorname{Hom}_{A}(N, N)$. Let $\iota: M \rightarrow N$ denote the injection map and $\pi: N \rightarrow \mathcal{C}$ the projection map. Then, we have $f=\pi \circ g \circ \iota+\pi \circ h \circ \iota$. Since $\pi \circ g \circ \iota \in{ }_{A} \operatorname{Hom}^{\mathcal{C}}(M, \mathcal{C})$ and $\pi \circ h \circ \iota \in{ }^{\mathcal{C}} \operatorname{Hom}_{A}(M, \mathcal{C}), f$ is a generalized inner coderivation.
(4) \Rightarrow (1). Let $M \in{ }^{\mathcal{C}} \mathbf{M}^{\mathcal{C}}$ and $f: M \rightarrow \mathcal{C}$ be a coderivation. Let $\varepsilon_{\mathcal{C}}^{(2)}$ denote the composition map

$$
\mathcal{C} \otimes_{A} \mathcal{C} \xrightarrow{\varepsilon_{\mathcal{C}} \otimes \varepsilon_{\mathcal{C}}} A \otimes_{A} A \xrightarrow{\text { canonical isom. }} A
$$

We can see that $\varepsilon_{\mathcal{C}}^{(2)} \circ \Delta_{\mathcal{C}}=\varepsilon_{\mathcal{C}}, \varepsilon_{\mathcal{C}}^{(2)} \circ\left(f \otimes I_{\mathcal{C}}\right) \circ \rho^{M}=\varepsilon_{\mathcal{C}} \circ f$, and $\varepsilon_{\mathcal{C}}^{(2)} \circ\left(I_{\mathcal{C}} \otimes f\right) \circ{ }^{M_{\rho}}=\varepsilon_{\mathcal{C}} \circ f$. It follows that $\varepsilon_{\mathcal{C}}^{(2)} \circ\left(\Delta_{\mathcal{C}} \circ f-\left(f \otimes I_{\mathcal{C}}\right) \circ \rho^{M}-\left(I_{\mathcal{C}} \otimes f\right) \circ{ }^{M_{\rho}}\right)=-\varepsilon_{\mathcal{C}} \circ f$. Hence $\varepsilon_{\mathcal{C}} \circ f=0$. Since f belongs to ${ }^{\mathcal{C}} \mathrm{GCoder}^{\mathcal{C}}(M, \mathcal{C})$ by Theorem 2.8, there exist $g \in{ }_{A} \operatorname{Hom}^{\mathcal{C}}(M, \mathcal{C})$ and $h \in{ }^{\mathcal{C}} \operatorname{Hom}_{A}(M, \mathcal{C})$ such that $f=g+h$. Then we have

$$
f=\mathfrak{R}_{M} \circ\left(\mathfrak{R}_{M}\right)^{-1}(g)+\mathfrak{L}_{M} \circ\left(\mathfrak{L}_{M}\right)^{-1}(h)=\mathfrak{R}_{M}\left(\varepsilon_{\mathcal{C}} \circ g\right)+\mathfrak{L}_{M}\left(\varepsilon_{\mathcal{C}} \circ h\right) .
$$

Since $\varepsilon_{\mathcal{C}} \circ g+\varepsilon_{\mathcal{C}} \circ h=\varepsilon_{\mathcal{C}} \circ f=0$, we have $f=\mathfrak{R}_{M}\left(\varepsilon_{\mathcal{C}} \circ g\right)-\mathfrak{L}_{M}\left(\varepsilon_{\mathcal{C}} \circ g\right)$. Hence, f is an inner coderivation. By [5, Theorem 3.10], \mathcal{C} is a coseparable A-coring.

Acknowledgments. The author would like to express his gratitude to the referee for his valuable comments.

References

[1] T. Brzeziński, The structure of corings, Induction functors, Maschke-type theorem, and Frobenius and Galois-type properties, Algebr. Represent. Theory, 5 (2002), 389-410.
[2] T. Brzeziński and R. Wisbauer, Corings and Comodules, Cambridge University Press, Cambridge, 2003.
[3] Y. Doi, Homological coalgebra, J. Math. Soc. Japan, 33 (1981), 31-50.
[4] J. Gómez-Torrecillas and A. Louly, Coseparable corings, Comm. Algebra, 31 (2003), 4455-4471.
[5] F. Guzman, Cointegrations, relative cohomology for comodules, and coseparable corings, J. Algebra, 126 (1989), 211-224.
[6] H. Komatsu, Generalized derivations of bimodules, Int. J. Pure Appl. Math., 77 (2012), 579-593.
[7] R. G. Larson, Coseparable Hopf algebras, J. Pure Appl. Algebra, 3 (1973), 261-267.
[8] A. Nakajima, Coseparable coalgebras and coextensions of coderivations, Math. J. Okayama Univ., 22 (1980), 145-149.
[9] A. Nakajima, On categorical properties of generalized derivations, Sci. Math., 2 (1999), 345-352.
[10] A. Nakajima, On generalized coderivations, Int. Electron. J. Algebra, 12 (2012), 37-52.

Hiroaki Komatsu

Faculty of Computer Science and Systems Engineering
Okayama Prefectural University
Kuboki 1-1-1, Soja
Okayama 719-1197, Japan
E-mail: komatsu@cse.oka-pu.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 16T15.
 Key Words and Phrases. coring, generalized coderivation, coseparable coring.

