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Abstract. In [6], Kotschick and Morita showed that the Gel’fand–
Kalinin–Fuks class in H7

GF(ham2, sp(2,R))8 is decomposed as a product η ∧ ω
of some leaf cohomology class η and a transverse symplectic class ω. We
show that the same formula holds for the Metoki class, which is a non-trivial
element in H9

GF(ham2, sp(2,R))14. The result was conjectured in [6], where
they studied characteristic classes of transversely symplectic foliations due to
Kontsevich. Our proof depends on Gröbner Basis theory using computer cal-
culations.

1. Introduction.

Let X(M) be the Lie algebra of smooth vector fields of a smooth manifold M .
H•c(X(M)) is the Lie algebra cohomology, where the subscript c means that each cochain
is required to be continuous. The cohomology group H•c(X(M)) is often written as
H•GF(M) and is called the Gel’fand-Fuks cohomology group of M . It is known that if M

is of finite-type (i.e., M has a open cover such that each non-empty finite intersection
of the member is diffeomorphic to n-dimensional open disk, where n = dimM), then
H•GF(M) is finite dimensional.

Let an denote the Lie algebra of formal vector fields on Rn, expressed as
R[[x1, . . . , xn]]〈∂/∂x1, . . . , ∂/∂xn〉 where x1, . . . , xn are the natural coordinates of Rn.
Thus an element of an is a vector field with coefficients which are formal power series in
the coordinate functions. Then H•c(an) ∼= H•GF(Rn) and so dim H•c(an) is finite.

Let vn be the subalgebra of an consisting of the volume preserving formal vector
fields on Rn, and ham2n the subalgebra of a2n consisting of formal Hamiltonian vector
fields on R2n. Then, the next question is still open: Is dim H•c(vn) or dim H•c(ham2n)
infinite?

There is a notion of weight for cochains of ham2n. Since the weight is preserved
by the coboundary operator, there is a cohomology subgroup corresponding to each
weight (cf. Section 2.1(I-3)). In [4], for the weight w ≤ 0, the structure of the relative
cohomology H•c(ham2n, sp(2n,R))w is completely determined, and when n = 1 and w > 0,
the following holds true:
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H•c(ham2, sp(2,R))w = 0 for w = 1, 2, . . . , 7

Hm
c (ham2, sp(2,R))8 =

{
R if m = 7

0 otherwise.

The generator of H7
c(ham2, sp(2,R))8 is called the Gel’fand–Kalinin–Fuks class. Here-

after, we use the notation H•GF(ham2n, sp(2n,R))w instead of H•c(ham2n, sp(2n,R))w.
There is a homomorphism from H•GF(ham2, sp(2,R)) into H•(BΓsymp

2 ), where Γsymp
2

is the groupoid of germs of local diffeomorphisms of R2 preserving the symplectic struc-
ture of R2. It is not yet known whether the image of the Gel’fand–Kalinin–Fuks class by
the homomorphism is trivial in H7(BΓsymp

2 ) or not (cf. [2]).
The next non-trivial result in succession to the Gel’fand–Kalinin–Fuks class is

H9
GF(ham2, sp(2,R))14 ∼= R, which was shown by Metoki ([7]) in 1999. He was inter-

ested in the volume preserving formal vector fields; when n = 1 both ham2 and v2 are
the same.

Let F be a foliation on a manifold M . We have the foliated cohomology defined
by H•F (M,R) := H•(ΩF ) where ΩF = Ω(M)/I(F), Ω(M) is the exterior algebra of
differential forms on M , and I(F) is the ideal generated by {σ ∈ Ω1(M) | 〈σ,TF〉 = 0}.
Kontsevich ([5]) showed that if F is a codimension 2n foliation endowed with a symplectic
form ω in the transverse direction, then there is a commutative diagram:

HF (M,R) ωn∧ // H•+2n
DR (M,R)

H•GF(ham0
2n, sp(2n,R))

ωn∧ //

OO

H•+2n
GF (ham2n, sp(2n,R))

OO
(1)

where ham0
2n is the Lie subalgebra of the Hamiltonian vector fields of the formal polyno-

mial vanishing at the origin of R2n.
Kotschick and Morita ([6]) determined the space H•GF(ham0

2, sp(2,R))w for w ≤ 10,
and concerning Kontsevich homomorphism given in the bottom line of (1), they showed
the following, as well as the non-triviality of Kontsevich homomorphism in the case n = 1:

Theorem 1.1 ([6]). There is a unique element η ∈ H5
GF(ham0

2, sp(2,R))10 ∼= R
such that

Gel’fand–Kalinin–Fuks class = η ∧ ω ∈ H7
GF(ham2, sp(2,R))8

where ω is the cochain associated with the linear symplectic form of R2.

Further they stated that it is highly likely that the same thing is true also for
Metoki class ∈ H9

GF(ham2, sp(2,R))14. That is, there should exist an element η′ ∈
H7

GF(ham0
2, sp(2,R))16 such that

Metoki class = η′ ∧ ω ∈ H9
GF(ham2, sp(2,R))14.
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In the same line of Kotschick and Morita ([6]), we determined H•GF(ham0
2, sp(2,R))w for

w ≤ 20 in [13]. In this paper, making use of information in [13], we will show the
following theorem.

Theorem 1.2. H9
GF(ham2, sp(2,R))14 and H7

GF(ham0
2, sp(2,R))16 are both 1-

dimensional and the map of wedging symplectic cocycle, i.e., Kontsevich homomorphism
for n = 1

ω∧ : H7
GF(ham0

2, sp(2,R))16 −→ H9
GF(ham2, sp(2,R))14

is an isomorphism. Thus, there is a unique element η′ ∈ H7
GF(ham0

2, sp(2,R))16 ∼= R
such that

Metoki class = η′ ∧ ω ∈ H9
GF(ham2, sp(2,R))14

where Metoki class is the generator of H9
GF(ham2, sp(2,R))14.

2. Preliminaries.

Generalities concerning the (relative) Gel’fand–Fuks cohomologies and symplectic
formalism are found in Mikami–Nakae–Kodama’s preprint ([13]). Here we review the
concept of weight of cochain complex of our Lie algebras and the symplectic actions on
relative complex and also the description of coboundary operators for further calculations.
Although the space we are concerned with in this paper is R2, we review the notions on
the general linear symplectic space R2n, and fix notations we use hereafter.

2.1. Symplectic space R2n.
We fix a linear symplectic manifold (R2n, ω) with the standard variables

x1, x2, . . . , x2n. Let Hf denote the Hamiltonian vector field of f . Recalling the formula
[Hf ,Hg] = −H{f,g} for Hamiltonian vector fields, we identify each formal Hamiltonian
vector field with its potential polynomial function up to the constant term and the Lie
bracket of vector fields with the Poisson bracket on polynomial functions. We denote by
Sp the dual space of homogeneous polynomials in {xi} of degree p. Then

ham2n =
( ∞⊕

p=1

S∗
p

)∧
is a Lie algebra

and

ham0
2n =

( ∞⊕
p=2

S∗
p

)∧
is a subalgebra of ham2n,

where ( )∧ means the completion using the Krull topology.
Using the notation above, we have the following:
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(I-1) m-th cochain complexes of ham2n and ham0
2n are given by

Cm
GF(ham2n) =

⊕

k1+k2+···=m

Λk1S1 ⊗ Λk2S2 ⊗ Λk3S3 ⊗ · · ·

and since S1 is the dual space of constant vector fields

Cm
GF(ham0

2n) =
⊕

k2+k3+···=m

Λk2S2 ⊗ Λk3S3 ⊗ Λk4S4 ⊗ · · · .

(I-2) The coboundary operator d on C•GF(ham2n) is defined by

(d σ)(f0, f1, . . . , fm) =
∑

k<`

(−1)k+`σ({fk, f`}, . . . , f̂k, . . . , f̂`, . . .) fi ∈ ham2n

for each m-cochain σ ∈ Cm
GF(ham2n).

And the coboundary operator d0 on C•GF(ham0
2n) is defined by

(d0 σ)(f0, f1, . . . , fm) =
∑

k<`

(−1)k+`σ({fk, f`}, . . . , f̂k, . . . , f̂`, . . .) fi ∈ ham0
2n

for each m-cochain σ ∈ Cm
GF(ham0

2n).
We will study the difference between two coboundary operators d and d0 in sub-
section Section 2.3.

(I-3) There is a notion of weight for cochains (cf. [6]). For each non-zero cochain

σ ∈ Λk1S1 ⊗ Λk2S2 ⊗ Λk3S3 ⊗ · · · ⊗ Λk`S`

its weight is given by

(1− 2)k1 + (2− 2)k2 + (3− 2)k3 + · · ·+ (`− 2)k` =
∑̀

i=1

(i− 2)ki.

The weight of a cochain is preserved by the coboundary operator, and we can de-
compose each cochain complex by way of weights and get Gel’fand-Fuks cohomologies
with a discrete parameter, namely with weight w like as

Cm
GF(hamj−1

2n )w and Hm
GF(hamj−1

2n )w for j = 0, 1

where ham−1
2n means the space ham2n.

In both cases, for given degree m and weight w, we consider the sequences
(k1, k2, k3, . . .) of nonnegative integers with
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∞∑

j=1

kj = m and
∞∑

j=1

(j − 2)kj = w. (2)

Readers may be anxious about the contribution of k2 or k1. In fact, there is a dimensional
restriction for each kj with 0 ≤ kj ≤ dimSj = (j + 2n− 1)!/j!(2n− 1)!.

From those two relations in (2), we have

∞∑

j=1

kj = m and
∞∑

j=1

jkj = w + 2m. (3)

This means our sequences correspond to all partitions of w +2m of length m, or in other
words, to the Young diagrams with w +2m cells of length m (cf. [13]). Furthermore, we
require dimensional restrictions, and k1 = 0 when ham0

2n.

2.2. Symplectic action and the relative cohomologies.
We denote the natural action of the Lie group K = Sp(2n,R) on R2n by ϕa for

a ∈ K, i.e., ϕa(x) = ax as the multiplication of matrices. The action leaves ω invariant
by definition, and we see that (ϕa)∗(Hf ) = Hf◦ϕa−1 for each function f on R2n and
a ∈ K. Let k = sp(2n,R) be the Lie algebra of K. We denote the fundamental vector field
on R2n of K by ξR2n for ξ ∈ k. The equivariant (co-)momentum mapping of symplectic
action of K is given by

Ĵ(ξ)x = −1
2

tx



{x1, x1} · · · {x1, x2n}

... · · · ...
{x2n, x1} · · · {x2n, x2n}


 ξx

where x is the column vector of the natural coordinates of R2n, tx means the transposed
row vector of x, {xi, xj} is the Poisson bracket with respect to ω, of i-th and j-th
components of x and ξ ∈ k. Ĵ is a Lie algebra monomorphism from the Lie algebra
sp(2n,R) into the Lie algebra C∞(R2n) with the Poisson bracket. We stress that Ĵ(ξ) is
a degree 2 homogeneous polynomial function on R2n for ξ 6= 0. The Hamilton potential
of the bracket [ξR2n ,Hf ] is given by −{Ĵ(ξ), f}, because of [ξR2n ,Hf ] = [HĴ(ξ),Hf ] =
−H{Ĵ(ξ),f}. This means that k is regarded as a subalgebra of g = ham2n or ham0

2n through
the equivariant momentum mapping J .

Define the relative cochain group Cm(g, k) by

Cm(g, k) = {σ ∈ Cm(g) | iXσ = 0, iXd σ = 0 (∀X ∈ k)} (m = 0, 1, . . .).

Then (C•(g, k), d) becomes a cochain complex, and we get the relative cohomology
group Hm(g, k). Let K be a Lie group of k. We also define

Cm(g,K) = {σ ∈ Cm(g) | iXσ = 0 (∀X ∈ k), Ad∗kσ = σ (∀k ∈ K)}

and we get the relative cohomology groups Hm(g,K). If K is connected, these two
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cochain groups are identical. If K is a closed subgroup of G, then it can be seen
C•(g,K) = Λ•(G/K)G (the exterior algebra of G-invariant differential forms on G/K).

Since the space S∗
2 of degree 2 homogeneous polynomials is spanned by the image

of momentum mapping Ĵ of Sp(2n,R), we see that

Proposition 2.1 ([13]). For each cochain σ, iξσ = 0 (∀ξ ∈ sp(2n,R)) implies
k2 = 0, and the other condition iξdσ = 0 is equivalent to Lξσ = 0 (∀ξ ∈ sp(2n,R)). Thus
we see for j = 0, 1

C•GF(hamj−1
2n , sp(2n,R))w =

∑

Condj

(
Λk1S1 ⊗ Λk2S2 ⊗ Λk3S3 ⊗ · · ·

)triv

where ( )triv means the direct sum of the (underlying) subspaces of the trivial represen-
tations. Cond0 consists of the conditions (3) in the preceding subsection, k2 = 0, and the
dimensional restrictions. Cond1 consists of Cond0 and k1 = 0.

Remark 2.1. As explained in [6], if the weight w is odd, then
C•GF(hamj−1

2n , sp(2n,R))w and H•GF(hamj−1
2n , sp(2n,R))w vanish for j = 0, 1. Thus, we

have only to deal with even weights.
There is a notion of type N for cochains of ham2 in [7]. The weight w and type N

are related by w = 2N when n = 1.
There is a general method to decompose ΛpSq into the irreducible subspaces for a

general Sp(2n,R)-representation space, namely, getting the maximal vectors which are
invariant by the maximal unipotent subgroup of Sp(2n,R).

Concerning the decomposition of the tensor product, we have the Clebsch-Gordan
rule when n = 1. (For n = 2, Littlewood-Richardson rule is used in [12], and the crystal
base theory is used in [11] when n = 3.)

2.3. Coboundary operators.
By d , we will mean the coboundary operator which acts on C•GF(ham2n, sp(2n,R))w

and by d0 , the one acts on C•GF(ham0
2n, sp(2n,R))w.

Let ω be the 2-cochain defined by the linear symplectic form of R2n. We see that

ω ∈ C2
GF(ham2n, sp(2n,R))(−2)\C2

GF(ham0
2n, sp(2n,R))(−2)

and ωn ∈ C2n
GF(ham2n, sp(2n,R))(−2n).

Proposition 2.2. The linear map

ωn∧ : C•GF(ham0
2n, sp(2n,R))w −→ C•+2n

GF (ham2n, sp(2n,R))w−2n

satisfies

d (ωn ∧ σ) = ωn ∧ d0 σ

and the next diagram is commutative
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C•−1+2n
GF (ham2n, sp(2n,R))w−2n

d // C•+2n
GF (ham2n, sp(2n,R))w−2n

C•−1
GF (ham0

2n, sp(2n,R))w
d0 //

ωn∧
OO

C•GF(ham0
2n, sp(2n,R))w.

ωn∧
OO

(4)

Thus we have a linear map

ωn∧ : H•GF(ham0
2n, sp(2n,R))w −→ H•+2n

GF (ham2n, sp(2n,R))w−2n

naturally. This induced map is trivial if and only if

ωn ∧ ker(d0 : C•GF(ham0
2n, sp(2n,R))w → C•+1

GF (ham0
2n, sp(2n,R))w)

⊂ d
(
C•−1+2n

GF (ham2n, sp(2n,R))w−2n

)
. (5)

Proof. We have dω = 0. This is a requirement for a symplectic form. For
each σ ∈ C•GF(ham0

2), we already know that ωn ∧ (d σ − d0 σ) = 0 and we see that
ωn∧d σ = d (ωn∧σ) because of dω = 0. This states that the diagram (4) is commutative.
Then we have

( i ) If d0 σ = 0, then d (ωn ∧ σ) = 0, namely, ωn ∧ ker(d0 ) ⊂ ker(d ).
( ii ) If σ, τ ∈ C•GF(ham0

2n, sp(2n,R)) satisfy d0 σ = 0 = d0 τ and σ − τ = d0 ρ, then
ωn ∧ σ − ωn ∧ τ = ωn ∧ d0 ρ = d (ωn ∧ ρ). This means that the wedge product by
ωn induces a well-defined linear map

ωn : H•GF(ham0
2n, sp(2n,R)) −→ H•+2n

GF (ham2n, sp(2n,R)) by σ 7→ ωn ∧ σ.

(iii) From (i), we see that the map is trivial if and only if ωn ∧ ker(d0 ) ⊂
d (C•+2n−1

GF (ham2n, sp(2n,R))w−2n). ¤

3. Symplectic 2-plane.

In this section, we deal with the symplectic 2-plane R2. We study the difference
between the two coboundary operators d and d0 . Since dimS1 = 2, the domain of
definition of d is given by

C•GF(ham2) = C•GF(ham0
2) ⊕

(
S1 ⊗ C•−1

GF (ham0
2)

)⊕ (
Λ2S1 ⊗ C•−2

GF (ham0
2)

)
.

Let x, y be global Darboux coordinates, i.e., {x, y} = 1. For each positive integer R,
{ẑr

R = (xr/r!)(yR−r/(R− r)!) | r = 0, 1, . . . , R} is a basis of the space of R-homogeneous
polynomials of x, y. Let {zr

R | R > 0, r = 0, 1, . . . , R} be the dual basis of {ẑr
R | R >

0, r = 0, 1, . . . , R}.
The two coboundary operators d , d0 in those bases, are
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d zr
R = −1

2

∑

A+B=2+R

〈zr
R, {ẑa

A, ẑb
B}〉za

A ∧ zb
B

where A > 0, B > 0, a ∈ {0, . . . , A} and b ∈ {0, . . . , B}, and

d0 zr
R = −1

2

∑

A+B=2+R

〈zr
R, {ẑa

A, ẑb
B}〉za

A ∧ zb
B

where A > 1, B > 1, a ∈ {0, 1, . . . , A} and b ∈ {0, 1, . . . , B}. Thus, the difference
between d and d0 for a 1-cochain can be written as follows.

d zr
R = d0 zr

R −
∑

a∈{0,1},b∈{0,...,1+R}
〈zr

R, {ẑa
1 , ẑb

1+R}〉za
1 ∧ zb

1+R

= d0 zr
R + z0

1 ∧ z1+r
1+R − z1

1 ∧ zr
1+R.

We may assume that d0 zr
1 = 0 (r = 0, 1). The 2-cochain ω which comes from the

symplectic structure, is written as ω = z0
1 ∧ z1

1 in our notation and we see directly that

dω =d (z0
1 ∧ z1

1) = (z0
1 ∧ z1

2 − z1
1 ∧ z0

2) ∧ z1
1 − z0

1 ∧ (z0
1 ∧ z2

2 − z1
1 ∧ z1

2) = 0.

But, ω is not d -exact because {ẑa
1 , ẑb

1} = constant.

4. Proof of Theorem 1.2.

In this section, we give a proof for Theorem 1.2 which asserts that

ω∧ : H7
GF(ham0

2, sp(2,R))16 → H9
GF(ham2, sp(2,R))14

is an isomorphism. Since we know that the source and the target spaces are both 1-
dimensional, it is enough to show the map ω∧ is non-trivial. For that purpose, we make
use of (5) of Proposition 2.2.

We have information about C•GF(ham0
2, sp(2,R))w (w = 12, 14, 16, 18, 20) (cf.

[13]). We show the result of weight =16 in the table below. In the table, Ck is
Ck

GF(ham0
2, sp(2,R))16 and rank is the rank of d0 : Ck −→ C1+k.

ham0
2, w=16 0 → C3 → C4 → C5 → C6 → C7 → C8 → 0

dimCk 12 61 126 147 95 24
rank 0 12 49 77 70 24 0

Betti num 0 0 0 0 1 0

The table above says that dimH7
GF(ham0

2, sp(2,R))16 = 1.
Concerning H9

GF(ham2, sp(2,R))14, we refer to [7], where we see the complete data.
But, the notation there is different from ours, and it seems hard to find an applicable
translation rule. So we need to get suitable bases for our notation and begin searching
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bases without the k1 = 0 condition at the beginning in order to get the complete bases.
In the following discussion, we only need information about the bases of C8, C9 and the
matrix representation M of d : C8 → C9, where Ck = Ck

GF(ham2, sp(2,R))14.
A similar table is obtained in the case of ham2 and weight 14, rank is the rank of

d : Ck −→ C1+k.

ham2, wt=14 → C8 → C9 → C10 → 0

dimCk 232 113 25
rank 145 87 25 0

Betti num 0 1 0

Our proof of Theorem 1.2 consists of the 3 steps as follows:

1. To find a vector h ∈ ker(d0 : C7
GF(ham0

2, sp(2,R))16 → C8
GF(ham0

2, sp(2,R))16) but
h 6∈ d0 (C6

GF(ham0
2, sp(2,R))16).

2. To calculate ω ∧ h.
3. To check whether ω∧h ∈ d (C8

GF(ham2, sp(2,R))14) or not, by counting the dimension
of the space generated by ω ∧ h and d (C8

GF(ham2, sp(2,R))14).

4.1. Gröbner Basis theory for cohomology groups.
To complete the proof, we make use of the Gröbner Basis theory (cf. [3]) for linear

homogeneous polynomials. Suppose we have µ indeterminate variables {yj}µ
j=1 and fix

a monomial order Ordy of {yj} by y1 Â · · · Â yµ. If {gi}λ
i=1 are linear homogeneous

polynomials of {yj}, then we may write [g1, . . . , gλ] = [y1, . . . , yµ]M for some matrix
M . It is known that we can deform M into the unique column echelon matrix M̂ by
a sequence of the three kinds elementary column operations. Getting the row echelon
matrix tM̂ from tM by elementary row operations is well-known as the Gaussian elim-
ination method. The monic Gröbner basis of {gi} with the monomial order, we denote
as mBasis([g1, . . . , gλ],Ordy), satisfies

[mBasis([g1, . . . , gλ],Ordy), 0, . . . , 0] = [y1, . . . , yµ]M̂.

Thus, rankM = rank M̂ is equal to the cardinality of mBasis([g1, . . . , gλ],Ordy) and
mBasis([g1, . . . , gλ],Ordy) gives a basis for the R-vector space generated by {gi}. Here-
after, we use a reduced Gröbner basis, we denote it by Basis([g1, . . . , gλ],Ordy), for
which we allow that each leading coefficient should not be 1. So, each j-th el-
ement of Basis([g1, . . . , gλ],Ordy) is a non-zero scalar multiple of j-th element of
mBasis([g1, . . . , gλ],Ordy).

The normal form of a given polynomial h with respect to a Gröbner basis GB
together with a fixed monomial order, for example NF(h, GB,Ordy), is the “smallest”
remainder of h modulo by the Gröbner basis GB. Again, if we restrict our discussion to
the linear homogeneous polynomials, then NF(h, GB,Ordy) = 0 is equivalent to h ∈ the
linear space spanned by GB.

We recall key techniques in cohomology theory involving the Gröbner Basis theory.
Let X, Y and Z be finite dimensional vector spaces with bases {qi}λ

i=1, {wj}µ
j=1 and
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{rk}ν
k=1 respectively. Assume that there are linear maps g : X → Y and f : Y → Z

whose matrix representations are M and N respectively: i.e.,

[g(q1), g(q2), . . . , g(qλ)] = [w1,w2, . . . ,wµ]M (6)

and

[f(w1), f(w2), . . . , f(wµ)] = [r1, r2, . . . , rν ]N. (7)

In the right-hand side of (6), we replace wj by indeterminate variable yj (j =
1, 2, . . . , µ), and get a set of linear homogeneous polynomials [y1, y2, . . . , yµ]M . Denote
them by [g1(y), g2(y), . . . , gλ(y)], i.e., [g1(y), g2(y), . . . , gλ(y)] = [y1, y2, . . . , yµ]M .

Proposition 4.1 ([1]). GBe = Basis([g1, g2, . . . , gλ], [y1, y2, . . . , yµ],Ordy) gives a
basis of g(X) in the sense that {ϕ(w1,w2, . . . ,wµ) | ϕ ∈ GBe} forms a basis of g(X)
and rank(g) = #(GBe).

We study f−1(0) = ker(f : Y → Z). Since 〈f(u), σ〉 = 〈u, f∗(σ)〉 for u ∈ Y, σ ∈
Z∗(= the dual space of Z), f−1(0) = Im(f∗)0, the annihilator subspace of Im(f∗). By
Proposition 4.1, we know well about Im(f∗) by the Gröbner Basis theory as follows:
Since N is the matrix representation of f , tN is a matrix representation of f∗. We
put [c1, c2, . . . , cµ](tN) by [f1, f2, . . . , fν ]. Fix the monomial order Ordc of {cj}µ

j=1 by
c1 Â · · · Â cµ. We get the Gröbner basis GBtr(f) = Basis([f1, f2, . . . , fν ], Ordc), which
gives a basis of Im(f∗).

Consider the polynomial h =
∑µ

j=1 cjyj , where {yj}µ
j=1 are the other auxiliary

variables (which appear for the linear map g).

Proposition 4.2 ([1]). The normal form NF(h,GBtr(f),Ordc) of h is written as∑µ
`=1 c`f̃`(y) where f̃`(y) is linear in {yj}.

Let GBk = Basis([f̃1(y), f̃2(y), . . . , f̃µ(y)],Ordy). Then GBk gives a basis of the
kernel space f−1(0) = ker(f), and the cardinality of GBk is dimker(f).

Now assume that f ◦ g = 0. We use the Gröbner bases GBe of g, and GBk of ker(f)
above, then we have the following.

Proposition 4.3 ([1]). The quotient space ker(f : Y → Z)/Im(g : X → Y ) is
equipped with the basis

GBk/e = Basis([NF(ϕ,GBe,Ordy) | ϕ ∈ GBk],Ordy).

In particular, dim (ker(f : Y → Z)/Im(g : X → Y )) = #(GBk/e).

Remark 4.1. If we follow the way consisting of the 3 steps described just before
this subsection, there is some ambiguity in choosing an element h, in general. But, if we
use the Gröbner Basis theory, we can avoid this ambiguity. This is a main reason why
we use the Gröbner Basis theory here. It is hard to handle big matrices, but it is easy to
deal with polynomials. This is the second small reason. The last reason why we use the
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Gröbner Basis theory is that it is pre-packaged in the symbolic calculus softwares such
as Maple, Mathematica, Risa/Asir (this is freeware) and so on. And such softwares are
becoming more and more reliable and faster.

Our calculation of Gröbner Bases or normal forms is assisted by symbolic cal-
culus software Maple. There is a proof by the Gröbner Basis theory of Theorem
1.1 with the assistance of Maple in [10]. Also, the draft of it is available on URL
[8] www.math.akita-u.ac.jp/˜mikami/Conj4MetokiClass/ with the title “A proof to
Kotschick–Morita theorem for G-K-F class”.

Risa/Asir is popular among Japanese mathematicians because it is bundled in the
Math Libre Disk which is distributed at annual meetings of the Mathematical Society
of Japan. We put the source code and output of our computer argument for Risa/Asir
on [8] and in appendices in [10]. Here, you can find a proof of the Kotschick–Morita
theorem by Risa/Asir. You can also compare the two kinds of results calculated by Maple
and Risa/Asir, and see that the final normal forms are the same, up to non-zero scalar
multiples.

Even in the classical linear algebra argument or the Gröbner Basis argument, our
discussion is based on matrix representations of the two coboundary operators. We stress
that everything starts from the concrete bases of cochain complexes.

4.2. Selecting a generator h of H7
GF(ham0

2, sp(2,R))16.
As mentioned in Remark 4.1, the existence of concrete bases of our cochain complexes

is important. Actually, we got them and can handle them, but as shown in the first
table above, the dimensions are large; for example dimC6 = 147, dimC7 = 95 and
dimC8 = 24, where Ck = Ck

GF(ham0
2, sp(2,R))16, It is difficult to show them all in this

paper. The entire data of our concrete bases of Ck (k = 6,7,8) are found either on [8] or
in Appendix 1, 2 and 3 in [9].

Here we only show several elements, whose number of terms of summation is smaller.
The smallest element of our basis of C6 is next, and consists of 28 terms:

q142 = −8
3
z0
4z1

4z2
4z3

4z2
5z6

7 − z0
4z1

4z3
4z4

4z1
5z5

7 +
1
6
z0
4z1

4z2
4z4

4z1
5z6

7 −
1
6
z0
4z1

4z2
4z4

4z0
5z7

7

+
2
3
z1
4z2

4z3
4z4

4z4
5z0

7 −
1
2
z0
4z2

4z3
4z4

4z0
5z5

7 −
8
3
z1
4z2

4z3
4z4

4z1
5z3

7 + z0
4z2

4z3
4z4

4z3
5z2

7

− 7
3
z0
4z1

4z2
4z4

4z3
5z4

7 +
1
6
z0
4z2

4z3
4z4

4z4
5z1

7 +
1
3
z0
4z1

4z3
4z4

4z0
5z6

7 +
2
3
z0
4z1

4z2
4z3

4z1
5z7

7

+
2
3
z0
4z1

4z3
4z4

4z3
5z3

7 −
8
3
z0
4z1

4z2
4z3

4z4
5z4

7 −
8
3
z1
4z2

4z3
4z4

4z3
5z1

7 −
7
3
z0
4z2

4z3
4z4

4z2
5z3

7

+
11
6

z0
4z1

4z2
4z4

4z4
5z3

7 +
2
3
z0
4z1

4z2
4z3

4z5
5z3

7 + z0
4z1

4z2
4z4

4z2
5z5

7 +
1
3
z0
4z1

4z3
4z4

4z5
5z1

7

+
11
6

z0
4z2

4z3
4z4

4z1
5z4

7 −
1
2
z0
4z1

4z2
4z4

4z5
5z2

7 +
2
3
z1
4z2

4z3
4z4

4z0
5z4

7 + 4z1
4z2

4z3
4z4

4z2
5z2

7

− 1
6
z0
4z2

4z3
4z4

4z5
5z0

7 + 4z0
4z1

4z2
4z3

4z3
5z5

7 − z0
4z1

4z3
4z4

4z4
5z2

7 +
2
3
z0
4z1

4z3
4z4

4z2
5z4

7
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where we omit the symbol ∧ of wedge product. The two small-size elements of our basis
of C7 are the following:

w6 = z0
3z1

3z2
3z3

3z0
6z3

6z6
6 − 3z0

3z1
3z2

3z3
3z0

6z4
6z5

6 − 3z0
3z1

3z2
3z3

3z1
6z2

6z6
6

+ 6z0
3z1

3z2
3z3

3z1
6z3

6z5
6 − 15z0

3z1
3z2

3z3
3z2

6z3
6z4

6

and

w95 = z0
4z1

4z2
4z3

4z4
4z0

5z5
5 − 5z0

4z1
4z2

4z3
4z4

4z1
5z4

5 + 10z0
4z1

4z2
4z3

4z4
4z2

5z3
5 .

We pick up the smallest element of our basis of C8:

r7 = z0
3z1

3z2
3z3

3z0
5z1

5z4
5z5

5 − 2z0
3z1

3z2
3z3

3z0
5z2

5z3
5z5

5 + 10z0
3z1

3z2
3z3

3z1
5z2

5z3
5z4

5 .

We only need a generator of H7
GF(ham0

2, sp(2,R))16 by the Gröbner Basis theory and
we write down our linear functions {gi}147i=1 corresponding to d0 : C6 → C7 and linear
functions {fj}24j=1, giving the kernel condition for d0 : C7 → C8 as follows.

[g1, . . . , g147] = [y1, . . . , y95]M, [f1, . . . , f24] = [c1, . . . , c95]tN

where M and N are matrices of d0 : C6 → C7 and d0 : C7 → C8 with respect to the
bases above. Since the size of matrix M is (95, 147) and that of N is (24,95), we will not
show them here, but the precise complete data are found either on [8] or in Appendix 4
and 5 in [9]. Here, we show a few terms as examples:

g1 = 176y1 − 1036
3

y8 +
632
3

y9 +
544
3

y10 − 60y11 − 22y12 + 152y13 − 802y21

+ 531y22 + 590y23 − 1625
3

y24 +
292
3

y25 + 60y26 − 1595
3

y27 + 805y28

− 90y29 + 48y30 − 108y31 − 144y32 − 306y33 + 144y34 + 450y35

+ 36y36 + 168y37

...

g147 =
5
2
y60 − 7

2
y61 +

11
10

y62 +
11
6

y63 − 21
2

y65 +
33
10

y66 +
15
2

y67 − 1
10

y68

+
11
2

y69 − 3y79 − 1
2
y80 +

3
2
y86 +

95
12

y87 − 17
6

y88 + 2y89 − 209
30

y90

+
23
10

y91 +
6
25

y92 +
5
2
y93 − 35

2
y94 − 133

30
y95

and
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f1 = −55
4

c1 + 25c3 + 8c5 − 475
54

c8 +
145
9

c9 − 995
54

c10 +
70
3

c11 +
1700
81

c12

− 10
81

c13 − 41
9

c14 − 215
18

c15 − 425
18

c16 +
425
36

c17 +
35
9

c18 − 59
9

c19 +
92
9

c20

+
75
32

c21 +
85
48

c22 +
33
16

c23 +
139
64

c24 +
65
64

c25 +
75
32

c26 − 221
64

c27 +
1
24

c28

− 65
12

c42 +
35
4

c43 +
95
6

c44 +
53
4

c45 +
10
3

c46 +
13
4

c47 + 2c48 − 9
2
c49 − 3

2
c50

...
f24 = −15c41 − 10c42 + 30c43 + 35c44 + 3c45 + 40c46 + 18c47 − 3c48

− 301839
740

c59 +
256839

740
c60 +

1094769
740

c61 +
73128

37
c62 +

174258
185

c63

+
848394

185
c64 − 435089

740
c65 − 105235

111
c66 − 9623

148
c67 − 28657

37
c68

− 70569
185

c69 − 150326
111

c70 +
35965
111

c71 +
4484
185

c72 − 3827
37

c73 − 52105
74

c74

+
68225
148

c75 − 2556
185

c76 +
31601
370

c77 +
37535
148

c78 − 7439
185

c79 +
15139

37
c80

+
10657
148

c81 +
56
3

c86 +
53
3

c87 +
193
3

c88 +
76
3

c89 + 7c90 + 4c91 +
85
6

c92

− 71
6

c93 − 3c94 + 15c95.

The Gröbner basis GBe of {gi}147i=1 consists of 70 elements as expected. The whole
Gröbner basis GBe is stored on [8] and in Appendix 9 in [9]. The first element of sorted
GBe is

446227638468y75 − 258371100400y76 + 2677414594200y77

− 2808720072600y78 + 483892450500y79 + 838357655220y80

− 871685530860y81 + 1892343009627y82 − 2525687071848y83

− 861370434243y84 − 625187443152y85 − 6093198421500y86

− 4546246681400y87 + 2813196475270y88 − 2152132471560y89

+ 15133158761840y90 − 9561265966665y91 − 2198954966322y92

+ 9680559087150y93 + 3770983597200y94 + 11367701561860y95,

and the last element of sorted GBe is

7228887743181600y1 + 26505921724999200y47 − 8835307241666400y50

− 40863295992707100y51 − 23594575360435200y76 + 141145959892004100y77

− 152234378969531760y78 + 12641923750905900y79 + 103786265245653540y80
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− 230406289763969880y81 + 55341457461003915y82 − 182139922299308040y83

− 331644059730112995y84 − 37012865309023290y85 − 467330302598009400y86

− 327107341696261500y87 + 182002246883284410y88 − 27682638636383280y89

+ 811513254542111160y90 − 530692255768745745y91 − 216500557914020694y92

+ 752677963524690150y93 − 117774780478277550y94 + 796136446567690060y95.

The Gröbner basis GBk corresponding to the kernel space defined by {fj}24j=1 consists of
71 elements. The whole Gröbner basis GBk is stored on [8] and in Appendix 10 in [9].
The first element of sorted GBk is:

2027141067600y76 + 6871115344500y77 − 8293793595120y78 + 1593871052400y79

+ 3342315930030y80 + 2188718191440y81 + 6047944018587y82

− 7911486513648y83 + 1366183084077y84 − 1206881491512y85

− 10895090886900y86 − 9572836551300y87 + 1269138903120y88

+ 3867959161440y89 + 28054435525860y90 − 23511502274085y91

− 7468180349703y92 + 2799062316375y93 + 17517045194250y94

+ 24368226519980y95,

and the last element of sorted GBk is:

368571103200y1 + 1351427378400y47 − 450475792800y50 − 2083450541700y51

+ 11274054788700y77 − 12683683914000y78 + 1590428838900y79

+ 7275101984700y80 − 10448587809000y81 + 6410733790653y82

− 13981567014072y83 − 16098409761957y84 − 2603346695478y85

− 30292840571400y86 − 22358770705700y87 + 10032702042550y88

+ 883984609200y89 + 58024375642760y90 − 41010508144455y91

− 15470397459450y92 + 40037017987050y93 + 4390494333150y94

+ 55052825955540y95.

The Gröbner basis corresponding to H7
GF(ham0

2, sp(2,R))16 is

h = 2027141067600y76 + 6871115344500y77 − 8293793595120y78

+ 1593871052400y79 + 3342315930030y80 + 2188718191440y81

+ 6047944018587y82 − 7911486513648y83 + 1366183084077y84

− 1206881491512y85 − 10895090886900y86 − 9572836551300y87

+ 1269138903120y88 + 3867959161440y89 + 28054435525860y90
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− 23511502274085y91 − 7468180349703y92 + 2799062316375y93

+ 17517045194250y94 + 24368226519980y95. (8)

Remark 4.2. So far, all the results above, using Maple software, are also calculated
by Risa/Asir; the outputs are found either on [8] by the title “Results by Risa/Asir for
wt=16 type1 Cˆ{6}–>Cˆ{7}–>Cˆ{8}” or in Appendix 12 and 13 in [9].

We have the generator of H7
GF(ham0

2, sp(2,R))16 by two methods. One is h above by
Maple. The generator derived by Risa/Asir is −h; namely, the negative sign is the only
difference.

4.3. Gröbner basis of d (C8
GF(ham2, sp(2,R))14).

Next, we only need information about the bases of C8, C9 and the matrix represen-
tation M of d : C8 → C9, where Ck = Ck

GF(ham2, sp(2,R))14. These are found either on
[8] or in Appendix 6, 7 and 8 in [9]. Below we only show one of them: One of the 232
elements of our basis of C8 is:

q231 = −1
2
z0
3z1

3z2
3z3

3z0
4z1

4z2
4z6

6 + z0
3z1

3z2
3z3

3z0
4z1

4z3
4z5

6 −
1
2
z0
3z1

3z2
3z3

3z0
4z1

4z4
4z4

6

− 3
2
z0
3z1

3z2
3z3

3z0
4z2

4z3
4z4

6 + z0
3z1

3z2
3z3

3z0
4z2

4z4
4z3

6 −
1
2
z0
3z1

3z2
3z3

3z0
4z3

4z4
4z2

6

+ 2z0
3z1

3z2
3z3

3z1
4z2

4z3
4z3

6 −
3
2
z0
3z1

3z2
3z3

3z1
4z2

4z4
4z2

6 + z0
3z1

3z2
3z3

3z1
4z3

4z4
4z1

6

− 1
2
z0
3z1

3z2
3z3

3z2
4z3

4z4
4z0

6

and, one of the 113 elements of our basis of C9 is:

w95 =− 1
5
z0
1z1

1z0
4z1

4z2
4z3

4z4
4z0

5z5
5 + z0

1z1
1z0

4z1
4z2

4z3
4z4

4z1
5z4

5 − 2z0
1z1

1z0
4z1

4z2
4z3

4z4
4z2

5z3
5 .

The matrix M of d : C8 → C9 is of size (113,232) and the linear functions {gi} corre-
sponding to d : C8 → C9 are given by

[g1, . . . g232] = [y1, . . . , y113]M.

We will continue the same discussion as in subsection Section 4.2. We see that rankM =
87 and the Gröbner basis GBe of {gi}, which corresponds to d (C8), consists of 87 elements
as expected. The complete data of {gi}, in other words, that of M , and the detail of
GBe are found either on [8] or in Appendix 8 and 11 in [9].

4.4. ω ∧ h is not in d (C8
GF(ham2, sp(2,R))14.

We have the linear function h of {yj}95j=1 in (8); we know that the cochain h(w) is
a non-exact kernel element in C7

GF(ham0
2, sp(2,R))16. We analyze the next element

ω ∧ h(w) = z0
1 ∧ z1

1 ∧ h(w)
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by the basis of C9, and we have a linear function h of {yi}113i=1 satisfying

h(w) = ω ∧ h(w) = z0
1 ∧ z1

1 ∧ h(w)

which is given by the following:

h = −6996191251500y74 − 1557312364575y76 + 2027141067600y77

+ 6871115344500y78 − 8293793595120y79 + 1593871052400y80

+ 3342315930030y81 + 3576568317699y82 − 1206881491512y83

− 3952406350359y84 − 21353158325775y85 − 21096249215580y86

− 9572836551300y87 + 3867959161440y88 + 10699190322480y89

− 23511502274085y90 + 2799062316375y91 + 17460883387175y92

+ 17517045194250y93 − 43245161055925y94 − 121841132599900y95.

The normal form of h with respect to GBe is

− 1
1191

(7443523237284708y82 + 10932577142466y83 − 2773751000717088y84

− 8746061713972800y85 − 93098703351771180y90

+ 40450535427124200y91 − 30933987324063320y92

+ 24871612999110150y93 + 54636855766752700y94

+ 201445748822724700y95 + 1180249792365936600y112

+ 3540749377097809800y113)

and is not zero, namely h(w) = ω ∧ h(w) = z0
1 ∧ z1

1 ∧ h(w) is not exact, and our proof is
complete. ¤

Remark 4.3. Throughout this paper, the Gröbner basis and the normal form are
computed by Maple. On the other hand, the results by Risa/Asir are found either on [8]
or in Appendix 12 and 13 in [9].

We denote by Bmaple the normal form of h with respect to GBe and by Aasir, the
normal form calculated by Risa/Asir. The two are related as

Bmaple = − 1
1191

· 7443523237284708
5337006161133135636

Aasir.
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