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Abstract. We study the rate of convergence for the renewal density with
the interarrival times that are absolutely continuous, not necessarily positive,
and has finite moment of αth order with α > 3/2. We obtain an error estimate
that is better than known results. Our method is based on modification of
functions that have the same tails as the original ones and have integrable
Fourier transform.

1. Introduction and the main result.

Let F be a probability measure on R such that 0 < µ =
∫∞
−∞ tF (dt) < ∞ and Fn∗

be the n-fold convolution (as a measure) of F with itself. The measure U is defined via
U(I) =

∑∞
n=1 Fn∗(I) for an interval I and is called the renewal measure.

The well-known renewal theorem states that, intuitively, U is close to the Lebesgue
measure multiplied by 1/µ near +∞; See Feller (1966) [4] for its developments. The
aim of the present note is to study the rate of convergence in the absolutely continuous
case. We assume F has the density f(t) and denote that of Fn∗ by fn(t). In view of the
monotone convergence theorem, u(t) :=

∑∞
n=1 fn(t) is a version of the density of U and

is called the renewal density. It may be natural that one expects u(t) → 1/µ as t → +∞.
We denote

∫∞
−∞ |t|αf(t)dt ∈ (0,∞] by M(α) for α ∈ (1,∞). To state the main result

we introduce several functions: Let q(t) = (1/µ)
∫∞

t
f(s)ds and r(t) = (1/µ)

∫∞
t

q(s)ds

for t ≥ 0; let q(t) = −(1/µ)
∫ t

−∞ f(s)ds and r(t) = −(1/µ)
∫ t

−∞ q(s)ds for t < 0; and let
r1(t) = r(t)−q∗r(t) for t ∈ R, where this convolution is well-defined as is seen in Lemma
2.5. We denote by ϕ(θ) the Fourier transform of f(t): ϕ(θ) = Ff(θ) =

∫∞
−∞ eiθtf(t)dt.

We state our result for the case 3/2 < α < 2 and the case α ≥ 2 separately.

Theorem 1.1. Assume 0 < µ < ∞, M(α) < ∞ for some α ∈ (3/2, 2), and
ϕ(θ) ∈ Lp for some p ∈ [1,∞). Let N = dpe+ 1 where dpe is the smallest integer that is
greater than or equal to p. Then we have

u(t) =
1
µ

1[0,∞)(t) +
N∑

n=1

fn(t) + r(t) + r1(t) + o(|t|−α) as t → ±∞. (1.1)

Theorem 1.2. Assume 0 < µ < ∞, M(α) < ∞ for some α ∈ [2,∞) and ϕ(θ) ∈ Lp

for some p ∈ [1,∞). Let N = dpe+ bαc where bαc is the greatest integer that is less than
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or equal to α. Then

u(t) =
1
µ

1[0,∞)(t) +
N∑

n=1

fn(t) + r(t) + o(|t|−α) as t → ±∞. (1.2)

The rate of convergence of u(t) have been studied by several authors ([3], [13], [11],
[14], [6], [9]). Among them, Grubel [6] and Stone [11] are especially remarkable.

Grubel [6] is based on a method from the Banach algebra. If we adapt his Satz 1(i)
to the case α(t), a function in [6], is given by (|t| ∨ 2)α−1 we have the following.

Theorem A (Grubel). Assume that the density f(t) of F is an absolutely con-
tinuous function, 0 < µ < ∞, M(α) < ∞, and

∫∞
−∞ |f ′k(t)|(|t| ∨ 2)α−1dt < ∞ for some

α ∈ (1,∞) and k ∈ N. Then u(t) = (1/µ)1[0,∞)(t) +
∑k−1

n=1 fn(t) + o(|t|−(α−1)) as
t → ±∞.

Note that this theorem is applicable both to the case with and without finite second
moment. Compared with Theorem A, Theorems 1.1 and 1.2 have additional terms,
r(t) and r1(t), and a better error estimate. In fact, with some effort we can derive
the estimate in Theorem A from those of Theorems 1.1 and 1.2 since the condition in
Theorem A implies ϕ(θ)k = o(1/|θ|) as θ → ±∞ and fk(t) = o(|t|−(α−1)) as t → ±∞.

Stone [11] studies the case F is not necessarily absolutely continuous using the
Fourier analysis. To state his result we adapt the definition of r(t) to this case: Let
r(t) = (1/µ2)

∫∞
t

ds
∫∞

s
F (dy) for t ≥ 0 and let r(t) = (1/µ2)

∫ t

−∞ ds
∫ s

−∞ F (dy) for
t < 0.

Theorem B (Stone). Assume 0 < µ < ∞, M(α) < ∞ for some α ∈ [2,∞),
and Fn∗ has a non-trivial absolutely continuous component for some n ∈ N. Then
there exist an absolutely continuous measure ν′(dt) and a finite measure ν′′(dt) such
that U(dt) = ν′(dt) + ν′′(dt),

∫∞
−∞ |t|bαcν′′(dt) < ∞, and the density u′(t) of ν′(dt) is

continuous and satisfies u′(t) = (1/µ)1[0,∞)(t) + r(t) + o(|t|−bαc) as t → ±∞.

If α is not an integer, F is absolutely continuous, and ϕ(θ) ∈ Lp, Theorem 1.2
(combined with Lemma 2.3 (ii) below) gives a refinement of Theorem B with ν′′(dt) =∑k−1

n=1 fn(t)dt.
In Section 2 we will give an explanation of the origin of r(t) and r1(t) using (2.6). The

importance of these terms is suggested in Stone–Wainger [12, Theorem 2] that studies
the lattice case, i.e. the case F is supported on {dm|m ∈ Z} with some d > 0.

Carlsson [1] studies U((−∞, t]), called the renewal function, in the non-lattice case
with finite second moment and without absolute continuity. His result also suggests r(t)
and r1(t) in the sense that indefinite integrals of r(t) and r1(t) appear in the estimates
of U((−∞, t]), which coincides with

∫ t

−∞ u(t)dt in the absolutely continuous case.
We prove Theorems 1.1 and 1.2 by the Fourier analysis. The Fourier transforms of

r(t) and r1(t) in our Theorems will be seen to be only locally integrable and we cannot
invert the transform easily. This fact also blocks us to generalize the known estimates in
the lattice case to the absolutely continuous case. We will modify the terms so that they
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have the same behavior as t → ±∞ and that their Fourier transform decrease rapidly
enough as θ → ±∞, where θ is the variable for the Fourier transform.

Remark 1.1. Our method is also applicable to the case M(α) < ∞ with α ∈
(1, 3/2]. For instance, if α ∈ (4/3, 3/2], we define r2(t) = r1(t)− q ∗ r1(t) and have

u(t) =
1
µ

1[0,∞)(t) +
N∑

n=1

fn(t) + r(t) + r1(t) + r2(t) + o(|t|−α)

as t → ±∞ under some technical conditions. The origin of r2(t) can be explained in the
same way as r(t) and r1(t) using (2.6). In the case α ∈ (1, 4/3] we would need more
terms such as r3(t) = r2(t)− q ∗ r2(t) but we do not proceed in this direction.

Remark 1.2. The estimates (1.1) and (1.2) hold for all sufficiently large N since
we easily deduce that fn(t) = o(|t|−α) as |t| → ∞ if n ≥ dpe + bαc + 1 by the method
appearing around (3.12) below.

This paper is organized as follows. In Section 2 we prove preliminary lemmas that
are mainly devoted to studying properties of r(t) and r1(t). In Section 3 we complete
the proof of Theorem 1.1 and give a sketch of proof of Theorem 1.2.

2. Preliminary lemmas.

Recall that M(α) =
∫∞
−∞ |t|αf(t)dt, ϕ(θ) = Ff(θ), and that fn(t) is the n-fold

convolution of f(t) with itself. We introduce some notations for functions that may vary
from place to place. Let a ∈ R. By Oθ→±∞(|θ|a) and Oθ→0(|θ|a) we denote a function
g(θ) such that sup|θ|≥1 g(θ)/|θ|a < ∞ and sup0<|θ|≤1 g(θ)/|θ|a < ∞ respectively. The
notations Oε→+0(εa), Ot→±∞(|t|a) and Ot→0(|t|a) are defined similarly. We denote by
oε→+0(εa) a function g(ε) such that limε→+0 g(ε)/εa = 0 and g(ε) = Oε→+0(εa). The
notations ot→±∞(|t|a), ot→0(|t|a), oθ→±∞(|θ|a) and oθ→0(|θ|a) are defined similarly.

Such notations for functions with two variables will appear in Lemma 3.1.

Lemma 2.1. If α ∈ (1, 2) and M(α) < ∞ we have

sup
θ∈R

|ϕ′(θ)| ≤ M(1) < ∞, (2.1)

sup
θ0∈R

|ϕ(θ0 + θ)− ϕ(θ0)− ϕ′(θ0)θ| = oθ→0(|θ|α), (2.2)

sup
θ0∈R

|ϕ′(θ0 + θ)− ϕ′(θ0)| = oθ→0(|θ|α−1). (2.3)

Proof. The inequality (2.1) follows from ϕ′(θ) =
∫∞
−∞ eiθtitf(t)dt.

For any x ∈ R, it is obvious that min(|x|, |x|2) ≤ |x|α, |eix−1| ≤ |x|, |eix−1− ix| ≤
|x|2/2 and hence |eix − 1− ix| ≤ min(2|x|, |x|2/2) ≤ 2|x|α.

To prove (2.2) note that |θ|−α|(eiθt − 1 − iθt)f(t)| ≤ 2|t|αf(t), where the left hand
side converges to 0 as θ → 0 and the right hand side is integrable. Since ϕ(θ0 + θ) −
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ϕ(θ0)− ϕ′(θ0)θ =
∫∞
−∞ eiθ0t(eiθt − 1− iθt)f(t)dt we have as θ → 0

|θ|−α sup
θ0∈R

|ϕ(θ0 + θ)− ϕ(θ0)− ϕ′(θ0)θ|

≤
∫ ∞

−∞
sup
θ0∈R

∣∣∣∣
eiθ0t(eiθt − 1− iθt)f(t)

|θ|α
∣∣∣∣dt

=
∫ ∞

−∞

∣∣∣∣
(eiθt − 1− iθt)f(t)

|θ|α
∣∣∣∣dt → 0.

A similar argument based on |eix − 1| ≤ min(2, |x|) ≤ 2|x|α−1 and |θ|−(α−1)|(eiθt −
1)it f(t)| ≤ 2|t|αf(t) leads us to (2.3). ¤

We introduce a family of finite measures Us =
∑∞

n=1 snFn∗ where s ∈ [0, 1). If we set
us(t) =

∑∞
n=1 snfn(t), it is a version of the density of Us and satisfies lims→1−0 us(t) =

u(t) for a.e. t by the monotone convergence theorem.

Lemma 2.2. Assume ϕ(θ) ∈ Lp for some p ∈ [1,∞). Let N be any integer such
that N ≥ p.

( i ) For any n ≥ dpe, Ffn(θ) = ϕ(θ)n is integrable and its inverse Fourier transform
(1/2π)

∫∞
−∞ e−itθϕ(θ)ndθ is continuous in t and coincides a.e. with fn(t).

( ii ) Fix s ∈ [0, 1). For n ≥ N we identify fn(t) with the continuous version in (i). Then∑∞
n=N snfn(t) is integrable and is the uniform limit of a sequence of continuous

functions. Its Fourier transform sNϕ(θ)N/(1− sϕ(θ)) is integrable in θ and it
holds

∑∞
n=N snfn(t) = (1/2π)

∫∞
−∞ e−itθsNϕ(θ)N/(1− sϕ(θ))dθ for all t ∈ R.

Proof. (i) Since N ≥ p and ‖ϕ(θ)‖∞ = 1, ϕ(θ)n is integrable for any n ≥ N .
The other statements follow immediately.

(ii) It is trivial that ‖fn(t)‖1 = 1 and hence
∑∞

n=N snfn(t) is integrable. For any
n ≥ N it holds ‖ϕ(θ)n‖1 ≤ ‖ϕ(θ)N‖1 and ‖fn(t)‖∞ ≤ (1/2π)‖ϕ(θ)N‖1, which implies
limM→∞

∑M
n=N snfn(t) converges uniformly in t. Its Fourier transform is obviously equal

to sNϕ(θ)N/(1− sϕ(θ)) and is integrable since ‖1/(1− sϕ(θ))‖∞ ≤ 1/(1 − s) < ∞.
The inverse Fourier transform coincides with

∑∞
n=N snfn(t) for at least a.e. t. Their

continuity implies the equality for all t. ¤

Lemma 2.3. Assume ϕ(θ) ∈ Lp for some p ∈ [1,∞) and µ =
∫∞
−∞ tf(t)dt ∈ (0,∞).

Let N = dpe+ 1. Then the following hold.

( i ) For all t ∈ R, lims→1−0

∫∞
−∞ e−itθ(sN+1ϕ(θ)N+1/(1 − sϕ(θ)))dθ = π/µ +∫∞

−∞<(e−itθ(ϕ(θ)N+1/(1− ϕ(θ))))dθ.
( ii ) The function u(t) − ∑N

n=1 fn(t) has a continuous version 1/2µ +
(1/2π)

∫∞
−∞<(e−itθ(ϕ(θ)N+1/(1− ϕ(θ))))dθ.

Proof. (i) Since
∑∞

n=N+1 snfn(t) is real we have by Lemma 2.2 (ii)
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2π
∞∑

n=N+1

snfn(t) =
∫ ∞

−∞
<

(
e−itθ sN+1ϕ(θ)N+1

1− sϕ(θ)

)
dθ

=
∫ ∞

−∞

(
cos(tθ)<sN+1ϕ(θ)N+1

1− sϕ(θ)
+ sin(tθ)=sN+1ϕ(θ)N+1

1− sϕ(θ)

)
dθ.

We divide this into two integrals over [−1, 1] and [−1, 1]c and will prove their convergence
as s → 1− 0.

Since ϕ(θ) 6= 1 for all θ 6= 0, |ϕ(θ)| ≤ 1 for all θ ∈ R, and ϕ(θ) = 1 + iµθ + oθ→0(|θ|)
with µ > 0, it is elementary to deduce that, for some K > 0, sups∈[0,1) |1/(1− sϕ(θ))| <
K/|θ| for all θ with 0 < |θ| ≤ 1. Hence we have

∣∣∣∣ sin(tθ)=sN+1ϕ(θ)N+1

1− sϕ(θ)

∣∣∣∣ ≤
|t| |θ|

|1− sϕ(θ)| ≤ K|t|

if 0 < |θ| ≤ 1.
We quote a result from [2] (see also [5, p. 62]): The measure 1[−1,1](θ)<(1/(1 −

sϕ(θ)))dθ converges weakly to (π/µ)δ0(dθ) + 1[−1,1](θ)<(1/(1 − ϕ(θ)))dθ as s → 1 − 0.
Note that

<sN+1ϕ(θ)N+1

1− sϕ(θ)
= < 1

1− sϕ(θ)
−<1− sN+1ϕ(θ)N+1

1− sϕ(θ)

= < 1
1− sϕ(θ)

−<
N∑

n=0

snϕ(θ)n

and the absolute value of
∑N

n=0 snϕ(θ)n is bounded by N + 1.
Hence we have, as s → 1− 0,

∫

[−1,1]

(
cos(tθ)<sN+1ϕ(θ)N+1

1− sϕ(θ)
+ sin(tθ)=sN+1ϕ(θ)N+1

1− sϕ(θ)

)
dθ

→
∫

[−1,1]

cos(tθ)
(

π

µ
δ0(dθ) + < 1

1− ϕ(θ)
dθ

)

+
∫

[−1,1]

(
cos(tθ)<ϕ(θ)N+1 − 1

1− ϕ(θ)
+ sin(tθ)=ϕ(θ)N+1

1− ϕ(θ)

)
dθ

=
π

µ
+

∫

[−1,1]

(
cos(tθ)<ϕ(θ)N+1

1− ϕ(θ)
+ sin(tθ)=ϕ(θ)N+1

1− ϕ(θ)

)
dθ. (2.4)

A bound for θ ∈ [−1, 1]c can be obtained by using inf |θ|>1 |1− ϕ(θ)| > 0:

sup
s∈[0,1)

∣∣∣∣e−itθ sN+1ϕ(θ)N+1

1− sϕ(θ)

∣∣∣∣ ≤ const ϕ(θ)N+1 for θ ∈ [−1, 1]c.
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Hence

∫

[−1,1]c
<

(
e−itθ sN+1ϕ(θ)N+1

1− sϕ(θ)

)
dθ →

∫

[−1,1]c
<

(
e−itθ ϕ(θ)N+1

1− ϕ(θ)

)
dθ. (2.5)

By (2.4) and (2.5) we have the statement of (i).
(ii) The integral in (2.5) is the sum of the cosine and the sine transform of integrable

functions and thus continuous in t.
The proof of (i) also reveals 1[−1,1](θ)<(ϕ(θ)N+1/(1 − ϕ(θ))) is integrable and its

cosine transform is continuous.
Set I(t) :=

∫
[−1,1]

sin(tθ)=(ϕ(θ)N+1/(1−ϕ(θ)))dθ. Note that ϕ(θ)N+1/(1−ϕ(θ)) =
Oθ→0(|θ|−1). Hence for any t, t′ ∈ R, it follows from | sin(tθ)− sin(t′θ)| ≤ |t− t′| · |θ| that
|I(t) − I(t′)| ≤ const |t − t′| and the proof of continuity of the integral appearing in (ii)
is completed. The rest of (ii) follows from

u(t)−
N∑

n=1

fn(t) = lim
s→1−0

(
us(t)−

N∑
n=1

snfn(t)
)

= lim
s→1−0

∞∑

n=N+1

snfn(t)

and Lemma 2.2 (ii). ¤

Intuitively u(t) is related in Lemma 2.3 (ii) to “the inverse Fourier transform” of
ϕ(θ)N+1/(1 − ϕ(θ)) if it could be justified. When we are interested in the asymptotic
behavior as t → ∞, the behavior of ϕ(θ)N+1/(1 − ϕ(θ)) near θ = 0 is important. Since
ϕ(θ)N+1 will be shown later to be well approximated by 1 as θ → 0, we here focus on
1/(1−ϕ(θ)). By (2.2) we have a := (ϕ(θ)− 1− iµθ)/−iµθ = oθ→0(|θ|α−1) and hence, if
|θ| is sufficiently small, 1/(1 − a) = 1 + a + a2 + · · · is convergent. We divide the both
sides by (−iµθ) and obtain

1
1− ϕ(θ)

=
1

−iµθ
+

ϕ(θ)− 1− iµθ

(−iµθ)2
+

(ϕ(θ)− 1− iµθ)2

(−iµθ)3
+ · · · . (2.6)

Although we will take advantage of the inverse Fourier transform of integrable functions,
we first use the inverse Fourier transform in the sense of distributions to foretell a couple
of leading terms in the approximation of u(t). Namely what we will prove in the sequel
can be summarized that the quantity in Lemma 2.3 (ii) is close to

1
2µ

+
1
2π

∫ ∞

−∞
e−itθ 1

1− ϕ(θ)
dθ

=
1
2µ

+ F−1 1
1− ϕ(θ)

=
1
2µ

+ F−1 1
−iµθ

+ F−1 ϕ(θ)− 1− iµθ

(−iµθ)2
+ F−1 (ϕ(θ)− 1− iµθ)2

(−iµθ)3
+ · · · .

Note first that 1/−iµθ = F((1/2µ) sgn(t)) where sgn(t) = t/|t| for t 6= 0 and sgn(0) = 0.
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Hence 1/2µ + F−1(1/−iµθ) = (1/2µ)(1 + sgn(t)) = (1/2µ)1{0}(t) + (1/µ)1(0,∞)(t) and
this density yields the Lebesgue measure on (0,∞) multiplied by 1/µ, which is plausible
as the first approximation of the renewal measure.

Since the second term in the right hand side of (2.6) includes ϕ(θ)/θ2 it should
be the Fourier transform of an iterated integral of f(t), which will be shown to be r(t)
defined in Section 1.

Being the square of the second term multiplied by (−iµθ), the third term in the right
hand side of (2.6) should be the Fourier transform of µ(r ∗ r)′. We justify this formal
treatment in Lemmas 2.4 and 2.5.

We introduce a function v(t) = r(t) + ((t− 1)/µ)1[0,1](t). We set

γ(θ) = F(r − v)(θ) =
∫ 1

0

eiθt 1− t

µ
dt =

−1
iµθ

+
µ(eiθ − 1)
(−iµθ)2

. (2.7)

The importance of v(t) lies in the fact that it has the same asymptotic behavior as r(t)
as |t| → ∞ and Fv(θ) has a thin tail as |θ| → ∞, see Lemma 2.4 (iii) below.

Lemma 2.4. Assume µ =
∫∞
−∞ tf(t)dt ∈ (0,∞), α ∈ (1,∞), and M(α) < ∞.

(i) The function q(t) belongs to L1 ∩L∞, is absolutely continuous, and is monotone
nonincreasing both on (−∞, 0) and on [0,∞). It holds q(t) = ot→±∞(|t|−α), q(0−) ≤
0 ≤ q(0) = q(0−) + 1/µ, Fq(θ) = (ϕ(θ)− 1)/iµθ for any θ 6= 0, and Fq(0) = 1.

(ii) The function r(t) is convex and of the class C1 both on (−∞, 0) and on [0,∞).
Moreover, it is nonnegative, bounded, and satisfies r(0) = r(0−) + 1/µ and r(t) =
ot→±∞(|t|1−α). For any θ 6= 0, the Fourier transform Fr(θ) =

∫∞
−∞ eiθtr(t)dt converges

as an improper Riemann integral and equals to (Fq(θ)−1)/iµθ = (ϕ(θ)−1−iµθ)/(−iµθ)2.
It satisfies Fr(θ) = −1/iµθ + Oθ→±∞(|θ|−2); Fr(θ) = oθ→0(|θ|α−2) if 1 < α < 2;
Fr(θ) = Oθ→0(1) if α ≥ 2.

(iii) The function v(t) is bounded and continuous on R. For any θ 6= 0, the Fourier
transform Fv(θ) =

∫∞
−∞ eiθtv(t)dt converges as an improper Riemann integral and equals

to Fr(θ)− γ(θ) = (ϕ(θ)− 1− µ(eiθ − 1))/(−iµθ)2. It satisfies Fv(θ) = Oθ→±∞(|θ|−2);
Fv(θ) = oθ→0(|θ|α−2) if 1 < α < 2; Fv(θ) = Oθ→0(1) if α ≥ 2. Consequently, Fv(θ) is
integrable.

(iv) If α > 3/2 then r(t) ∈ L2, v(t) ∈ L2, and Fv(θ) ∈ L1 ∩ L2. For all t ∈ R it
holds

v(t) =
1
2π

∫ ∞

−∞
e−itθFv(θ)dθ.

Proof. (i) Since
∫∞
0

tαf(t)dt < ∞,

lim
A→∞

Aαq(A) = lim
A→∞

1
µ

∫ ∞

A

Aαf(t)dt ≤ lim
A→∞

1
µ

∫ ∞

A

tαf(t)dt = 0.

Similarly, we have limA→−∞Aαq(A) = 0.
Let θ 6= 0. Since lim|A|→∞ q(A) = 0, by integration by parts we have

∫∞
0

eiθtq(t)dt =
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[(eiθt/iθ)q(t)]∞0 + (1/µ)
∫∞
0

(eiθt/iθ)f(t)dt = −q(0)/iθ + (1/µ)
∫∞
0

(eiθt/iθ)f(t)dt and∫ 0

−∞ eiθtq(t)dt = q(0−)/iθ + (1/µ)
∫ 0

−∞(eiθt/iθ)f(t)dt. The sum of these integrals yields
Fq(θ) = −(q(0)− q(0−))/iθ + (1/µ)

∫∞
−∞(eiθt/iθ)f(t)dt = −1/iµθ + ϕ(θ)/iµθ.

Other statements in (i) are easily verified using
∫∞
0

q(t)dt = (1/µ)
∫∞
0

tf(t)dt and∫ 0

−∞ q(t)dt = (−1/µ)
∫ 0

−∞ |t|f(t)dt.
(ii) On (0,∞), it holds r′(t) = −q(t)/µ and q is monotonously nonincreasing and

continuous, so that r is convex and of the class C1. Similar result holds for (−∞, 0).
By the definition we have r(0)− r(0−) = (1/µ)

∫∞
−∞ q(s)ds = 1/µ.

By integration by parts and a result in (i), we have
∫∞
0

αtα−1µq(t)dt =∫∞
0

tαf(t)dt < ∞. An argument similar to the proof of (i) leads us to αAα−1µ2r(A) ≤∫∞
A

αtα−1µq(t)dt → 0 as A →∞. We also have limA→−∞ |A|α−1r(A) = 0.
Let θ 6= 0. Since lim|t|→∞ r(t) = 0, by integration by parts we have

∫∞
0

eiθtr(t)dt =
[(eiθt/iθ)r(t)]∞0 + (1/µ)

∫∞
0

(eiθt/iθ)q(t)dt = −r(0)/iθ + (1/µ)
∫∞
0

(eiθt/iθ)q(t)dt and∫ 0

−∞ eiθtr(t)dt = r(0−)/iθ + (1/µ)
∫ 0

−∞(eiθt/iθ)q(t)dt. The sum of these integrals
yields Fr(θ) = −(r(0)− r(0−))/iθ + (1/µ)

∫∞
−∞(eiθt/iθ)q(t)dt = −1/iµθ + Fq(θ)/iµθ =

−1/iµθ + (ϕ(θ) − 1)/(−iµθ)2. It follows from |ϕ(θ)| ≤ 1 that Fr(θ) = −1/iµθ +
Oθ→±∞(|θ|−2).

If 1 < α < 2 the estimate Fr(θ) = oθ→0(|θ|α−2) follows from (2.2) and ϕ′(0) = iµ. If
α ≥ 2 we have r(t) ∈ L1, Fr(θ) ∈ C(R) and hence Fr(θ) = Oθ→0(1). Other statements
can be proved immediately.

(iii) By (ii), r(t) is continuous except the jump by 1/µ at t = 0. The modification
in the definition of v(t) gets rid of this jump and makes it a continuous function. Since
γ(θ) = −1/iµθ+Oθ→±∞(|θ|−2), other statements are proved using Fv(θ) = Fr(θ)−γ(θ)
and (ii).

(iv) If α > 3/2, the statements in (ii) and (iii) imply that r(t) ∈ L2, v(t) ∈ L2,
Fv(θ) ∈ L2, and that vA(t) := (1/2π)

∫ A

−A
e−itθFv(θ)dθ converges to v(t) in L2 as

A → ∞. There exists a sequence Ak → ∞ such that vAk
(t) converges to v(t) almost

everywhere. On the other hand, since Fv(θ) is integrable, limA→∞ vA(t) converges for
all t and yields a continuous function. Since v(t) is also continuous, they coincide for all
t. ¤

We next relate the third term in the right side of (2.6) to the Fourier transform of
µr′(t) ∗ r(t), as is predicted just before Lemma 2.4. Since formally r′(t) = (1/µ)δ(t) −
(1/µ)q(t) where δ(t) is the Dirac delta at t = 0, µ r′(t) ∗ r(t) should be replaced by
r1(t) = r(t)− q ∗ r(t). We also introduce the function w(t) that behaves in the same way
as r1(t) as |t| → ∞ and has the Fourier transform with a thin tail (see Lemma 2.5 (ii)
below) as |θ| → ∞: w(t) = r1(t) + ((t− 1)/µ)1[0,1](t) = v(t)− q ∗ r(t).

Lemma 2.5. Assume µ =
∫∞
−∞ tf(t)dt ∈ (0,∞) and M(α) < ∞ for some α ∈

(1,∞). Then the following statements hold.

( i ) The functions q ∗ r(t) and w(t) are bounded and continuous.
( ii ) Assume 1 < α < 2. Then it holds w(t) = ot→±∞(|t|2−2α) and r1(t) =

ot→±∞(|t|2−2α).
(iii) Assume 3/2 < α. Then r1(t) ∈ L1 ∩ L∞, Fr1(θ) = (ϕ(θ)− 1− iµθ)2/(−iµθ)3 for
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any θ 6= 0, and Fr1(0) = 0.
(iv) Assume 3/2 < α. Then w(t) ∈ L1 ∩ L∞, Fw(θ) = (ϕ(θ)− 1− iµθ)2/(−iµθ)3 −

1/−iµθ−µ(eiθ − 1)/(−iµθ)2 for any θ 6= 0, Fw(θ) = Oθ→±∞(|θ|−2), and Fw(θ) ∈
L1 ∩ L∞. It holds w(t) = (1/2π)

∫∞
−∞ e−itθFw(θ)dθ for all t ∈ R.

Proof. (i) We can prove boundedness and continuity of q ∗ r(t) immediately
using q(t) ∈ L1, r(t) ∈ L∞, and Young’s inequality. The statement for w(t) follows from
w(t) = v(t)− q ∗ r(t) and Lemma 2.4 (iii).

(ii) We only prove here the tail estimate when t → +∞. Since
∫∞
−∞ q(s)ds = 1, it

holds r1(t) =
∫∞
−∞(r(t) − r(t − s))q(s)ds. We divide this integral into four parts and

denote each of them by Ii (i ∈ {1, 2, 3, 4}) so that

r1(t) =
( ∫ −t/2

−∞
+

∫ t/2

−t/2

+
∫ 3t/2

t/2

+
∫ ∞

3t/2

)
(r(t)− r(t− s))q(s)ds = I1 + I2 + I3 + I4.

By Lemma 2.4 (ii), |I1| ≤ ot→±∞(|t|1−α)
∫ −t/2

−∞ q(s)ds = ot→±∞(|t|1−αr(−t/2)) =
ot→±∞(|t|2−2α) and similarly |I4| ≤ ot→±∞(|t|1−αr(3t/2)) = ot→±∞(|t|2−2α). We have
|r(t) − r(u)| ≤ |q(t/2)| |t − u|/µ = ot→±∞(|t|−α)|t − u| for any u ∈ [t/2, 3t/2] by con-
vexity of r(u). Therefore |I2| ≤ ot→±∞(|t|−α)

∫ −t/2

t/2
|s|q(s)ds = ot→±∞(|t|2−2α). Finally,

|I3| ≤ r(t)
∫ 3t/2

t/2
q(s)ds + q(t/2)

∫ 3t/2

t/2
r(t− s)ds = ot→±∞(|t|2−2α). The proof of the rest

of (ii) can be done similarly.
(iii) If 3/2 < α, the estimates in (ii) and the (forthcoming) Remark 2.1 imply

r1(t) ∈ L1 ∩ L∞. Since q(t) ∈ L1 and r(t) ∈ L2 we have F(q ∗ r) = (Fq)(Fr) a.e.
by [7, p. 122]. Hence F(r1)(θ) = (1 − Fq(θ))Fr(θ) = (1 − Fq(θ))(Fq(θ) − 1)/(iµθ) =
(ϕ(θ)− 1− iµθ)2/(−iµθ)3 for a.e. θ 6= 0. By continuity the equality holds for all θ 6= 0.

(iv) The difference between w(t) and r1(t) is a bounded function supported on a
compact set and hence w(t) ∈ L1 ∩ L∞. By (2.7) we have Fw(θ) = Fr1(θ)− γ(θ). It is
easily shown that Fr1(θ) = −1/iµθ+Oθ→±∞(|θ|−2) and γ(θ) = −1/iµθ+Oθ→±∞(|θ|−2)
by the proof of Lemma 4 (iii), which yields Fw(θ) = Oθ→±∞(|θ|−2). Since Fw(θ) is
bounded, it is also integrable. Hence its inverse transform coincides with w(t). ¤

Remark 2.1. In the proof of Lemma 2a in Carlsson [1], it is assumed that α ≥ 2
and hence the tail estimate in Lemma 2.5 (ii) is modified. Indeed, since |t|q(t) is integrable
it holds r(t) ∈ L1, q ∗ r(t) ∈ L1, and

∫ t/2

−t/2
|s|q(s)ds = Ot→±∞(1), which is greater than

|t|2−α. Consequently one has I2 = ot→±∞(|t|−α) in [1] so that r1(t) = ot→±∞(|t|−α) if
α ≥ 2.

3. Proof of the main theorem.

We recall the three terms appearing in the right hand side of (2.6) and will ap-
proximate them by the functions e−θ2

/−iµθ, Fv(θ), and Fw(θ) respectively that behave
similarly to the original ones as |θ| → 0, have thin tails as |θ| → ∞, and admit the inverse
Fourier transform. By a formula in Oberhettinger [8, p. 126] we have
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1
2µ

Erf(t/2) =
1
2π

∫ ∞

−∞
sin(tθ)

1
µθ

e−θ2
dθ =

1
2π

∫ ∞

−∞
<

(
e−itθ e−θ2

−iµθ

)
dθ, (3.1)

where Erf(x) = (2/
√

π)
∫ x

0
e−t2dt for x ∈ R. Subtracting the both sides of (3.1) from the

result of Lemma 2.3 (ii) we have

u(t)− 1 + Erf(t/2)
2µ

−
N∑

n=1

fn(t) =
1
2π

∫ ∞

−∞
<

(
e−itθ

(
ϕ(θ)N+1

1− ϕ(θ)
− e−θ2

−iµθ

))
dθ. (3.2)

We set

u1(t) = u(t)− 1 + Erf(t/2)
2µ

−
N∑

n=1

fn(t)− v(t)− w(t). (3.3)

If α > 3/2 it follows from (3.2), Lemma 2.4 (iv), and Lemma 2.5 (iv) that

u1(t) =
1
2π

∫ ∞

−∞
<

(
e−itθ

(
ϕ(θ)N+1

1− ϕ(θ)
− e−θ2

−iµθ
−Fv(θ)−Fw(θ)

))
dθ. (3.4)

We define a function Ψ1(θ) by

Ψ1(θ) =
ϕ(θ)N+1

1− ϕ(θ)
− e−θ2

−iµθ
−Fv(θ)−Fw(θ) (3.5)

for θ 6= 0 and Ψ1(0) = −N − 1 + 2γ(0).

Lemma 3.1. Let 3/2 < α < 2, M(α) < ∞, and 0 < ε < 1/2.

( i ) For θ 6= 0, Ψ1(θ) is differentiable and satisfies

Ψ1(θ) =
(ϕ(θ)− 1− iµθ)3

(1− ϕ(θ))(−iµθ)3
−

N∑

k=0

ϕ(θ)k − e−θ2 − 1
−iµθ

+ 2γ(θ). (3.6)

Ψ1(θ) is continuous on R. It holds (ϕ(θ)− 1− iµθ)3/(1− ϕ(θ))(−iµθ)3 =
oθ→0(|θ|3α−4).

( ii ) Ψ1(θ) is integrable on R and satisfies limθ→±∞Ψ1(θ) = 0.
(iii) It holds (d/dθ)(ϕ(θ)− 1− iµθ)3/(1− ϕ(θ))(−iµθ)3 = oθ→0(|θ|3α−5). On {θ 6= 0},

Ψ′1(θ) is integrable, continuous and satisfies limθ→±∞Ψ′1(θ) = 0.
(iv) As ε → +0,

∫
[−1,1]c

|Ψ′1(θ)−Ψ′1(θ + ε)|dθ = oε→+0(εα−1).
(v ) As ε → +0,

∫
{2ε<|θ|<1} |Ψ′1(θ)−Ψ′1(θ + ε)|dθ = oε→+0(εα−1).

Proof. (i) Since Fv = Fr−γ and Fw = Fr1−γ, (3.6) can be derived from (3.5),
Lemma 2.4 (ii), and Lemma 2.5 (iii) by elementary manipulations. Other statements are
proved easily using (2.2) and γ(θ) = −1/iµθ + µ(eiθ − 1)/(−iµθ)2.
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(ii) The integrability of Ψ1(θ) on [−1, 1] follows from (i). Since ϕN+1 ∈ L1, it
follows from limθ→±∞ ϕ(θ) = 0 and inf |θ|≥1 |1− ϕ(θ)| > 0 that ϕ(θ)N+1/(1− ϕ(θ)) has
a vanishing tail and is integrable on [−1, 1]c. Other terms in (3.5) also have vanishing
tails and are integrable on [−1, 1]c by Lemmas 2.4 (iii) and 2.5 (iv).

(iii) We can verify the first estimate in (iii) using Lemma 2.1 and

d

dθ

(ϕ(θ)− 1− iµθ)3

(1− ϕ(θ))(−iµθ)3
= 3

(ϕ(θ)− 1− iµθ)2(ϕ′(θ)− iµ)
(1− ϕ(θ))(−iµθ)3

+
(ϕ(θ)− 1− iµθ)3ϕ′(θ)

(1− ϕ(θ))2(−iµθ)3
− 3

(ϕ(θ)− 1− iµθ)3

(1− ϕ(θ))(−iµ)3θ4
. (3.7)

Continuity of Ψ′1(θ) on {θ 6= 0} follows from (3.6), (3.7), (2.3), and smoothness of
(e−θ2−1)/−iµθ and γ(θ). Since |θ|3α−5 is locally integrable and −∑N

k=0 ϕ(θ)k−(e−θ2−
1)/−iµθ + 2γ(θ) is continuously differentiable, Ψ′1(θ) is locally integrable. To prove the
integrability on [−1, 1]c of Ψ′1(θ) we note that the second term e−θ2

/−iµθ in (3.5) has
the derivative that is integrable on [−1, 1]c. The derivative of the first term in (3.5) is

d

dθ

ϕ(θ)N+1

1− ϕ(θ)
=

(N + 1)ϕ(θ)Nϕ′(θ)
1− ϕ(θ)

+
ϕ(θ)N+1ϕ′(θ)
(1− ϕ(θ))2

. (3.8)

By inf |θ|≥1 |1− ϕ(θ)| > 0, |(d/dθ)(ϕ(θ)N+1/(1− ϕ(θ)))| ≤ const |ϕ(θ)|N if |θ| ≥ 1. Since
ϕ(θ) ∈ Lp ∩ L∞ and N ≥ p, we have ϕ(θ)N ∈ L1 and (d/dθ)(ϕ(θ)N+1/(1− ϕ(θ))) is
integrable on [−1, 1]c.

Recall that Fv(θ) = (ϕ(θ)− 1− µ(eiθ − 1))/(−iµθ)2. By differentiation we have

(Fv)′(θ) =
ϕ′(θ)− iµeiθ

(−iµθ)2
− 2

ϕ(θ)− 1− µ(eiθ − 1)
(−iµ)2θ3

. (3.9)

It is easy to deduce that (Fv)′(θ) = Oθ→±∞(|θ|−2) and, in a similar manner, that
(Fw)′(θ) = Oθ→±∞(|θ|−2). Hence (Fv)′(θ) and (Fw)′(θ) are integrable on [−1, 1]c.

It remains to prove limθ→±∞Ψ′1(θ) = 0. Since ϕ′(θ) =
∫∞
−∞ eiθtitf(t)dt, we have

limθ→±∞ ϕ′(θ) = 0 by the Riemann-Lebesgue theorem. Hence limθ→±∞Ψ′1(θ) = 0
follows from (3.5), (3.8), and |(Fv)′(θ)|+ |(Fw)′(θ)| = Oθ→±∞(|θ|−2).

(iv) We derivate each term in (3.5), take the difference between θ and θ + ε, and
integrate over [−1, 1]c. For ε ∈ (0, 1/2) and a function g(θ), let ∆εg(θ) = g(θ)− g(θ + ε).

It is easy to deduce from (3.9) and (2.3) that sup|θ|≥1 θ2|∆ε(Fv)′(θ)| = oε→+0(εα−1),
which implies

∫
[−1,1]c

|∆ε(Fv)′(θ)|dθ = oε→+0(εα−1). A similar estimate holds for (Fw)′.

The estimate concerning (d/dθ)(e−θ2
/−iµθ) is immediate: |∆ε(d/dθ)(e−θ2

/−iµθ)| ≤
const |θ| exp(−(|θ| − 1/2)2)ε for any ε ∈ (0, 1/2) and θ with |θ| ≥ 1. Its integral over
[−1, 1]c is Oε→+0(ε) and hence oε→+0(εα−1).

We now have to obtain an estimate concerning the quantity in (3.8). We introduce
some notations for the difference between θ and θ+ε of the first term (with N +1 deleted)
in the right hand side of (3.8):
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∆ε
ϕ(θ)Nϕ′(θ)
1− ϕ(θ)

=
ϕ(θ)N

1− ϕ(θ)
∆εϕ

′(θ) +
ϕ′(θ + ε)
1− ϕ(θ)

∆εϕ(θ)N + ϕ(θ + ε)Nϕ′(θ + ε)∆ε
1

1− ϕ(θ)

=: Φ1,1(θ, ε) + Φ1,2(θ, ε) + Φ1,3(θ, ε).

Set A = sup|θ|≥1/2 |1/(1− ϕ(θ))|. By (2.3),

∫

[−1,1]c
|Φ1,1(θ, ε)|dθ ≤ A

( ∫

[−1,1]c
|ϕ(θ)|Ndθ

)
sup
|θ|≥1

|∆εϕ
′(θ)| = oε→+0(εα−1).

Note that Φ1,2(θ, ε) = ϕ′(θ + ε)∆εϕ(θ)/(1 − ϕ(θ))
∑N−1

k=0 ϕ(θ)kϕ(θ + ε)N−1−k and
|∆εϕ(θ)| ≤ ‖ϕ′‖∞ε. Since ϕ(θ) ∈ Lp ∩ L∞ and p ≤ dpe ≤ N − 1 we have ϕ(θ) ∈ LN−1

and ‖ϕ(θ)kϕ(θ+ε)N−1−k‖1 ≤ ‖ϕ‖N−1
N−1 by the Hölder inequality. Now it is easy to obtain

∫

[−1,1]c
|Φ1,2(θ, ε)|dθ ≤ A‖ϕ′‖2∞εN‖ϕ‖N−1

N−1.

It is straightforward to obtain
∫
[−1,1]c

|Φ1,3(θ, ε)|dθ ≤ ‖ϕN‖1‖ϕ′‖2∞A2ε.

Since ε = oε→+0(εα−1), we have established

∫

[−1,1]c

∣∣∣∣∆ε
ϕ(θ)Nϕ′(θ)
1− ϕ(θ)

∣∣∣∣dθ = oε→+0(εα−1).

In a similar manner, we can verify the estimate concerning the second term in the
right hand side of (3.8):

∫

[−1,1]c

∣∣∣∣∆ε
ϕ(θ)N+1ϕ′(θ)
(1− ϕ(θ))2

∣∣∣∣dθ = oε→+0(εα−1).

Now the proof of (iv) is completed.
(v) Let a, b ∈ R. We denote by õθ→0(|θ|aεb) a function g(θ, ε) with two variables

defined for ε ∈ (0, 1/2) and θ with 2ε < |θ| < 1 such that

sup
ε∈(0,|θ|/2)

|g(θ, ε)|
|θ|aεb

= oθ→0(1).

The function g(θ, ε) may vary each time õθ→0(|θ|aεb) appears. We will take advantage
of the fact that for any g(θ, ε) = õθ→0(|θ|aεb),

∫
{2ε<|θ|<1} |g(θ, ε)| dθ = oε→+0(ε1+a+b) if

a < −1;
∫
{2ε<|θ|<1} |g(θ, ε)| dθ = oε→+0(εb log(1/ε)) if a = −1;

∫
{2ε<|θ|<1} |g(θ, ε)| dθ =

Oε→+0(εb) if a > −1.
We define õθ→0(|θ+ε|aεb) similarly. Since 1/2 < |θ + ε|/|θ| < 3/2 for any ε ∈ (0, 1/2)

and any θ with 2ε < |θ| < 1, we have similar estimates for
∫
{2ε<|θ|<1} |g(θ, ε)| dθ if



Fractional order estimates for renewal density 43

g(θ, ε) = õθ→0(|θ + ε|aεb).
We denote by õε→+0(|θ|aεb) and Õ(|θ|aεb) a function g(θ, ε) with two variables

defined for ε ∈ (0, 1/2) and θ with 2ε < |θ| < 1 such that

sup
|θ|∈(2ε,1)

|g(θ, ε)|
|θ|aεb

= oε→+0(1) and sup
ε∈(0,1/2)

sup
|θ|∈(2ε,1)

|g(θ, ε)|
|θ|aεb

< ∞,

respectively. The function g(θ, ε) may vary from place to place.
We rely on (3.6) to obtain a bound of |∆εΨ′1(θ)| that is valid for 2ε < |θ| < 1.
Since γ(θ) is smooth we have |∆εγ

′(θ)| = Õ(ε). A similar bound holds for
(e−θ2 − 1)/−iµθ. As for

∑N
k=0 ϕ(θ)k, we have

∆ε

( N∑

k=0

kϕ(θ)k−1ϕ′(θ)
)

= õε→+0(εα−1)

by (2.3). Since we easily obtain
∫
{2ε<|θ|<1} |Õ(ε)|dθ = Oε→+0(ε) ≤ oε→+0(εα−1) and∫

{2ε<|θ|<1} |õε→+0(εα−1)|dθ = oε→+0(εα−1), these terms are harmless in the proof of (v).
We introduce some notations for the difference between θ and θ + ε of the first

term (with a coefficient deleted) in the right hand side of (3.7):

∆ε
(ϕ(θ)− 1− iµθ)2(ϕ′(θ)− iµ)

(1− ϕ(θ))θ3
= Φ2,1(θ, ε) + Φ2,2(θ, ε) + Φ2,3(θ, ε) + Φ2,4(θ, ε) (3.10)

with

Φ2,1(θ, ε) =
(ϕ(θ)− 1− iµθ)2(ϕ′(θ)− iµ)

(1− ϕ(θ))
∆ε

(
1
θ3

)
,

Φ2,2(θ, ε) =
(ϕ(θ)− 1− iµθ)2(ϕ′(θ)− iµ)

(θ + ε)3
∆ε

(
1

1− ϕ(θ)

)
,

Φ2,3(θ, ε) =
(ϕ′(θ)− iµ)

(1− ϕ(θ + ε))(θ + ε)3
∆ε

(
(ϕ(θ)− 1− iµθ)2

)
,

Φ2,4(θ, ε) =
(ϕ(θ + ε)− 1− iµ(θ + ε))2

(1− ϕ(θ + ε))(θ + ε)3
∆ε(ϕ′(θ)− iµ).

By Lemma 2.1 and ∆ε(1/θ3) = Õ(|θ|2ε)/θ3(θ + ε)3 = Õ(|θ|−4ε), we have

|Φ2,1(θ, ε)| = oθ→0(|θ|2α)oθ→0(|θ|α−1)O(|θ|−1)Õ(|θ|−4ε) = õθ→0(|θ|3α−6ε).

If α ∈ (3/2, 5/3), we have 3α− 6 < −1, 3α− 4 > α− 1, and

∫

{2ε<|θ|<1}
õθ→0(|θ|3α−6ε)dθ = oε→+0(ε3α−4) ≤ oε→+0(εα−1).
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Otherwise, we have α ∈ [5/3, 2), 3α− 6 ∈ [−1, 0), and

∫

{2ε<|θ|<1}
õθ→0(|θ|3α−6ε)dθ = oε→+0(ε log(1/ε)) ≤ oε→+0(εα−1).

Hence
∫
{2ε<|θ|<1} |Φ2,1(θ, ε)|dθ = oε→+0(εα−1).

Since ∆ε(1/(1− ϕ(θ))) = Õ(|θ|−2ε) the argument concerning Φ2,2(θ, ε) is similar.
Note that

∆ε(ϕ(θ)− 1− iµθ)2

= ((ϕ(θ)− 1− iµθ) + (ϕ(θ + ε)− 1− iµ(θ + ε)))(ϕ(θ)− ϕ(θ + ε) + iµε)

and

ϕ(θ)− ϕ(θ + ε) + iµε =
∫ θ+ε

θ

(ϕ′(0)− ϕ′(x))dx

=
∫ θ+ε

θ

ox→0(|x|α−1)dx = Õ(|θ|α−1ε)

since 1/2 < |θ + ε|/|θ| < 3/2. Combining these estimates we have

|Φ2,3(θ, ε)| = õθ→0(|θ|α−1)Õ(|θ + ε|−4)Õ(|θ|α + |θ + ε|α)Õ(|θ|α−1ε)

= õθ→0(|θ|3α−6ε)

and its integral over {2ε < |θ| < 1} is oε→+0(εα−1).
It follows from ∆εϕ

′(θ) = õε→+0(εα−1) that |Φ2,4(θ, ε)| = õε→+0(|θ|2α−4εα−1).
Since 2α − 4 > −1,

∫
{2ε<|θ|<1} |Φ2,4(θ, ε)|dθ = oε→+0(εα−1) and hence the integral of

(3.10) over {2ε < |θ| < 1} is oε→+0(εα−1).
Although we omit the proof, we can obtain similar estimates corresponding to other

two terms in the right hand side of (3.7). Combining these estimates we have

∫

{2ε<|θ|<1}

∣∣∣∣∆ε
d

dθ

(ϕ(θ)− 1− iµθ)3

(1− ϕ(θ))(−iµθ)3

∣∣∣∣dθ = oε→+0(εα−1)

and the proof of (v) is completed. ¤

Proof of Theorem 1.1. Recall N = dpe+ 1. By (3.3) we have, if |t| ≥ 1,

u(t)− 1
µ

1[0,∞)(t)−
N∑

n=1

fn(t)− r(t)− r1(t) = u1(t) +
1
2µ

(Erf(t/2)− sgn(t))

and Erf(t/2) − sgn(t) = ot→±∞(|t|−α). Hence (1.1) is reduced to the estimate u1(t) =
ot→±∞(|t|−α).
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Using (3.4), Ψ1(−θ) = Ψ1(θ), and Lemma 3.1 (ii) we have

u1(t) =
1
2π

∫ ∞

−∞
<(

e−itθΨ1(θ)
)
dθ =

1
2π

∫ ∞

−∞
e−itθΨ1(θ)dθ. (3.11)

Integrating by parts we have, by Lemma 3.1 (i)–(iii),

2πitu1(t) =
∫ ∞

−∞
e−itθΨ′1(θ)dθ.

We set ε = π/|t|. Since
∫∞
−∞ e−itθΨ′1(θ)dθ =

∫∞
−∞ e−it(θ+ε)Ψ′1(θ + ε)dθ =

− ∫∞
−∞ e−itθΨ′1(θ + ε)dθ, the sum of the leftmost and the rightmost sides yields

4πitu1(t) =
∫ ∞

−∞
e−itθ(Ψ′1(θ)−Ψ′1(θ + ε))dθ. (3.12)

By Lemma 3.1 (iv) and (v),

|4πtu1(t)| ≤
∫ ∞

−∞
|Ψ′1(θ)−Ψ′1(θ + ε)|dθ

=
∫

{|θ|≤2ε}
|Ψ′1(θ)−Ψ′1(θ + ε)|dθ + oε→+0(εα−1)

≤ 2
∫

{|θ|≤3ε}
|Ψ′1(θ)|dθ + oε→+0(εα−1).

Since −∑N
k=0 ϕ(θ)k − (e−θ2 − 1)/−iµθ + 2γ(θ) is continuously differentiable, we have

|Ψ′1(θ)| = oθ→0(|θ|3α−5) + Oθ→0(1) by Lemma 3.1 (iii). If α ∈ (3/2, 2) we have α − 1 <

3α − 4 and
∫
{|θ|≤3ε} |Ψ′1(θ)|dθ = oε→+0(ε3α−4) + Oε→+0(ε) ≤ oε→+0(εα−1). Finally

|tu1(t)| = oε→+0(εα−1) = ot→±∞(|t|1−α) and the proof is completed. ¤

Sketch of proof of Theorem 1.2. Recall N = dpe+ bαc. Set

u2(t) = u(t)− 1 + Erf(t/2)
2µ

−
N∑

n=1

fn(t)− v(t)− w(t).

If |t| ≥ 1,

u(t)− 1
µ

1[0,∞)(t)−
N∑

n=1

fn(t)− r(t)− r1(t) = u2(t) +
1
2µ

(Erf(t/2)− sgn(t)).

By Remark 2.1 and Erf(t/2) − sgn(t) = ot→±∞(|t|−α), we can reduce (1.2) to the
estimate u2(t) = ot→±∞(|t|−α).

We define a function Ψ2(θ) by
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Ψ2(θ) =
ϕ(θ)N+1

1− ϕ(θ)
− e−θ2

−iµθ
−Fv(θ)−Fw(θ) (3.13)

for θ 6= 0 and Ψ2(0) = −N − 1 + 2γ(0).
By the same argument in the proof of Lemma 3.1 (i) we have, for θ 6= 0,

Ψ2(θ) =
(ϕ(θ)− 1− iµθ)3

(1− ϕ(θ))(−iµθ)3
−

N∑

k=0

ϕ(θ)k − e−θ2 − 1
−iµθ

+ 2γ(θ)

= (−iµ)2
θ2Fr(θ)3

Fq(θ)
−

N∑

k=0

ϕ(θ)k − e−θ2 − 1
−iµθ

+ 2γ(θ) (3.14)

since it holds (1 − ϕ(θ))/θ = (−iµ)Fq(θ) and (ϕ(θ) − 1 − iµθ)/θ2 = (−iµ)2Fr(θ) for
θ 6= 0 as is seen in Lemma 2.4 (i) and (ii).

We can prove Ψ2(θ) is integrable and

u2(t) =
1
2π

∫ ∞

−∞
e−itθΨ2(θ)dθ (3.15)

in a manner similar to the proofs of Lemma 3.1 (ii) and (3.11).
We now introduce the notation m := bαc ≥ 2 and β := α − m ∈ [0, 1). By [10,

pp. 333–334], it holds

ϕ(θ) is of class Cm(R),

Fq(θ) is of class Cm−1(R) ∩ Cm(R \ {0}),
(Fq)(m)(θ) = oθ→0(|θ|−1),

Fr(θ) is of class Cm−2(R) ∩ Cm(R \ {0}),
(Fr)(m−1)(θ) = oθ→0(|θ|−1),

(Fr)(m)(θ) = oθ→0(|θ|−2).

Now it is straightforward to verify that Ψ2(θ) is of class Cm(R) using (3.14) and the
Leibniz rule. As a consequence Ψ(k)

2 (θ) is integrable on [−1, 1] for k ∈ {1, . . . , m}. We
next derive the integrability on [−1, 1]c from (3.13). By (2.1) and inf |θ|≥1 |1− ϕ(θ)| > 0
we have

dk

dθk

ϕ(θ)N+1

1− ϕ(θ)
≤ const |ϕ(θ)|N+1−k

for any θ ∈ [−1, 1]c and any k ∈ {1, . . . , m}. By its definition, N ≥ p + m and hence
|ϕ(θ)|N+1−k ∈ L1(R). By Lemma 2.4 (iii) and Lemma 2.5 (iv) we easily deduce that
|(Fv)(k)(θ)| + |(Fw)(k)(θ)| = Oθ→±∞(|θ|−2) for any k ∈ {1, . . . , m}. Now it is an easy
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conclusion that Ψ(k)
2 (θ) is integrable on [−1, 1]c and limθ→±∞Ψ(k)

2 (θ) = 0 for any k ∈
{1, . . . , m}. Hence by the integration by parts of (3.15),

2π(it)mu2(t) =
∫ ∞

−∞
e−itθΨ(m)

2 (θ)dθ.

We now complete the proof for the case β = 0: By the Riemann-Lebesgue theorem we
have tmu2(t) = ot→±∞(1) and this is equivalent with u2(t) = ot→±∞(|t|−α).

We continue the proof for the case 0 < β < 1. Recall the notation ∆εg(θ) =
g(θ)− g(θ + ε) for ε ∈ (0, 1/2) and a function g(θ). The estimate

sup
θ∈R

∣∣∆εϕ
(m)(θ)

∣∣ = oε→+0(εβ)

can be verified by using ϕ(m)(θ) =
∫∞
−∞ eiθtimtmf(t)dt and the method of proof of (2.3).

We set ε = π/|t| for t with |t| > 2π. By the same argument for (3.12) we have

4π(it)mu2(t) =
∫ ∞

−∞
e−itθ∆εΨ

(m)
2 (θ)dθ. (3.16)

Since α = m + β, (1.2) is reduced to the estimate
∫∞
−∞ |∆εΨ

(m)
2 (θ)|dθ = oε→+0(εβ). The

estimate
∫

{|θ|≤2ε}
|∆εΨ

(m)
2 (θ)|dθ ≤

∫

{|θ|≤3ε}
2|Ψ(m)

2 (θ)|dθ = Oε→+0(ε) ≤ oε→+0(εβ)

follows from Ψ2(θ) ∈ Cm(R).
We can obtain the estimate

∫
[−1,1]c

|∆εΨ
(m)
2 (θ)|dθ = oε→+0(εβ) by the same argu-

ment as the proof of Lemma 3.1 (iv) using (3.13) and the following estimates that can
be obtained in an elementary way:

sup
θ∈[−1,1]c

1
|ϕ(θ)|dpe + |ϕ(θ + ε)|dpe

∣∣∣∣∆ε
dm

dθm

ϕ(θ)N+1

1− ϕ(θ)

∣∣∣∣ = oε→+0(εβ),

sup
θ∈[−1,1]c

|θ|2(|∆ε(Fv)(m)(θ)|+ |∆ε(Fw)(m)|) = oε→+0(εβ).

We proceed to the estimate of integral over {2ε < |θ| < 1}. By inspecting more
carefully than [10, pp. 333–334] we have

|(Fq)(m)(θ)| = oθ→0(|θ|−1+β),

|(Fr)(m−1)(θ)| = oθ→0(|θ|−1+β),

|(Fr)(m)(θ)| = oθ→0(|θ|−2+β).
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It is elementary and tedious to deduce the estimates

|∆ε(Fq)(m−1)(θ)| = õε→+0(|θ|−1+βε) ≤ õε→+0(εβ),

|∆ε(Fq)(m)(θ)| = õθ→0(εβ |θ|−1),

|∆ε(Fr)(m−2)(θ)| = õε→+0(|θ|−1+βε) ≤ õε→+0(εβ),

|∆ε(Fr)(m−1)(θ)| = õε→+0(|θ|−2+βε),

|∆ε(Fr)(m)(θ)| = õε→+0(εβ |θ|−2),

that are valid when ε ∈ (0, 1/2) and 2ε < |θ| < 1. Among many terms that appear in
the mth derivative of (3.14) we investigate here the term θ2(Fr)(m)(θ)χ(θ) where χ(θ)
is a continuous function that satisfies ∆εχ(θ) = õε→+0(εβ). The difference of this term
is estimated as follows using 1/2 < |θ + ε|/|θ| < 3/2:

∆ε(θ2(Fr)(m)(θ)χ(θ))

= ∆ε(θ2)(Fr)(m)(θ)χ(θ) + (θ + ε)2∆ε((Fr)(m)(θ))χ(θ)

+ (θ + ε)2(Fr)(m)(θ + ε)∆ε(χ(θ))

= õε→+0(|θ|−1+βε) + õε→+0(εβ) + õε→+0(|θ|βεβ)

= õε→+0(εβ).

By similar investigation we can deduce that ∆εΨ
(m)
2 (θ) = õε→+0(εβ) and hence

∫

{2ε≤|θ|≤1}
|∆εΨ

(m)
2 (θ)|dθ = õε→+0(εβ). ¤
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