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Abstract. In this paper we consider a general class of second order
stochastic partial differential equations on Rd driven by a Gaussian noise which
is white in time and has a homogeneous spatial covariance. Using the tech-
niques of Malliavin calculus we derive the smoothness of the density of the
solution at a fixed number of points (t, x1), . . . , (t, xn), t > 0, with some
suitable regularity and nondegeneracy assumptions. We also prove that the
density is strictly positive in the interior of the support of the law.

1. Introduction.

Consider the stochastic partial differential equation

Lu(t, x) = b(u(t, x)) + σ(u(t, x))Ẇ (t, x), (1)

t ≥ 0, x ∈ Rd, with vanishing initial conditions, where L denotes a second order partial
differential operator. The coefficients b and σ are real-valued functions and the noise
Ẇ (t, x) is a Gaussian field which is white in time and has a spatially homogeneous
covariance in the space variable. A mild solution to this equation can be formulated
using the Green kernel Γ(t, dx) associated with the operator L (see Definition 2.1). This
requires the notion of stochastic integral introduced by Walsh in [18] if Γ(t, x) is a real-
valued function or Dalang’s extension of Walsh integral (see [3]) when Γ is a measure.

In [13], Nualart and Quer-Sardanyons have studied the existence and smoothness of
the density of the solution u(t, x) at a fixed point (t, x) ∈ (0,∞) × Rd using techniques
of Malliavin calculus. The smoothness of the density follows from the fact that the norm
of the Malliavin derivative of u(t, x) has inverse moments of all orders, assuming some
suitable nondegeneracy and regularity conditions. The basic assumptions are that b and
σ are smooth with bounded partial derivatives of all orders, |σ(z)| ≥ c > 0 for all z (in
this paper, we shall assume a weaker condition, see Theorem 3.1) and
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Cεη ≤
∫ ε

0

∫

Rd

|FΓ(r)(ξ)|2µ(dξ)dr < ∞ (2)

for some η > 0 and all ε small enough, where µ is the spectral measure of the noise and
F denotes the Fourier transform. This general result extends previous work of Quer-
Sardanyons and Sanz-Solé [14] for the case when L corresponds to the three-dimensional
wave equation.

The purpose of this paper is to establish the smoothness of the joint density of the
solution to equation (1) at a fixed number of points (t, x1), . . . , (t, xn), where t > 0 and
xi ∈ Rd. This kind of problem was studied by Bally and Pardoux in [1] for the one-
dimensional stochastic heat equation driven by a space-time white noise. The extension of
this result to equation (1) presents new difficulties and requires additional nondegeneracy
conditions, in addition to (2), because we need to handle the determinant of the Malliavin
matrix of the random vector u(t, x1), . . . , u(t, xn). The basic ingredient is to impose that
leading terms as ε → 0 in the matrix

( ∫ ε

0

∫

Rd

〈Γ(r, ∗+ xj),Γ(r, ∗+ xi)〉Hdr

)

1≤i,j≤n

are the diagonal ones given by (2) (see hypotheses (H3) and (H4) below). These hypothe-
ses are related, although different, to the ones imposed by Nualart in [11] to establish
the smoothness of the density for the solution of a system of SPDEs.

The paper is organized as follows. After some preliminaries, Section 3 is devoted
to the proof of the smoothness of the density of the vector u(t, x1), . . . , u(t, xn). In
Section 4 we derive the positivity of the density in the interior of the support following
the general criterion established by Nualart in [12]. Finally, in Section 5, we apply these
results to the basic examples of the stochastic heat and wave equations and to the spatial
covariances given by the Riesz, Bessel and fractional kernels.

2. Preliminaries.

Consider a nonnegative and nonnegative definite function f which is continuous on
Rd \ {0}. We assume that f is the Fourier transform of a nonnegative tempered measure
µ on Rd (called the spectral measure of f). That is, for all ϕ belonging to the space
S(Rd) of rapidly decreasing C∞ functions on Rd

∫

Rd

f(x)ϕ(x)dx =
∫

Rd

Fϕ(ξ)µ(dξ), (3)

and there is an integer m ≥ 1 such that

∫

Rd

(1 + |ξ|2)−mµ(dξ) < ∞.

Here we have denoted by Fϕ the Fourier transform of ϕ ∈ S(Rd), given by Fϕ(ξ) =∫
Rd ϕ(x)e−iξ·xdx.
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Let C∞0 ([0,∞) × Rd) be the space of smooth functions with compact support on
[0,∞)×Rd. Consider a family of zero mean Gaussian random variables W = {W (ϕ), ϕ ∈
C∞0 ([0,∞)× Rd)}, defined on a complete probability space (Ω,F ,P), with covariance

E(W (ϕ)W (ψ)) =
∫ ∞

0

∫

Rd

∫

Rd

ϕ(t, x)f(x− y)ψ(t, y)dxdydt. (4)

The covariance (4) can also be written, using Fourier transform, as

E(W (ϕ)W (ψ)) =
∫ ∞

0

∫

Rd

Fϕ(t)(ξ)Fψ(t)(ξ)µ(dξ)dt.

The main assumptions on the differential operator L in (1) can be stated as follows:

(H1) The fundamental solution to Lu = 0, denoted by Γ, satisfies that for all t > 0,
Γ(t) is a nonnegative measure with rapid decrease, such that for all T > 0

∫ T

0

∫

Rd

|FΓ(t)(ξ)|2µ(dξ)dt < ∞,

and

sup
t∈[0,T ]

Γ(t,Rd) ≤ CT < ∞.

The basic examples we are interested in are the stochastic heat and wave equations.
More precisely, it is well-known that if L is the heat operator in Rd, that is, L = ∂/∂t−
(1/2)∆, where ∆ denotes the Laplacian operator in Rd, or if L is the wave operator in
Rd, d ∈ {1, 2, 3}, i.e., L = ∂2/∂t2 −∆, hypothesis (H1) is satisfied if and only if

∫

Rd

µ(dξ)
1 + |ξ|2 < ∞.

Let H be the Hilbert space obtained by the completion of C∞0 (Rd) endowed with the
inner product

〈ϕ,ψ〉H =
∫

Rd

dx

∫

Rd

dyϕ(x)f(x− y)ψ(y) =
∫

Rd

Fϕ(ξ)Fψ(ξ)µ(dξ), (5)

ϕ,ψ ∈ C∞0 (Rd). Notice that H may contain distributions. Set H0 = L2([0,∞);H).
Walsh’s classical theory of stochastic integration developed in [18] cannot be applied

directly to the mild formulation of equation (1) since Γ may not be absolutely continuous
with respect to the Lebesgue measure. We shall use the stochastic integral defined in [4,
Section 2.3] (see also [13, Section 3]). We briefly review the construction and properties
of this integral.

The Gaussian family W can be extended to the space H0 and we denote by W (g) the



1608 Y. Hu, J. Huang, D. Nualart and X. Sun

Gaussian random variable associated with an element g ∈ H0. It is obvious that 1[0,t]h is
inH0 and we set Wt(h) = W (1[0,t]h) for any t ≥ 0 and h ∈ H. Then W = {Wt, t ≥ 0} is a
cylindrical Wiener process in the Hilbert space H. That is, for any h ∈ H, {Wt(h), t ≥ 0}
is a Brownian motion with variance t‖h‖2H, and

E(Wt(h)Ws(g)) = (s ∧ t)〈h, g〉H.

Let Ft be the σ-field generated by the random variables {Ws(h), h ∈ H, 0 ≤ s ≤ t} and
the P-null sets. We define the predictable σ-field as the σ-field in Ω × [0,∞) generated
by the sets {A× (s, t], 0 ≤ s < t, A ∈ Fs}. Then we can define the stochastic integral of
an H-valued square-integrable predictable process g ∈ L2(Ω× [0,∞);H) with respect to
the cylindrical Wiener process W , denoted by

g ·W =
∫ ∞

0

∫

Rd

g(t, x)W (dt, dx),

and we have the isometry property

E|g ·W |2 = E
∫ ∞

0

‖g(t)‖2Hdt. (6)

Using the above notion of stochastic integral one can introduce the following defini-
tion:

Definition 2.1. A real-valued predictable stochastic process u = {u(t, x), t ≥
0, x ∈ Rd} is a mild solution of equation (1) if for all t ≥ 0, x ∈ Rd,

u(t, x) =
∫ t

0

∫

Rd

Γ(t− s, x− y)σ(u(s, y))W (ds, dy)

+
∫ t

0

∫

Rd

b(u(s, x− y))Γ(t− s, dy)ds a.s.

Now we state the existence and uniqueness result of the solution to equation (1).
For a proof of this result, see, for example, [4, Theorem 4.3].

Theorem 2.2. Suppose hypothesis (H1) holds, and σ, b are Lipschitz continuous.
Then there exists a unique mild solution u to equation (1) such that for all p ≥ 1 and
T > 0,

sup
(t,x)∈[0,T ]×Rd

E|u(t, x)|p < ∞. (7)

Next we recall some elements of Malliavin calculus which will be used to prove
the main results of this paper. We consider the Hilbert space H0 and the Gaussian
family of random variables {W (h), h ∈ H0} defined above. Then {W (h), h ∈ H0} is a
centered Gaussian process such that E(W (h1)W (h2)) = 〈h1, h2〉H0 , h1, h2 ∈ H0. In this
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framework we can develop a Malliavin calculus (see, for instance, [12]). The Malliavin
derivative is denoted by D and for any N ≥ 1 and any real number p ≥ 2, the domain
of the iterated derivative DN in Lp(Ω;H⊗N

0 ) is denoted by DN,p. We shall also use the
notation

D∞ =
⋂

p≥1

⋂

k≥1

Dk,p.

Note that for any random variable X in the domain of the derivative operator D, DX

defines an H0-valued random variable. In particular, for some fixed r ≥ 0, DX(r, ∗) is
an element of H, which will be denoted by Dr,∗X.

If x1, . . . , xn are points in Rd, we will make use of the notation u(t, x) = (u(t, x1),
. . . , u(t, xn)). In order to study the smoothness and strict positivity of the (joint) density
of a random vector of the form u(t, x), we need to assume some moment estimates for
the increments of the solution. We will also need to assume some integral bounds of the
fundamental solution Γ. We list these assumptions below.

(H2) There exist positive constants κ1 and κ2 such that for all s, t ∈ [0, T ], x, y ∈ Rd,
T > 0 and p ≥ 1,

E|u(s, x)− u(t, x)|p ≤ Cp,T |t− s|κ1p, (8)

E|u(t, x)− u(t, y)|p ≤ Cp,T |x− y|κ2p (9)

for some constant Cp,T which only depends on p, T .

(H3) There exist η > 0 and ε0 > 0 such that for all 0 < ε ≤ ε0,

Cεη ≤
∫ ε

0

‖Γ(r)‖2Hdr

for some constant C > 0.

(H4) Let η be the constant appearing in (H3) and let κ1 and κ2 be the constants
appearing in (H2).

( i ) There exist η1 > η and ε1 > 0 such that for all 0 < ε ≤ ε1,

∫ ε

0

rκ1‖Γ(r)‖2Hdr ≤ Cεη1 . (10)

( ii ) There exists η2 > η such that for each fixed nonzero w ∈ Rd, there exist a positive
constant Cw and ε2 > 0 satisfying

∫ ε

0

〈Γ(r, ∗),Γ(r, w + ∗)〉Hdr ≤ Cwεη2 (11)

for all 0 < ε ≤ ε2.
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(iii) The measure Ψ(t) defined by |x|κ2Γ(t, dx) satisfies
∫ T

0

∫
Rd |FΨ(t)(ξ)|2µ(dξ)dt < ∞

and there exists η3 > η such that for each fixed w ∈ Rd, there exist a positive
constant Cw and ε3 > 0 satisfying

∫ ε

0

〈| ∗ |κ2Γ(r, ∗),Γ(r, w + ∗)〉Hdr ≤ Cwεη3 (12)

for all 0 < ε ≤ ε3.
Along the paper, Cp and C will denote generic constants which may change from
line to line and Cp depends on p ≥ 2.

3. Existence and smoothness of the density.

Fix t > 0 and fix distinct points x1, . . . , xn of Rd. Let u(t, x) denote the solution
of equation (1). Recall that u(t, x) = (u(t, x1), . . . , u(t, xn)). In this section we give
sufficient conditions for the existence and smoothness of the density of the law of the
random vector u(t, x), using Malliavin calculus. The main result is the following theorem.

Theorem 3.1. Assume that conditions (H1)–(H4) hold, and the coefficients σ,
b are C∞ functions with bounded derivatives of all orders. Assume that there exists a
positive constant C1 such that |σ(u(t, xi))| ≥ C1 P-a.s. for any i = 1, . . . , n. Then the
law of the random vector u(t, x) has a C∞ density with respect to the Lebesgue measure
on Rn.

Remark 3.2. (1) Our assumption on σ in Theorem 3.1 is implied by |σ(z)| ≥ c > 0.
(2) Using a localization procedure developed in [1, Theorem 3.1], we can prove a

version of Theorem 3.1 without assuming that |σ(u(t, xi))| ≥ C1 P-a.s., for any i =
1, . . . , n. In this case, we conclude that the law of u(t, x) has a smooth density on
{y ∈ R : σ(y) 6= 0}n.

Proof. We begin by noting that according to Proposition 6.1 in [13], for each
fixed (t, x) ∈ [0,∞)× Rd, u(t, x) ∈ D∞. If we denote by Mt(x) the Malliavin covariance
matrix (〈Du(t, xi), Du(t, xj)〉H0)1≤i,j≤n, then, taking into account Theorem 2.1.4 in [12],
we only need to show that the determinant of the Malliavin covariance matrix of u(t, x)
has negative moments of all orders, that is

E(detMt(x))−p < ∞

for all p ≥ 2. It suffices to check that for any p ≥ 2, there exists an δ0(p) > 0 such that
for all 0 < δ ≤ δ0(p)

P{det Mt(x) ≤ δ} ≤ Cδp,

for some constant C independent on δ.
We begin by noting that
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detMt(x) ≥
(

inf
‖ξ‖=1

ξT Mt(x)ξ
)n

. (13)

The derivative of the solution satisfies the following equation (see Proposition 5.1 in [13])

Dr,∗u(t, x) = Γ(t− r, x− ∗)σ(u(r, ∗))

+
∫ t

r

∫

Rd

Γ(t− s, x− y)σ′(u(s, y))Dr,∗u(s, y)W (ds, dy)

+
∫ t

r

∫

Rd

b′(u(s, x− y))Dr,∗u(s, x− y)Γ(t− s, dy)ds.

Therefore, we can write

ξT Mt(x)ξ ≥
∫ t

t−ε

∥∥∥∥
n∑

i=1

Dr,∗u(t, xi)ξi

∥∥∥∥
2

H
dr ≥ 1

2
A1 −A2,

where

A1 =
∫ t

t−ε

∥∥∥∥
n∑

i=1

Γ(t− r, xi − ∗)σ(u(r, ∗))ξi

∥∥∥∥
2

H
dr,

A2 =
∫ t

t−ε

‖a(r, t, x, ∗)‖2Hdr,

and

a(r, t, x, ∗) =
n∑

i=1

∫ t

r

∫

Rd

Γ(t− s, xi − y)σ′(u(s, y))Dr,∗u(s, y)W (ds, dy)ξi

+
n∑

i=1

∫ t

r

∫

Rd

b′(u(s, xi − y))Dr,∗u(s, xi − y)Γ(t− s, dy)dsξi.

The term A1 can be estimated as follows

A1 =
∫ t

t−ε

〈 n∑

i=1

Γ(t− r, xi − ∗)σ(u(r, ∗))ξi,
n∑

j=1

Γ(t− r, xj − ∗)σ(u(r, ∗))ξj

〉

H
dr

=
∫ t

t−ε

n∑

i=1

n∑

j=1

ξiξj〈Γ(t− r, xi − ∗)σ(u(t, xi)),Γ(t− r, xj − ∗)σ(u(t, xj))〉Hdr

+
∫ t

t−ε

n∑

i=1

n∑

j=1

ξiξj

[
〈Γ(t− r, xi − ∗)σ(u(r, ∗)),Γ(t− r, xj − ∗)σ(u(r, ∗))〉H

− 〈Γ(t− r, xi − ∗)σ(u(t, xi)),Γ(t− r, xj − ∗)σ(u(t, xj))〉H
]
dr
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=
∫ t

t−ε

n∑

i=1

‖ξi‖2‖Γ(t− r, xi − ∗)σ(u(t, xi))‖2Hdr

+
∫ t

t−ε

n∑

i,j=1,i 6=j

ξiξj〈Γ(t− r, xi − ∗)σ(u(t, xi)),Γ(t− r, xj − ∗)σ(u(t, xj))〉Hdr

+
∫ t

t−ε

n∑

i=1

n∑

j=1

ξiξj

[
〈Γ(t− r, xi − ∗)σ(u(r, ∗)),Γ(t− r, xj − ∗)σ(u(r, ∗))〉H

− 〈Γ(t− r, xi − ∗)σ(u(t, xi)),Γ(t− r, xj − ∗)σ(u(t, xj))〉H
]
dr

≥ A11 − |A12| − |A13|,

where

A11 =
∫ t

t−ε

n∑

i=1

‖ξi‖2‖Γ(t− r, xi − ∗)σ(u(t, xi))‖2Hdr,

A12 =
∫ t

t−ε

n∑

i,j=1,i 6=j

ξiξj〈Γ(t− r, xi − ∗)σ(u(t, xi)),Γ(t− r, xj − ∗)σ(u(t, xj))〉Hdr,

A13 =
∫ t

t−ε

n∑

i=1

n∑

j=1

ξiξj

[
〈Γ(t− r, xi − ∗)σ(u(r, ∗)),Γ(t− r, xj − ∗)σ(u(r, ∗))〉H

− 〈Γ(t− r, xi − ∗)σ(u(t, xi)),Γ(t− r, xj − ∗)σ(u(t, xj))〉H
]
dr.

Then, using the fact that |σ(u(t, xi))| ≥ C1, for all i = 1, . . . , n, we have

ξT Mt(x)ξ ≥ 1
2
A11 − 1

2
|A12| − 1

2
|A13| − A2

≥ 1
2
C2

1g(ε)− 1
2
|A12| − 1

2
|A13| − A2,

where

g(ε) =
∫ ε

0

∫

Rd

|FΓ(s)(ξ)|2µ(dξ)ds.

Taking ε such that C1g(ε)/4 = δ1/n, we obtain

P
{

inf
‖ξ‖=1

ξT Mt(x)ξ ≤ δ1/n

}

≤ P
{

sup
‖ξ‖=1

(|A12|+ |A13|+ 2A2) ≥ 1
2
C1g(ε)

}

≤ Cpg(ε)−p

[
E

(
sup
‖ξ‖=1

|A12|p
)

+ E
(

sup
‖ξ‖=1

|A13|p
)

+ E
(

sup
‖ξ‖=1

|A2|p
)]

. (14)
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Next, we treat each of the above expectations separately. For the first expectation of
(14), using (7) and property (ii) in condition (H4), we can write

E
(

sup
‖ξ‖=1

|A12|p
)

= E
(

sup
‖ξ‖=1

∣∣∣∣
∫ ε

0

n∑

i,j=1,i 6=j

ξiξj〈Γ(r, xi − ∗)σ(u(t, xi)),Γ(r, xj − ∗)σ(u(t, xj))〉Hdr

∣∣∣∣
p)

≤ Cp

n∑

i,j=1,i 6=j

[
E(|σ(u(t, xi))σ(u(t, xj))|p)

∣∣∣∣
∫ ε

0

〈Γ(r, xi − ∗),Γ(r, xj − ∗)〉Hdr

∣∣∣∣
p]

≤ Cpε
η2p. (15)

For the second expectation of (14), using Minkowski’s inequality and property (i) and
(iii) in condition (H4), we get

E
(

sup
‖ξ‖=1

|A13|p
)

≤ Cp

n∑

i,j=1

E
∣∣∣∣
∫ t

t−ε

dr

∫

Rd

∫

Rd

[σ(u(r, z))σ(u(r, y))− σ(u(t, xi))σ(u(t, xj))]

× Γ(t− r, xi − dz)Γ(t− r, xj − dy)f(z − y)
∣∣∣∣
p

≤ Cp

n∑

i,j=1

( ∫ t

t−ε

dr

∫

Rd

∫

Rd

‖σ(u(r, z))σ(u(r, y))− σ(u(t, xi))σ(u(t, xj))‖Lp(Ω)

× Γ(t− r, xi − dz)Γ(t− r, xj − dy)f(z − y)
)p

≤ Cp

n∑

i,j=1

( ∫ ε

0

dr

∫

Rd

∫

Rd

(rκ1 + |xi − z|κ2 + |xj − y|κ2)

× Γ(r, xi − dz)Γ(r, xj − dy)f(z − y)
)p

≤ Cp

∣∣∣∣
∫ ε

0

rκ1‖Γ(r, ∗)‖2Hdr

∣∣∣∣
p

+ Cp

n∑

i,j=1

∣∣∣∣
∫ ε

0

〈| ∗ |κ2Γ(r, ∗),Γ(r, xj − xi + ∗)〉Hdr

∣∣∣∣
p

≤ Cpε
η1p + Cpε

η3p. (16)

Finally, we treat the last expectation of (14) and we obtain the following inequalities
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E
(

sup
‖ξ‖=1

|A2|p
)

≤ CpE
(

sup
‖ξ‖=1

∫ t

t−ε

∥∥∥∥
n∑

i=1

∫ t

r

∫

Rd

Γ(t− s, xi − y)σ′(u(s, y))Dr,∗u(s, y)W (ds, dy)ξi

∥∥∥∥
2

H
dr

)p

+ CpE
(

sup
‖ξ‖=1

∫ t

t−ε

∥∥∥∥
n∑

i=1

∫ t

r

∫

Rd

b′(u(s, xi − y))Dr,∗u(s, x− y)Γ(t− s, dy)dsξi

∥∥∥∥
2

H
dr

)p

:= T1 + T2.

For any ϕ, ψ in H0 we use the notation

〈ϕ,ψ〉Ht−ε,t
:=

∫ t

t−ε

〈ϕ(s, ∗), ψ(s, ∗)〉Hds.

Using equation (3.13) and the inequality (5.26) in [13], we obtain

T1 ≤ Cp

n∑

i=1

E
∥∥∥∥

∫ t

t−ε

∫

Rd

Γ(t− s, xi − y)σ′(u(s, xi − y))Du(s, x− y)W (ds, dy)
∥∥∥∥

2p

Ht−ε,t

≤ g(ε)p sup
t−ε≤s≤t,x∈Rd

E‖Du(s, x)‖2p
Ht−ε,t

≤ Cpg(ε)2p. (17)

For T2, using Cauchy-Schwartz inequality, our assumption on b′, Minkowski’s inequality
and the estimate (5.26) in [13], we obtain the bound

T2 ≤ Cp

n∑

i=1

E
∥∥∥∥

∫ t

t−ε

∫

Rd

b′(u(s, xi − y))Du(s, xi − y)Γ(t− s, dy)ds

∥∥∥∥
2p

Ht−ε,t

≤ Cp

( ∫ t

t−ε

∫

Rd

Γ(t− s, dy)ds

)2p

sup
t−ε≤s≤t,x∈Rd

E‖Du(s, x)‖2p
Ht−ε,t

≤ Cpg(ε)pε2p. (18)

The estimates (17) and (18) imply that

E
(

sup
‖ξ‖=1

|A2|p
)
≤ Cpg(ε)2p + Cpg(ε)pε2p. (19)

Then by (13), (14), (15), (16) and (19), for δ < 1, we obtain

P{detMt(x) ≤ δ} ≤ Cpg(ε)−p(εη1p + εη2p + εη3p + g(ε)2p + g(ε)pε2p)

≤ Cpδ
λp,
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where λ = min{(η1−η)/nη, (η2−η)/nη, (η3−η)/nη, 1/n, 2/nη}. The proof is completed.
¤

4. Strict positivity of the density.

In this section, we proceed to the study of the positivity of the density pt,x(·) of the
law of u(t, x), where t > 0, x = (x1, . . . , xn) are distinct points of Rd. The main theorem
of this section is:

Theorem 4.1. Assume that conditions (H1)–(H4) hold, and the coefficients σ,
b are C∞ functions with bounded derivatives of all orders and σ is bounded. We also
assume σ 6= 0 on R. Then the law of the random vector u(t, x) has a C∞ density pt,x(y),
and pt,x(y) > 0 if y belongs to the interior of the support of the law of u(t, x).

To prove this theorem we will use the criterion given by Theorem 3.3 in [1]. To state
this criterion in the context of our framework, first we introduce some notation and
concepts.

Given predictable processes (g1, . . . , gn) ∈ Hn
0 and z = (z1, · · · , zn) ∈ Rn, for any

h ∈ H and t ≥ 0 we define a translation of Wt(h):

Ŵt(h) := Ŵ (1[0,t]h) = W (1[0,t]h) +
n∑

k=1

zk〈1[0,t]h, gk〉H0 .

Then {Ŵt, t ≥ 0} is a cylindrical Wiener process in H on the probability space (Ω,F , P̂),
where

dP̂
dP

= exp
(
−

n∑

k=1

zk

∫ ∞

0

∫

Rd

gk(s, y)W (ds, dy)− 1
2

n∑

k=1

z2
k

∫ ∞

0

‖gk(s, ∗)‖2Hds

)
.

Then, for any predicable process Z ∈ L2(Ω× [0,∞);H), we can write

∫ ∞

0

∫

Rd

Z(s, y)Ŵ (ds, dy) =
∫ ∞

0

∫

Rd

Z(s, y)W (ds, dy) +
n∑

k=1

zk

∫ ∞

0

〈Z(s, ∗), gk(s, ∗)〉Hds.

For any (t, x) ∈ [0,∞) × Rd, let ûz(t, x) be the solution to equation (1) with respect to
the cylindrical Wiener process Ŵ , that is,

ûz(t, x) =
∫ t

0

∫

Rd

Γ(t− s, x− y)σ (ûz(s, y))W (ds, dy)

+
n∑

k=1

zk

∫ t

0

〈Γ(t− s, x− ∗)σ(ûz(s, ∗)), gk(s, ∗)〉Hds

+
∫ t

0

∫

Rd

b(ûz(t− s, x− y))Γ(s, dy)ds. (20)
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Then, the law of u under P coincides with the law of ûz under P̂.
Now we consider a sequence {gm}m≥1 of predictable processes in Hn

0 and z ∈ Rn.
Let ûz

m(t, x) be the solution to equation (1) with respect to the cylindrical Wiener process
{Ŵm

t , t ≥ 0}, where Ŵm
t (h) = Ŵm(1[0,t]h) for any h ∈ H, and

Ŵm(1[0,t]h) = W (1[0,t]h) +
n∑

k=1

zk〈1[0,t]h, gk
m〉H0 .

Set ϕz
m,j(t, x) := ∂zj

ûz
m(t, x) and denote by ϕz

m(t, x) the n×n matrix {ϕz
m,j(t, xi)}1≤i,j≤n.

Also, denote the Hessian matrix of ûz
m(t, x) by ψz

m(t, x) := ∂2
z ûz

m(t, x), and let ψz
m(t, x) :=

(ψz
m(t, x1), . . . , ψz

m(t, xn)). In fact, it can be shown that

∂zj û
z
m(t, x) =

∫ t

0

〈Dr,∗ûz
m(t, x), gj

m(r, ∗)〉Hdr.

We denote the operator norms of these matrices by ‖ϕz
m(t, x)‖ and ‖ψz

m(t, x)‖, respec-
tively.

We say that y ∈ Rd satisfies Ht,x(y) if there exist a sequence of predictable processes
{gm}m≥1 in Hn

0 , and positive constants c1, c2, r0 and δ such that

( i ) lim supm→∞ P
{
(‖u(t, x)− y‖ ≤ r) ∩ (|det ϕ0

m(t, x)| ≥ c1)
}

> 0, ∀r ∈ (0, r0].
( ii ) limm→∞ P

{
sup|z|≤δ(‖ϕz

m(t, x)‖+ ‖ψz
m(t, x)‖) ≤ c2

}
= 1.

Now we can state the criterion in [1] (Theorem 3.3) that we are going to use: Suppose
that y ∈ Rd belongs to the interior of the support of the law of u(t, x). If y satisfies
Ht,x(y), then pt,x(y) > 0.

Proof of Theorem 4.1. From the above criterion it suffices to check that y

satisfies the two conditions in Ht,x(y). We will do this in several steps.

Step 1. Consider the sequence of predictable processes {gm}m≥1 in Hn
0 , defined by

gk
m(s, ∗) = v−1

m 1[t−2−m,t](s)Γ(t− s, xk − ∗) for 1 ≤ k ≤ n,

where

vm =
∫ 2−m

0

∫

Rd

|FΓ(r)(ξ)|2µ(dξ)dr.

Taking the partial derivatives on both sides of (20) with g replaced by gm, we obtain
that

∂zj
ûz

m(t, x) =
∫ t

t−2−m

〈Γ(t− s, x− ∗)σ(ûz
m(s, ∗)), gj

m(s, ∗)〉Hds

+
m∑

k=1

zk

∫ t

t−2−m

〈Γ(t− s, x− ∗)σ′(ûz
m(s, ∗))∂zj

ûz
m(s, ∗), gk

m(s, ∗)〉Hds
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+
∫ t

t−2−m

∫

Rd

Γ(t− s, x− y)σ′(ûz
m(s, y))∂zj

ûz
m(s, y)W (ds, dy)

+
∫ t

t−2−m

∫

Rd

b′(ûz
m(t− s, x− y))∂zj û

z
m(t− s, x− y)Γ(s, dy)ds

:= Az
m,j(t, x) + Bz

m,j(t, x) + Cz
m,j(t, x) + Dz

m,j(t, x). (21)

Step 2. We are going to bound the moments of the four terms on the right hand
side of (21). We assume that ‖z‖ ≤ δ for some δ > 0. Since σ is bounded, there is a
positive constant K such that

|Az
m,j(t, x)| ≤ K. (22)

Using Minkowski’s inequality and the fact that the partial derivatives of σ are bounded,
we get that for all p ≥ 1, t ≤ T ,

E
∣∣Bz

m,j(t, x)
∣∣p ≤ Cδp sup

(s,y)∈[0,T ]×Rd

E
∣∣∂zj

ûz
m(s, y)

∣∣p. (23)

From the Burkholder-Davis-Gundy inequality and from the definition of vm, we have

E
∣∣Cz

m,j(t, x)
∣∣p ≤ C sup

(s,y)∈[0,T ]×Rd

E
∣∣∂zj

ûz
m(s, y)

∣∣p
( ∫ t

t−2−m

∫

Rd

|FΓ(t− s)(ξ)|2µ(dξ)ds

)p/2

≤ Cvp/2
m sup

(s,y)∈[0,T ]×Rd

E
∣∣∂zj

ûz
m(s, y)

∣∣p. (24)

Since b′ is bounded and by condition (H1),

E
∣∣Dz

m,j(t, x)
∣∣p ≤ C2−mp sup

(s,y)∈[0,T ]×Rd

E
∣∣∂zj

ûz
m(s, y)

∣∣p. (25)

Combining (22), (23), (24) and (25) we obtain

sup
(t,x)∈[0,T ]×Rd

E
∣∣∂zj

ûz
m(t, x)

∣∣p

≤ K + C(δp + vp/2
m + 2−mp) sup

(s,y)∈[0,T ]×Rd

E
∣∣∂zj

ûz
m(s, y)

∣∣p. (26)

Proceeding as in the proof of Proposition 6.1 in [13], we can show

sup
(t,x)∈[0,T ]×Rd,|z|≤δ

E
∣∣∂zj û

z
m(t, x)

∣∣p < ∞. (27)

Then, when m is large enough and δ is small enough, C(δp + v
p/2
m + 2−mp) on the right

hand side of equation (26) is less than 1/2 and we obtain
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sup
(t,x)∈[0,T ]×Rd,|z|≤δ

E
∣∣∂zj

ûz
m(t, x)

∣∣p ≤ C (28)

for some constant C.
Recall that ϕz

m,j(t, xi) = ∂zj û
z
m(t, xi). Take z = 0 and decompose ϕ0

m,j(t, xi) as
follows

ϕ0
m,j(t, xi) = A0

m,j(t, xi) + C0
m,j(t, xi) + D0

m,j(t, xi). (29)

From (24) and (25) it follows that

E
∣∣C0

m,j(t, xi) + D0
m,j(t, xi)

∣∣p ≤ C(vp/2
m + 2−mp). (30)

For A0
m,j(t, xi),

A0
m,j(t, xi) =

∫ t

t−2−m

〈Γ(t− s, xi − ∗)σ(u(s, ∗)), gj
m(s, ∗)〉Hds

=
∫ t

t−2−m

〈Γ(t− s, xi − ∗)[σ(u(s, ∗))− σ(u(t, xi))], gj
m(s, ∗)〉Hds

+ σ(u(t, xi))
∫ t

t−2−m

〈Γ(t− s, xi − ∗), gj
m(s, ∗)〉Hds

:= Om,i,j + Õm,i,j . (31)

By the assumption (H2) and Minkowski’s inequality, we have

E|Om,i,j |p =
∥∥∥∥

1
vm

∫ t

t−2−m

∫

Rd

∫

Rd

Γ(t− s, xi − dy)[σ(u(s, y))− σ(u(t, xi))]

× Γ(t− s, xj − dz)f(y − z)ds

∥∥∥∥
p

Lp(Ω)

≤ 1
vp

m

( ∫ t

t−2−m

∫

Rd

∫

Rd

‖σ(u(s, y))− σ(u(t, xi))‖Lp(Ω)

× Γ(t− s, xj − dz)f(y − z)Γ(t− s, xi − dy)ds

)p

≤ C

vp
m

( ∫ t

t−2−m

∫

Rd

∫

Rd

Γ(t− s, xi − dy)(|xi − y|κ2 + |s− t|κ1)

× Γ(t− s, xj − dz)f(y − z)ds

)p

≤ C

vp
m

(2−mη1 + 2−mη3)p → 0 as m →∞.
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For Õm,i,j , when i = j, it is easy to see that

Õm,i,i = σ(u(t, xi)), (32)

while when i 6= j, we have the pth moment bound

E
∣∣Õm,i,j

∣∣p ≤ E|σ(u(t, xi))|p
( ∫ t

t−2−m

〈Γ(t− s, xi − ∗), gj
m(s, ∗)〉Hds

)p

≤ Cp

(
1

vm

∫ 2−m

0

∫

Rd

∫

Rd

Γ(s, xi − dy)f(y − z)Γ(s, xj − dz)ds

)p

≤ Cp

(
2−mη2

vm

)p

, (33)

which goes to 0 as m →∞.

Step 3. We check condition (i) in hypothesis Ht,x(y). Recall that y ∈ Supp(Pu(t,x)),
there exists r0 > 0 such that for all 0 < r ≤ r0,

P{u(t, x) ∈ B(y; r)} > 0.

By the assumption on σ, there is a c1 > 0 such that

P
{

(‖u(t, x)− y‖ ≤ r) ∩
(∣∣∣∣

n∏

i=1

σ(u(t, xi))
∣∣∣∣ ≥ 2c1

)}
> 0 (34)

where

c1 =
1
2

(
inf

z∈B(y;r)

n∏

i=1

|σ(zi)|
)

,

here z = (z1, . . . , zn). Recall that ϕ0
m(t, x) is the matrix (ϕ0

m,j(t, xi))1≤i,j≤n. By (29),
(30), (31), (32) and (33), we obtain

E
∣∣∣∣ det ϕ0

m(t, x)−
n∏

i=1

σ(u(t, xi))
∣∣∣∣
p

→ 0 as m →∞. (35)

Combining (34) and (35) yields

lim sup
m→∞

P
{
(‖u(t, x)− y‖ ≤ r) ∩ (|det ϕ0

m(t, x)| ≥ c1

)}
> 0.

Step 4. We check condition (ii) in hypothesis Ht,x(y).
We first show that there exist c2 > 0 and δ > 0 such that
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lim
m→∞

P
{

sup
|z|≤δ

‖ϕz
m(t, x)‖ ≤ c2

}
= 1.

Consider the following equation

vz
m,j(t, x) = Az

m,j(t, x) +
n∑

k=1

zk

∫ t

t−2−m

〈Γ(t− s, x− ∗)σ′(ûz
m(s, ∗))vz

m,j(s, ∗), gk(s, ∗)〉Hds.

(36)

By the contraction mapping theorem we can prove that this equation has a unique
solution vz

m,j(t, x) and there exists a constant C such that

sup
(t,x)∈[0,T ]×Rd,|z|≤δ

|vz
m,j(t, x)| ≤ C ∀1 ≤ j ≤ n, (37)

when δ is small.
Then we claim that for each j, vz

m,j(t, x)−∂zj
ûz

m(t, x) converges to 0 in Lp(Ω) norm,
uniformly in (t, x) ∈ [0, T ]× Rd, and |z| ≤ δ when δ is small. Indeed, we have

E
∣∣∂zj û

z
m(t, x)− vz

m,j(t, x)
∣∣p

≤ Cp

n∑

k=1

|zk|p
( ∫ t

t−2−m

〈
Γ(t− s, x− ∗)σ′(ûz

m(s, ∗)), gk(s, ∗)〉Hds

)p

× sup
(s,y)∈[0,T ]×Rd

E
∣∣∂zj

ûz
m(s, y)− vz

m,j(s, y)
∣∣p

+ Cp

∥∥∥∥
∫ t

t−2−m

∫

Rd

Γ(t− s, x− y)σ′(ûz
m(s, y))∂zj

ûz
m(s, y)W (ds, dy)

∥∥∥∥
p

Lp(Ω)

+ Cp

∥∥∥∥
∫ t

t−2−m

∫

Rd

b′
(
ûz

m(t− s, x− y)
)
∂zj

ûz
m(t− s, x− y)Γ(s, dy)ds

∥∥∥∥
p

Lp(Ω)

≤ Cpδ
p sup

(t,x)∈[0,T ]×Rd

E
∣∣∂zj û

z
m(t, x)− vz

m,j(t, x)
∣∣p

+ Cp

( ∫ t

t−2−m

∫

Rd

∫

Rd

Γ(t− s, x− dy)f(y − ỹ)Γ(t− s, x− dỹ)ds

)p/2

× sup
(s,y)∈[0,T ]×Rd

E
∣∣∂zj û

z
m(s, y)

∣∣p

+ Cp

( ∫ t

t−2−m

∫

Rd

Γ(s, dy)ds

)p

sup
(s,y)∈[0,T ]×Rd

E
∣∣∂zj

ûz
m(s, y)

∣∣p

≤ Cpδ
p sup

(t,x)∈[0,T ]×Rd

E
∣∣∂zj

ûz
m(t, x)− vz

m,j(t, x)
∣∣p
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+ Cp

( ∫ 2−m

0

∫

Rd

|Γ(s)(ξ)|2µ(dξ)ds

)p/2

sup
(s,y)∈[0,T ]×Rd

E
∣∣∂zj

ûz
m(s, y)

∣∣p

+ Cp

( ∫ t

t−2−m

∫

Rd

Γ(s, dy)ds

)p

sup
(s,y)∈[0,T ]×Rd

E
∣∣∂zj

ûz
m(s, y)

∣∣p.

We can choose δ small enough such that Cpδ
p ≤ 1/2. Then, using condition (H1) and

(28) to conclude that

sup
(t,x)∈[0,T ]×Rd,|z|≤δ

E
∣∣∂zj û

z
m(t, x)− vz

m,j(t, x)
∣∣p (38)

goes to 0 as m tends to ∞.
Next, we will calculate the pth moment of the increments with respect to z of

∂zj û
z
m(t, x) and vz

m,j(t, x).

E
∣∣∂zj

ûz
m(t, x)− ∂zj

ûz′
m(t, x)

∣∣p

≤ E
∣∣∣∣
∫ t

t−2−m

〈
Γ(t− s, x− ∗)[σ(ûz

m(s, ∗))− σ(ûz′
m(s, ∗))], gj

m(s, ∗)〉Hds

∣∣∣∣
p

+ E
∣∣∣∣

n∑

k=1

∫ t

t−2−m

〈
Γ(t− s, x− ∗)[zkσ′(ûz

m(s, ∗))∂zj û
z
m(s, ∗)

− z′kσ′(ûz′
m(s, ∗))∂zj û

z′
m(s, ∗)], gk

m(s, ∗)〉Hds

∣∣∣∣
p

+ E
∣∣∣∣
∫ t

t−2−m

∫

Rd

Γ(t− s, x− y)
[
σ′(ûz

m(s, y))∂zj
ûz

m(s, y)

− σ′(ûz′
m(s, y))∂zj

ûz′
m(s, y)

]
W (ds, dy)

∣∣∣∣
p

+ E
∣∣∣∣
∫ t

t−2−m

∫

Rd

[
b′(ûz

m(t− s, x− y))∂zj
ûz

m(t− s, x− y)

− b′(ûz′
m(t− s, x− y))∂zj

ûz′
m(t− s, x− y)

]
Γ(s, dy)ds

∣∣∣∣
p

.

Proceeding as before, we obtain that

E
∣∣∂zj

ûz
m(t, x)− ∂zj

ûz′
m(t, x)

∣∣p ≤ C|z − z′|p

uniformly in (t, x) ∈ [0, T ]× Rd, |z| ≤ δ and m. Similarly, we have

E
∣∣vz

m,j(t, x)− vz′
m,j(t, x)

∣∣p ≤ C|z − z′|p

uniformly in (t, x) ∈ [0, T ]×Rd, |z| ≤ δ and m. Using Kolmogorov’s continuity theorem
and (37), (38) we obtain
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lim
m→∞

P
{

sup
|z|≤δ

‖ϕz
m(t, x)‖ ≤ C

}
= 1

for some positive constant C.
Next we will show that there exists a positive constant C such that

lim
m→∞

P
{

sup
|z|≤δ

‖ψz
m(t, x)‖ ≤ C

}
= 1.

This proof is analogous to that for ϕz
m(t, x), but the computations are more involved.

Let us just write the equation for the quantity of interest and the main steps. Taking
the partial derivative on both sides of (21), we obtain

∂zl
∂zj

ûz
m(t, x)

=
∫ t

t−2−m

〈
Γ(t− s, x− ∗)σ′(ûz

m(s, ∗))∂zl
ûz

m(s, ∗), gj
m(s, ∗)〉Hds

+
∫ t

t−2−m

〈
Γ(t− s, x− ∗)σ′(ûz

m(s, ∗))∂zj
ûz

m(s, ∗), gl
m(s, ∗)〉Hds

+
m∑

k=1

zk

∫ t

t−2−m

〈
Γ(t− s, x− ∗)(σ′′(ûz

m(s, ∗))∂zl
ûz

m(s, ∗)∂zj
ûz

m(s, ∗)

+ σ′(ûz
m(s, ∗))∂zl

∂zj û
z
m(s, ∗)), gk

m(s, ∗)〉Hds

+
∫ t

t−2−m

∫

Rd

Γ(t− s, x− y)
(
σ′′(ûz

m(s, y))∂zl
ûz

m(s, y)∂zj
ûz

m(s, y)

+ σ′(ûz
m(s, y))∂zl

∂zj û
z
m(s, y)

)
W (ds, dy)

+
∫ t

t−2−m

∫

Rd

(
b′′(ûz

m(t− s, x− y))∂zl
ûz

m(t− s, x− y)∂zj û
z
m(t− s, x− y)

+ b′(ûz
m(t− s, x− y))∂zl

∂zj û
z
m(t− s, x− y)

)
Γ(s, dy)ds

and a similar equation for ∂zl
vz

m,j(t, x).
We can show that for every 1 ≤ l, j ≤ n,

sup
(t,x)∈[0,T ]×Rd,|z|≤δ

E
∣∣∂zl

∂zj û
z
m(t, x)− ∂zl

vz
m,j(t, x)

∣∣p → 0,

as m goes to ∞. Bound ∂zl
vz

m,j(t, x) and calculate the pth moment of the increments
with respect to z of ∂zl

∂zj û
z
m(t, x) and ∂zl

vz
m,j(t, x). The result follows as in the previous

steps.

Step 5. By combining the results in step 3 and step 4, together with the criterion
developed by Theorem 3.3 in [1] that we cited just before the proof, we complete the
proof. ¤
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5. Examples.

In this section we will give some examples of fundamental solutions Γ and covariance
functions f satisfying hypotheses (H1) to (H4). This implies that Theorem 3.1 and
Theorem 4.1 can be applied to these examples. We consider the fundamental solution
to the heat equation in any dimension and the wave equation in dimensions up to three
and the covariance functions given by the Riesz, Bessel, and fractional kernels.

5.1. Heat equation.
Let Γ(r, dx) be the fundamental solution to the heat equation on Rd, i.e., Γ(r, dx) =

pr(x)dx, where pr(x) = (2πr)−d/2e−|x|
2/2r is the d-dimensional heat kernel. Then, hy-

potheses (H1) to (H4) are satisfied for the following covariance functions:

(A) Riesz kernel. Let f(x) = |x|−β with 0 < β < 2∧d. It is well-known that (H1) holds.
According to [17], (H2) is satisfied with 0 < κ1 < (2 − β)/4 and 0 < κ2 < (2 − β)/2.
In [11] it is proved that (H3) holds with η = (2− β)/2, and property (i) in (H4) holds
with η1 = (2− β)/2 + κ1.

Next we check conditions (ii) and (iii) in (H4). To show (11) we use the fact that
there exists a constant C > 0 such that for any nonzero y ∈ Rd and r ≥ 0

∫

Rd

pr(x)|x− y|−βdx ≤ C|y|−β . (39)

For a nonzero w ∈ Rd, using (39) we can write

∫ ε

0

〈pr(∗), pr(w + ∗)〉Hdr =
∫ ε

0

∫

Rd

∫

Rd

pr(x)pr(y + w)|x− y|−βdxdydr

≤ C

∫ ε

0

∫

Rd

pr(y + w)|y|−βdydr

≤ Cε|w|−β .

So (11) is satisfied with η2 = 1 > η. For (12), using the fact that supx∈Rd |x|αe−|x|
2

< ∞
for any positive α, we have

∫ ε

0

〈| ∗ |κ2pr(∗), pr(w + ∗)〉Hdr =
∫ ε

0

∫

Rd

∫

Rd

|x|κ2pr(x)pr(y + w)|x− y|−βdxdydr

≤ C

∫ ε

0

∫

Rd

∫

Rd

rκ2/2p2r(x)pr(y + w)|x− y|−βdxdydr

≤ C

∫ ε

0

rκ2/2

∫

Rd

e−r|ξ|2e−(1/2)r|ξ|2 |ξ|β−ddξdr

= C

∫ ε

0

r(κ2−β)/2dr = Cε(κ2−β)/2+1.

Therefore, (12) is satisfied with η3 = (κ2 − β)/2 + 1 > η.
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(B) Bessel kernel. Let f(x) =
∫∞
0

u(α−d−2)/2e−ue−|x|
2/4udu, d − 2 < α < d. In this

case µ(dξ) = cα,d(1 + |ξ|2)−α/2dξ. Hypothesis (H1) can be easily verified by direct
computation. According to [17], (H2) is satisfied with 0 < κ1 < (2 − d + α)/4 and
0 < κ2 < (2− d + α)/2. For (H3), we note that, assuming ε < 1,

∫ ε

0

∫

Rd

|FΓ(r)(ξ)|2µ(dξ)dr = C

∫ ε

0

∫

Rd

e−r|ξ|2(1 + |ξ|2)−α/2dξdr

= C

∫ ε

0

∫

Rd

e−|θ|
2 r(α−d)/2

(|θ|2 + r)α/2
dθdr

≥ C

∫ ε

0

r(α−d)/2dr

∫

Rd

e−|θ|
2 1
(|θ|2 + 1)α/2

dθ

= Cε(α−d)/2+1.

Thus, (H3) is satisfied with η = (α − d)/2 + 1. To show (H4) we use the fact that for
any x ∈ Rd, f(x) ≤ C|x|−d+α (see Proposition 6.1.5 in [5]). Therefore, proceeding as
in the case of the Riesz kernel with β = d − α we obtain that conditions (10), (11) and
(12) in (H4) hold, with η1 = (α− d)/2 + 1 + κ1, η2 = 1 and η3 = (α− d)/2 + 1 + κ2/2,
respectively.

(C) Fractional kernel. Let f(x) =
∏d

j=1 |xj |2Hj−2, 1/2 < Hj < 1 for 1 ≤ j ≤ d such that∑d
j=1 Hj > d − 1. First notice that although we have assumed f(x) to be a continuous

function on Rd \ {0}, it is clear that all of our theory still works for this case. Then we
note that since f(x) =

∏d
j=1 |xj |2Hj−2, we have µ(dξ) = CH

∏d
j=1 |ξj |1−2Hj dξ, where

CH only depends on H := (H1,H2, . . . , Hd). According to [17], (H1) holds and (H2) is
satisfied for 0 < κ1 < (1/2)(

∑d
j=1 Hj − d + 1) and 0 < κ2 <

∑d
j=1 Hj − d + 1. For (H3),

using the change of variable
√

tξ → ξ, we obtain

∫ ε

0

∫

Rd

|FΓ(t)(ξ)|2µ(dξ)dt =
∫ ε

0

∫

Rd

e−t|ξ|2
d∏

j=1

|ξj |1−2Hj dξdt = Cε
Pd

j=1 Hj−d+1.

Therefore, (H3) is verified with η =
∑d

j=1 Hj − d + 1. For (10), we can proceed as in
checking (H3) to get

∫ ε

0

rκ1‖Γ(r)‖2Hdr = C

∫ ε

0

rκ1+
Pd

j=1 Hj−ddr = Cε
Pd

j=1 Hj−d+1+κ1 .

So (10) is satisfied with η2 =
∑d

j=1 Hj − d + 1 + κ1 which is strictly greater than η.
To check (11), fix a nonzero point w = (w1, w2, . . . , wd) ∈ Rd, without loss of

generality, we may assume that w1 6= 0. Then using Fourier transform and (39) we have
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∫ ε

0

〈Γ(r, ∗),Γ(r, w + ∗)〉Hdr

=
∫ ε

0

∫

Rd

∫

Rd

pr(x)pr(w + y)
d∏

j=1

|xj − yj |2Hj−2dydxdr

=
∫ ε

0

d∏

j=1

( ∫

R

1
(2πr)1/2

e−|xj |2/2r 1
(2πr)1/2

e−|wj+yj |2/2r|xj − yj |2Hj−2dyjdxj

)
dr

= C

∫ ε

0

( ∫

R

1
(2πr)1/2

e−|x1|2/2r 1
(2πr)1/2

e−|w1+y1|2/2r|x1 − y1|2H1−2dy1dx1

)

×
d∏

j=2

( ∫

R
e−r|ξj |2e−iwjξj |ξj |1−2Hj dξj

)
dr

≤ C

∫ ε

0

( ∫

R

1
(2πr)1/2

e−|x1|2/2r 1
(2πr)1/2

e−|w1+y1|2/2r|x1 − y1|2H1−2dy1dx1

)

×
d∏

j=2

( ∫

R
e−r|ξj |2 |ξj |1−2Hj dξj

)
dr

≤ C|w1|2H1−2

∫ ε

0

r
Pd

j=2 Hj−d+1dr = Cε
Pd

j=2 Hj−d+2,

where in the last inequality we have used the change of variable
√

rξ → ξ. So (11) is
satisfied with η1 = min1≤k≤d(

∑d
j 6=k Hj−d+2), which is strictly greater than η. For (12),

fixing again a nonzero element w ∈ Rd and using the bound |x|αpr(x) ≤ Crα/2p2r(x),
for all x ∈ Rd, we have

∫ ε

0

〈| ∗ |κ2Γ(r, ∗),Γ(r, w + ∗)〉Hdr

=
∫ ε

0

∫

Rd

∫

Rd

|x|κ2pr(x)pr(y + w)
d∏

j=1

|xj − yj |2Hj−2dxdydr

≤ C

∫ ε

0

∫

Rd

∫

Rd

rκ2/2p2r(x)pr(y + w)
d∏

j=1

|xj − yj |2Hj−2dxdydr

≤ C

∫ ε

0

∫

Rd

rκ2/2e−3r/2|ξ|2
d∏

j=1

|ξj |1−2Hj dξdr

= C

∫ ε

0

rκ2/2+
Pd

j=1 Hj−ddr = Cεκ2/2+
Pd

j=1 Hj−d+1.

So (12) is satisfied with η3 = κ2/2 +
∑d

j=1 Hj − d + 1, which is strictly greater than η.
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5.2. Wave equation.
Let Γd(t, dx) be the fundamental solution to the wave equation on Rd, for d =

1, 2, 3, i.e., Γ1(t, dx) = (1/2)1{|x|<t}dx, Γ2(t, dx) = (1/2π)(t2 − |x|2)−1/2
+ dx, Γ3(t, dx) =

(1/4πt)σt(dx), where σt denotes the surface measure on the two-dimensional sphere of
radius t. We recall that the Fourier transform of Γd(t, dx) is given by

FΓd(t)(ξ) =
sin(t|ξ|)
|ξ| .

(A) Riesz kernel. Let f(x) = |x|−β with 0 < β < 2 ∧ d. It is known that hypothesis
(H1) is satisfied. According to [7], (H2) is satisfied with 0 < κ1 = κ2 < (2 − β)/2.
In [11] it is proved that condition (H3) is satisfied for η = 3 − β and (10) holds with
η1 = κ1 + 3− β > η. To show (11), we fix w 6= 0, and taking ε such that 4ε < |w| we get
|w|/2 ≤ |x− y| ≤ 3|w|/2 if |x| ≤ ε and |w + y| ≤ ε. Then, |x− y|−β is bounded by some
constant C depending on |w|. Hence we have

∫ ε

0

〈Γd(r, ∗),Γd(r, w + ∗)〉Hdr =
∫ ε

0

∫

Rd

∫

Rd

Γd(r, dx)Γd(r, w + dy)|x− y|−βdr

≤ Cw

∫ ε

0

∫

Rd

Γd(r, dx)
∫

Rd

Γd(r, w + dy)dr

≤ Cw

∫ ε

0

r2dr ≤ Cwε3.

So (11) is satisfied with η2 = 3 > η. For (12), any fixed w ∈ Rd, using again the same
arguments, we have

∫ ε

0

〈| ∗ |κ2Γd(r, ∗),Γd(r, w + ∗)〉Hdr =
∫ ε

0

∫

Rd

∫

Rd

|x|κ2Γd(r, dx)Γd(r, w + dy)|x− y|−βdr

≤
∫ ε

0

|r|κ2

∫

Rd

∫

Rd

Γd(r, dx)Γd(r, w + dy)|x− y|−βdr

≤ Cεκ2+3−β .

Therefore, (12) is satisfied with η3 = κ2 + 3− β > η.

(B) Bessel kernel. Let f(x) =
∫∞
0

u(α−d−2)/2e−ue−|x|
2/4udu, max(d − 2, 0) < α < d.

According to section 3 in [11] and [7], (H1) holds and (H2) is satisfied with 0 < κ1 =
κ2 < (α − d + 2)/2. Making the change of variable rξ → ξ and assuming ε < 1, we get
that

∫ ε

0

∫

Rd

|FΓd(r)(ξ)|2µ(dξ)dr = C

∫ ε

0

∫

Rd

sin2(r|ξ|)
|ξ|2 (|ξ|2 + 1)−α/2dξdr

= C

∫ ε

0

∫

Rd

sin2 |ξ|
|ξ|2

rα+2−d

(|ξ|2 + r2)α/2
dξdr
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≥ C

∫ ε

0

rα+2−ddr

∫

Rd

sin2 |ξ|
|ξ|2

1
(|ξ|2 + 1)α/2

dξ

= Cεα+3−d.

Therefore, condition (H3) is satisfied for η = α + 3 − d. To show (H4) as in the case
of the heat equation we use the fact that for any x ∈ Rd, f(x) ≤ C|x|−d+α. Therefore,
proceeding as in the case of the Riesz kernel with β = d − α we obtain that conditions
(11), (10) and (12) in (H4) hold, with η1 = α+3−d+κ1, η2 = 3 and η3 = α+3−d+κ2,
respectively.

(C) Fractional kernel. Let f(x) =
∏d

j=1 |xj |2Hj−2, 1/2 < Hj < 1 for 1 ≤ j ≤ d such

that
∑d

j=1 Hj > d − 1. Hypothesis (H1) is verified by direct calculation. By Section 3
in [11], (H2) holds when d = 1 with κ1, κ2 ∈ (0,H1) and when d = 2, it is satisfied for
κ1, κ2 ∈ (0,H1 + H2 − 1). By Theorem 6.1 in [7], when d = 3 (H2) is satisfied with
κ1, κ2 ∈ (0,min(H1 + H2 + H3 − 2,H1 − 1/2,H2 − 1/2,H3 − 1/2)). For (H3), direct
calculation and the change of variable tξ → ξ yields

∫ ε

0

∫

Rd

|FΓd(t)(ξ)|2µ(dξ)dt = C

∫ ε

0

∫

Rd

(sin(t|ξ|))2
|ξ|2

d∏

j=1

|ξj |1−2Hj dξdt

= C

∫ ε

0

t2
Pd

j=1 Hj−2d+2dt

∫

Rd

(sin(|ξ|))2
|ξ|2

d∏

j=1

|ξj |1−2Hj dξ

= Cε2
Pd

j=1 Hj−2d+3.

So (H3) is satisfied with η = 2
∑d

j=1 Hj − 2d + 3. For (H4), we will check (10) and (12)
first. For (10), proceeding as before,

∫ ε

0

rκ1‖Γd(r)‖2Hdr =
∫ ε

0

∫

Rd

rκ1
(sin(r|ξ|))2

|ξ|2
d∏

j=1

|ξj |1−2Hj dξdr

= C

∫ ε

0

rκ1+2
Pd

j=1 Hj−2d+2dr = Cεκ1+2
Pd

j=1 Hj−2d+3.

So (10) is satisfied with η1 = κ1 + 2
∑d

j=1 Hj − 2d + 3, which is strictly greater than
η. For (12), noting that the support of Γd(r, ∗) is contained in the ball centered at the
origin with radius r, we get

∫ ε

0

〈| ∗ |κ2Γd(r, ∗),Γd(r, w̃ + ∗)〉Hdr ≤
∫ ε

0

rκ2〈Γd(r, ∗),Γd(r, w̃ + ∗)〉Hdr

≤
∫ ε

0

rκ2

∫

Rd

(sin(r|ξ|))2
|ξ|2

d∏

j=1

|ξj |1−2Hj dξdr

= Cεκ2+2
Pd

j=1 Hj−2d+3.
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So (12) is satisfied with η3 = κ2 + 2
∑d

j=1 Hj − 2d + 3, which is strictly greater than η.
For (11), we need to treat the cases d = 1, 2, 3 separately. When d = 1, fix w 6= 0. We
have

∫ ε

0

〈Γ1(r, ∗),Γ1(r, w + ∗)〉Hdr =
1
4

∫ ε

0

∫

R

∫

R
1{|x|<r}|x− y|2H1−21{|y+w|<r}dydxdr.

When ε is small enough, we need to have |x − y| ≥ C for some positive constant C for
the above integrand to be nonzero. Hence,

∫ ε

0

〈Γ1(r, ∗),Γ1(r, w + ∗)〉Hdr ≤ C

∫ ε

0

∫

R

∫

R
1{|x|<r}1{|y+w|<r}dydxdr

= C

∫ ε

0

r2dr = Cε3,

and when d = 1 (11) is satisfied with η2 = 3, which is strictly greater than η.
When d = 2, fix a nonzero point w = (w1, w2). Without loss of generality, we may

assume w1 is not zero. We have

∫ ε

0

〈Γ2(r, ∗),Γ2(r, w + ∗)〉Hdr =
1

4π2

∫ ε

0

∫

|x|<r

∫

|y+w|<r

1√
r2 − |x|2 |x1 − y1|2H1−2

× |x2 − y2|2H2−2 1√
r2 − |y + w|2 dxdydr.

Again, if ε is small enough, we must have |x1− y1| > C for some positive constant C for
the above integral to be nonzero. Hence, using the Fourier transform we obtain

∫ ε

0

〈Γ2(r, ∗),Γ2(r, w + ∗)〉Hdr

≤ C

∫ ε

0

∫

|x|<r

∫

|y+w|<r

1√
r2 − |x|2 |x2 − y2|2H2−2 1√

r2 − |y + w|2 dxdydr

= C lim
δ→0

∫ ε

0

∫

|x|<r

∫

|y+w|<r

1√
r2 − |x|2 e−(δ/2)|x1−y1|2

× |x2 − y2|2H2−2 1√
r2 − |y + w|2 dxdydr

= C lim
δ→0

∫ ε

0

∫

R2

(sin(r|ξ|))2
|ξ|2 pδ(ξ1)|ξ2|1−2H2e−iw·ξdξdr

≤ C lim
δ→0

∫ ε

0

∫

R2

(sin(r|ξ|))2
|ξ|2 pδ(ξ1)|ξ2|1−2H2dξdr

= C

∫ ε

0

∫

R

(sin(r|ξ2|))2
|ξ2|2 |ξ2|1−2H2dξ2dr = Cε2H2+1.
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Therefore, (11) is satisfied with η2 = min(2H1 + 1, 2H2 + 1), which is strictly greater
than η.

When d = 3, fix a nonzero w = (w1, w2, w3) ∈ R3, without loss of generality, we
may assume that w1 6= 0. We have

∫ ε

0

〈Γ3(r, ∗),Γ3(r, w + ∗)〉Hdr

=
∫ ε

0

∫

R3

∫

R3
Γ3(r, dx)Γ3(r, w + dy)

3∏

j=1

|xj − yj |2Hj−2dr.

Again, when ε is small enough, to make x and w+y in the support of the measure Γ3(r),
we must have |x1 − y1| > C for some positive constant C. So

∫ ε

0

〈Γ3(r, ∗),Γ3(r, w + ∗)〉Hdr

≤ C

∫ ε

0

∫

R3

∫

R3
Γ3(r, dx)Γ3(r, w + dy)

3∏

j=2

|xj − yj |2Hj−2dr

= C lim
δ→0

∫ ε

0

∫

R3

∫

R3
Γ3(r, dx)Γ3(r, w + dy)e−(δ/2)|x1−y1|2

3∏

j=2

|xj − yj |2Hj−2dr

≤ C lim
δ→0

∫ ε

0

∫

R3

(sin r|ξ|)2
|ξ|2 pδ(ξ1)

3∏

j=2

|ξj |1−2Hj dξdr

= C

∫ ε

0

∫

R2

(sin(r|(ξ2, ξ3)|))2
(ξ2

2 + ξ2
3)

3∏

j=2

|ξj |1−2Hj dξ2dξ3dr

= C

∫ ε

0

r2(H2+H3)−2dr = Cε2(H2+H3)−1,

and (11) is satisfied with η2 = min(2(H2 + H3) − 1, 2(H1 + H3) − 1, 2(H1 + H2) − 1),
which is strictly greater than η.
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