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Abstract. We study the scaling limit and prove the law of large numbers
for weakly pinned Gaussian random fields under the critical situation that two
possible candidates of the limits exist at the level of large deviation principle.
This paper extends the results of [3], [7] for one dimensional fields to higher
dimensions: d > 3, at least if the strength of pinning is sufficiently large.

1. Introduction and main result.

This paper is concerned with weakly pinned Gaussian random fields which are mi-
croscopically defined on a d-dimensional cylinder-like discrete region Dy of large size N.
We study its macroscopic limit by scaling down its size to O(1) as N — oo under the
critical situation that two possible candidates of the limits exist at the level of rough
large deviations. We work out which one really appears in the limit assuming that d > 3
and the strength € > 0 of the pinning is sufficiently large.

1.1. Weakly pinned Gaussian random fields.

We work on the d-dimensional square lattice Dy = {0,1,2,..., N} x T‘]iv_l and
denote its elements by i = (iy,ia,...,iq) = (i1,i) € Dy, where T4 ! = (Z/NZ)?~?
is the (d — 1)-dimensional lattice torus. In other words, we consider the lattice under
periodic boundary conditions for the coordinates except the first one. The left and right
boundaries of Dy are denoted by 9Dy = {0} x T% ' and gDy = {N} x T4,
respectively. We set 0Dy = 0, Dy UOrDy and D% = Dy \ 0Dy

The Hamiltonian is associated with an R-valued field ¢ = (¢;)iepy € RPN over Dy
by

Hy(@)=3 3 (06 (1.1)
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where the sum is taken over all undirected bonds (i, j) in Dy, i.e., all pairs {4, j} such
that i,j € Dy and |i — j| = 1. We sometimes denote ¢; by ¢(i). For given a,b > 0, we
impose the Dirichlet boundary condition for ¢ at 9Dy by

¢; =aN for 1 € 0Dy, ¢; =bN for i€ OrDy. (1.2)

For € > 0, the strength of the pinning force toward 0 acting on the field ¢, we introduce
the Gibbs probability measure on RP¥:

@ . 1 aN,bN
it e (dg) = SaNINEC @ T [edolden) + deil, (1.3)

N €D,

Z4NPNE s the normalizing constant (partition function) and HS'"M (¢) is the

aN,bN e

where
Hamiltonian Hy(¢) with the boundary condition (1.2). We sometimes regard py
as a probability measure on RPN by extending it over Dy due to the condition (1.2).

1.2. Scaling and large deviation rate functional.

Let D = [0, 1] x T¢~! be the macroscopic region corresponding to Dy, where T4~! =
(R/Z)?~! is the (d — 1)-dimensional unit torus. We associate a macroscopic height field
hN : D — R with the microscopic one ¢ € RPN as a step function defined by

RN () = —o¢(i), t= (1, )eB(N ]1]>mD i€ Dy, (1.4)

where B(i/N,1/N) denotes the box [(i —1/2)/N, (i +1/2)/N)? with the center i/N and
sidelength 1/N considered periodically in the direction of t. It is sometimes convenient
to introduce another macroscopic filed 'V, denoted by A , as a polilinear interpolation

of ¢(i)/N:

d
hpy(t) = Z {H va{Nta} + (1= va)(1 = {Nta})) | ([Nt] +v), (1)

ve{O,l} =1

where [-] and {-} stand for the integer and the fractional parts, respectively, see (1.17)
in [5]. Note that A8} € C(D,R). We will prove that A" and hd} are close enough in
a superexponential sense; see Lemma 6.7 below. Our goal is to study the asymptotic
behavior of AV distributed under /ﬂN bN.e

We will prove that a large deviation principle (LDP) holds for A" under M?VN bN, e,
roughly stating

as N — oo.

H(ILVN,bN,s(hN ~h) ~ o~ NT*(h)

9

as N — oo with an unnormalized rate functional

S(h) = /D Vh(t)Pdt — € |{t € D;h(t) = 0}, (L6)
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for h : D — R; see (1.13). The functional ¥* is the normalization of ¥ such that
min ¥* = 0 by adding a suitable constant, i.e., ¥*(h) = ¥(h) —min¥. The non-negative
constant £° is the free energy determined by

0,e

1 A
¢ = lim — log —=%, 1.7
é_ 00 |A[| g Z/O\e ( )

where Ay = {1,2,..., 0} € Z4, |Ay| = ¢4, and ZR’ZE and ZRE are the partition functions
on A, with 0-boundary conditions with and without pinning, respectively. It is known
that £° exists, and that the field is localized by the pinning effect (even if d = 1,2),
meaning that £ > 0 for all ¢ > 0 (and all d > 1); see, e.g., Section 7 of [6] or Remark
6.1 of [8].

1.3. Minimizers of the rate functional.
The functional ¥ is defined for functions h on D, which satisfy the (macroscopic)
boundary conditions:

h(0,t) =a, h(1,t)=b. (1.8)

We denote t = (t1,t) € D = [0,1] x T¢"L. Since the boundary conditions (1.8) and the
functional ¥ are translation-invariant in the variable ¢, the minimizers of ¥ are functions
of t; only and the minimizing problem can be reduced to the 1D case; see Lemma 1.1
below. Thus the candidates of the minimizers of ¥ are of the forms:

h(t) = kW (1), h(t) = W (ty),

where (1) and AV are the candidates of the minimizers in the one-dimensional problem
under the condition h(0) = a, h(1) = b, that is, hM (1) = (1 —t1)a + t1b,t; € [0,1], and,
when a + b < /2£¢,

(st —t1)a/st, ty € [0, s¥],
WV (1) = <0, t1 € [st, sf),
(tl - SlR)b/(l - 81R)7 t) € [8{%7 1]a

where 0 < s¥ < sf' < 1 are determined by a/sf = b/(1 — sf*) = \/2£%; see Section 3.1
below, Section 1.3 and Appendix B of [3] or Section 6.4 of [6].

LEMMA 1.1.  The set of the minimizers of the functional ¥ is contained in {fl, h}.

Proor. Consider the functional
1 1
5W(g) = 5 [ a0 €14t € 0.1 g(0r) = 0}
0

for functions g = ¢(t1) with a single variable ¢; € [0,1]. Then, for h = h(t) = h(t1,1),
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one can rewrite X (h) as

sy = [ =00 [ 1Vimn 0P, (1.9)
Td—1 D
where
oh b
Vth—(atQ,...,atd>, i—(tg,...7td).

However, since the minimizers of £ are A or h()) (see [3], [6]), we see that
20 (h(-,1)) = 50 (V) A O (RO),
and this inequality integrated in ¢ combined with (1.9) implies
3 (h) > ©(h) A S(h) (1.10)

for all h = h(t). Moreover, from (1.9) again, the identity holds in (1.10) if and only if

/ |Vih(ty,t)[*dt =0,
D

which implies that & is a function of ¢; only. O

1.4. Main result.

We are concerned with the critical situation where $(h) = £(h) holds with h # h,
which is equivalent to v/a 4+ vb = (2¢6°)'/%, see Proposition B.1 of [3]. Note that this
condition implies 0 < sF < s < 1 for (V). Otherwise, from (1.13) below, h™ converges
to the unique minimizer of ¥ (h in case £(h) < £(h) and h in case X(h) < X(h)) as
N — oo in probability. Our main result is

THEOREM 1.2.  We assume X(h) = X(h). Then, if d > 3 and if ¢ > 0 is sufficiently
large, we have that

Am (1N = Bl py < 6) =1,

for every § > 0.
REMARK 1.3. One can even take § = N~ ¢ with some a > 0.

We conjecture that neither the conditions on the dimension d, nor the one on ¢
being large, are necessary for the result. For d = 1, the convergence to h in L*-norm
was proved in [3], [7]. The largeness of ¢ is used here in an essential way to prove the
lower bound (1.11). The other parts of the proof don’t use it. The condition d > 3 is used
at a number of places where it is convenient that the random walk on Z? is transient.
We believe, however, that a proof for d = 2 would only be technically more involved.
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1.5. Outline of the proof.
The proof of Theorem 1.2 will be completed in the following three steps. In the first
step, we show the following lower bound: For every a < 1 and 1 <p < 2,

ZaN,bN,s NN R i
ZN%VWN(JLV PUEIRY = Loy < NT¥) 2 e (1.11)

with ¢ = ¢, > 0 for N > Ny if € > 0 is sufficiently large, where ZX,N’bN = ZX,N’bN’O (

e = 0). The second step establishes an upper bound for the probability of the event that
the surface stays near h:

ie.,

aN,bN,e b
aN,bN, 7 —
S i Y = Bllany < (log N)~er) <2 (1.12)
N

with some o > 0 and N > Ny. In the last step, we prove a large deviation type estimate:
lim 50" (distpi (BN, {h,R}) > N7) =0 (1.13)
N—oo

for some oy > 0. These three estimates (1.11)—(1.13) conclude the proof of Theorem 1.2.
In fact, choosing « such that 0 < a < (a3 A1), (1.11) together with (1.12) implies

o RN = bz o) < N7

N=oo VNS ([N — hllpipy < N—2)

= 00,

since N~ < (log N)~® for N large, and at the same time the sum of the numerator
and the denominator converges to 1 from (1.13) since o < .

A difficulty is stemming from the fact that for d > 2 a statement like (1.13) cannot
be correct with the L!-distance replaced by the L>-distance. If (1.13) would be correct
in sup-norm, then A" would stay, with large probability, either L>-close to h or h.
However, if it would stay close to h in sup-norm, the field ¢ would nowhere be 0, and
therefore (1.12) would be trivial, with the bound 1.

REMARK 1.4. An estimate weaker than (1.11):

ZaN,bN,s

N z e (114)

N

is enough to conclude the proof of Theorem 1.2. In fact, this combined with (1.12) implies
that p& N2 (||AN — h||L»(py < (log N)~*°) tends to 0 as N — oco.

The three estimates (1.11), (1.12) and (1.13) will be proved in Sections 4, 5 and 6,
respectively. Section 2 gathers some necessary estimates on the partition functions and
Green’s functions. Section 3 contains an analytic stability result which is important in
Section 6. The capacity plays a role in Section 5. The arguments in Section 6 are similar
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to those in [4] developed under zero boundary conditions. There is an additional com-
plication here due to the non-zero boundary conditions. To overcome this, we introduce
fields on an extended set with zero boundary conditions. We also introduce mesoscopic
regions which are unions of cubes of side length N” in Dy or extensions of Dy, for an
appropriately chosen parameter § € (0,1). We further introduce the notion of a meso-
scopically wetted region which is defined as the union of such mesoscopic boxes for which
the averages of the field reaches a certain height. One of the reasons for introducing these
concepts is that the number of possibilities for such regions is only sub-exponential in
N, which allows to use uniform bounds for probabilities of events which involve these
mesoscopically wetted region. On the other hand, the mesoscopic regions allow a local
average under which the free energy &° arises. For various technical reasons which will
be explained in Section 6.2, § cannot be chosen too large. In the end, our choice will be

B =1/10d.

2. Estimates on partition functions and Green’s functions.

2.1. Reduction to 0-boundary conditions, the case without pinning.

Let E, = {1,2,...,n} x T4 € D for 1 <n < N — 1. For A C D%, we denote
OA = {i € DN\A:|i—j| =1 for some j € A} and A = AUJA. For A such that E,, C A
with some n > 1 and for o, § € R, the partition function Zj’ﬁ without pinning is defined
by

B _ —HYP @) TT dob, 2.1
37 = [ 7 Lo (21)

i€EA

where HS?(¢) is the Hamiltonian (1.1) with the sum taken over all (i,7) C A under the
boundary condition

¢; =aforie drA, ¢;=p0forie IdrA, (2.2)
where 9, A = 9, Dy and OpA = OA\OLA (= OAN{i : i1 > 2}). For general A C DS, we
denote Z9 the partition function without pinning defined by (2.1) under the boundary
condition ¢; =0, 7 € JA.

LEMMA 2.1. (1) We have
«, — d—1 n)(a—p3)2 0,0
ZEf,l = o~ (N9 /2n)(a—B) zy’ .
In particular,
aN, —(N%/2)(a—b)? r,0,
ZNAN — o= (NT/2)(a=b)" 70,0, (2.3)

(2) If AD E,_1 for some n > 2, we have

ZX,B,O > e—(Ndfl/znxa—ﬂ)?Z%O. (2.4)
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PROOF. We first recall the summation by parts formula for the Hamiltonian H X ()
for A C D%, with the general boundary condition ¢ = (¢;);ca4:

HY(6) = —3 (6~ 6™%), Aa(6 — 6*%) , + (BT),

where (¢!, )4 = Yica #1¢? stands for the inner product of ¢!, ¢? € R, Ay = A is
the discrete Laplacian on A, ¢ = ¢*¥ is the solution of the Laplace equation:

{(A@i =0 icA )

(Z;i =Y 1€ 0A
and the boundary term (BT) is given by
1 <A
BT)=5 > {e -t
€A, jEDA:|i—j|=1

see the proof of Proposition 3.1 of [6] (which is stated only for A € Z?, but the same
holds for A C D%;).

When A = E,_; and the boundary condition v is given as in (2.2), the Laplace
equation (2.5) has an explicit solution ¢ = ¢Fn—1¥:

¢ = %(51'1 +a(n—ir)), i€ En1. (26)

Thus, in this case, the boundary term is given by

(BT) = = —(a - )",

2n

which shows the first assertion in (1). In particular, (2.3) follows by noting that Z]‘:,N’bN =
Z%NJJN.
N-—-1

To prove (2), we may assume a > 0 by symmetry. Let ¢* be the solution of the
Laplace equation (2.5) on A with 1 given by (2.2) and set ¢"~! := ¢F»-1. Then, we
have

o >4t forall i€ E, ;. (2.7)

Indeed, since a > 0, the maximum principle implies that ¢4 > 0 on 9zF,_; and, in
particular, two harmonic functions ¢4 and ¢”~! on E,_; satisfy ¢* > ¢"~! on 0F,_;.
Therefore, by the comparison principle, we obtain (2.7).

Consider now the boundary term (BT) of H§°(¢). Then, the contribution from the
pair (i, j) such that j € OrA vanishes, since ; = 0 for such j. On the other hand, for
i€ A, j € 0rA such that |i — j| =1, we see from (2.7) and then by (2.6),
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TA, Tn—1 1,
Uiy = 6 <ofa - @71} = —a’.

This completes the proof of (2). O

REMARK 2.2. If A C E,_;, one can similarly show an upper bound on Z%° (i.c.
an inequality opposite to (2.4)), but this will not be used.

2.2. Estimates on the partition functions with 0-boundary conditions

without pinning.

In the subsequent part of Section 2, we will only consider the partition functions
under the O-boundary conditions. The superscripts “RW®N” and “RW?” refer to simple
random walks {7, }n=0,1,2,.. on Zx T‘]ivfl and Z%, respectively, and k in P,fwd or P]fwd’N
refers to the starting point of the random walk. We introduce three quantities:

d
q—}: L P 1,y = 0),
]. d,N
qN:Z%P(FW (1120 = 0),

1 rwe

Note that ¢ < oo for all d > 1 and r < oo for d > 2 (the case that d > 3 is easy, while
the case that d = 2 is discussed in [4, p.543]). Indeed, if d > 3, r < & = G(0,0), the
Green’s function defined below in Sections 2.3 and 2.4.

The next lemma, in particular its assertion (1), is shown similarly to the proof of
Proposition 4.2.2 or Lemma 2.3.1-a) in [4], only keeping in mind the fact that our random
walk “RW®N” is periodic in the second to the dth components.

LEMMA 2.3. (1) Assume that d > 2 and N is even, and let A C D%;. Then, we
have that

1 T N 0 1 T N
- z _ < < Z z
2(logd+q >A| rniq%%“\aAﬂflogZAf 2<10gd—|—q )|A7

where |A| = §{i € A} is the number of points in A and A,, = {i € A;minjcp\a i —

jl = n}.
(2) We have the estimate

0<¢¥ —g<CN

with some C' > 0 for every d > 2.

PROOF. We recall the random walk representation for the partition function Z9
from [4, (4.1.1) and (4.1.3)] noting that A4 = 2d(P4 — I) in our setting:
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1
log 2% = = |A|log = + 1), (2.8)
2 d
where
T= Y Y B (g = k7> 20 (2:9)
keAn=1 2n * " 7 .

and 74 is the first exit time of 5 from A; note that, since N is even, P,f’Wd’N (Nan—1 =k)
= 0. The upper bound for log Z% in (1) is immediate by dropping the event {74 > 2n}
from the probability. To show the lower bound, we follow the calculations subsequent to
(4.2.8) in the proof of Proposition 4.2.2 of [4]:

I=q"|A] - Z > Z PV (13, = iy ma < 20),
t=1 k€A n= 1
note that dA; = 0 for t > N. Let A C Z% be the periodic extension of A in the second

to the dth coordinates. Then, since 74 under RW® is the same as 7 "7 under RW? and
Ti 2> Trts, for k € 0A;, we have

d,N d
PRV (9, = ky7a < 2n) < PEY ()2, = 0,75, < 2n),

where S; = [—t,t]? N Z% is a box in Z?. The rest is the same as in [4].
We finally show the assertion (2). In the representation

—q= Z PRW (n2n € {0} x (NZU~1\ {0})),

by applying the Aronson’s type estimate for the random walk on Z:

C
B o = k) < et ez,

with some C; > 0, we obtain that

C = —N2J£)%2/Cin
se < OY b & v
n=1 EGdel\{O}

However, the last sum in £ can be bounded by

n 2
Cy <1 + \Z§>6N /Can
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with some Cy > 0. Indeed, the sum over {£:1 < |[£] < 10} is bounded by #${£: 1 < |{] <
10} x e=N*/C1nwhile the sum over {£: [¢| > 11} can be bounded by the integral:

2012
03/ e~ NIl /Cim gy
{zeR4—1:|z|>10}

with some C's > 0 and this proves the above statement. Thus, we have

C.C. 1 \/ﬁ 2
N 102 Z ~N%/Can
0=q = 2 n(d+2)/2 (1 N )e o
n=1

Again, estimating the sum in the right hand side by the integral:

> 1 \/% 7N2/02t
04/1' IW<1+N>G dt,

with some C; > 0 and then changing the variables: ¢t = N?/u in the integral, the
conclusion of (2) follows immediately. O

2.3. Estimates on the Green’s functions.
Let Gn(i,7),%,5 € Dy be the Green’s function on Dy with Dirichlet boundary
condition at dDy:

Gy (i,j) = i P, =j.n < 0)( S o [i 1{%_”«,}] ) (2.10)

n=0 n=0

where 7,, is the random walk on Dy (or on Z x T% ') and
o =inf{n > 0;n, € 0Dn}.

Let GN(Lj)J,j € Dy = {0,1,2,..., N} x Z4! be the Green’s function on Dy with
Dirichlet boundary condition at ODy = {0, N} x Z4~!, which has a similar expression
to (2.10) with the random walk 7,, on Dy and its hitting time & to dDy. For i or
j ¢ DS == Dy\ODn, we put Gn(i,7) := 0, and similarly for Gn. We also denote the
Green’s function of the random walk on the whole lattice Z¢ by G(i, j),4,j € Z%, which
exists because we assume d > 3.

Then, we easily see that

Gn(i,j)= > Gn(i,j+kN), i€ Dy, (2.11)
keza-1

where Dy is naturally embedded in Dy and kN is identified with (0, kN ) € Z%. In fact,

the sum in the right hand side of (2.11) does not depend on the choice of j € Dy, in the

equivalent class to the original j € Dy in modulo N in the second to nth components.
The function Gy has the following estimates. For e with le] = 1, we denote
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Vj,e@N(Lj) = @N(i,j +e)— GN(i,j) and similar for V; .Gy (4, ).
LEMMA 2.4. (1) Fori,j € Dy, we have

~ C C
OGN )| < ———— + B 2.12
V3G i) L4 i — j|d=1 " L+ |75 —]|d_1} (212)

with some C' > 0. )
(2) With the natural embedding of Dy C Dy, we have

sup Y |V,eGn (i) < CN.
i€DN jekN+Dy

(3) We have

N C L
Gn(iyj) < We—cu—]wv’ if |i—j]>5N, (2.13)

with some C,c > 0.

PROOF. To show (2.12), we rewrite Gy (i,7) with the random walk 7, on Z¢ and
its hitting time & to Dy as

Gn(i,j) =Y Pililn = j,n < &)
n=0

=Y Piiln=34) = Y_ Piliin = jn > 6)
n=0 n=0
=G(i,j) — BEi[Gn (75, )], (2.14)

by the strong Markov property of 7,,. Therefore, we have
V3G (i) < |V5,.Gi, )| + EillV5,eGn (75, )],

and we obtain (2.12) from the well-known estimate on the Green’s function G on Z<
(e.g., [11, Theorem 1.5.5, p.32]). This proves (1). (2) is an immediate consequence of
(1), as

1
sup Z ———7 < CON.
i jekN+DN1+|Z_‘7|

The next task is to show (2.13). We assume i € Dy and j = jo + kN with jo € Dy
and k € Z%1. We denote T'n(0) = {i = (ia,...,iq) € Z¥" 1, 0< iy < N, £ =2,...,d}
the box in Z! with side length N and divide Z?~! into a disjoint union of boxes
{Tn(i) = i+T(0);4 = 0 modulo N}. For k € Z4~1, let I'sx (k) be the box with side length
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3N with Ty (i) as its center, where ¢ is determined in such a manner that k € T'n(2).
We set ¢ := inf{n > 0; (777(1 )7 e ,ﬁ,(,,d)) € T'sy(k)}. Note that ¢ and T'sy (k) are separate
enough by the condition |i — j| > 5N. Then, by the strong Markov property,

=E; |:Z 1{7]7, =jo+kN, n<o}:|
n=0

[Eﬁa {Z 1{77n =jo+kN, n<0}} o< &}

= E;[GN(il5,jo + kN),& < 5]

E;

<

< NdizP( g<0),

since |5 — (jo + kN)| > N and Gn(i,5) < G(i,5) < C/(1 + |i — j|*2). The event
{7 < &} means that the 2nd—dth components of the random walk 7,, := (77,(?), e ,77,({1))
hits {i € Dy;i € Ol3n(k)} before the 1st component of the random walk 7 i hits {0,N}
(namely, the random walk 7 hits D). In other words, 7} passes at least |k| — 2 boxes

'y (i) before 77( )

be bounded by the geometric distribution so that we obtain the desired estimate. 0

reaches the boundary of one box of the same size. Such probability can

The following lemma will be used in the proof of Proposition 6.6.

LEMMA 2.5. We have that

sup Z |V,eGn(3,5)] < CN.

i€Dn jE€EDN

ProoF. For k € Z% 1, we write DE\I,C) for Dy + kN enlarged by “one layer”, so

that for any j,e, we can find k with j,j € Dgf). Let 71 for the first entrance time of

the random walk {7, } into Dyf). (. =01if 7, € DJ(\’;)). Remember that & was the first
hitting time of D . Using the strong Markov property, we have for j,j + e € Dg\];),

GN(i’j) - éN(iaj +€) = Ei[(GN<ﬁTkaj) - GN(ﬁTk?j + e)>17'k<&]'

We use the representation (2.11) which leads to

Z |vj’€GN(i7j)| = Z |v]eGN Z .7 Z Z |V]€GN Z Nl |

JEDN j€DN keZd ' jep{P
Using Lemma 2.4-(2), we have

3 |V,.Gnli.j)| < ONPi(n < 5),
jeD®
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implying

3 V;eGn(i j)] < ON Y Pi(m < &)
k

JEDN

It is however easy to see that for i € Dy, P;(1 < &) is exponentially decaying in |k|, so
the sum on the left hand side is finite, with a bound which is independent of i € Dy. O

2.4. Decoupling estimate, the case without pinning.
The next lemma, which corresponds to Lemma 2.3.1-¢) in [4], is prepared for the
next subsection. We set

€N = Sub Z PkRWdWN(n%L =k,2n <o)

keDY 1 4

= sup Gn(k, k),
keD3,

and, recalling d > 3,
&= G(0,0) = > P (no, = 0).
n=1

LEMMA 2.6. Assume d > 3. Then, we have the following two assertions.

(1) en is bounded: cy < C.
(2) For two disjoint sets A,C C DY, if N is even, we have

0 < log ZAuCc N5 o
= OngZg—?l A |7

where 0,C = 0ANC.

Proor. For (1), from (2.11), we have that

Gy(k k)= > Gn(kk+(N). (2.15)

Lezd—1

From (2.14), we see that Gn(i,5) < G(i,7). Since G(i,j) is bounded, the sum in the
right hand side of (2.15) over £ : |¢| < 5 is bounded in N. To show the sum over |¢{| > 6
is also bounded, we can apply the estimate (2.13):

Y Gy k+IN)<C Y e <o

Lezd—1:1¢>6 |e|>6

For (2), we follow the arguments in the middle of p.544 of [4]. From (2.8) and (2.9), we
have
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2log AUC Z Z RWd N (Nan = k,7a < 2n < Tauc)

d,N
+ZZ BT (e =k, 70 < 20 < Taue),
=

note that “r4 = 2n” does not occur under “nq9, = k € A”. The lower bound in (1) is
now clear. To show the upper bound, as in [4], noting that Tauc < o for A,C C D%,
we further estimate the right hand side by

oo
d,N
< D0 PP (g =k, Taue > 2n)

k€edpC n=1

< |6AC|ZPRW (N2n = 0,2n < o) = cn|04C,

which concludes the proof of the assertion (2). O

2.5. Estimates on the partition functions with pinning.
For A C DY, we set

Zg,ez/ e MA@ ] (e60(des) + deby).
RA

i€EA

The next lemma, which corresponds to Lemma 2.3.1-b) in [4], is proved based on Lemma
2.6.

LEMMA 2.7.  Assume d > 3. Then, there exists a constant G5 > 0 such that
0°1A] = (10A] + 402 (AIN2) < log 257 < §°|A] + enla (AN 2,

for every rectangles A C DS;, where £1(A) denotes the side length of A in the first
coordinate’s direction.

PrROOF. We follow the arguments from the bottom of p. 544 to p. 545 of [4] noting
that we are discussing under the periodic boundary condition for the second to the dth
coordinates. We first observe that

log ZJOB’E + log Z%’,E <log Z%SB, <log ZJOB’E + log Z%’,E + %|8BB’|, (2.16)

for every disjoint B, B’ C D%,. In fact, since

0,e |B\A|+|B'\C| 0
Zgop = E : E : gl BAAIFIB Zaues
ACBCCB’
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the lower bound in (2.16) follows from Z9 . > Z4Z2 (see the lower bound in Lemma
2.6-(2)), while the upper bound follows from

29 ¢ < Zgzge(l/Q)cmaAm < Znge(l/ch‘aBB'\.
In a similar way, we have that
0,e 0,e 0,e 0,e 0,e c /
log Z5" +log Zg, <log Zg g <logZg" +log Zg + §|GBB l, (2.17)

for every disjoint B, B’ € Z* (or B, B’ C D%, which do not contain loops in periodic
directions).

For p = (p1,...,pa) € N¢, let S, = Hizl[l,pa] N Z% be the rectangle in Z? with
volume |S,| = Hi:l pa and set Q(p) = (1/|S,]) log Zg’pe. Then, one can show that the
limit

¢ = lim Q(2™p)

m—00

exists (independently of the choice of p) and

<Qp) < (2.18)

holds for every p € N?. Indeed, as in [4, (2.17)] implies that

_ . . & |0Sm
Qp) <---<QE2™ 'p) <QE2™p) < Q2 1p)—|—7| 2mp|
4 |SQmp|
By letting m — oo, we obtain that
. C = |0S9myp| ¢ 05,
Q) <¢ <Qp) + — —Qp)+ 7
) ) 4,;::1 | Samp] )+ EN

which implies (2.18).
The conclusion of the lemma follows from (2.18) if A =S, C D, does not contain
loops in periodic directions. In fact, for such A, better inequalities hold:

0°|A| - £10A] < log 237 < ¢°|A].

If the rectangle A C DS, is periodically connected, we divide it into two rectangles:
A = A1 U Ay, where 41 = AN{i € D};0 < ip < (N/2) —1} and Ay = AN{i €
D$%;N/2 < iy < N — 1}. Then, noting that |94, A2| = 21 (A)N?=2, the conclusion
follows from (2.16) (with B = A;, B’ = Ay) and (2.18) (applied for each of A; and As).

(]
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REMARK 2.8. (1) The e-dependent quantity is only ¢°; ¢y and ¢ are independent
of e.

(2) Lemmas 2.3, 2.7 (for A € Z%) and (1.7) imply that & = ¢ — ¢ and ¢ =
(1/2)(log(w/d) + q).

3. Stability result.

3.1. Stability at macroscopic level.
Recall that the macroscopic energy (LD unnormalized rate functional) ¥ (h) of h :

D — R is given by (1.6). We set ©*(h) = ¥(h) — minX. Note that X(h) = (a — b)?/2
and X(h) = /2€(a + b) — €°, see p.446 of [3], and £(h) = B(h) = min % from our

assumption.

PROPOSITION 3.1.  If &1 > 0 is sufficiently small, ©*(h) < 81 implies dp1(h, {h, iz})
< 09 with 6 = 051/4 and some ¢ > 0.

REMARK 3.2. The metric d;: can be extended to dr» with p € [1,2d/(d —2)), but
with different rates for ds.

We begin with the stability in one-dimension under a stronger L°°-topology.

LEMMA 3.3.  If 61 > 0 is sufficiently small, for g : [0,1] — R, £*(g) < 61 implies
dre (g, {hV, h(V}) < 85 with 62 = /1.

PROOF. Let us assume dp(g, {ﬁ(l),fz(l)}) > 0y, that is, dpe(g,hV)) > §, and
dr(g, h(l)) > 09. First, we consider the case where g does not touch 0, more precisely,
|{t; € [0,1];g(t1) = 0} = 0. Then, the condition d~(g, ")) > 5 implies

S (g) > 262, (3.1)
Indeed, since the straight line has the lowest energy among curves which have the same

heights at both ends and do not touch 0, we consider piecewise linear functions g% with
to € (0,1) defined by

a—l—{(b—a)ifz}tl for t1 € [0, to]
g*(t) = .
b—|—{(b—a):l:t0_1}(t1—1) fOI‘tle[to,l]

These functions satisfy dp (g, h1)) = §,. Thus, for g satisfying dp(g, h(")) > §, and
not touching 0, we see that

Y (g) > inf X*(g'°
(g)_tog(lm) (g™)

62 /1 1
= inf 2(—+-—-) =28
tog(lo,l) 2 (to + 1 —t0> 2
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by a simple computation, which proves (3.1).

Next, we consider the case where g touches 0, i.e., |{t1 € [0,1];9(t1) = 0}| > 0.
Then, the condition dpe(g, h")) > 85 implies

Y*(g) > min{21/2£56, 85} (= 05 if 69 < 24/26°). (3.2)

Indeed, it is known that the interval [s%, sF] = {t; € [0,1]; AV (t1) = 0} of zeros of h(})
is determined by the so-called Young’s relation:

b
siL = R = \/@a (33)
1

1—s

see [6, p.176, (6.26)]. Here we assume a,b > 0 for simplicity. First, consider the case
where the discrepancy at least of size 5 of g from h(") occurs at to € [sF, s%]. For such
g, the energy ¥ ;] on the interval [0, o] has a lower bound:

Y0,t01(9) = Xi0,t6) (910,20])

a2 53

= L

+ 52) V 2£E - gsth
where 6 is determined by d2/60 = /2%, and gpg 4, : [0,%0] — R is the minimizer of ¥ 4,
among the curves g : [0,%9] — R satisfying ¢g(0) = a and g(t9) = d2. Note that, by

Young’s relation (3.3), {t1 € [0, t0]; §jo,40] (t1) = 0} = [s1', to — 0], and also 65 is sufficiently
small. Similarly, on the interval [to, 1], we can show that

Yit0,11(9) = Xiro,11(G1t0,1)) = (02 4+ b) /265 — £5(1 — 1o).

Therefore, for g mentioned above, we have that

X (g) = 2o, to]( 9o, to]) + Z[to,l]( Jlto, 1] — min X = 24/2£%05. (3.4)

Next, consider the case where the discrepancy occurs at ¢y € [0, s¥]. For such g, we have
that

to

Si0,101(9) = Dito,11(9") = 2 (saL + to) ( 2 < %+ ) )7
1

Sit011(9) = Dit 1) (G110,17) = ((@ — V2€580 — d2) +b) /265 — £5(1 — 1),

where g' : [0, o] — R is a linear function satisfying g (to) = h™® (to) — 52( —aty/s¥ —
d2), and gizy.1 © [to, 1] — R is the minimizer of Xy, 1) satisfying gy, 1)(t0) = ( 0) — 0a.
Therefore, for such g, we have that



1376 E. BOLTHAUSEN, T. CHIYONOBU and T. FUNAKI
* to ~ . 63 2
Y5(9) = B, 11(97°) + Xito,11(91t0,1)) — min ¥ = 2y > 43,
since tg < 1/2. The case where to € [s1t, 1] is similar, and this together with (3.4) shows
(3.2). The conclusion of the lemma follows from (3.1) and (3.2) if 6; < (2/2€%)2. O

We prepare another lemma.

LEMMA 3.4. Assume d > 2. Then, ¥*(h) < C) implies |h||L« < Cy for every
2<¢g<2d/(d—2) (or2 < q< oo when d=2) and some Cy = Cs(q,C7) > 0.

PROOF. The condition X*(h) < Cy shows
1 ) A
5 | VAPt < C) + € 4 minx,
D

This, together with Poincaré inequality noting that h = a on 9D and h = b on drD,
proves that ||Al[w1.2(py < Cp. However, Sobolev’s imbedding theorem (e.g., [1, p.85])
implies the continuity of the imbedding W'?(D) c L%(D) for 2 < ¢ < 2d/(d — 2) and
this concludes the proof of the lemma. O

We are now at the position to give the proof of Proposition 3.1.

PROOF OF PROPOSITION 3.1. Assume that h satisfies
1
S (h) = / SO (h(-, 1)) dt + 7/ VAt 8)[2dt < 6y, (3.5)
Td—1 2 D -

where (1 (g) is the energy of g : [0,1] — R, 2M* = 21 — min (D; recall (1.9). Note
that min () = min ¥ so that we have the above expression for £*(h). We assume §; > 0
is sufficiently small. For M > 2 chosen later, set

St = {t e T (h(-, 1) < M6y},
St =T\ S = {t e T 8= (h(-, 1) > M6 }.
Then, by (3.5) and Chebyshev’s inequality,

01 1

Mo, M’

Gd—1
1Shs, | <
and
1
Sl >1 - —.
S > 1 -

We first estimate the contribution to d1(py(h, h) = ||h - B||L1(D) and dp1(py(h, il)
from the region 5']”\%11, or more generally regions S C T9~! such that |S| < 1/M:
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/S 1 2) — RO g oy < /S ARG Dz + 1A s o bt
~ [ LoasOlnlde+ Cls|
D

C
< VIO S Ikl o) + 7

Cs C< Cs

S S (3.6)

where C' = \|B(1)||L1([0’1]) < oo and C3 = Cy + C. We have applied Schwarz’s inequality
for the third line and Lemma 3.4 for the fourth line with Cy = C3(2,d1). We similarly
have

Cy
VM’

/S 1A (-, t) = BV || 1 o, dt <
For t € ij/l_éll, by Lemma 3.3, we see that

dp (h(-, 1), {hM, hV}) < 6a(= /Mby).
Set
St W = {t € Sikdp (h(- 1), hY) < 65},
St ® = {t € St dpe (h(-, 1), hV) < 62},

If |S’M§ 2)| < 1/M, we have from (3.6) that

dLl(D)(h, }_L) = ||h — }_lHLl(D) = /Ed?l ||h(,§) — 71(1)||L1([071])d§

2C3 1/4
Mé + —= =C56,, 3.7
1t =G (3.7)

by dividing T4~ = Sj;éll (1) (Sﬁm1 u Sd - (2)) and choosing M = 1//51, with C5 =
1+ 2C5. We have a similar bound:

dps (py(hy h) = |h = h|| by < Coedy", (3.8)

if 1St ™M) < 1/M = V3.

Therefore the case where both |Sf\l/;511’(1)|, |Sd - (2)\ > 1/M = /&1 is left. In this
case, since |S4/5 | >1—1/M > 1/2 (since M > 2), the volume of Sd L) o Sf\l/f_éll’@)
is larger than 1/4 Let us assume |Sd 1(1)| > 1/4 and \Sd 1(2)| > \/T The case
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|Sd \ > 1/4 and |Sd L(1) | > /01 can be treated similarly. Then, choosing a subset
S c Sd ! (2 such that |S| = /01, we have that

1 1
/ dt1/ d;/d;* Av/ (t—t*) - Vih(ts, at + (1 — a)t*)da
0 sjf;;'“’ s 0 B

:/d o dt/dt / {h(t1,t) — h(t1,t") }dty

> i G VE 39)

by integrating in « first, where

Av f(tt* da—2d Z/f

s*el

by embedding t,t* € T 1into s € [0, 1)d_1 such that s = ¢ mod 1 componentwisely and
E={s*€R¥ L s*=t*mod 1 and |s — s*| < v/d — 1}, and

/{h ty,t) — h(t1,t") }dt,

> [|RM — AD | 10,1y — 262 > Cs,

for some Cg > 0, if dp = céi/ * and therefore &, are sufficiently small. Estimating
|t — t*] < +/d—1, the left hand side of (3.9) is bounded from above by

1 1
\/d—l/ dtl/ d;/dﬁ AV/ IV,h(tr, at + (1 — a)t*)|da
Td—1
—i- /Elg [ Vah(t,at + (1 — a)t*)|]dr.

Here, under the expectation, t and t* are T~ !-valued uniformly distributed random vari-
ables, « is [0, 1]-valued uniformly distributed random variable and {t,t*, a} are mutually
independent. Then, by Schwarz’s inequality, we have that

E[ls(t*”v;h(tla at+ (1 — O‘)t*)”

< \/E\/E[Wih(h, at + (1 — a)t*)|?]

1/2
s ([ v i)
Td—1
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since at + (1 — a)t* is also T~ !-valued uniformly distributed random variable. Thus,
applying Schwarz’s inequality again, the left hand side of (3.9) is bounded from above by

VA =16V :hl| 12(py < VA —161"*\/25y,

by the condition (3.5). Combined with (3.9), this implies 1/2(d — 1)51/4 > Cr/4, which
contradicts that we assume 07 is sufficiently small. Thus, (3.7) and (3.8) complete the
proof of the proposition by taking ¢ = max{C5, Cs}. O

3.2. Stability at mesoscopic level.

Given 0 < 8 < 1, we divide Dy into N41=5) subboxes of sidelength N?. For the
sake of s1mphc1ty, we assume that N° divides N. We write By 3 for the set of these
subboxes, and B ~.,3 for the set of unions of boxes in By g. The sets B € B ~,3 are called
mesoscopic regions.

For B € By 5 (and actually for general B C Dy), set

En(B) = Eno(B) — £°|B¢,

Enxo(B)= inf  Hy(¢), (3.10)
PERPN:(3.11)

EN(B) = En(B) — min En(B),
BeBnN,s

where the infimum in (3.10) is taken over all ¢ € RPN satisfying the condition:

aN if i € 9Dy
¢ ={bN ificdrDy . (3.11)
0 if i € DY\B

Let ¥ = (¢P)iep, be the harmonic function on B subject to the condition (3.11).
Then, ¢ is the minimizer of the variational problem (3.10). The macroscopic profile
N = by (= hiyp) € C(D) is defined from the microscopic profile ¥ by polilinearly
interpolating qgﬁ\,t] /N, t € D, where [Nt] stands for the integer part of Nt taken compo-
nentwisely; see (1.5).

The stability at mesoscopic level is formulated as follows:

PROPOSITION 3.5.  Assume a > 0 is given and 3,y > 4a. Then, if N is sufficiently
large, E(B) < N9 for B € By g implies dpi(hY,{h,h}) < N=«.

From (1.22) in [5], the polilinear interpolation has the property:

! — Eno(B).

1 N 2 1 N 7B |2 1B
i/D\Vh()|dt<— VR " = aHIn(97) = 53

2Nd
i€DN

We also see that {t € D; AV (t) = 0} D 4 (B¢)°, which implies that
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1 d—
f|{t€D;hN(t):0}|+W|BC| < |aB|< dN4=8 = dN—P.
These two bounds show that

»(hV) < WEN( )+ AN, (3.12)

We need the next lemma.

LEMMA 3.6.

1 1
WminEN(B) <min¥ < — N - min Ex (B )+ E5ANP.

PROOF. The upper bound follows from (3.12). To show the lower, recall min ¥ =
(a —b)?/2. Define ¢ = ¢PN = (¢;)iepy by

¢ =i, =aN + (b—a)i, i€ Dy,
where i1 is the first component of i. Then, we see that
- 1 N-1 . N )
(i25.0nyiq) €TE T 11=0

This proves the lower bound. O

From the lower bound in this lemma and (3.12), we see that E*(B) < N9~7 implies
Y*(hV) < N7 + ¢5dN—P. Thus, Proposition 3.5 follows from Proposition 3.1.
We slightly extend Proposition 3.5 and this will be used in Section 6.3.

PROPOSITION 3.7.  Let a mesoscopic region B and As C B such that |B\ As] <
N4=1/8 be given, and assume that

Eno(Ag) — €°|B| — min Exy < N4, (3.13)
Then, we have that
dps (B, {h,h}) < N™2, (3.14)

where hgz is defined from ™2, which is harmonic on Ao subject to the condition (3.11)
with B replaced by As.

PROOF. As we saw above, we have that

/ VLA, (t)%dt < ENO(AQ)
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and also, since {t € D; hY) (t) =0} D +(B°)° (we don’t need the condition on |B\ Asl),
1. _
It € DAY, (1) = 0} + 10 |B] < N,

Therefore, (3.13) together with the lower bound in Lemma 3.6 implies X*(hfY ) < N7 +
¢€dN—P, and we obtain (3.14) from Proposition 3.1. O

4. Proof of the lower bound (1.11).

This section is concerned with the lower bound on

ZaN,bN,e NN N R
S i= D i — Bl <), (4.1)
N

where we take 6 = N~ with o < 1; see Remark 4.1 below. We divide D%, into five
disjoint regions: D} = A, Uy, U B Uyr U AR, where

[1,Nst — K —1]NnZ) x T% ",

Nsf — K,Ns{1nZ) x T4,

B

(1

(1

(INst +1,NsfInz) x TY Y,
([Nst+1,Nsft + K]NZ) x T% !,
(1

Nsf+K+1,N-1]NZ) x Ty,

for K > 0, where sE and sf € (0,1) are the first and the last s’s such that 2(})(s) = 0 and
we assume that Ns¥ Nsft € Z for simplicity. Note that the side lengths in i;-direction
of these five rectangles are Ns¥ — K — 1, K + 1, N(sf* — s), K and N(1 — sf) - K — 1
for Ar,vr,B,vr and Ag, respectively. Then, restricting the probability in (4.1) on the
event:

A:={¢;¢; A0 fori € AL U AR and ¢; =0 for i € vy, U~vg},

we have

aN,bN e

_ N,bN, 2
En > %uﬁv “(IRN = Rl o py < 6,.A)
N

=2y X NZJZ’O(HhN - iLH[ﬂ“(DL) <)
< g (IR = Al popyy < 5)#?4iN(||hN — bl (g < 0), (4.2)

aN,bN,e

by the Markov property of 'y , where ;% N0 is defined on A; with boundary con-



1382 E. BOLTHAUSEN, T. CHIYONOBU and T. FUNAKI

ditions aN and 0 at the left respectively right boundaries of A; without pinning, ,u%’iN

is similarly defined on Ag, ,u%’e is defined on B with boundary condition 0 with pinning,
ZZI;/,OZ%,E ZO’bN

1 —ARgl“YLHl“/R\
N 7aN,bN )
N

(1]

and Dy, D), and Dgi are the macroscopic regions corresponding to Ay, B and Ag,
respectively. Since vz and yp are macroscopically close to the hyperplanes {t; = st}
and {t; = s} in D, respectively (i.e., 7y /N is in a ed-neighborhood of {t; = s¥} with

suitable ¢ > 0 etc.), by the LDP [2] for M‘XZ’O, M(/){iN and the LDP for ;% combined with

the coupling argument (see Lemma 4.4 below) implying —(51(-2) < ¢Z(-1) < ¢§2), i € B for
¢ ~ ﬂ%’s, ¢, $) ~ u%’o’Jr = ﬂ%o(-|¢ > 0), three probabilities in the right hand side
of (4.2) are close to 1 as N — oo. Therefore, for every ¢ > 0, we have

Eny > (1-0)=k (4.3)

~

as N — oo.

REMARK 4.1. (1) If d > 3, the Gaussian property implies

aN,0 ~
B [0 = W) < o
and others. Therefore, (4.3) holds even for 6 = N~ with o < 1 at least for p = 2
(so that for every 1 < p < 2). For d = 2, this statement is also true since the above
expectation behaves as C'log N/N2.
(2) To show the weaker estimate (1.14), we can simply estimate =y > =L so that the
LDP and the coupling argument for the above three probabilities are unnecessary.

=1

We now give the lower bound on Zy. Since A = Eyng_ gy and Ap =
Ena—sry—k—1 (which is reversed), Lemma 2.1 shows that

2Nd
ZaN.0 _ _ a 70
= e"p{ 2(sf — K/N>} A
b2Nd
Z50N = — z,..
Ar eXp{ 2(1—s?—K/N>} Ar

Therefore, from 1/(sf —K/N) = 1/sf + KN71/(s¥)2+ O, (N ~?) and a similar expansion
for 1/(1 — sf — K/N) as N — oo, we have

=N > exp { f(a,b)N — K f(a,b)N~! — O, (N?72)} =%,
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where O.(N9~2) means that the constant may depend on ¢ (since s¥ and s depend on
€), and

0,e 70
2% 757
— ZAL"B ZAR |yil+|y&l
70,0 ’
N

a? b2

1
f(a,b):i(a—b)Q—@—m

= B(h) — X(h) — & (sf — s1),
2 b2
2(1 — stt)2”

fla,b) =

IS

+
2(s7)?

However, we have f (a,b) = 2¢° from Young’s relation for the angles of hats= st and
st a/st = b/(1 — sB) = /2€2, see Section 1.3 of [3] or Section 6 of [6] for example.
Moreover, by Lemma 2.3 and Remark 2.8-(2)

Za,Z4 ; o -
St 2 e (@A + 4n| - DR]) - 4 - O

and by the lower bound in Lemma 2.7
0,e ~E 3 d—1
Zg zexp{q |B|—§CN }

Thus, since [AL| + |Ag| + |B| + |yz| + [vr| = [D|(= N (N = 1)) and ¢° - ¢° = &,
we obtain

logZy > f(a,b)N' +°(|AL| + |Ar| — [D}) + &| B]
— (4r +3¢/2 4+ 2K&) N + (|vi] + |vr|) loge — O-(N972) — C
> f(a, )N + €| B| — (Cy + 2KE)N"" + (1| + [zl log e — ¢°) — O-(N2),
with a constant Cy = 4r + 3¢/2 > 0 independent of ¢; the constant C' is included in
O-(N92). However, the balance condition: ¥(h) = ¥(h) and |B| = N(sf — s¥) imply
that f(a,b)N? + £5|B| = 0, so that the volume order terms cancel. Therefore, from
2l + el = (2K + 1)N41, we have
log E)y > ((2K +1)(loge — ¢°) — 2K¢&° — C1)N* ! — O (N9?)
> (loge — (2K +1)¢° — 2K log2 — C1 )N~ — O.(N972),
where the second line follows from the upper bound on £° given in Lemma 4.2 below. It

is now clear that, for £ > 0 large enough, the coefficient of N?~! in the right hand side
is positive and thus the proof of the lower bound (1.11) is concluded.
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LEMMA 4.2. For e > 1, we have that
loge — ¢° < €° < log2e.

PrOOF. We have an expansion:

O,e _ 2 |[Ae\A| 70
ZA[ = e ZA
ACAy

To show the upper bound, we rudely estimate: gl*\Al < e for e >1land Z9 < ed’14l <
ed’t! by Lemma 2.3-(1); note that its upper bound holds with g in place of ¢V for A € Z.
Then, since §{A: A C Ay} = 2" we obtain

d d -0 pd
ZR’E S 2@ 6@ ed J4
£
and therefore

1
¢ = lim — log ZR’; < log2e + ¢°,

(=00 £
from which the upper bound on & = ¢ — ¢° follows (or, recall (1.7) for £% and note that
Lemma 2.3 also shows limy_. £~%log Z}, = ¢"). Taking only the term with A = () in
the expansion, we have ZX’ZE > £ and this implies the lower bound. O

REMARK 4.3. (1) To have the large factor loge, we need to allow some spaces for
~vr and yg. For this purpose, in the above proof, we have cut off the regions Ay and
AR by letting K > 1, while the volume of the region B are maintained. It is also
possible to maintain the spaces for Ay and Agr by taking K = 0. Instead, we may
cut off the region B, but the results are the same.

(2) In fact, one can take K = 0 for vz and K = 1 for v, so that the required condition
for € > 0 is: loge > log2 + 24" + 4r + 3¢/2.

We finally give the coupling argument used above. Consider the Gibbs probability
measure ujﬁ’s on A under the boundary condition ¢ given on Dy \ A. Assuming that
¥ >0 (i.e., 1, >0 for all i € Dy \ A), we compare it with

w0 () = g > 0),

by adding the effect of a wall located at the level of ¢ = 0 to the Gaussian measure
,uﬁ’o(-) without the pinning effect. In fact, we have the following lemma from an FKG
type argument.

LEMMA 4.4.  We have the stochastic domination: p'y® < Mf;o’J“. Namely, one can
find a coupling of ¢ = {¢5 }icpy and g%+ = {¢?’+}i€DN on a common probability space
such that P(¢5 < ¢?’+ foralli € Dy) =1, and ¢¢ and ¢*F are distributed under e
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and uﬁ’07+, respectively.

PROOF. For ¢ = (¢;)icp, € RPN satisfying the conditions ¢ = 5, on D\ A, we
consider two Hamiltonians

HY(0) = HY(0)+ Y. UD(y), (=12,

iEDN\A

by adding the self potentials U®) defined by UM (r) = —Blig,a)(r) and U@ =
K1(_wo(r), 7 > 0, with o, 8, K > 0 to the original Hamiltonian H}\b, defined under

the boundary condition . The corresponding Gibbs probability measures ,u%) are de-

fined by

1 _go
M%)(d¢) = (g)e HN (¢) H d¢z H 6’¢1k (d¢k), Z = 1, 2.
ZN €A keDn\A

It will be shown that the stochastic domination pg\}) < uﬁ) holds if K > 3. Once this is
shown, by taking the limits o — 0, 3 — oo such that ¢ = a(e® — 1) (see e.g. (6.34) in
[6], and K — oo, the lemma is concluded.

It is known that the stochastic domination ug\}) < #5\2/) holds if the two Hamiltonians
satisfy Holley’s condition:

HY (0) + HY(9) = HY (6V 6) + HY (9 A §), (4.4)

for every ¢, ¢ € RPN, where (¢ V ¢); = ¢; V ¢; and (¢ A ¢); = ¢i A ¢, see Theorem 2.2
of [9]. Since (4.4) holds for HY, (i.e., if UM = U = 0), it is enough to show that

U@ (2) + UV (y) > UD(zVy)+UD(zAy)
for all z,y € R. However, this is equivalent to
U (@) = U (y) > UW(2) - UM (y) (4.5)

for every z,y € R. It is now easy to see that this is true under the condition K > (. O

REMARK 4.5. If the self potentials U¥) are smooth, the condition (4.5) is equivalent
to {UPY < {UMV on R.

REMARK 4.6. Lemma 4.4 was applied under the boundary condition ) = 0. In
this case, by the symmetry ¢ — —¢ under ,u?f, we also have the lower bound.

5. Proof of the upper bound (1.12).

N,bN,e aN,bN  aN,bN,e
Za ) A s s s
N » <N

We write Z5;, Zn, p5y instead of s My , respectively, and similar

at other places. We expand as
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VA — Z
ZIIX 3 (||hN hllLe(py < Z ElA‘ A ||h —hHLp(D)<6) (5.1)

ACDY,

Here, Z 4 refers to boundary conditions 0 on A€, and the usual one on the cylinder
(A€ stands for the complement of A in DY), and pa is defined with similar boundary
conditions. We will consider the Gaussian field px on DY, with the above boundary
conditions. Note that the Gaussian field {¢;}icpg on RPx distributed under gy has
covariance matrix

det 1
I' = I—-P
2d( )7t

where P is the random walk transition kernel with killing at the boundary 0D y. Further-
more, ¢; has mean m(i) = mqenpn(4) which is given by linearly interpolating between
the boundary condition aN on d;, Dy and bN on OrDy .

We take § = (log N)~° with ag > d/p in (5.1). We show that

e 4
|[A ‘7‘4 <
E et <2 (5.2)

ACDY,, |A¢|<(N/log N)d N
if N is large enough. Note that, if |A¢| > (N/log N)9, then hN =0 on (1/N)A°® so that
[N =Rl ze(py = (a Ab)(log N)~/P,
In particular, for such A, we have
pa(|BY = BllLopy < (log N)=%°) =0

as o > d/p. Thus (5.2) proves (1.12).
Now we give the proof of (5.2). Recall that

ZA 1
— = — ex d do(d
Zn Zn Jars p 11;[4 Qszlgc 0 ¢z
The function
fac(oidiea) ™ o [ exvl-Hn (o) [] ao
i€EA

is the density function of the Gaussian distribution on R4° obtained as the marginal
from the Gaussian distribution py on RP~. This marginal Gaussian field has the same
mean as gy and the covariance matrix I' 4c which comes from restricting the covariance
matrix I' to A¢ x A°. This covariance matrix has the representation I'sc = (I — Pac)™1,
where Py (i,7) for i,j € A€ is the probability for a random walk to enter A° at j after
leaving ¢ with absorption at dDy. So
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D Pac(ij) < L.

jEAe

We also write for the escape probability
.\ def .o
eac(i) = 1= Y Pac(i,j),

jEAC

and then the capacity of A with respect to the transient random walk on DY, with killing
at the boundary is

¢y def .
cappy (A%) S e e (i).
i€Ae
Then we have

1
(2m)lAl det T 4c

fac({i}ieas) = exp[=d(¢ —m, (I — Pac)(¢ —m))ac],

where (¢, 1) ac def ZieAC @i, and m = mgn pn. We therefore get

Za _ L exp[—d(m, (I — Pac)m) ac]. (5.3)

Zn (2m)lAl det T 4c

We first estimate the determinant from below

\/ (2m)l AT det T ge = /exp[—d((b —m, (I — Pac)(¢ —m)) ac] H do;

i€A°

>

/ expl—d(¢ — m, (I = Pac)(¢ —m))ac] [ ds
{lpi—m;i|<1/2, VicAc} i€Ac°

On the other hand,

W (p—m (I — Pac)(é—m))ac < A7,
{lpi—m;|<1/2, Vi€ Ac}

and therefore

\/ (2m)1 AT det T 4 > exp[—d|A°|].

We write pr,(i) for the probability that the random walk starting in ¢ € A° does not
return to A° and leaves Dy on the left side, and correspondingly pr(i) for the right exit.
Clearly pr.(i) + pr(i) = eae(i). Then
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m(i) = Pac(i, j)m(j) + pr(i)aN + pr(i)bN.

So

m(i) — Z Pye(i, 5)m(j) > min(a, b)Ne 4 (i).

Of course, also m(i) > min(a, b)N. Therefore from (5.3),
Za < ex c N2 2 c
7 = pld|A°|] exp [ — dN? min(a, b)*capp,, (A°)].
Lemma 5.1 proved below implies that
cappy (A%) > o] A°|(4-/4, (5.4)

from which we conclude that for some ¢ > 0, depending on d, a,b

4| ZA
> el
ACDS,, |A¢|<(N/log N)d N

(N/log N)*
< Z x(m)e™ exp [dm — ENQm(d_Q)/d],
m=0
where ¢ > 0 and x(m) is the number of subset A in DS, with |A¢| = m. Clearly,

x(m) < exp[dmlog NJ.

So

3 6|AC|§7A

ACDS,, |A°|<(N/log N)4 N

N\
<1 dlog N +1 d) —eN?*m4=2/4] (5,
<1+ <logN) X 1§m§r(r]1\,3>>1<0g1v)d exp [m(dlog N +loge + d) — eN*m ]. (5.5)

As the function of m in the exponent is convex, it takes its maximum either at m = 1,
or at m = (N/log N)? (assuming for simplicity that the latter is an integer). If it takes
the maximum at m = 1, then we clearly for large IV that the whole expression on the
right hand side of (5.5) is < 2. At m = (N/log N)%, one has the same situation. We get
for the expression in the exponent

d loge +d c

N4 - :
logd_1 N logd N logd_2 N

(5.6)
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If N is sufficiently large, this is dominated by the third summand, and therefore the
expression in the exponent is for m = (N/log N)? bounded by

CN?
logd_2 N’

with some C > 0. This gives for the summand after 1 in (5.5) even something smaller,
namely an expression of order

Nd

CN? ]
long .

exp | — ————
P { logd_QN

This completes the proof of (5.2) and therefore (1.12).
The rest of this section is devoted to the proof of the capacity estimate (5.4). Recall
that, for A C DS, the capacity with respect to Dy is defined by

d
capp, (A) = > PN (Typ, < Ta)
€A

where T4 denotes the first hitting time of A after time 0 for a random walk on the
discrete cylinder.

LEMMA 5.1.  For some constant ¢ > 0, depending only on the dimension d, one has
capp, (A4) > c|A|@=2/d, (5.7)

PrROOF. We will use ¢ > 0 as a notation for a generic positive (small) constant
which depends only on the dimension and which may change from line to line. In the
course of the proof, we need two other capacities. First the discrete capacity on Z%: For
a finite subset A C Z¢,

capya(A) = Z wad (T4 = 0),
z€A

where the random walk here is the standard random walk on Z?. We will compare capp, ~
with capya and then the latter with the usual Newtonian capacity.

We assume (for simplicity), that N — 3 is divisible by 6 : N = 3(2M + 1) and
identify Ty with {3M — 1,...,3M + 1}. Then, subdivide Ty into the 3 subintervals
Ji={-3M-1,...,—- M -1}, Jo:={-M,...,. M}, Jy :={M+1,...,3M + 1}, and
T4 into the 3¢~! subboxes R; := J;, X -+ X Jiy_ |, & = (i1, ..,iq-1) € {—1,0,1}¢71,
and for given A C DgY;, we consider

A‘i = AN ([17N— 1] X Rz),

where [1, N — 1] def {1,..., N — 1}. From the monotonicity of the capacity, we get



1390 E. BOLTHAUSEN, T. CHIYONOBU and T. FUNAKI
CaPpy (4) > CaPp, (Ai)
for every choice of . We choose © such that |A4;| is maximal. If we can prove
capp, (A;) > c| ;|74

then we obtain (5.7) with an adjustment of c¢. We therefore can restrict to sets A which
are contained in one of the sets {1,..., N—1} X R;, and we may assume that ¢ = (0,...,0)
i.e. A is contained in the middle subbox. As we have periodic boundary conditions on
T9=1, this is no loss of generality.

We can then view A also as a subset of Z¢ by the identification T% * = [3M — 1,
3M + 1)%=1 c Z9~1. We now claim that for such an A one has

capp, (A) > ccapga(A). (5.8)
We denote by || - |4—1,00 the subnorm in Z4=1. We also write for 0 < k <[

Sit C LN 1] x {z e 2% k< |ofla1,0 <1},

Skt {0, NY x {2 €241k < ||2flar.00 <1}

For k = [, we write Sj instead of Sk . So A C So,a. The boundary of Syri1,3m,
regarded as a subset of Z¢ consists of the three parts S’M+173M, Snry S3pr+1. An evident
fact is
wad (XTSM+1,3M S §M+1,3M) >c>0, z e SQ]\/[, (5.9)

where 7g is the first exit time from S of a random walk {X,,}, starting in 2. This follows
for instance from the weak convergence of the random walk path to Brownian motion,
and the elementary fact that for a d-dimensional Brownian motion starting in 0, the first
exit from a cylinder [—v,7] x {x € R?¥"! : |z| < 1} through {—~,~7} x {|]z| < 1} has
probability p(d,~) > 0.

Consider now a random walk on Z starting at z € A. The escape probability e ()
to oo can be bounded as follows

ea(x) = PRV (Ty = 00) < PEW (7,0, < Ta)
= wad (7’50,21\471 <Ta, X(TSgon_1) € So,gM_l)
+ wad (TSU‘szl < Ta, X(TSga0s1) € Samr)
< Pde (TSo.50r < T, X (755 50 ) € §0,3M)

d
+ PrRW (TSO,ZM—I < TAvX(TSo,zM—l) € SQM) (510)
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The inequality is coming from the fact that on {7g, ,,, , < Ta, X(75y.1_,) € Soon—1}
one has {Ts, ., = TSysy }- We estimate the second summand on the right hand side

by (5.9). For abbreviation, we set 7; def TSoan—1 a0d T2 = 75, o,,- Then, denoting by
0-, the shift operator by 71, we have

{7‘1 <Ty, X € Som, Xpy00; € S’M+1,3M} - {TS(LE,]\/[ <Ta, Xsgysu € S’073M}7
and therefore, by the strong Markov property, and (5.9)
P, (7'50ng <Ta, Xso4m € 3073]\/1)

> P.,c (Tl < TAa XTl S SQMa X'rg o 97'1 S SM+1,31\/I)

= Ew(l{T1<TA, X7—1€SZM}EX71 (sz € SM+1,3M))

> CPm(Tl < Ty, )(-r1 S SQM)
Combining this with (5.10) gives
eA(x) < (1 + C_l)Pa;(TSO,SM < TA,XSO,gM S SA’O;%M)-

If for the random walk on Z¢, one has TSosn < 1A, XSg31m € 5’073]\/[, then the random
walk on D¢, = [1, N —1] xT?! obtained through periodizing the torus part reaches 0Dy
before returning to A. Therefore

N d—1
Py (TSO‘SJW < TA7XSO,3I\/I S SO,3M) < eg (‘T)

Summing over z € A, this implies (5.8) (with a changed c).
The lemma therefore follows from a discrete version of the Poincaré-Faber-Szego
inequality

capza(A)

L > ATV (5.11)
Al

which follows from results of Kaimanovich [10] applied to the standard symmetric random
walk on Z?. Indeed, in this case, the symmetric measure z on (Z%)? used by Kaimanovich

is given by
1/2d if lx—y|=1
z,Y)) = .
w(.v)) {0 otherwise.

Therefore, for a finite subset A C Z?, the notion |0A|x used in [10]:

Ak =D pl(z,y))

TEAygA
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is 1/2d times the number of nearest neighbor bonds, joining points from A to the outside.

For A C Z9¢, define A°°™ C R? to be the union of closed (hyper)cubes of side length
1 with centers in points of A. Evidently, the Lebesgue measure of A" is exactly the
number of points in A, and the (d — 1)-dimensional Lebesgue measure of JA™ is 2d
times |0A|k. Therefore, from the standard isoperimetric inequality in R?, there is a
constant C' > 0, depending only on the dimension d, such that

AT < CloAlk,

where |A| on the left hand side is the number of points in A. Therefore, the condition
(Isq) of [10] is satisfied. According to Theorem 4.3 of [10], this is equivalent to condition
(C’ll/d), and as d > 3, we can apply Theorem 4.2 of [10] with ¢ = 2 which implies (Cg/d)
which is exactly (5.11). O

6. The large deviation estimate: Proof of (1.13).

6.1. Preliminaries.
CONVENTION. All statements we make are only claimed to be true for large enough
N without special mentioning.

Markov property: Let uj be the probability measure of the free field, that is
the Gaussian field without pinning, on a finite subset A of the cylinder Z x ’]I‘j'lv, with
arbitrary boundary conditions on OA, and let B C A. We write F4 for o(¢; : i € A).
Then for any X € Fp we have

pa(X|[Fpe) = pa(X[Fopna). (6.1)

FKG-inequality: Let G : R® — R be a measurable function which is non-
decreasing in all arguments, and let py o be the free field on A with boundary condition
x € R The FKG-property states that | G dup o is nondecreasing as a function of
x € R in all coordinates.

We will use the expansion

aN,bN, aN,b
pa e = pR (A, (6.2)
ACDS,

where 4 is the standard free field with boundary condition 0 on dA N DY, and aN,

respectively bN on 0Dy, extended by the Dirac measure at 0 on A€ <ef D{A\A, and

where
ElAC‘ZaN,bN
_ A
PN T T JaNbNg
A

{p(A)}acpg, is a probability distribution on the set of subsets of Dy;.
We write
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Ano & {distp (BN, {h,h}) > N~}

1393

50, in order to prove (1.13), we have to prove u5 (An,o) — 0 for small enough «. Let

def

QOf < {6 > —log N, Vi € D} }.

LEMMA 6.1.

Jim @) =1

PROOF. We use

p N ((f)) < N4 sup pi PN (¢ < —log N)
1€

< Nsup pijy (¢ < —log N)

i€EA
log N)? log N)?
< N%sup exp [_(og ) ] gNdeXp[— (log V)
i€EA 2GA(7’72)

where % has boundary conditions 0 on A (and not just on A° N DY).

2C

In the last

inequality, we have used G4(i,7) < Gza(i,i) = C < oo as we assume d > 3. For the
second inequality, we use FKG and a,b > 0. Combining with (6.2) shows the conclusion.

Using this lemma, it suffices to prove

for a chosen sufficiently small.
We will consider the random fields on an extended set

Dyext & {~N,-N +1,...,2N} x T4,

with

Do € {=N+1,...,2N — 1} x T4,

def

def
oD N,ext —

{~N,2N} x T%, Dy ext

= D(JJ\’,cxt\D?\f’

O

(6.3)

We define the measure pf .., on RP~.ext with 0 boundary conditions on 9Dy ext

and e-pinning on DY, i.e.
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> 0]

(4,§) CD N, ext

M?V,ext (dd)) =

DN | =

ZIE\/',ext P |:_
X H (dops + do(deps)) H dgi, ¢ =0on 0Dy ext-

€Dy, ieD?\I,ext\D?\]

LN ext 1S the usual Gaussian field corresponding to € = 0. The reader should pay attention
to the fact that pinning for uf .., is only on DY.

We write F for the set of subsets of DY ., satistying DNext C F. For F € F we
write u% for the Gaussian field on RY with 0 boundary condition on 9F'. It is sometimes
convenient to extend pp to RPN.ext by multiplying it with HigF 00(d¢;). Remark that
8DN C F.

We need the following lemma for the proof of Lemma 6.5 below.

LEMMA 6.2. Let F €F, and s,t > 0 satisfy s > t/2,t > s/2. Let pp : FUOF — R
be a function which minimizes H (1)) subject to the boundary conditions 0 at OF,v¥p > s
on 0Dy, Y >t on OrDyn. Then g is unique, and is the harmonic function on
F\ODy with boundary condition 0 on OF, s on O,Dn and t on OrDy.

Furthermore, one has

Ayp(i) = > (br() - ¢r() <0, i€dDy. (6.4)

jili—jl=1

REMARK 6.3. The condition s > ¢/2,¢t > s/2 is needed to ensure that piecewise
linear function on [—1,2] which is s at 0, ¢ at 1, and 0 at {—1, 2} is concave. We will later
apply the lemma with s = aN + o(N), t = bN + o(N), so that we should have a > b/2,
b>a/2 (and N large). If this is not satisfied, we can take instead of Dy ex the smaller
extensions {—¢N,—¢N +1,...,N +¢N} x ']T‘]iv_l with ¢ satisfying

be < ac
1+4¢ T 14c

<b,

in which case the corresponding piecewise linear function on [—¢,1 + ¢] is concave. Af-
ter this modification, all the arguments below go through. For the sake of notational
simplicity, we stay with our choice for Dy ot and the conditions on s, t.

To prove this lemma, we prepare another lemma, which reduces the variational
problem to that on superharmonic functions and gives a comparison for such functions.

LEMMA 6.4. (1) The minimizer vr of H(1)) subject to the conditions

’L/JF:()at 8F, 1/JF ZSOH 8LDN, ’(/JF Zton 3RDN, (65)

18 characterized as the unique solution satisfying this condition and
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) (6.6)
AYp <0 on [

{AwF =0 on FU(ODN\I)
where I = I(¢Y) is a region in 0Dy given by I = I, Ulg := {i € OL,Dn;vr(i) =
s} U{i € OrDn;¢p(i) = t}.
(2) Assume that ) and ) are two solutions of the problem (6.6) satisfying ™) >
Y3 on F¢ instead of ™) = 2 =0 on F¢ in (6.5). Then, we have that M) > ()
on F.

PROOF. (1) Let ¢p be the minimizer of H (%)) subject to the conditions (6.5).
Then, ¢ is harmonic on F'U (0D \ I), since

d d

0=—H(p+ad) =-- > @) —vr@) +a)?
=0 Jili—il=1 =0
=2 > (@r() —vr() = —2(A¢r) (),
Jili—il=1

for every i € FU(0Dy \ I), where §; € RPN.ext is defined by &;(j) = &;;. For i € I, since

d
—H(¢r + ad;) >0,

da a=0+

we have Ay < 0. Thus the minimizer ¢ 5 satisfies (6.6).
To show the uniqueness of the solution ¥ r of (6.6), let ¢»(") and 1)(?) be two solutions
of the problem (6.6). Then, we have that

(M (i) — @ (0)) (AW (i) — ApP) (3)) > 0, (6.7)

for all i € F. In fact, denoting I®) = I( Ef)), Iék) = IL(wgc)), Iz(:ak) = IR(’L/)(F{C)) for
k=1,2,ifi € FU(@Dy\ (IMUID)), then ApM (i) = Ap@ (i) = 0. If i € IV \ 1?),
then (M (i) — @ (i) = s — @ (i) < 0 and AV (i) — AP (i) = Ay (i) < 0. The
case 1 € Ig) \I(l) and the cases with Ig),lg) are similar. If i € I(M N I3 then
Y1 (i) = @) (i). In all cases, (6.7) holds.

From (6.7), setting ¢ = () — 4(?) since 9(i) = 0 on OF, we have that

0<)> w@AY@) =~ Y W) - v(G)

i€l i,jeF:|i—j|=1

see (2.19) in [6] for this summation by parts formula. This shows (i) = ¥ (j) for all
i,j € F = FUOF :|i —j| = 1. Since ¢(i) = 0 at OF, this proves ¢» = 0 on F, and
therefore the uniqueness.

(2) Set 1 = (M — (2 and assume that —m = minger (i) < 0. Let 39 € F be the
point such that v (ig) = —m. Then, since 13 (ig) = M (ig) + m > 1M (i), from the
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first condition in (6.6), we see Av(?(ig) = 0. Thus, Av(ig) = AYM (ig) — AP (i) =
A (ig) < 0. Since we have shown

0> Adlio) = Y (%) —¥(io))

J:lio—jl=1

and (j) — ¥(ip) > 0, we obtain that ¥(j) = ¥(ip)(= —m) for all j : |ig — j| = 1.
Continuing this procedure, we see that ¥» = —m < 0 on the connected component of
F UOF containing ig, but this contradicts with the boundary condition: ¥ > 0 on F°. [

PROOF OF LEMMA 6.2. The harmonic property of ¥)r on F' and the property (6.4)
are immediate from Lemma 6.4. What are left are to show that ¥r = son Dy, Y =t
on gDy and to give the explicit form of ¢r on DR ext \ Dy stated in the lemma. Indeed,

define () by

N
N —14
N

(Zl+1)s on {—N,...,0} x T%*

s—i—%t on {l,...,N—1} x T% 1.

N

(2“)t on {N,... 2N} x T¢!

Then, by the concavity condition on the segments mentioned in the lemma, ¢(!) satisfies
the condition (6.6) and 9(*) > () := 4pp on F°. Thus, Lemma 6.4-(2) proves () > ¢
on F. This implies that ¥p = s on 0, Dy, ¥r =t on dgDy. Once this is shown, the
rest is easy, since 1p is harmonic on DY .\ Dn. O

With F still as above, and &, € RPN gp € RPN et OFw, xp - F'NDYy — R

be the harmonic function with 0 boundary condition on 0F N DY;, 1, on 0Dy, and g

—_ def
on OrDy. We set E(F,zr,xr) = H(¢ra, r)-

LEMMA 6.5. Let F € F. Then, we have the followings.
(1) Let s,t > 0. Then

MF,ext(¢|8LDN 2 Sa ¢|8RDN Z t)

ﬁNd72 )

2
< exp [— =(F,s,t) — %N‘i72 ~ 3

(2) Leté >0 and x, xr satisfy aN — N'~° < x; < aN, bN — N9 < xp < bN. Then

N9

) <E(F,xp,xr) < E(F,aN,bN).

PrROOF. (1) We consider ¥r as in the previous lemmas. With the transformation
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of variables ¢; = ¢; + (i), we obtain

,uF,ext(¢|aLDN 2 87¢|6RDN 2 t)

t2

82
— [_ 2(F,s,t) — EN"Z_Q - N‘H}

2

X/wm i€aDy exp[_z > ¢iZ<wF<j)—w@)ﬂumext(dm

i€dDn J

By Lemma 6.2, the integrand is < 1 in the domain of integration, which proves the claim.
(2) It evidently suffices to prove

2N 9
E(F,aN — N'*° bN — N'7°) > Z(F,aN,bN) (1 - ——~ ).
min(a, b)

Without loss of generality, we assume b > a. Then

bN < alN
BN — N1=6 = gN — N1-¢°

Let ¢ be the harmonic function on F which is 0 on F N DY, aN — N~ on 97, Dy and
bN — N'=% on 9z Dy. Define

which is harmonic on F, 0 on 0F N DY, aN on 0Dy and > bN on OrDy. If we
define 1" to be the harmonic function on F' which has boundary conditions aN, bN on
0rDn, OrDn, respectively, and 0 on 0F N DY;, we get

H(y) = <1 - N6)2H<w/> > <1 N 5)2H(w/’)

a a
N-\? QN
- (1 - ) Z(F,aN,bN) > (1 - )E(F, aN,bN). 0
a a

6.2. Superexponential estimate.

Given 0 < 8 < 1, we consider the following coarse graining: We divide Dy into
N4(1=8) subboxes of sidelength N?. For the sake of simplicity, we assume that N” divides
N as before. We write By = By g for the set of these subboxes, and BN = BANﬁ for the
set of unions of boxes in By. We attach to every subbox C' € By the arithmetic mean

BN def ar—d
oSN ENTITY 65
JjeC

Then define
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(bcg,ﬁ,N(i) — ¢ch’ﬁ7N, ieC,
1
heEIN (z) = ¢ =N ([2N]), @ € D =10,1] x T,

PROPOSITION 6.6.  For every n > 0 satisfying 2n+ 8 < 1 and for large enough N
(as stated at the beginning of Section 6.1),

1
/J,(IIVN’bN’E(Hth”B’N 7 hNHLl(D) > an) < C’exp |: 6]\fdlef277fﬁ .

PROOF.  We first consider the pf; . which is defined as the free field with 0 bound-
ary conditions (and no boundary conditions on D). We use the extension as explained
in Section 6.1. Expanding the product in the usual way, we get

ZA A€
/”'?V,ext = Z ZE El ‘MAa (68)
AcF 7 N,ext

where A¢ % DY oxi \ A, and p14 is the centered Gaussian field on DY, with zero bound-
ary conditions outside on JA. The covariance function of 4 is denoted by Ga. It is
convenient to extend G 4(i,7) to i or j ¢ A by putting it 0. It is the Green’s function for
a random walk on A with Dirichlet boundary condition.

We can define A, h°e5 N in the same way as before, but on the extended space.
The coarse graining is done here on the full Dy ext. We first prove that

1
1N et (1B = BN Ly py > N77) < Cexp [— CNd“_Z”‘ﬂ} (6.9)

provided 2n+ 5 < 1.
Using the expansion (6.8), it suffices to prove the inequality for p 4, uniformly in A.
So we have to estimate

“A( D INTE S (6~ 60 2 N1+d—n)

iED?V jeC;

where C; € By g,ext denotes the box in which ¢ lies. The sum over the extended region
DR oxt of the absolute values is

w3 (N0, 60)

iED?\I,ext jeC;

where 0 = (0;) € {—1,1}P~.ext. Therefore, with

X()= > m(NdﬁZ(@—@))

1EDR ot JEC;
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we have
m( ‘N WD ;- qm‘ > N1+d")
IEDY oxt JEC;
< 21DR ext SUp 4 (X(U) > NH'd_"),
[ea
where pia = paext- The X(o) are centered Gaussian variables, so we just have to

estimate the variances, uniformly in o and A.

var,,(X(o) < Y ‘ ( N (6 — i) Z(@—m))’

L,KEDY it j'eC; j€Ck
<2 Z ‘E#A<Ndﬁ¢i Z(¢j—¢k)>'
i,k€DY o1t FECK
<2 Y NN N [Gali,g) - Ga(i k)|
1€DY s kEEDY exe 7€CK
<2 Z N_dﬂ Z Z |GA(Za])_GA(Z7k)|7
TEDY ext kEDY exe 4:d(4,k)<p(d,B)

where G4 is the Green’s function of ordinary random walk with killing at exiting A or
reaching 0D ex. d(j, k) is any reasonable distance on the discrete torus, for instance
the length of the shortest path from j to k. p(d, 3) is the diameter of the boxes in By g.
If we define K (d, 3) to be the ball of radius p(d, 8) around 0 € Dy cxt, We can also write
the above expression as

2 NN YT |Gali k+j) — Galisk)].

JjEK i€ DY ke DS

N,ext N,ext

For i € A, let ma(4,-) be the first exit distribution from A of a random walk starting in
1. It is well known that

Ga(i, k) = GNext (3, k) — ZWAZSGcht(sk)

where Gy ext, is the the Green’s function on Dy ex¢ with Dirichlet boundary condition on
0D ext. Therefore

|GA(7:a k +.7) - GA(i7 k)| S ‘GN,ext(i, k +]) - GN,ext(i7 k)|

+ ZWA(ia 8)‘GN,cxt(S, k +.7) - GN,cxt(sa k)|

Let
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/14(]) == Sup Z |GN,cxt(i>k+j) 7GN,cxt(i7k)|'
€4 kKEDN ext

Then we obtain

Yoo D 1Galisk+5) = Gali. k)| < p()Al+p(i) YD waliss)

PEDY e FEDY o i€A s
— 2u(j)lAl
We prove further down that
u(j) < Cd(5,0)N (6.10)
From that, we obtain
var,, (X (o)) < CN'P|A| < ON1TIH5,
and therefore
HA< ’N 4 Zéf’jéﬁz" ZNHd")
i€Dg, JEC;
< 23Nd eXp[_N2+2d—2nN—1—d—ﬁ] < exp [ éN1+d 21— ﬁ:|

provided 2n+ 3 < 1, and N is large enough. This proves (6.9), but we still have to prove
(6.10).

For a fixed j € K(d,3) we can find a nearest neighbor path of length d(j,0) con-
necting 0 with j. In order to prove (6.10), we therefore only have to prove that for any
e with |e| = 1, we have

D 1GN(0,k) — Gn(0,k + €)| = O(N).
k

This was shown in Lemma 2.5.

Next, we discuss how to transfer the result to the one we are interested in, namely
the corresponding approximation result on Dy with boundary conditions aN and bV,
respectively. For a,b > 0 consider the event

def

Anap = {0 ¢i € [aN,aN + N2, i€ 9Dy,

¢;i € [bN,BN + N9, i € OrDy}. (6.11)

Applying Lemma 6.5 with F' = DY ., s =aN, t =bN, we get
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a2+ (b—a)?+ b2 B
— N ( ) +ONT M| N ext(Ano0).  (6.12)

KN, ext (AN,a,b) = exXp

2
Furthermore
PN ext(An,0,0) > (CN_Qd)QNdil. (6.13)
To prove this, we enumerate the points in 9Dy as k1, ..., kona—1, and prove
N ext (O, € [0, N724]) > CN~2¢, (6.14)
[N ext (Gry4r € [0, N2 |y, = my, Vi < j) > CN—2, (6.15)

uniformly in z; € [0, N=29], and j < 2N~ (6.14) follows from the fact that ¢y, is
centered under pn ext and var(¢yg, ) is bounded and bounded away from 0, uniformly in N,
as we assume d > 3. Under the conditional distribution puy ext (- | o, = s, Vi < J), dr,,,
is not centered, but has an expectation in [0, N ~2¢]. Furthermore, the conditional variance
is bounded and bounded away from 0, uniformly in N, the choice of the enumeration,
and j. So (6.15) follows, too. This implies (6.13).

From that, we get

,UN,ext(AN,a,b) Z exp[—CN‘i]. (616)

U?V,ext (AN7a1b) 2
N,ext

Some more notations: If @ = (2;)ico,pns Y = (Yi)iconDn, We write py¥ for the

field on Dy with boundary conditions & and y on 0Dy, and e-pinning. If we have an
event () which depends on the field variables only inside Dy;, then

M?V,ext(Q I ¢L =z, or = y) = Malify,s(Q)7

where ¢r, = {¢; }ico, Dy, and ¢g similarly. This follows from the Markov property and
the fact that the pinning is only inside DY;.

If ¢ is an element in RPN | we write ¢V {z, y} for the configuration which is extended
by  on 0 Dy, and y on OgDy. We set

Unap = {(@y) : 2 € [aN,aN + N~ y, € bN,bN + N7, }
If ¢ is a configuration which satisfies |¢;| < N¢ for all i € D%/, and (z,y) € Uy a, then
Hy(oVA{z,y}) = Hx(¢V {aN,bN}) + O(NIN~4).

Therefore, it follows that for any Q C {¢: |¢:| < N9, Vi € D}, one has

HY"(Q) = uy N @)+ O(N ),



1402 E. BOLTHAUSEN, T. CHIYONOBU and T. FUNAKI
We therefore have
aN,bN,e 5
Ky (Q)N’N,cxt(ANﬂ,b)

- /U KBV Q)i e (01, € d, 61 € dy)(1+ O(N))

-/ (@61, = @ 6n = Yk (61 € d g € )1+ OV
= 1ot (@ N ANap) (14 O(N 1) < iy e (@)1 + O(N ), (6.17)
i.e., with (6.16)
e "N (Q) < pivext (Q) exp[CNY). (6.18)
We apply this to
Q& {Ih= PN — BV py = N7} 0 {Jgi] < N, Vi€ Dy},

Evidently, the restriction to |¢;| < N? is harmless, as
1
pa NS (|| > N some i) < CN%exp [— C’N2d]’ (6.19)

and therefore, from (6.9) and (6.18),
S (|ReEPAN — BN Ly oy > N7

< Cexp [— éN‘iH_%_ﬁ + CNd} + CNexp {— éNQd]

< Cexp {— éNd“%ﬂ,

for large enough IV, provided 0 < 2n + 3 < 1. This proves Proposition 6.6. O

One simple consequence of this proposition is the following lemma; recall (1.5) for
hA; .

LEMMA 6.7.  For every n > 0, we have that

M?VN’bN’E(HhN - th”Ll(D) > Nﬁ”) < exp{—CN1=21},

PROOF.  First, noting that 3, ¢ (o 174 [ [Tz (va{Nta}+(1=va) (1= {Nta}))] =1,
we see that
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1
IR = hpllpa oy < N > > I8l —gli+w)l

i€DN ve{0,1}¢

Ngil ST jel) - 6()-

i,j€DN:|i—j|=1

Therefore, from (6.18) in the proof of Proposition 6.6 and the expansion (6.8), it suffices
to prove

e D D ORI N‘””) < exp{—ON"1 721},
i,jEDN:|i—j|=1
uniformly in A C DY - As we discussed in the proof of Proposition 6.6, setting
X(o) = > oi(e6) — ()
i,jJEDN:|i—j|=1
for o = (04;) € {~1,1}3% By = {(i,4);i,j € Dn,|i — j| = 1}, it suffices to show that

faext(X (o) > NI < exp{—CNIF1=21}, (6.20)

uniformly in A and o. However, X (o) are centered Gaussian variables and

vary, .. (X (o)) = > 0ijoiry (Gali,i') — Galiy j') — Ga(h,i") + Ga(j, j))
i,jEDN:‘i—j‘=1
i’,j'eDn:li"—j'|=1

<Ci Y |Galig) = Galisj+e)l

i,jEDN,|e|=1

<C Y. |GNea(id) = Gresilisj+e)l

i,j€DN,le|=1

d+1
SC3N+7

by the estimate shown in the proof of Proposition 6.6. This combined with the Gaussian
property of X (o) immediately implies (6.20). O

We draw some other easy consequences from the coarse graining estimate: Given
v > 0 we define the mesoscopic wetted region by

My = My(¢) % UJ{CeBy: o™ > N7}

We write
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M?VN,bN,s(AN’a not) = M(]zVN,bN,s (An.a NQG N {My = B})
BeB
< |Blmax uff "™ (An,0 N 2 N {Mn = BY)
BeB

= exp [Nd(l_ﬁ) log 2] rggg u‘}VN’bN’E (ANya NG N{My = B})

In order to prove (6.3), it therefore suffices to prove that there exists d; < df and a > 0
such that

r;lal)gg M?VN’bN’E (AvonQLN{My =B}) < e*NHl7 (6.21)
€

N large, uniformly in B.

Let *B & 9B N DS,. Any point i € 9* My is in block C with ¢ < N7. If also

¢ € Q}, we conclude that
P(i) < N+ log N.

We will choose v, 8 such that d@ + v < 1, and then choose

of 1 —dfB —
gy 1zd8= (6.22)
2
so that if i € 0* M we have
é(i) < N1=r, (6.23)

LEMMA 6.8 (Volume filling lemma). Assume v+ n > 1, and 2n+ 8 < 1. Then
1
N (M 0 (i 6(i) = 0} > NUFIT7TT) < Cexp | — SN2,
PROOF. Remark that
S J6l0) — 650N 3)

> > (i) = 65PN (@) > [Mn N {i: ¢(i) = 0}[N7.

teEMnN{i:p(i)=0}
Therefore, from Proposition 6.6 we get
M?VvaN,EUMN N {Z . (b(l) — O}| Z Nd-‘rl—’Y"W)

< Iui[N,bN,s (Ndl Z |¢(z) _ ¢cg,ﬁ,N(i)| > Nn)
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< Cexp {— éN‘“‘l_%_ﬁ

which proves the claim. 0
The different requirements on 3,7,v > 0 are
2+ B <1,
g+~ <1,
n+vy> 1
We can fulfill them by taking for instance

1 4
Y=g =g

From now on, we keep these constants fixed under the above restrictions, for instance
with the above values. We put

def defl_ 2 +ﬁ
ke = y+n—1, “3:¥’

so that, by the volume filling lemma, we have

i (IMy N {i s ¢(i) = 0} > N¥772) < exp[— N3], (6.24)

6.3. Proof of (6.21).
If A C DS, we write Aext = AU (Dy.ext\D%). Using Lemma 2.6 (patching at
dDy), we have

Z A = ZaZpy \D3, exP[O(N?7H),

and using Lemma 2.3, one has
ZDN,ext\D?\] = exp [2(}0Nd + O(Ndil)] .

Note that these partition functions are defined without pinning. Therefore

o
T Mz,
ACDS,

£ .
ZN,cxt .

exp I:ZNd(jO—f—O(Nd_l)] Z ElD?V\AIZA
ACDg,

= exp [2N9G° + N9 + O(N*™ )],
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where we have used a version of (2.3.4) of [4]. Therefore,

M?V,ext = GXp [_ Nd(ja - 2qu0 + O(Nd_l)} Z €‘DfV\A|ZAcxt/J‘A,eXt'
ACDY,

However, we can estimate

D3\A
g PN Z 4 itia ot (AN ab) > Zpg, . MNext(AN.ap)
ACDS,

Né
= Zpe exp[—(a2+b2—|—(b—a)2)+O(Nd_1logN)

N ,ext 2
by (6.12) and (6.13). Using

Zp, ... = exp BNG" + O(N"1)],

and recalling £ = ¢° — ¢° as in Remark 2.8, we obtain

a?+ b2+ (b—a)?
2

BN ext (AN ab) = exp { - Nd{ + 55} +O(N%log N)|.  (6.25)

We use now p3""Y as defined after (6.16). Arguing in the same way as in (6.17), we

obtain with the abbreviation By q def {My=B}n Q} NANa,

,aN,bN
M?Va (BN,‘X)M;:Vﬁxt(ANaaab)

= Ui ext (BN.a N {0loDy € Unap})(1+ONT).
Combining this with (6.25) gives

uf\}aN’bN(BN,a) < U ext(Bna N{dlopy € Unan})

2 | 12 N2
X exp [Nd{a o ;(b %) +§E}+O(NdllogN) . (6.26)

For the expression on the right hand side, we use the usual splitting

DSA\Al
E € Aext
M?V,ext(') = = NA,ext(')~

ACDY i A°CDY Next

From (6.24), we know that we can restrict the summation to A with |[B\ A| < N¢=*2 up
to a contribution of order exp[— N3], which we can neglect. Splitting A into A; U Ay

with As % AN B, and using (2.3.4) of [4] and Lemma 2.3,
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d—
ZAlqu,ext < ZAz,ethAl eXp[O(N 5)]
d—
< ZpextZa, expO(N"7)]

< Za, exp [(2N? +[B|)§° + O(N*7)],
it suffices to estimate

JN<B7A2) = Z EchmATIZAI/"’AlUAZ,eXt(BN,a N {¢|8DN S UN,a,b})
A1:A1NB=0

uniformly in B, Ay. If we prove that for all § > 0 sufficiently small, there exists o < 1
such that for all mesoscopic B and all Ay C B with |B\As| < N97%2 we have

Nda2 + b2+ (b—a)?

. —B°l§°| <exp[-N9°] (6.27)

JN (B, A3) exp {

for large enough N (uniformly in B, A3), we have proved (6.21).
Note that

Byo C{—logN <¢

o8 < NN {My=B}N Ay,

On 0*B N (A1 UA2), ¢is of course 0 under pia,ua4,.ext- We define fip a,,4,,2 to be the
free field on RA2V(PN.ex\DX) with boundary condition 0 on @D ey N (A1 U Ag)¢ and
boundary condition & on 9*B N (A; U A3). Then

PJAlLJAQ,ext(BN,oz N {¢|8DN € UN1a7b} N AN(’)

< prayuasext ({—1log N < ¢lo-p < N} My = B, ¢lapy € UN,abs ANa)

< / fiB,A,, A0,z (OloDy € UN,a b, MN = B, AN o) 1hA,0As,ext (Plo-B € dx)
—log N<xz<N!—*r1

< fiayuAsext(—log N < ¢lgep < N17F1)

X Sup 1B A, A z(¢loDy € UNab, M = B, ANa)
ESNI—NI

< sup [iB A, Asx(Ploby € Unap, MN =B, An).
mSNl—ml

There is a slightly awkward dependence of the right hand side on A;: If a point
1 € 0*B is in 0" A5 but not in Ay, then the boundary condition there is 0. However, if it
is in A1, then the boundary condition can be arbitrary < N'=*1. If we allow for arbitrary
boundary condition @ on 9* As, of course with & < N1=%1 and denote the corresponding
measure on R42 by fi A,z then



1408 E. BOLTHAUSEN, T. CHIYONOBU and T. FUNAKI

SUP  [iB,A;,45,2(0loDy € UN,ab, M = B, An,a)
mSNl—ml

< sup  fia,x(9lopy € Unap, MN =B, Ana),
< N1-r1

and the right hand side has no longer a dependence on A;. Therefore, we just get

IN(B,Ag) = Y P NIZ0 1, 0ay et (Bras dlopy € Unan)
AliAlﬁB:@
< ( > ElBCnA§ZA1> SUp iy a(@loby € Unyaps Mn = B, Ana)
A1:AiNB=0 mSNl_"l
=exp [|Bl¢° + O(N*™)]  sup i, w(Sloby € Unap My = B, Ana).

ESNl—ml

For the last line, we have used (2.3.4) together with Remark 2.3.2 of [4], which holds also
in higher dimensions. Therefore, we are left with estimating the above supremum. We
distinguish two cases:

First case:

Eno(Ag) — €°|B°| > N¢ inf S(h) + Ni=x (6.28)
with x > 0 to be chosen later. In this case, we drop My = B, Ay, and obtain

sup  fid,z(®lopy € UNap, MN =B, Ana)

mSNl—ml
< sup  fia, z(dlo,py = alN,¢lozpy = ON).
mSle"'l

By the FKG inequality, the last expression can be estimated from above by putting all
boundary conditions (including at ODy eyt) at N17*1. By shifting the field and the
boundary conditions down by N!'~%! we obtain from Lemma 6.5 that the right hand
side is

[ 2 2

< oxp | - E(Ag,aN — N1 pN — N1m) - N4 D o vy
[ 2 2

= exp _E(AQ,GN,Z)N) _Nd% _A'_O(Nd—ﬂ5):|
_ 249

with some constant k4, k5 > 0, which depend only on the fixed values f,7,n. Summa-
rizing, we get
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Nda2+b2+(b—a)

2
5 —|B¢¢°| Jn (B, A)

exp [

b—a)? |
< exp |:Nd(2a) + |BC|§E _ EN,O(AZ) + O(Nd—m1n(57,.;5)) .

Remember now, that we have

(b—a)* .
- =t S(h).

Therefore, from (6.28), if we choose y > 0 small enough, but smaller than min(3, x5),
we have proved the bound (6.27) in this case. (Here actually, a plays no role). This x
will be fixed from now on.

Second case:

Eno(Ap) — €°|B°| < N inf Y(h) + N9=X, (6.29)

Given © € Rpep,, —logN < x < N'7%3 gy, € R%P~ and yp € RIZPN with
aN <y <aN + N2 bN < yp < bN + N~21 we write ¢y, 4, for the harmonic
function with these boundary conditions. If the boundary conditions are 0 and aN, bV
respectively, we write ¢4, (or ¢2 in Section 3.2). From the maximum principle, we
know that

sSup |¢w,yL7yR (Z) - ¢A2 (Z)l < Nl_ns)
i€As

and therefore

D bmyryn (i) — Ga, (i) < NHFI7Rs,

1€ As

By the stability (rigidity) results obtained in Proposition 3.7, we have that either

>

K

Pa,(i) — Nh(]if)‘ < Nd+1-ro

or

>

7

. S w
¢A2(l) Nh(N>’ < Nd+1 6’

where kg > 0 depends on . Therefore, putting k7 def min(kg, k3), we have, uniformly in
x, Yy, Yyg satisfying the above conditions that either
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sup Z

YL YR

) = (1 e
¢w7yL,yR(Z)_Nh(N>’§Nd+1 7

or

sup Z

TYLYR

(i »
G,y yr () — Nh(N) ’ < Nd+l=rr,

Therefore, if we choose o > 0 smaller than x7 we have that
distr, (hn,{h,h}) > N~

implies

1

D |0y wa i) = 6] = GNTF

2

for all «,yr,yr under the above restrictions. Therefore,

fayz(lopy € UNap, M =B, An,a)

. . 1 o
< ts (B0 € Ui 3 b uni) = 600)] 2 3N ).

Applying the Markov property at 0Dy, we can bound that by
ﬂAz,w((b'aLDN > an ¢|6RDN > bN)

~ . , 1 o
X sup uAQ,m,yL,yR(Zisbm,yL,yR(z)¢<z>|22wl+d )

T, YL YR i

where [ia, zy; yr 15 the free field on R42 with boundary conditions @, yr,yr. Remark
that ¢g 4y, yx (1) is the expectation of ¢ (i) under fia, oy, yn- We write E for the expec-
tation under fi := [1a, z,y; yr- Lhen,

mi= B| B0 - )|
<Y /vara(e(i)) = O(N?),
uniformly in A, x,yr,yr. Therefore, if o < 1, by (4.4) of [12]

i 1B - 0] 2 53 ) < (3|00 - 60| 2 mo+ N )

% i



where

Scaling limits for weakly pinned Gaussian random fields 1411

N2+2d—20z
< exp (— 3057 )

o2 = sup { var <;g<z‘>¢(z‘>);sgp 901 <1},

However, one can estimate

02 < Y Ga,li,j) < CN*2.

1,jEA2

Therefore, if 0 < 2a < §, we get

- , . 1 - _
uAg,w,yL,yR(Z (bonwn () = 6(0)] = 5N ) < exp[-N"),

uniformly in Ag, ,yr, yr. Estimating fia, »(élo,py > aN, éloypy > ON) in the same
way as in the first case, we arrive at (6.27) also in this case.
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