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Abstract. The theory of infinite dimensional oscillatory integrals and
some of its applications are discussed, with special attention to the relations
with the original work of K. It6 in this area. A recent general approach to
infinite dimensional integration which unifies the case of oscillatory integrals
and the case of probabilistic type integrals is presented, together with some
new developments.

1. Introduction.

It is a special honor and pleasure for us to be able to dedicate the present pages to
the memory of K. It6, on the occasion of the centenary of his birth. His early work on
infinite dimensional oscillatory integrals stimulated very much subsequent research on
this topic.

We shall first give a short exposition of the theory of a particular class of oscillatory
integrals and relate them to corresponding probabilistic integrals. Oscillatory integrals
are objects of the form:

1o)== 0t [ 0 )y 1)
r

where I' denotes either a finite dimensional space (e.g. R™, or an n-dimensional differen-
tial manifold M™), or an infinite dimensional space (e.g. a “path space”). ® : T' — R is
called phase function, while f : I' — C is the function to be integrated and € € R\ {0} is
a parameter. The symbol dvy denotes a “flat” Lebesgue (or Haar-) type volume measure,
while C' plays the role of a “normalization” constant. In the case where I' is a finite
dimensional vector space, i.e. ' = R™, n € N, then dv is the Riemann—Lebesgue volume
measure and expression (1) is a basic object of study in classical analysis, e.g. [20], [31].

In the case where I is infinite dimensional no analogue of Riemann—Lebesgue volume
measure is mathematically well defined and d- is, to start with, just an heuristic expres-
sion. We shall focus ourselves basically on this latter case, showing how to generalize the
concept of integration giving a well defined mathematical meaning to (1) when I' can be
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realized as a real separable infinite dimensional Hilbert space (or other spaces, closely
related to such Hilbert spaces).

The main motivation is the study of the “Feynman path integrals”, a class of (heuris-
tic) functional integrals introduced by R. P. Feynman in 1942 in order to propose an
alternative, Lagrangian, formulation of quantum mechanics. In the traditional “von Neu-
mann” formulation of quantum theory the states of a non relativistic particle moving in
a d-dimensional Euclidean space are described by normalized vectors ¢ belonging to the
complex Hilbert space L?(R%). The time evolution is given by a (strongly continuous)
one parameter group of unitary operators {U(t)}scr on L?(R%), generated, by Stone’s
theorem, by a self-adjoint operator H : D(H) C L?(RY) — L*(R?), with domain D(H),
the quantum Hamiltonian, and we can write U(t) = e~(/MH In the case where the
particle moves in a force field associated to a classical (real-valued) potential V € C(R9),
the action of the Hamiltonian operator on functions ¢ € C§°(R?) with compact support
(looked upon as vectors in L%(R%)) is given by

2
Ho(z) = — o Apl(e) + Vi@ho(e), o€ RY,

where A is the Laplacian, m > 0 is the mass of the particle and A is the reduced Planck
constant. The time evolution of the state vector, or wave function, ¥(t) = U(t)wg is
described by the Schrédinger equation:

0 K2
B = — A+ Vo
! ot 2m (2)
(0, 2) = o(x), Yo € C§°(RY).

In his PhD thesis [22] (see also [23]) R. Feynman proposed an alternative suggestive
description of time evolution in quantum mechanics, in terms of an heuristic formula
where the state vector ¢ (¢) at time t should be given by an integral over the space of
paths 7 : [0,#] — R with fixed end point

P(t,x) =« C! o }e(z‘/mst(w)wo(w(o))d7 . 3)
vlv(t)=z

where S;(v) = S%(v) ffg V(v(s))ds, S°(y) = (m/2) fg |%(s)|?ds, is the classical action of
the system evaluated along the path ~, while dv stands for a heuristic “flat” measure on
the space of paths and C'= “ [ e(i/MS° (M dy” plays the role of a normalization
constant. It is well known and first observed in [47] (see references in [3]) that a derivation
of Feynman’s heuristic formula (3) can be obtained by means of Lie-Trotter’s product
formula, which gives the unitary group U(t) generated by the operator sum of —A/2
(regarded as a positive self-adjoint operator with domain the Sobolev space H?(R?))
and the bounded multiplication operator associated to the continuous bounded potential
V € Cy(R?) (ie. defined as (V¥b)(z) = V(z)y(z), ¥ € L2(R?)) as the strong limit in
L2(RY):
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U(t)lbo — nll)ngo (eitA/Qne—(it/n)V)"d]O
(we have set, for simplicity, i=m = 1).

By passing to a subsequence and introducing the fundamental solution G of the
Schrédinger equation, namely e2/2¢g(z) = [o. Gi(2,y)1bo(y)dy, one obtains that for
Lebesgue a.e. z € R? the action of the group U(t) can be described in terms of the limit
of a sequence of (finite dimensional) integrals of the form:

U(t)o(z) = lim to(wo)e " Zi=t V@D TT Gy (2,251 )daj .y, (4)
n—0 Jprdn N
j=1

with z,, = z. By introducing the explicit form of the Green function of the Schrodinger
equation (i.e. of (2) with i =m = 1and V = 0), namely Gy(z,y) = e!(@=9"/2t /(2imt)/2,
the integrals appearing on the right hand side of (4) assume the following form

ot 27y (=2 —1)?/2(t/n)? =V (2 1)) (t/n)
U(t)po(z) = lim

n—00 [pin (2mit/n)nd/2

¢0(I0)d10 e dzn_l.

The term >0, ((z; — z;—1)%/2(t/n)* =V (zj_1))(t/n) appearing in the exponent can be
regarded as a Cauchy—Riemann sums approximation of the classical action integral S; (7).
By taking heuristically the limit as n — oo, one obtains formula (3), that, at this stage,
is just a symbolic expression which suggests a limiting procedure. Indeed formula (3),
as it stands, lacks of mathematical rigor, in particular the “flat” Lebesgue-type measure
d~y appearing in (1), (3) and (5) below has no mathematical meaning. Going beyond
this “minimal interpretation” and trying to realize the heuristic formula (3) in terms of a
well defined integral on a space I' of paths is not trivial. This problem is connected with
the implementation of infinite dimensional integration techniques of oscillatory type, as
the Feynman path integrals (3) can be regarded as oscillatory integrals of the form (1),
where

I = {paths v : [0,#] — R®, y(t) = x € R%},

the phase function ® being then the classical action functional Sy and the “integrand f”
being given by f(v) = ¥o(7(0)). The parameter € is interpreted as the reduced Planck
constant & and dvy denotes heuristically

dy="= T dv(s)". (5)

s€l0,t]

In 1949 Kac [36], [37] observed that, by considering the heat equation with potential
(again with m = A =1 for simplicity)
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gu = 1Au - Vu
ot 2 (6)

u(0,2) = up(x)

instead of Schrédinger equation and by replacing the oscillatory factor €5t(")dy by the
non oscillatory e=5¢ V(’V)dy (with S; V' defined as S, but with V replaced by —V), one
can give (for “good” V) a mathematical meaning to Feynman’s formula in terms of a
well defined Gaussian integral on the space of continuous paths: an integral with respect
to the well known Wiener measure

u(t,z) = Ele~Jo V@O0 (1) + )], (7)

with E standing for expectation with respect to the standard Wiener process (mathe-
matical Brownian motion) w started at time 0 at the origin in R?. Equation (7) is called
Feynman—Kac formula.

In 1956 I. M. Gelfand and A. M. Yaglom [26] tried to realize Feynman’s heuristic
complex measure e(//M®)dy by means of a limiting procedure:

/M) gy = E%e(i/(hﬁam(v)dw.

In 1960 Cameron [18] proved however that the resulting measure cannot be o— additive
and of bounded variation, even on very “nice” subsets of paths’ space, and it is not possi-
ble to implement an integration in the Lebesgue traditional sense. As a consequence since
then mathematicians tried to realized the integral (3) as a linear continuous functional
on a suitable (Banach) algebra of integrable functions.

A particularly interesting approach can be found in the two pioneering papers by
K. Ttd [33], [34]. He was aware of the interest of Feynman’s formula, as well as of the
mathematical problems involved in it. In the first paper in 1961 the author starts to
study the problem by assuming that the potential V' is linear, postponing the study of
a more general case. Very shortly, what It6 did is to define rigorously the “generalized
measure” (5), hence the heuristic integral (3), for V of linear type and vy having a Fourier
transform of compact support, as a linear functional, taken to be the limit for n — oo of
finite dimensional approximations

L (o) = C;! / (4128 [5 35073 g (1)) P (dy),

with L, the “translate by x of Cameron—Martin space”, Pff) a suitable Gaussian
measure associated with a certain compact operator T concentrated on L., C, =
[1;(1 + n?v;/hi)~'/2, and {v;} being the cigenvalues of T. In the second paper [34]
on this subject K. Ito extended the class of potentials which can be handled and covers
the case where the function V : R?* — C is the Fourier transform of a complex bounded
variation measure on R? (V' belongs thus to the class F(R?) discussed below). In this
paper 1t0’s definition of the Feynman integral for the Green function G(t¢;x,y) of the
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Schrodinger equation (2) is of the form:

1 . e 127 . ts 2 /5
1 1+ Mg, [ (/) f§ (3(s)° /2 vms)))ds},
V2rhit A j[[l\/ LT S

where the integral is computed on the space of all paths v : [0,¢] — R such that v(0) = z,
v(t) = y and with weak derivative 4 belonging to L?([0,t]). E, 4 means expectation with
respect to the Gaussian measure in L, with mean a and a nuclear covariance operator A
with eigenvalues p; (the limit being taken along the directed system of all such A’s and
being independent of a). Itd’s method for the definition of Feynman’s functional applies

also to the Wiener integral and to the path integral representation (7) of the solution of
the heat equation:

Our definition is also applicable to the Wiener integral; namely, using it, we shall
prove that the solution of the heat equation (6) is given by

u(t.o) = [ e HOTORVOED 1)y
r

for any bounded continuous function V(x).... This should be called the Feynman’s
version of Kac’s theorem. Now that Kac’s theorem is well known to probabilists,
no one bothers with its Feynman version. However it is interesting that Kac had
the Feynman version ...in mind ...

Itd’s papers [33], [34] contain important ideas that have been further developed in the
70’s, leading to the definition of infinite dimensional Fresnel integrals [3], [4]. Additional
developments of these techniques as well as some interesting applications to quantum dy-
namical systems can be found in [2], [5], [6], [8], [21], [44] and will be shortly described
in Section 2. Furthermore, It6’s constructions of oscillatory integrals (1) is based on the
replacement of the concept of integrals by the concept of linear functionals with a suit-
able domain of “integrable functions”, in the spirit of Riesz—Markov theorem, that states
a one to one correspondence between complex measures (on suitable topological spaces
X) with finite total variation and linear continuous functionals on Cys(X) (the contin-
uous functions on X vanishing at co). The systematic implementation of a generalized
integration theory on infinite dimensional spaces based on these ideas has been recently
developed by us in [7] and is presented in Section 3. In particular, Section 4 describes the
application of this theory to the construction of infinite dimensional oscillatory integrals.

2. Infinite dimensional Fresnel integrals.

The study of finite dimensional oscillatory integrals of the type (1) is a classical
topic, largely developed in connection with several applications in mathematics (such
as the theory of Fourier integral operators [31]) and physics. Interesting examples of
integrals of the form (1) in the case where the phase function is a quadratic form are the
Fresnel integrals:
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e(i/?h)\lﬂﬁ\l2
I i@, (3)

(where i € R\ {0} is a real parameter and f : R” — C a bounded continuous function)
that are applied in optics and in the theory of wave diffraction. Particular interest
has been devoted to the study of the asymptotic behavior of oscillatory integrals when
h is regarded as a small parameter converging to 0. Originally introduced by Stokes
and Kelvin and successively developed by several mathematicians, in particular van der
Corput, the “stationary phase method” provides a powerful tool to handle the asymptotic
behavior of the finite dimensional version of (1) (i.e. (8) where ||z||? can be replaced by
a more general smooth function) as & | 0 (see, e.g. [11], [5]). There exist interesting
connections with the theory of singularities of algebraic and geometric maps or structures
(including catastrophe theory), see e.g. [20], [31] and also references in [3], [4].

In the following we are going to present an extension of integrals of the form (8) to
the case where R™ is replaced by a real separable infinite dimensional Hilbert space H.

Given a Schwartz test function f € S(R™), the Fresnel integral (8) can be computed
in terms of the following Parseval’s identity:

e(i/2n)|||? N2 2
/ Wf(x)dl“—/ e” (M2 () de, (9)
Rn n

f being the suitably normalized Fourier transform of f (see, e.g., [31], [5]).

Let (H,{, )) be a real separable Hilbert space and let M () be the Banach space of
complex Borel measures on H with finite total variation, endowed with the total variation
norm, denoted by |||l aq(r). M(H) is a commutative Banach algebra under convolution,
where the unit is the § point measure concentrated at 0. Let us consider the space F(H)
of complex functions f on H of the form:

f@) = i) = [ eduty), v e n (10)

H

for some u € M(H), f € F(H) being thus the Fourier transform of p. By introducing
on F(H) the norm ||f|| =) = ||l m(), the map (10) becomes an isometry and F(H)
endowed with the norm || || z(3) becomes a commutative Banach algebra of continuous
functions (with the pointwise product).

DEFINITION 1. Let f € F(H). The infinite dimensional Fresnel integral of f,
denoted by fe(i/2)”"””2f(x)d;v, is defined as:

/e(z’/Qh)HmHzf(m)dx ::/ e—(ih/2)\lr|\2duf(x)7 (11)
H

where f(z) = [, @Y dpus(y), iy € M(H).

REMARK 1. The right hand side of (11) is a well defined (absolutely convergent)
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Lebesgue integral. Moreover the application f — ]e(i/ 20)le||? f(z)dz is a linear continu-
ous functional on F(H).

In [3] the functional defined by (11) has been applied to the construction of a repre-
sentation for the solution of the Schrédinger equation (2) in the cases where the potential
V belongs to F(RY). As we mentioned above an analogous result had been already ob-
tained in 1td’s 1967 paper [34]. In order to handle more general potentials V', in particular
those also interesting from a physical point of view, it is necessarily to enlarge the class
of “integrable functions” f, i.e. the domain of the functional. This program has been
started in [21] and further developed in [2], [5], [6] (see also [44] for a review of this
topic). In the case of finite dimensional oscillatory integrals, it is convenient to intro-
duce Hérmander’s definition [31], which allows to define (8) even in the case where the
function f has polynomial growth, by exploiting the cancellations due to the oscillatory
behavior of the integrand, via a limiting procedure. More precisely, Fresnel integrals
can be defined as the limit of a sequence of regularized, hence absolutely convergent,
Lebesgue integrals.

DEFINITION 2. A function f : R® — C is called Fresnel integrable if for each
Schwartz test function ¢ € S(R™), such that ¢(0) = 1, the limit

lim (27ih)~"/? / eW/20(2.2) £(2)b(ex)da:

e—0

exists and is independent of ¢. In this case the limit is called Fresnel integral of f and
is denoted by

/e(i/%)<m’z>f(x)dx.

One shows that for f € S(R™) this Fresnel integral is given by (9).

In [21] this definition is generalized to the case where R™ is replaced by an infinite
dimensional real separable Hilbert space (H, (, )). More precisely, an infinite dimen-
sional Fresnel integral can be defined as the limit of a sequence of finite dimensional
approximations.

DEFINITION 3. A function f : H — C is said to be Fresnel integrable if for any
sequence { P, },en of projectors onto n-dimensional subspaces of H, such that P, < P,,11
and P, — 1 strongly as n — oo (1 being the identity operator in H), the finite dimensional
approximations

[t gy
PyH

are well defined (in the sense of Definition 2) and the limit
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lim (/2N (Pa. Pu) ¢( P 2) (P, x)

n— 00 P, H

exists and is independent of {P,}.
In this case the limit is called Fresnel integral of f and is denoted by

/e(i/%)(x’@f(x)dm.

REMARK 2. At a first glance, there are no evident relations between Definition 1
and Definition 3. Actually the latter is a generalization of the former, since, according
to Theorem 1, a Fresnel integrable function in the sense of Definition 1 is also integrable
in the sense of Definition 3.

A complete “direct description” of the largest class of Fresnel integrable functions
is still missing, even in finite dimension. However, it is possible to find some interesting
subsets of it. In particular the following theorem shows that the functions belonging to
F(H) are Fresnel integrable in the sense of Definition 3.

THEOREM 1. Let L : H — H be a self adjoint trace-class operator, such that (I—L)
is invertible. Lety € H and let f : H — C be the Fourier transform of a complex bounded
variation measure g on H. Then the function g : H — C defined by

g(x) = e~ W/2M) @ La) ilzy) £ (4) reH

18 Fresnel integrable and the corresponding Fresnel integral can be explicitly computed in
terms of a well defined absolutely convergent integral with respect to a o-additive measure
on H, by means of the Parseval-type equality:

/e(i/Qh)(z,@g(x)dx _ (det([ - L))—l/Q /H e—(ih/2)<z+y,(I—L)71($+y)>d'uf($)’ (12)

where det(I — L) = | det(I — L)| e~ U =L) js the Fredholm determinant of the operator
I— L, |det(I — L)| its absolute value and Ind(I — L) the number of negative eigenvalues
of I — L, counted with their multiplicity.

These techniques allow to give a rigorous mathematical meaning to formula (3) for
the solution of the Schréodinger equation (2) as an infinite dimensional oscillatory integral
on the Hilbert space H; of absolutely continuous “paths” « : [0,#] — R such that v(t) = 0
and fot |7(s)[?ds < oo, endowed with the inner product (vy1,v2) = fot A1(8) - Aa(s)ds.

THEOREM 2. Let A be a d x d symmetric positive matriz and let Vi, € F(R?).
Then the functional f : Hy — C defined as

f(y) = e~ @/2R) fJ(7(8)+w)A2(W(S)+w)dse—(i/ﬁ)V1(7(8)+I)d8¢0(7(0) +z), yeH
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is Fresnel integrable and its Fresnel integral is a representation of the solution of the
Cauchy problem (2) with potential V() = (1/2)x A%z + Vi (x), z € RY:

U(t, ) :/ /20 (7:7) o= (i/2R) [§(v(s)+2) A% (v(s)+a)ds ,—(i/R) Vi (7(s)+a)ds
He
“1o(7(0) + z)d.

For a detailed proof of these results as well as for their applications to the Feynman
path integral representation of the solution of the Schrodinger equation, see, e.g., [21],
[2], [6], [44]. For other applications see, e.g., [1], [3], [44]; for other approaches to the
mathematical theory of Feynman path integrals see, e.g., [28], [35], [10], [25], [32], [39],
[40], [43], [50], [51].

3. Projective systems of functionals.

In this section we show how Definition 1 and Definition 3 of infinite dimensional
oscillatory integrals can be regarded as particular cases of a general integration theory
which generalizes Kolmogorov’s construction of probability measures on infinite dimen-
sional spaces (see [7]).

DEFINITION 4. Let us consider a family {E;}jea of (non-empty) sets E; labeled
by the elements of a non-empty directed set A, called index set. Let us assume that for
any J, K € A, J < K, there exists a surjective map 7r§{ : Ex — Ej such that 7% is the
identity on Ef and for all J < K < R, R € A, one has 7% = 7% o 7 (“consistency
property”). Such a family {E;, 75} kea is called a projective (or inverse) family of
sets.

The projective family {Ej, 75} xea is called topological if each Ejy, J € A, is a
topological space and the maps 71"},( :Fx — Ej, J < K, are continuous.

The projective (or inverse) limit E5 := liﬂlEL} of the projective family {F;,
75} ) kea is defined as the following subset of the direct (or Cartesian) product of the
family {EJ}JeA:

By = {(SEJ) e [ &,

JeA

ry =75 (xg) for all J < K, J,KGA}.

Let E := [Ijca By Let 7y E — E; be the coordinate projection of E into Ej, so
that if © = {wy,J € A} € E then 7;(&) = wy. Let 7y := 7;|E4 be the restriction of 7 ;
to E4. One has that for any J, K € A, with J < K

7TJ=7T§{O7TK. (13)
If (Ej,7%)Kkea is a topological projective family, then Fy = lim £ (as defined by

Definition 4) will be endowed with the coarsest topology making all the projection maps
my: By — Ej continuous. This is also called initial or inductive topology [17].



1304 S. ALBEVERIO and S. MAZZUCCHI

Given a general projective family {E;, 7%} j ke, two problems may occur. First of
all, even if E; # () for any J € A, it might happen that F4 = (). See, e.g. [27]. Secondly,
even if all the projections (Wf)J’KeA are surjective, the maps n; : E4 — E; may fail to
be surjective. See, e.g. [41]. This motivates the following definition.

DEFINITION 5. A projective family {Ej, 75} ; ke is called a perfect inverse sys-
tem if for all J € A, x; € Ej, there exist an @ € E4 (with E4 as in Definition 4) such
that 27 = my2. In this case all the projections are surjective.!

In the following we shall always assume, unless otherwise stated, that the inverse
systems we are considering are perfect.

The concepts of projective system and projective (or inverse) limit are connected
with those of direct systems and direct limit, which we recall here below.

DEFINITION 6. Let (A, <) be a directed set. Let {E;}jca be a family of (non
empty) sets indexed by the elements of A, endowed with a family of maps Fjk : E; —
Fy, for J < K, such that

e [;; is the identity of E; for any J € A,
(] FKROFJK:FJRfOI“aHJSKSR.

The pair (Ey, Fyi)Jxea is called a direct system on A.
The direct (or inductive) limit of the direct system (Ej, Fyi)jkea is denoted by
h_H)lE 7 and defined as the disjoint union |, £; modulo an equivalence relation ~:

lim By = | JE;/ ~
J

where, if wy € Ey and wg € Eg, then wy ~ wg if there is some R € A with J < R,
K S R, and FJR(WJ) = FKR(wK).

A family of maps F'y : E; — h_n)lEJ naturally arises, where F'y : E; — h_n)lEI; maps
each element of E; into its equivalence class. Further F'; = Fx o Fyi for all J, K € A,
with J < K.

If the sets (E ) jea are topological spaces and the maps (Fk)j ke are continuous,
the family (Ey, Frr)srxea is called a topological direct system. Its direct limit is the
space ll>nE 7 endowed with the finest topology making all the maps F; : E; — h_rr)lE 7
continuous.

Direct and projective limits are dual in the sense of category theory, see, e.g., [42].

Given a projective family {F J,ﬂ'f,( }s.kea, we shall consider complex-valued func-
tions f; defined on Ej, for any J € A. f; is thus a map from E; into C. We shall call
E 7 the space of all such functions on Ej.

Let f; € E;, J € A. For any K € A with J < K we can define the extension
EK(fy) of f; to Ex as the function belonging to Ex given by:

'In the terminology of [14] (see also [15]) a perfect inverse system {Ej,wf}JyKeA is called simply
mazimal.
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55((fj)((UK) = f‘](ﬂ"}]((wK)), wk € Fk.

If{E;, Wf}J,KEA is a topological projective family and f; € E; is a continuous function,
then for any K € A with J < K, the extension £X(f;) is a continuous function on Ff.

Let us now consider linear maps from subsets Eg C Ejof E 7 to C, called functionals.
L is thus such a functional if L; associates to a function f € E’9 a complex number
L;(f) and for any o, 5 € C, f,g € E9 the following holds:

Lj(af +Bg) = aLs(f) + BLs(9)-

EY is called domain of Ly, the set {LJ(f)}feEA(; is called range of L;. We shall call

Map(E' 7) the family of all such functionals.
For J < K, let us define the map #% : Map(Ex) — Map(E;) as the transport of
any functional Lx € Map(FEx) induced by the map X from E; to Ex, given by:

(LK) (fs) = Lr ((EX(f1)), L € Map(Ex), (14)

where the domain of #% (L) is given by
Dom (75 (L)) = {fs € Es, |EF (f) € ER}.

Let us consider a family of functionals {Lj, Ef}} Jea labeled by the elements of an
index set A.

DEFINITION 7.  We call the family {L, Eg}JeA a projective system of functionals
if for all J, K € A with J < K the projective (or coherence or compatibility) conditions
hold

EX(f) € B, Vfy e EY,
T8 (Lr)(f1) = Li(fs),  Vfs€EY. (15)

Given a function f; € EJ, J € A, it can be extended to a function EffJ = Ej‘(fJ)
on the projective limit F 4 in the following way

E4fr(w) = fi(mjw),  w€ Ea.

By Equation (13), the extension maps £4 : E; — E, satisfy the following condition for
any J, K € A, with J < K:

Ef =Ep o EK, (16)

If (Ej,m%) Kkea is a topological projective family, then all the extensions £ :
E7 — B4 and €4 : B/ — E4 map continuous functions into continuous functions.
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We shall write C for the family

c= e,
JeEA

The functions belonging to C will be called cylindrical (or cylinder) functions.

Given a projective system of functionals {L LES} Jea, we shall denote by Cy C C
the subfamily of cylindrical functions consisting of those cylindrical functions which are
obtained by extensions 534fJ of f; € Eg to the projective limit E4, i.e.:

Co:=|J EMEG) ={feC|f=E}Ff, forsome J€ A, f;eES}.
JeEA

We remark that the pair (Ef}, 5§)J7K€A forms a direct system in the sense of Definition
6 and Cj is its direct limit.

DEFINITION 8. A projective extension (L, D(L)) of a projective system of function-
als {L, EY} jea is a functional L with domain D(L) C E4 (E4 being the complex-valued
functions on E,4), such that

e Co C D(L),
o L(ELfs) = Ly(fy), for all f; € EY.

In fact, if {E}, 7TLI]( }s Kkea is a perfect inverse system, any projective system of func-
tionals {L;, E9} je 4 admits at least a projective extension. It is the functional (L, D(L))
defined as

D(L) := {fEEA,|there existsJEA,fJeEf}, f:é’ffJ} =Co

L(f):=Lj(f1), f=E&"fs f1€EY.

This functional is “minimal”, in the sense that any other extension (L', D(L')) of the
projective system of functionals {Lj, EQ} 4 is such that D(L) € D(L') and L'(f) =
L(f) for all f € D(L). For this reason in the following the minimal extension will be
denoted with (Lmin, D(Lmin)). Its domain can be described in terms of the inductive
limit of the direct system {E£9,EX} 7 xea (see [7] for further details).

A problem which naturally arises is the existence of a “maximal” extension of a
projective system of functionals {L , ES}_JG 4, namely a functional (Lax, D(Lmax)) such
that for any extension (L, D(L)) of {L;, E9}je 4 one has that

D(L) € D(Lmax)

Luax(f) = L(f),  Vfe€D(L).

The problem is strictly connected to the uniqueness property of the extensions of a
projective system. Indeed if there are two extensions (L, D(L)) and (L', D(L’)) such
that there exists an element f € D(L)ND(L'), with L(f) # L'(f), then it is not possible
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to construct an extension L of both L and L', as L would be ambiguously defined on the
element f. The converse is also true, as is stated in the following proposition.

ProprosITION 1. Let {LJ,E%}JeA be a projective system of functionals and let
F = {(L,D(L))} be a non void family of projective extensions of {Ly, ES} ca. The
family F has a mazimal element if and only if it satisfies the following “uniqueness
property”:
whenever two extensions (L, D(L)), (L', D(L")) € F have a common element f € D(L)N
D(L'), one has that L(f) = L'(f).

For a proof of Proposition 1 as well as for an example of a projective system of
functionals which does not satisfy the uniqueness property and the study of this problem
from a topological point of view see [7].

4. Projective systems of measure spaces and Fresnel integrals.

In the following we shall focus on cases where each element (E;) e 4 of a projective
family {Ej, 7%} is endowed with a o-algebra ¥ ; of subsets of E;. We shall also assume
that the maps 7%, for J < K, are measurable. The family {E;, %7, 75} is called a
projective family of measurable spaces [53], [54], [55].

Let us assume that there is a measure u s, not necessarily real or positive, associated
to each (Ej, X ;). In particular we shall focus on the case where s is a signed or complex
measure with finite total variation [49], [52]. Let us consider the space L'(E;, ¥, 1),
i.e. the subset of E; consisting of (real resp. complex) functions on E; which are
py-integrable, and the family of functionals {L , Eg}_;eA, given by

EY =LY (E;, 27, 1), L;(f):= fduy, f € ES. (17)
E;

By construction, L; is a linear functional (real resp. complex valued). 55( is defined
as before, as a map from E; to Ex, J < K, J,K € A. According to Definition 7 the
family {L, Eg}JGA is projective on E‘f} ifforall J < K, K,J€A, fje€ E’f} the following
compatibility conditions hold:

g?(f]) € E?{v
A (Lk)(fr) = Li(f7)- (18)

Due to the relation between L; and py and (14), we have that (18) implies

fodpy = fromfdu, fr € LYE;, Sy, 1) (19)
E; Ex

For f; taken to be the characteristic function of A; € ¥; this implies

) (nx) = pa, (20)
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which is the analogue of the usual projectivity property for measures on projective spaces
(see, e.g., [12], [13]). We shall say shortly that {us}sca is a projective family of mea-
sures. Conversely, if (20) holds, then by approximating L!-functions by finite linear
combinations of characteristic functions we have that (19) holds, which by the relation
(17) between Ly and ju; implies that (18) holds. Hence the family (L, E9)ca is pro-
jective if and only if p; is a projective family of measures (in the sense of (20)).

Given a projective family (E;, Y, 75) ke of measure spaces its projective limit
(Fa,X4) is the measure space defined as F4 = @EJ and Y4 := X N E4, where
Yoo = @ jea Ly is the o-algebra associated with the product space [];.4 Es, which
coincides with the smallest o-algebra making all projection maps 7 from [ ;.4 Es onto
FE; measurable. By construction we thus have that ¥4 = UJeA 7T;12J is the o-algebra
generated by the sets of the form 7;'(B), B € £, (where we recall that m; is the
restriction of 7y to Ea). We shall write (Ea,X4) = lim(E;,X;).

Let p be a (complex bounded) measure on (E4,% 4), and let us define the measures
wyon (Ej,35) by:

[y =T O [, J e A (21)

Tt is easy to verify that the family of measures (p ) jea satisfies the compatibility condi-
tion (20). More generally, we shall say that the members of a family of measures (p17) 7ea
on (Ej,X7)jca are compatible (or shortly the family is compatible) if they satisfy the
compatibility condition (20).

Let us consider now the converse problem to the one solved by (21), namely about
when we can find a (signed or complex bounded) measure p on (E4, X 4) such that (21)
holds, starting only from integration on (Ej,¥;)sca and condition (20). If such a p
exists, then the projective system of functionals {L, ES} Jea given by (17) would admit
a projective extension L given by

D(L) := LY (E4, %4, 1)

L(f):= [ fdu,  feD(L). (22)

Ea

If {ps}sea is a projective system of compatible probability measures, then Kol-
mogorov’s existence theorem [14], [12], [13], [19], [48], [53], [54], [65], [30] assures the
existence and uniqueness of p. On the other hand if the measures {us}jca of the pro-
jective family are not real and positive, i.e. if we consider a projective family of signed
or compler bounded measures, then in general such a p cannot exists, as stated in the
following theorem [52], [7]

THEOREM 3. Let (E;, %5, 75); kea be a projective family of measure spaces and
let {py}sea be a projective family of signed or complex bounded measures, satisfying
the compatibility condition (20). A necessary condition for the ezistence of a (signed or
complez) bounded measure p on (E4,X4) satisfying the relation (21) is the following
uniform bound on the total variation of the measures belonging to the family {ps}jeca :
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sup |s| < 400, (23)
JeA

where || denotes the total variation of the measure .

In fact if p; are signed or complex bounded measures, in many interesting cases con-
dition (23) cannot be satisfied, as in the case of infinite dimensional oscillatory integrals
or in the case of Feynman path integrals.

As an example, let us consider on R™ the complex measure v absolutely continuous
with respect to the Lebesgue measure dz, x € R", with a density of the form p(x) =
e(@/2lel” /(27i)"/2. The total variation of v on R™ is infinite, however for any Borel
bounded set B C R"™, the total variation of v on B is finite. Hence, given a bounded
Borel function f : R™ — C the Fresnel integral of f can be defined as the limit

. e(i/2)ll=)?
lim

R—+oc0 [-R,R]" . (27-[-2)%/2

if this limit exists. In this case it is denoted by ]Rn f(z)v(dz). According to this definition
and the properties of the classical Fresnel integrals one gets that the ]—integral of the
function identically equal to 1 on R™ is 1, i.e. ]R” dv =1.

One can see that this family of functionals forms a projective system. Indeed let
A = F(N) be the directed set of finite subsets of N and let us consider for any J € A the
set By := R’ endowed with the Borel g-algebra and the complex measure (with finite
total variation on bounded sets) Xnecsdin, fin being the complex measure on R defined
as dp, == (e(i/z)HIHQ/\/ﬁ)da:7 for all n € J. Let us define for any J € A the functional
Lj: Eg — C, given by:

ES = {f € By(Ey) + 3 lim f(@) Xnes Mn(dl")}
— 400 [—R,R]7I
Ly(f):= lim f(@) Xnes pn(dz),  f € EY.

R—+4o00 [—R,R]II

One can easily verify that (L, ES) JeA is a projective system of functionals. However it
is impossible to construct a projective extension on F4 = RY in terms of a (Lebesgue
type) improper integral. Indeed, contrary to the case of finite dimension, if we consider
the infinite product measure x,endpi,, on RY endowed with the product o algebra, we
have that its total variation is infinite even on products of bounded sets.

More generally let (H, (, )) be a real separable Hilbert space and let (4, <) be the
directed set of its finite dimensional subspaces, i.e. A = {V C H : dim(V) < oo} and
V <W if V is a subspace of W. For V< W let 7r‘V,V : W — V be the natural projection
from W onto V. For any V € A let Sy be the Borel o-algebra on V. (V, Xy, ¥ Jv.wea
is then a projective system of measure spaces. For any V € A let Ly : D(Ly) — C be
the linear functional defined by:
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D(Ly) := {f €By(V):3 lim F(2)e @Ml gy
R—+4o0 [~ R,R]VI
I . e(i/2)llz)? BUL
= - da, c 7
v Rtoc RV x (2mi)IV1/2 z, f (Lv)
where dz denotes the Lebesgue measure on V, || || is the norm in V and |V| denotes the

dimension of V.

The family (Ly, D(Ly))vea constitutes a projective system of linear functionals.
According to Theorem 3 it is not possible to define on the projective limit F4 a com-
plex measure with finite variation on bounded sets obtained as the projective limit of
the complex measures py (dz) := (e(i/Q)”w”z/(27ri)|v|/2)dx, x € V. Consequently there
cannot be an extension of the projective system of functionals (Ly,D(Ly))yea of the
form L(f) = fEA f(z)p(dx), even if f is supported in a product of bounded sets.

A similar phenomenon occurs in the mathematical construction of Feynman path
integrals. Let us consider the fundamental solution Gy € S’(R?) of the Schrodinger
equation (2) with V' = 0 for a non-relativistic quantum particle moving freely in the
d-dimensional Euclidean space, i.e. for ¢ # 0, Gy is the C*°(R?) function Gy(z,y) =
e(i/m)‘z’w/(2m’th)d/2. In fact G can be regarded as the density with respect to the
Lebesgue measure of a complex measure p; on R?, with finite variation on bounded sets,
of the form dut(x) = G¢(x)dx, while Gy is defined as the Dirac measure at 0. Further, by
the group property [p. G¢(z,2)Gs(2,y)dz = Gigs(x,y), s,t € R, z,y € R%, (where the
integral is meant as an improper Riemann integral) one has that the family of functionals
(Lj, EY) defined by:

ES =LY (E;,dz), E;=RY, J=(t1,...,t,), (24)

LJ(f)E/ ) flxy, .., 2n)Gy (0, 21) - G~y (Tn—1, Tp)da1 - - - dyy
(R4)

is a projective family of functionals, but there cannot exist a complex bounded varia-
tion measure z on (R%)[%+°°) and a projective extension (L, D(L)) of (L, EY) such that
L(f) = f(Rd)[0,+w) fdu (see [18]). According to this negative result, it is not possible
to realize the limit (4) leading to the heuristic formula (3) as in integral with respect
to a complex measure; what is only possible is to define (3) as a particular extension of
the projective system of functional (L, ES) This problem is deeply connected with the
rigorous mathematical definition of Feynman path integrals which has been provided in
different ways, but always, because of the above obstruction, only in the sense of contin-
uous functionals not directly expressible as integrals with respect to o-additive measures
[3], [28], [35], [44]. We present here a construction of the infinite dimensional Fresnel
integrals of Section 2 as particular cases of a class of projective systems of functionals.
Let H be a real separable infinite dimensional Hilbert space and let A be the directed
set of its finite dimensional subspaces, ordered by inclusion. For VW € A with V < W,
let W“’/V : W — V be the projection from W onto V' and z{’/V : V' — W be the inclusion map.
One has that (V, 7/ )y,wea is a projective family of sets, while (V,4}Y )v,wea forms a
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direct system on A. Let us consider the projective limit space E4 := liinve N V', the direct

limit E4 := li_r)nVGA V', the projection my : E4 — V and the inclusion maps iy : V — Ea,.
Considered on each V € A the topology induced by the finite dimensional Hilbert space
structure of V', the space @\/e na endowed with the weakest topology making all

the projections my : E4 — V continuous, while the space @Ve 4 V is endowed with the

final topology, i.e. the strongest topology making all the inclusion maps iy : V — E4
continuous.

The inverse system (V,m{¥ )v.wea and the direct system (V,il¥)ywea are linked
by dualization. Indeed if we identify the dual of a finite dimensional vector space V'
with itself, we have that the inclusion z‘(/V V=W,V < W, can be identified with the
transpose map (7¥/)* : V* — W* of the projection 7/ : W — V. Further the direct
limit space FE 4 can be naturally identified with a subspace of (E4)*. Indeed any n € Ea
can be associated with the element of (E4)* whose action on any w € E4 is given by

n(w) := (v, Tyw), (25)

v € V being any representative of the equivalence class of vectors associated to 7. The
definition (25) is well posed, indeed chosen a different representative of the equivalence
class i, i.e. a vector v' € V'’ such that there exists a W € A, with V < W, V' < W and

iWv = ilv', one has that:

(v, ryw) = (v, m) omww) = (i v, TWww) = (P, TWw) = (V, Ty w).

Further the explicit form (25) of the functional 7 shows its continuity on E4.
Analogously the transpose map mj, : V* — E% can be identified with the map
iy V. — B4, giving:

(v, Tyw) = By (Ivv, W) E,,

where the symbol (, ) on the left hand side denotes the inner product in V| while the
symbol g+ (, )m, denotes the dual pairing between E4 and E7.

Let us consider on any V € A the Borel g-algebra ¥y and a bounded signed or
complex measure py : Xy — C in such a way that the family (uy)yea satisfies the
compatibility condition (20). Let us also consider, for any V' € A, the Fourier transform
iy 2V — C of the measure py, i.e.

i (v) = / SNy (@), veV.
\%

By the projectivity condition (20) of the family of measures (uy)yvea, one deduces the
following relation (compatibility relation) among the Fourier transforms:

av(v) = pw(iyv),  V<W. (26)
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Let us now define the map F : E4 — C by:
F(n):=jpv(v), n€Ea,

where v € V is any representative of the equivalence class n € E4. F is unambiguously
defined, indeed given a v' ~ v (in the sense that v, v’ are in the same equivalence class),
with v/ € V’, there exists a W € A, with V < W and V' < W, such that i{¥ v = il%v’.
By the compatibility condition (26)

v (v) = o (i v) = fiw (i000") = fivr (0°).

Further, the map F is continuous on F4 in the final topology.
If there exists a measure on g on E4 such that gy = my o p for all V € A, then its
Fourier transform /i coincides with F' on E 4 and

lilloo = sup il < |pl,
neE(Ea)*

where |p| is the total variation of p and ||fi]|s stands for the sup-norm of j.

Let us consider the projective system of functionals (Ly,D(Ly))vea, where
D(Ly) = F(V) is the space of functions f : V — C of the form f(v) = [, ey (du')
for some complex bounded measure vy on V' and norm || f|| = |v¢|, |v¢| being the total
variation of v;. Let Ly : D(Ly) — C be the linear functional defined by

D(Ly) := F(V)

Lv(f) = [ i @) (27)

One can easily verify that Ly is continuous in the F(V)-norm and the family
(Lv,D(Lv))vea forms a projective system of functionals. If supy ¢4 |py| = 400, ac-
cording to Theorem 3, there cannot exist a complex bounded measure ;. on E4 which
is the projective limit of the measures (uy )y ea. Hence there cannot exists a projective
extension (L, D(L)) of the projective system (Ly, D(Ly))yea of the form

D(L) := L'(Ea, |pl)

L(f) = | flw)u(dw). (28)

Ea

However, even if i does not exist, the map F : E4 — C is still well defined, and can
be used in the construction of an alternative projective extension of (Ly, D(Ly))vea,
alternative namely to (28).

Consider on E, the Borel o-algebra B(E '4), then one has that the continuous map
F: E4 — C is measurable. If the condition:
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sup || iy [loo < 400 (29)
VeA

is satisfied, then the functional L : D(L) — C given by
D(L) :=F(Ea)

L(f) = | Fnv(dn)

Ea
is well defined on the Banach algebra F(E,4) of functions f : E4 — C of the form
flw)= fEA 1)y (dn) for some complex bounded measure v; on E4. L is a projective
extension of the projective system of functionals (27).

Depending on the regularity properties of the function F : E4 — C one can construct
different extensions, in other words construct the functional L on different domains. Let
B be a Banach space where E4 is densely embedded, i.e. Es CB densely, and let
F be continuous with respect to the B-norm. Then F can be extended to a function
F : B — C, with F() = F(n) for all n € E4. Let F(B*) be the Banach algebra of
functions f : B* — C of the form

f@) = [ 0y, e B
B
for some complex bounded variation measure vy on B. Then the functional L’ : F(B*) —
C defined by

D(L') := F(B*)
L'(f)= /Bﬁ(x)uf(dx)

is an alternative projective extension of the system of functionals (27). In particular,
if F(v) = e*(m/z)””“(z, as in the case of Fresnel integrals, the function F : E4 — C is
continuous in the H-norm and the functional L’ becomes the infinite dimensional Fresnel
integral of Definition 1, i.e.

D(L') := F(H)

)= [ ey i), e FH). £y

We remark that analogous techniques can be applied in the construction of general-
ized Feynman—Kac formulae for the representation of the solution of any high-order heat
type equation of the form:

0 or
Z — (—i)Pa——
atu(tmc) (—1) aaxpu(t,x)

u(0, ) = up(x), x €R, t€0,+0)



1314 S. ALBEVERIO and S. MAZZUCCHI

where p € N, p > 2, and « € C is a complex constant. Indeed when p > 2, the funda-
mental solution G} of (30), i.e. GP(z,y) := (1/27) [e*@Wet gk 2.y € R, t > 0, is
not positive and can be interpreted as the density of a signed measure. Hence the projec-
tive family of functionals (L, E‘g) defined by formula (24), with G¥(z,y) replacing the
fundamental solution of the Schrodinger equation G¢(z,y), does not admit a projective
extension (L, D(L)) of the form L(f) = f(Rd)[O,Jroo) fdup, with p a signed measure with
finite total variation (see [38]). In fact a functional integral representation of the solution
of Equation (30) can be realized only in terms of linear continuous functionals on a suit-
able domain of “integrable functions” (for such realizations see [38], [29], [16], [24], [45],
46]).
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