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Abstract. The theory of infinite dimensional oscillatory integrals and
some of its applications are discussed, with special attention to the relations
with the original work of K. Itô in this area. A recent general approach to
infinite dimensional integration which unifies the case of oscillatory integrals
and the case of probabilistic type integrals is presented, together with some
new developments.

1. Introduction.

It is a special honor and pleasure for us to be able to dedicate the present pages to
the memory of K. Itô, on the occasion of the centenary of his birth. His early work on
infinite dimensional oscillatory integrals stimulated very much subsequent research on
this topic.

We shall first give a short exposition of the theory of a particular class of oscillatory
integrals and relate them to corresponding probabilistic integrals. Oscillatory integrals
are objects of the form:

IΦ/ε(f) = “ C−1

∫

Γ

ei(Φ/ε)(γ)f(γ)dγ ” (1)

where Γ denotes either a finite dimensional space (e.g. Rn, or an n-dimensional differen-
tial manifold Mn), or an infinite dimensional space (e.g. a “path space”). Φ : Γ → R is
called phase function, while f : Γ → C is the function to be integrated and ε ∈ R \ {0} is
a parameter. The symbol dγ denotes a “flat” Lebesgue (or Haar-) type volume measure,
while C plays the role of a “normalization” constant. In the case where Γ is a finite
dimensional vector space, i.e. Γ = Rn, n ∈ N, then dγ is the Riemann–Lebesgue volume
measure and expression (1) is a basic object of study in classical analysis, e.g. [20], [31].

In the case where Γ is infinite dimensional no analogue of Riemann–Lebesgue volume
measure is mathematically well defined and dγ is, to start with, just an heuristic expres-
sion. We shall focus ourselves basically on this latter case, showing how to generalize the
concept of integration giving a well defined mathematical meaning to (1) when Γ can be
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realized as a real separable infinite dimensional Hilbert space (or other spaces, closely
related to such Hilbert spaces).

The main motivation is the study of the “Feynman path integrals”, a class of (heuris-
tic) functional integrals introduced by R. P. Feynman in 1942 in order to propose an
alternative, Lagrangian, formulation of quantum mechanics. In the traditional “von Neu-
mann” formulation of quantum theory the states of a non relativistic particle moving in
a d-dimensional Euclidean space are described by normalized vectors ψ belonging to the
complex Hilbert space L2(Rd). The time evolution is given by a (strongly continuous)
one parameter group of unitary operators {U(t)}t∈R on L2(Rd), generated, by Stone’s
theorem, by a self-adjoint operator H : D(H) ⊂ L2(Rd) → L2(Rd), with domain D(H),
the quantum Hamiltonian, and we can write U(t) = e−(i/~)Ht. In the case where the
particle moves in a force field associated to a classical (real-valued) potential V ∈ C(Rd),
the action of the Hamiltonian operator on functions ϕ ∈ C∞0 (Rd) with compact support
(looked upon as vectors in L2(Rd)) is given by

Hϕ(x) = − ~
2

2m
∆ϕ(x) + V (x)ϕ(x), x ∈ Rd,

where ∆ is the Laplacian, m > 0 is the mass of the particle and ~ is the reduced Planck
constant. The time evolution of the state vector, or wave function, ψ(t) = U(t)ψ0 is
described by the Schrödinger equation:





i~
∂

∂t
ψ = − ~

2

2m
∆ψ + V ψ

ψ(0, x) = ψ0(x), ψ0 ∈ C∞0 (Rd).

(2)

In his PhD thesis [22] (see also [23]) R. Feynman proposed an alternative suggestive
description of time evolution in quantum mechanics, in terms of an heuristic formula
where the state vector ψ(t) at time t should be given by an integral over the space of
paths γ : [0, t] → Rd with fixed end point

ψ(t, x) = “ C−1

∫

{γ|γ(t)=x}
e(i/~)St(γ)ψ0(γ(0))dγ ” (3)

where St(γ) = S0(γ)−∫ t

0
V (γ(s))ds, S0(γ) = (m/2)

∫ t

0
|γ̇(s)|2ds, is the classical action of

the system evaluated along the path γ, while dγ stands for a heuristic “flat” measure on
the space of paths and C = “

∫
{γ|γ(t)=x} e(i/~)S0(γ)dγ” plays the role of a normalization

constant. It is well known and first observed in [47] (see references in [3]) that a derivation
of Feynman’s heuristic formula (3) can be obtained by means of Lie–Trotter’s product
formula, which gives the unitary group U(t) generated by the operator sum of −∆/2
(regarded as a positive self-adjoint operator with domain the Sobolev space H2(Rd))
and the bounded multiplication operator associated to the continuous bounded potential
V ∈ Cb(Rd) (i.e. defined as (V ψ)(x) = V (x)ψ(x), ψ ∈ L2(Rd)) as the strong limit in
L2(Rd):
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U(t)ψ0 = lim
n→∞

(
eit∆/2ne−(it/n)V

)n
ψ0

(we have set, for simplicity, ~ = m = 1).
By passing to a subsequence and introducing the fundamental solution G of the

Schrödinger equation, namely eit∆/2ψ0(x) =
∫
Rd Gt(x, y)ψ0(y)dy, one obtains that for

Lebesgue a.e. x ∈ Rd the action of the group U(t) can be described in terms of the limit
of a sequence of (finite dimensional) integrals of the form:

U(t)ψ0(x) = lim
n→∞

∫

Rdn

ψ0(x0)e−i
Pn

j=1 V (xj−1)(t/n)
n∏

j=1

Gt/n(xj , xj−1)dxj−1, (4)

with xn ≡ x. By introducing the explicit form of the Green function of the Schrödinger
equation (i.e. of (2) with ~ = m = 1 and V = 0), namely Gt(x, y) = ei(x−y)2/2t/(2iπt)d/2,
the integrals appearing on the right hand side of (4) assume the following form

U(t)ψ0(x) = lim
n→∞

∫

Rdn

ei
Pn

j=1((xj−xj−1)
2/2(t/n)2−V (xj−1))(t/n)

(2πit/n)nd/2
ψ0(x0)dx0 · · · dxn−1.

The term
∑n

j=1((xj − xj−1)2/2(t/n)2−V (xj−1))(t/n) appearing in the exponent can be
regarded as a Cauchy–Riemann sums approximation of the classical action integral St(γ).
By taking heuristically the limit as n →∞, one obtains formula (3), that, at this stage,
is just a symbolic expression which suggests a limiting procedure. Indeed formula (3),
as it stands, lacks of mathematical rigor, in particular the “flat” Lebesgue-type measure
dγ appearing in (1), (3) and (5) below has no mathematical meaning. Going beyond
this “minimal interpretation” and trying to realize the heuristic formula (3) in terms of a
well defined integral on a space Γ of paths is not trivial. This problem is connected with
the implementation of infinite dimensional integration techniques of oscillatory type, as
the Feynman path integrals (3) can be regarded as oscillatory integrals of the form (1),
where

Γ = {paths γ : [0, t] → Rs, γ(t) = x ∈ Rd},

the phase function Φ being then the classical action functional St and the “integrand f”
being given by f(γ) = ψ0(γ(0)). The parameter ε is interpreted as the reduced Planck
constant ~ and dγ denotes heuristically

dγ = “
∏

s∈[0,t]

dγ(s)”. (5)

In 1949 Kac [36], [37] observed that, by considering the heat equation with potential
(again with m = ~ = 1 for simplicity)
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



∂

∂t
u =

1
2
∆u− V u

u(0, x) = u0(x)
(6)

instead of Schrödinger equation and by replacing the oscillatory factor eiSt(γ)dγ by the
non oscillatory e−S−V

t (γ)dγ (with S−V
t defined as St but with V replaced by −V ), one

can give (for “good” V ) a mathematical meaning to Feynman’s formula in terms of a
well defined Gaussian integral on the space of continuous paths: an integral with respect
to the well known Wiener measure

u(t, x) = E
[
e−
R t
0 V (ω(s)+x)dsu0(ω(t) + x)

]
, (7)

with E standing for expectation with respect to the standard Wiener process (mathe-
matical Brownian motion) ω started at time 0 at the origin in Rd. Equation (7) is called
Feynman–Kac formula.

In 1956 I. M. Gelfand and A. M. Yaglom [26] tried to realize Feynman’s heuristic
complex measure e(i/~)Φ(γ)dγ by means of a limiting procedure:

e(i/~)Φ(γ)dγ := lim
σ↓0

e(i/(~−iσ))Φ(γ)dγ.

In 1960 Cameron [18] proved however that the resulting measure cannot be σ− additive
and of bounded variation, even on very “nice” subsets of paths’ space, and it is not possi-
ble to implement an integration in the Lebesgue traditional sense. As a consequence since
then mathematicians tried to realized the integral (3) as a linear continuous functional
on a suitable (Banach) algebra of integrable functions.

A particularly interesting approach can be found in the two pioneering papers by
K. Itô [33], [34]. He was aware of the interest of Feynman’s formula, as well as of the
mathematical problems involved in it. In the first paper in 1961 the author starts to
study the problem by assuming that the potential V is linear, postponing the study of
a more general case. Very shortly, what Itô did is to define rigorously the “generalized
measure” (5), hence the heuristic integral (3), for V of linear type and ψ0 having a Fourier
transform of compact support, as a linear functional, taken to be the limit for n →∞ of
finite dimensional approximations

In(ψ0) = C−1
n

∫

Lx

e(i/2~)
R t
0 γ̇(s)2dsψ0(γ(t))P (x)

n (dγ),

with Lx the “translate by x of Cameron–Martin space”, P
(x)
n a suitable Gaussian

measure associated with a certain compact operator T concentrated on Lx, Cn ≡∏
j(1 + n2νj/~i)−1/2, and {νj} being the eigenvalues of T . In the second paper [34]

on this subject K. Itô extended the class of potentials which can be handled and covers
the case where the function V : Rd → C is the Fourier transform of a complex bounded
variation measure on Rd (V belongs thus to the class F(Rd) discussed below). In this
paper Itô’s definition of the Feynman integral for the Green function G(t;x, y) of the
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Schrödinger equation (2) is of the form:

1√
2π~it

lim
A

∞∏

j=1

√
1 +

µj

i~
Ea,A

[
e(i/~)

R t
0 (γ̇(s)2/2−V (γ(s)))ds

]
,

where the integral is computed on the space of all paths γ : [0, t] → R such that γ(0) = x,
γ(t) = y and with weak derivative γ̇ belonging to L2([0, t]). Ea,A means expectation with
respect to the Gaussian measure in Lx with mean a and a nuclear covariance operator A

with eigenvalues µj (the limit being taken along the directed system of all such A’s and
being independent of a). Itô’s method for the definition of Feynman’s functional applies
also to the Wiener integral and to the path integral representation (7) of the solution of
the heat equation:

Our definition is also applicable to the Wiener integral ; namely, using it, we shall
prove that the solution of the heat equation (6) is given by

u(t, x) =
∫

Γ

e−
R t
0 (γ̇2(s)/2+V (γ(s)))dsu0(γ(t))dγ

for any bounded continuous function V (x).. . . This should be called the Feynman’s
version of Kac’s theorem. Now that Kac’s theorem is well known to probabilists,
no one bothers with its Feynman version. However it is interesting that Kac had
the Feynman version . . . in mind . . .

Itô’s papers [33], [34] contain important ideas that have been further developed in the
70’s, leading to the definition of infinite dimensional Fresnel integrals [3], [4]. Additional
developments of these techniques as well as some interesting applications to quantum dy-
namical systems can be found in [2], [5], [6], [8], [21], [44] and will be shortly described
in Section 2. Furthermore, Itô’s constructions of oscillatory integrals (1) is based on the
replacement of the concept of integrals by the concept of linear functionals with a suit-
able domain of “integrable functions”, in the spirit of Riesz–Markov theorem, that states
a one to one correspondence between complex measures (on suitable topological spaces
X) with finite total variation and linear continuous functionals on C∞(X) (the contin-
uous functions on X vanishing at ∞). The systematic implementation of a generalized
integration theory on infinite dimensional spaces based on these ideas has been recently
developed by us in [7] and is presented in Section 3. In particular, Section 4 describes the
application of this theory to the construction of infinite dimensional oscillatory integrals.

2. Infinite dimensional Fresnel integrals.

The study of finite dimensional oscillatory integrals of the type (1) is a classical
topic, largely developed in connection with several applications in mathematics (such
as the theory of Fourier integral operators [31]) and physics. Interesting examples of
integrals of the form (1) in the case where the phase function is a quadratic form are the
Fresnel integrals:
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∫

Rn

e(i/2~)‖x‖2

(2πi~)n/2
f(x)dx, (8)

(where ~ ∈ R \ {0} is a real parameter and f : Rn → C a bounded continuous function)
that are applied in optics and in the theory of wave diffraction. Particular interest
has been devoted to the study of the asymptotic behavior of oscillatory integrals when
~ is regarded as a small parameter converging to 0. Originally introduced by Stokes
and Kelvin and successively developed by several mathematicians, in particular van der
Corput, the “stationary phase method” provides a powerful tool to handle the asymptotic
behavior of the finite dimensional version of (1) (i.e. (8) where ‖x‖2 can be replaced by
a more general smooth function) as ~ ↓ 0 (see, e.g. [11], [5]). There exist interesting
connections with the theory of singularities of algebraic and geometric maps or structures
(including catastrophe theory), see e.g. [20], [31] and also references in [3], [4].

In the following we are going to present an extension of integrals of the form (8) to
the case where Rn is replaced by a real separable infinite dimensional Hilbert space H.

Given a Schwartz test function f ∈ S(Rn), the Fresnel integral (8) can be computed
in terms of the following Parseval’s identity:

∫

Rn

e(i/2~)‖x‖2

(2πi~)n/2
f(x)dx =

∫

Rn

e−(i~/2)‖x‖2 f̂(x)dx, (9)

f̂ being the suitably normalized Fourier transform of f (see, e.g., [31], [5]).
Let (H, 〈 , 〉) be a real separable Hilbert space and let M(H) be the Banach space of

complex Borel measures on H with finite total variation, endowed with the total variation
norm, denoted by ‖µ‖M(H). M(H) is a commutative Banach algebra under convolution,
where the unit is the δ point measure concentrated at 0. Let us consider the space F(H)
of complex functions f on H of the form:

f(x) = µ̂(x) =
∫

H
ei〈x,y〉dµ(y), x ∈ H (10)

for some µ ∈ M(H), f ∈ F(H) being thus the Fourier transform of µ. By introducing
on F(H) the norm ‖f‖F(H) = ‖µ‖M(H), the map (10) becomes an isometry and F(H)
endowed with the norm ‖ ‖F(H) becomes a commutative Banach algebra of continuous
functions (with the pointwise product).

Definition 1. Let f ∈ F(H). The infinite dimensional Fresnel integral of f ,
denoted by

∫̃
e(i/2)‖x‖2f(x)dx, is defined as:

∫̃
e(i/2~)‖x‖2f(x)dx :=

∫

H
e−(i~/2)‖x‖2dµf (x), (11)

where f(x) =
∫
H ei〈x,y〉dµf (y), µf ∈M(H).

Remark 1. The right hand side of (11) is a well defined (absolutely convergent)
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Lebesgue integral. Moreover the application f 7→ ∫̃
e(i/2~)‖x‖2f(x)dx is a linear continu-

ous functional on F(H).

In [3] the functional defined by (11) has been applied to the construction of a repre-
sentation for the solution of the Schrödinger equation (2) in the cases where the potential
V belongs to F(Rd). As we mentioned above an analogous result had been already ob-
tained in Itô’s 1967 paper [34]. In order to handle more general potentials V , in particular
those also interesting from a physical point of view, it is necessarily to enlarge the class
of “integrable functions” f , i.e. the domain of the functional. This program has been
started in [21] and further developed in [2], [5], [6] (see also [44] for a review of this
topic). In the case of finite dimensional oscillatory integrals, it is convenient to intro-
duce Hörmander’s definition [31], which allows to define (8) even in the case where the
function f has polynomial growth, by exploiting the cancellations due to the oscillatory
behavior of the integrand, via a limiting procedure. More precisely, Fresnel integrals
can be defined as the limit of a sequence of regularized, hence absolutely convergent,
Lebesgue integrals.

Definition 2. A function f : Rn → C is called Fresnel integrable if for each
Schwartz test function φ ∈ S(Rn), such that φ(0) = 1, the limit

lim
ε→0

(2πi~)−n/2

∫
e(i/2~)〈x,x〉f(x)φ(εx)dx

exists and is independent of φ. In this case the limit is called Fresnel integral of f and
is denoted by

∫̃
e(i/2~)〈x,x〉f(x)dx.

One shows that for f ∈ S(Rn) this Fresnel integral is given by (9).
In [21] this definition is generalized to the case where Rn is replaced by an infinite

dimensional real separable Hilbert space (H, 〈 , 〉). More precisely, an infinite dimen-
sional Fresnel integral can be defined as the limit of a sequence of finite dimensional
approximations.

Definition 3. A function f : H → C is said to be Fresnel integrable if for any
sequence {Pn}n∈N of projectors onto n-dimensional subspaces of H, such that Pn ≤ Pn+1

and Pn → 1 strongly as n →∞ (1 being the identity operator inH), the finite dimensional
approximations

∫̃

PnH
e(i/2~)〈Pnx,Pnx〉f(Pnx)d(Pnx)

are well defined (in the sense of Definition 2) and the limit
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lim
n→∞

∫̃

PnH
e(i/2~)〈Pnx,Pnx〉f(Pnx)d(Pnx)

exists and is independent of {Pn}.
In this case the limit is called Fresnel integral of f and is denoted by

∫̃
e(i/2~)〈x,x〉f(x)dx.

Remark 2. At a first glance, there are no evident relations between Definition 1
and Definition 3. Actually the latter is a generalization of the former, since, according
to Theorem 1, a Fresnel integrable function in the sense of Definition 1 is also integrable
in the sense of Definition 3.

A complete “direct description” of the largest class of Fresnel integrable functions
is still missing, even in finite dimension. However, it is possible to find some interesting
subsets of it. In particular the following theorem shows that the functions belonging to
F(H) are Fresnel integrable in the sense of Definition 3.

Theorem 1. Let L : H → H be a self adjoint trace-class operator, such that (I−L)
is invertible. Let y ∈ H and let f : H → C be the Fourier transform of a complex bounded
variation measure µf on H. Then the function g : H → C defined by

g(x) = e−(i/2~)〈x,Lx〉ei〈x,y〉f(x), x ∈ H

is Fresnel integrable and the corresponding Fresnel integral can be explicitly computed in
terms of a well defined absolutely convergent integral with respect to a σ-additive measure
on H, by means of the Parseval-type equality :

∫̃
e(i/2~)〈x,x〉g(x)dx = (det(I − L))−1/2

∫

H
e−(i~/2)〈x+y,(I−L)−1(x+y)〉dµf (x), (12)

where det(I−L) = |det(I−L)| e−πi Ind(I−L) is the Fredholm determinant of the operator
I −L, |det(I −L)| its absolute value and Ind(I −L) the number of negative eigenvalues
of I − L, counted with their multiplicity.

These techniques allow to give a rigorous mathematical meaning to formula (3) for
the solution of the Schrödinger equation (2) as an infinite dimensional oscillatory integral
on the Hilbert spaceHt of absolutely continuous “paths” γ : [0, t] → Rd such that γ(t) = 0
and

∫ t

0
|γ̇(s)|2ds < ∞, endowed with the inner product 〈γ1, γ2〉 =

∫ t

0
γ̇1(s) · γ̇2(s)ds.

Theorem 2. Let A be a d× d symmetric positive matrix and let V1, ψ0 ∈ F(Rd).
Then the functional f : Ht → C defined as

f(γ) := e−(i/2~)
R t
0 (γ(s)+x)A2(γ(s)+x)dse−(i/~)V1(γ(s)+x)dsψ0(γ(0) + x), γ ∈ Ht
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is Fresnel integrable and its Fresnel integral is a representation of the solution of the
Cauchy problem (2) with potential V (x) = (1/2)xA2x + V1(x), x ∈ Rd :

ψ(t, x) =
∫̃

Ht

e(i/2~)〈γ,γ〉e−(i/2~)
R t
0 (γ(s)+x)A2(γ(s)+x)dse−(i/~)V1(γ(s)+x)ds

· ψ0(γ(0) + x)dγ.

For a detailed proof of these results as well as for their applications to the Feynman
path integral representation of the solution of the Schrödinger equation, see, e.g., [21],
[2], [6], [44]. For other applications see, e.g., [1], [3], [44]; for other approaches to the
mathematical theory of Feynman path integrals see, e.g., [28], [35], [10], [25], [32], [39],
[40], [43], [50], [51].

3. Projective systems of functionals.

In this section we show how Definition 1 and Definition 3 of infinite dimensional
oscillatory integrals can be regarded as particular cases of a general integration theory
which generalizes Kolmogorov’s construction of probability measures on infinite dimen-
sional spaces (see [7]).

Definition 4. Let us consider a family {EJ}J∈A of (non-empty) sets EJ labeled
by the elements of a non-empty directed set A, called index set. Let us assume that for
any J,K ∈ A, J ≤ K, there exists a surjective map πK

J : EK → EJ such that πK
K is the

identity on EK and for all J ≤ K ≤ R, R ∈ A, one has πR
J = πK

J ◦ πR
K (“consistency

property”). Such a family {EJ , πK
J }J,K∈A is called a projective (or inverse) family of

sets.
The projective family {EJ , πK

J }J,K∈A is called topological if each EJ , J ∈ A, is a
topological space and the maps πK

J : EK → EJ , J ≤ K, are continuous.
The projective (or inverse) limit EA := lim←−EJ of the projective family {EJ ,

πK
J }J,K∈A is defined as the following subset of the direct (or Cartesian) product of the

family {EJ}J∈A:

EA :=
{

(xJ) ∈
∏

J∈A

EJ ,

∣∣∣∣xJ = πK
J (xK) for all J ≤ K, J,K ∈ A

}
.

Let Ẽ :=
∏

J∈A EJ . Let π̃J : Ẽ → EJ be the coordinate projection of Ẽ into EJ , so
that if ω̃ = {ωJ , J ∈ A} ∈ Ẽ then π̃J(ω̃) = ωJ . Let πJ := π̃J |EA be the restriction of π̃J

to EA. One has that for any J,K ∈ A, with J ≤ K

πJ = πK
J ◦ πK . (13)

If (EJ , πK
J )J,K∈A is a topological projective family, then EA = lim←−EJ (as defined by

Definition 4) will be endowed with the coarsest topology making all the projection maps
πJ : EA → EJ continuous. This is also called initial or inductive topology [17].
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Given a general projective family {EJ , πK
J }J,K∈A, two problems may occur. First of

all, even if EJ 6= ∅ for any J ∈ A, it might happen that EA = ∅. See, e.g. [27]. Secondly,
even if all the projections (πK

J )J,K∈A are surjective, the maps πJ : EA → EJ may fail to
be surjective. See, e.g. [41]. This motivates the following definition.

Definition 5. A projective family {EJ , πK
J }J,K∈A is called a perfect inverse sys-

tem if for all J ∈ A, xJ ∈ EJ , there exist an x ∈ EA (with EA as in Definition 4) such
that xJ = πJx. In this case all the projections are surjective.1

In the following we shall always assume, unless otherwise stated, that the inverse
systems we are considering are perfect.

The concepts of projective system and projective (or inverse) limit are connected
with those of direct systems and direct limit, which we recall here below.

Definition 6. Let (A,≤) be a directed set. Let {EJ}J∈A be a family of (non
empty) sets indexed by the elements of A, endowed with a family of maps FJK : EJ →
EK , for J ≤ K, such that

• FJJ is the identity of EJ for any J ∈ A,
• FKR ◦ FJK = FJR for all J ≤ K ≤ R.

The pair (EJ , FJK)J,K∈A is called a direct system on A.
The direct (or inductive) limit of the direct system (EJ , FJK)J,K∈A is denoted by

lim−→EJ and defined as the disjoint union
⋃

J EJ modulo an equivalence relation ∼:

lim−→EJ =
⋃

J

EJ/ ∼

where, if ωJ ∈ EJ and ωK ∈ EK , then ωJ ∼ ωK if there is some R ∈ A with J ≤ R,
K ≤ R, and FJR(ωJ) = FKR(ωK).

A family of maps FJ : EJ → lim−→EJ naturally arises, where FJ : EJ → lim−→EJ maps
each element of EJ into its equivalence class. Further FJ = FK ◦ FJK for all J,K ∈ A,
with J ≤ K.

If the sets (EJ)J∈A are topological spaces and the maps (FJK)J,K∈A are continuous,
the family (EJ , FJK)J,K∈A is called a topological direct system. Its direct limit is the
space lim−→EJ endowed with the finest topology making all the maps FJ : EJ → lim−→EJ

continuous.

Direct and projective limits are dual in the sense of category theory, see, e.g., [42].

Given a projective family {EJ , πK
J }J,K∈A, we shall consider complex-valued func-

tions fJ defined on EJ , for any J ∈ A. fJ is thus a map from EJ into C. We shall call
ÊJ the space of all such functions on EJ .

Let fJ ∈ ÊJ , J ∈ A. For any K ∈ A with J ≤ K we can define the extension
EK

J (fJ) of fJ to EK as the function belonging to ÊK given by:

1In the terminology of [14] (see also [15]) a perfect inverse system {EJ , πK
J }J,K∈A is called simply

maximal.
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EK
J (fJ)(ωK) := fJ

(
πK

J (ωK)
)
, ωK ∈ EK .

If {EJ , πK
J }J,K∈A is a topological projective family and fJ ∈ ÊJ is a continuous function,

then for any K ∈ A with J ≤ K, the extension EK
J (fJ) is a continuous function on EK .

Let us now consider linear maps from subsets Ê0
J ⊆ ÊJ of ÊJ to C, called functionals.

LJ is thus such a functional if LJ associates to a function f ∈ Ê0
J a complex number

LJ(f) and for any α, β ∈ C, f, g ∈ Ê0
J the following holds:

LJ(αf + βg) = αLJ(f) + βLJ(g).

Ê0
J is called domain of LJ , the set {LJ(f)}f∈Ê0

J
is called range of LJ . We shall call

Map(ÊJ) the family of all such functionals.
For J ≤ K, let us define the map π̂K

J : Map(ÊK) → Map(ÊJ) as the transport of
any functional LK ∈ Map(ÊK) induced by the map EK

J from ÊJ to ÊK , given by:

π̂K
J (LK)(fJ) := LK

(
(EK

J (fJ)
)
, LK ∈ Map(ÊK), (14)

where the domain of π̂K
J (LK) is given by

Dom
(
π̂K

J (LK)
)

=
{
fJ ∈ ÊJ , |EK

J (fJ) ∈ Ê0
K

}
.

Let us consider a family of functionals {LJ , Ê0
J}J∈A labeled by the elements of an

index set A.

Definition 7. We call the family {LJ , Ê0
J}J∈A a projective system of functionals

if for all J,K ∈ A with J ≤ K the projective (or coherence or compatibility) conditions
hold

EK
J (fJ) ∈ Ê0

K , ∀fJ ∈ Ê0
J ,

π̂K
J (LK)(fJ) = LJ(fJ), ∀fJ ∈ Ê0

J . (15)

Given a function fJ ∈ ÊJ , J ∈ A, it can be extended to a function EA
J fJ := EA

J (fJ)
on the projective limit EA in the following way

EA
J fJ(ω) := fJ(πJω), ω ∈ EA.

By Equation (13), the extension maps EA
J : ÊJ → ÊA satisfy the following condition for

any J,K ∈ A, with J ≤ K:

EA
J = EA

K ◦ EK
J . (16)

If (EJ , πK
J )J,K∈A is a topological projective family, then all the extensions EK

J :
ÊJ → ÊA and EA

J : ÊJ → ÊA map continuous functions into continuous functions.
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We shall write C for the family

C =
⋃

J∈A

EA
J (ÊJ).

The functions belonging to C will be called cylindrical (or cylinder) functions.
Given a projective system of functionals {LJ , Ê0

J}J∈A, we shall denote by C0 ⊂ C
the subfamily of cylindrical functions consisting of those cylindrical functions which are
obtained by extensions EA

J fJ of fJ ∈ Ê0
J to the projective limit EA, i.e.:

C0 :=
⋃

J∈A

EA
J (Ê0

J) =
{
f ∈ C | f = EA

J fJ , for some J ∈ A, fJ ∈ Ê0
J

}
.

We remark that the pair (E0
J , EK

J )J,K∈A forms a direct system in the sense of Definition
6 and C0 is its direct limit.

Definition 8. A projective extension (L,D(L)) of a projective system of function-
als {LJ , Ê0

J}J∈A is a functional L with domain D(L) ⊆ ÊA (ÊA being the complex-valued
functions on EA), such that

• C0 ⊆ D(L),
• L(EA

J fJ) = LJ(fJ), for all fJ ∈ Ê0
J .

In fact, if {EJ , πK
J }J,K∈A is a perfect inverse system, any projective system of func-

tionals {LJ , Ê0
J}J∈A admits at least a projective extension. It is the functional (L,D(L))

defined as

D(L) :=
{
f ∈ ÊA, | there exists J ∈ A, fJ ∈ Ê0

J , f = EA
J fJ

}
= C0

L(f) := LJ(fJ), f = EA
J fJ , fJ ∈ Ê0

J .

This functional is “minimal”, in the sense that any other extension (L′, D(L′)) of the
projective system of functionals {LJ , Ê0

J}J∈A is such that D(L) ⊆ D(L′) and L′(f) =
L(f) for all f ∈ D(L). For this reason in the following the minimal extension will be
denoted with (Lmin, D(Lmin)). Its domain can be described in terms of the inductive
limit of the direct system {Ê0

J , EK
J }J,K∈A (see [7] for further details).

A problem which naturally arises is the existence of a “maximal” extension of a
projective system of functionals {LJ , Ê0

J}J∈A, namely a functional (Lmax, D(Lmax)) such
that for any extension (L̃,D(L̃)) of {LJ , Ê0

J}J∈A one has that

D(L̃) ⊆ D(Lmax)

Lmax(f) = L̃(f), ∀f ∈ D(L̃).

The problem is strictly connected to the uniqueness property of the extensions of a
projective system. Indeed if there are two extensions (L,D(L)) and (L′, D(L′)) such
that there exists an element f ∈ D(L)∩D(L′), with L(f) 6= L′(f), then it is not possible
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to construct an extension L̃ of both L and L′, as L̃ would be ambiguously defined on the
element f . The converse is also true, as is stated in the following proposition.

Proposition 1. Let {LJ , Ê0
J}J∈A be a projective system of functionals and let

F = {(L,D(L))} be a non void family of projective extensions of {LJ , Ê0
J}J∈A. The

family F has a maximal element if and only if it satisfies the following “uniqueness
property”:
whenever two extensions (L,D(L)), (L′, D(L′)) ∈ F have a common element f ∈ D(L)∩
D(L′), one has that L(f) = L′(f).

For a proof of Proposition 1 as well as for an example of a projective system of
functionals which does not satisfy the uniqueness property and the study of this problem
from a topological point of view see [7].

4. Projective systems of measure spaces and Fresnel integrals.

In the following we shall focus on cases where each element (EJ)J∈A of a projective
family {EJ , πK

J } is endowed with a σ-algebra ΣJ of subsets of EJ . We shall also assume
that the maps πK

J , for J ≤ K, are measurable. The family {EJ ,ΣJ , πK
J } is called a

projective family of measurable spaces [53], [54], [55].
Let us assume that there is a measure µJ , not necessarily real or positive, associated

to each (EJ ,ΣJ). In particular we shall focus on the case where µJ is a signed or complex
measure with finite total variation [49], [52]. Let us consider the space L1(EJ ,ΣJ , µJ),
i.e. the subset of ÊJ consisting of (real resp. complex) functions on EJ which are
µJ -integrable, and the family of functionals {LJ , Ê0

J}J∈A, given by

Ê0
J := L1(EJ ,ΣJ , µJ), LJ(f) :=

∫

EJ

fdµJ , f ∈ Ê0
J . (17)

By construction, LJ is a linear functional (real resp. complex valued). EK
J is defined

as before, as a map from ÊJ to ÊK , J ≤ K, J,K ∈ A. According to Definition 7 the
family {LJ , Ê0

J}J∈A is projective on Ê0
J if for all J ≤ K, K, J ∈ A, fJ ∈ Ê0

J the following
compatibility conditions hold:

EK
J (fJ) ∈ Ê0

K ,

π̂K
J (LK)(fJ) = LJ(fJ). (18)

Due to the relation between LJ and µJ and (14), we have that (18) implies

∫

EJ

fJdµJ =
∫

EK

fJ ◦ πK
J dµK , fJ ∈ L1(EJ ,ΣJ , µJ). (19)

For fJ taken to be the characteristic function of AJ ∈ ΣJ this implies

πK
J (µK) = µJ , (20)
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which is the analogue of the usual projectivity property for measures on projective spaces
(see, e.g., [12], [13]). We shall say shortly that {µJ}J∈A is a projective family of mea-
sures. Conversely, if (20) holds, then by approximating L1-functions by finite linear
combinations of characteristic functions we have that (19) holds, which by the relation
(17) between LJ and µJ implies that (18) holds. Hence the family (LJ , Ê0

J)J∈A is pro-
jective if and only if µJ is a projective family of measures (in the sense of (20)).

Given a projective family (EJ ,ΣJ , πK
J )J,K∈A of measure spaces its projective limit

(EA,ΣA) is the measure space defined as EA = lim←−EJ and ΣA := Σ∞ ∩ EA, where
Σ∞ =

⊗
J∈A ΣJ is the σ-algebra associated with the product space

∏
J∈A EJ , which

coincides with the smallest σ-algebra making all projection maps π̃J from
∏

J∈A EJ onto
EJ measurable. By construction we thus have that ΣA =

⋃
J∈A π−1

J ΣJ is the σ-algebra
generated by the sets of the form π−1

J (B), B ∈ ΣJ (where we recall that πJ is the
restriction of π̃J to EA). We shall write (EA,ΣA) = lim←−(EJ ,ΣJ).

Let µ be a (complex bounded) measure on (EA,ΣA), and let us define the measures
µJ on (EJ ,ΣJ) by:

µJ := πJ ◦ µ, J ∈ A. (21)

It is easy to verify that the family of measures (µJ)J∈A satisfies the compatibility condi-
tion (20). More generally, we shall say that the members of a family of measures (µJ)J∈A

on (EJ ,ΣJ)J∈A are compatible (or shortly the family is compatible) if they satisfy the
compatibility condition (20).

Let us consider now the converse problem to the one solved by (21), namely about
when we can find a (signed or complex bounded) measure µ on (EA,ΣA) such that (21)
holds, starting only from integration on (EJ ,ΣJ)J∈A and condition (20). If such a µ

exists, then the projective system of functionals {LJ , Ê0
J}J∈A given by (17) would admit

a projective extension L given by

D(L) := L1(EA,ΣA, µ)

L(f) :=
∫

EA

fdµ, f ∈ D(L). (22)

If {µJ}J∈A is a projective system of compatible probability measures, then Kol-
mogorov’s existence theorem [14], [12], [13], [19], [48], [53], [54], [55], [30] assures the
existence and uniqueness of µ. On the other hand if the measures {µJ}J∈A of the pro-
jective family are not real and positive, i.e. if we consider a projective family of signed
or complex bounded measures, then in general such a µ cannot exists, as stated in the
following theorem [52], [7]

Theorem 3. Let (EJ ,ΣJ , πK
J )J,K∈A be a projective family of measure spaces and

let {µJ}J∈A be a projective family of signed or complex bounded measures, satisfying
the compatibility condition (20). A necessary condition for the existence of a (signed or
complex ) bounded measure µ on (EA,ΣA) satisfying the relation (21) is the following
uniform bound on the total variation of the measures belonging to the family {µJ}J∈A :
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sup
J∈A

|µJ | < +∞, (23)

where |µJ | denotes the total variation of the measure µJ .

In fact if µJ are signed or complex bounded measures, in many interesting cases con-
dition (23) cannot be satisfied, as in the case of infinite dimensional oscillatory integrals
or in the case of Feynman path integrals.

As an example, let us consider on Rn the complex measure ν absolutely continuous
with respect to the Lebesgue measure dx, x ∈ Rn, with a density of the form ρ(x) =
e(i/2)‖x‖2/(2πi)n/2. The total variation of ν on Rn is infinite, however for any Borel
bounded set B ⊂ Rn, the total variation of ν on B is finite. Hence, given a bounded
Borel function f : Rn → C the Fresnel integral of f can be defined as the limit

lim
R→+∞

∫

[−R,R]n
f(x)

e(i/2)‖x‖2

(2πi)n/2
dx

if this limit exists. In this case it is denoted by
∫̃
Rnf(x)ν(dx). According to this definition

and the properties of the classical Fresnel integrals one gets that the
∫̃

-integral of the
function identically equal to 1 on Rn is 1, i.e.

∫̃
Rndν = 1.

One can see that this family of functionals forms a projective system. Indeed let
A = F(N) be the directed set of finite subsets of N and let us consider for any J ∈ A the
set EJ := RJ endowed with the Borel σ-algebra and the complex measure (with finite
total variation on bounded sets) ×n∈Jdµn, µn being the complex measure on R defined
as dµn := (e(i/2)‖x‖2/

√
2πi)dx, for all n ∈ J . Let us define for any J ∈ A the functional

LJ : Ê0
J → C, given by:

Ê0
J :=

{
f ∈ Bb(EJ) : ∃ lim

R→+∞

∫

[−R,R]|J|
f(x)×n∈J µn(dx)

}

LJ(f) := lim
R→+∞

∫

[−R,R]|J|
f(x)×n∈J µn(dx), f ∈ Ê0

J .

One can easily verify that (LJ , Ê0
J)J∈A is a projective system of functionals. However it

is impossible to construct a projective extension on EA ≡ RN in terms of a (Lebesgue
type) improper integral. Indeed, contrary to the case of finite dimension, if we consider
the infinite product measure ×n∈Ndµn, on RN endowed with the product σ algebra, we
have that its total variation is infinite even on products of bounded sets.

More generally let (H, 〈 , 〉) be a real separable Hilbert space and let (A,≤) be the
directed set of its finite dimensional subspaces, i.e. A = {V ⊂ H : dim(V ) < ∞} and
V ≤ W if V is a subspace of W . For V ≤ W let πW

V : W → V be the natural projection
from W onto V . For any V ∈ A let ΣV be the Borel σ-algebra on V . (V, ΣV , πW

V )V,W∈A

is then a projective system of measure spaces. For any V ∈ A let LV : D(LV ) → C be
the linear functional defined by:



1310 S. Albeverio and S. Mazzucchi

D(LV ) :=
{

f ∈ Bb(V ) : ∃ lim
R→+∞

∫

[−R,R]|V |
f(x)e(i/2)‖x‖2dx}

LV (f) := lim
R→+∞

∫

[−R,R]|V |
f(x)

e(i/2)‖x‖2

(2πi)|V |/2
dx, f ∈ D̂(LV ),

where dx denotes the Lebesgue measure on V , ‖ ‖ is the norm in V and |V | denotes the
dimension of V .

The family (LV , D(LV ))V ∈A constitutes a projective system of linear functionals.
According to Theorem 3 it is not possible to define on the projective limit EA a com-
plex measure with finite variation on bounded sets obtained as the projective limit of
the complex measures µV (dx) := (e(i/2)‖x‖2/(2πi)|V |/2)dx, x ∈ V . Consequently there
cannot be an extension of the projective system of functionals (LV , D(LV ))V ∈A of the
form L(f) =

∫
EA

f(x)µ(dx), even if f is supported in a product of bounded sets.
A similar phenomenon occurs in the mathematical construction of Feynman path

integrals. Let us consider the fundamental solution Gt ∈ S ′(Rd) of the Schrödinger
equation (2) with V = 0 for a non-relativistic quantum particle moving freely in the
d-dimensional Euclidean space, i.e. for t 6= 0, Gt is the C∞(Rd) function Gt(x, y) =
e(i/2t~)|x−y|2/(2πit~)d/2. In fact Gt can be regarded as the density with respect to the
Lebesgue measure of a complex measure µt on Rd, with finite variation on bounded sets,
of the form dµt(x) = Gt(x)dx, while G0 is defined as the Dirac measure at 0. Further, by
the group property

∫
Rd Gt(x, z)Gs(z, y)dz = Gt+s(x, y), s, t ∈ R, x, y ∈ Rd, (where the

integral is meant as an improper Riemann integral) one has that the family of functionals
(LJ , Ê0

J) defined by:

Ê0
J = L1(EJ , dx), EJ = (Rd)J , J = (t1, . . . , tn), (24)

LJ(f) ≡
∫

(Rd)J

f(x1, . . . , xn)Gt1(x0, x1) · · ·Gtn−tn−1(xn−1, xn)dx1 · · · dxn

is a projective family of functionals, but there cannot exist a complex bounded varia-
tion measure µ on (Rd)[0,+∞) and a projective extension (L,D(L)) of (LJ , Ê0

J) such that
L(f) =

∫
(Rd)[0,+∞) fdµ (see [18]). According to this negative result, it is not possible

to realize the limit (4) leading to the heuristic formula (3) as in integral with respect
to a complex measure; what is only possible is to define (3) as a particular extension of
the projective system of functional (LJ , Ê0

J). This problem is deeply connected with the
rigorous mathematical definition of Feynman path integrals which has been provided in
different ways, but always, because of the above obstruction, only in the sense of contin-
uous functionals not directly expressible as integrals with respect to σ-additive measures
[3], [28], [35], [44]. We present here a construction of the infinite dimensional Fresnel
integrals of Section 2 as particular cases of a class of projective systems of functionals.

Let H be a real separable infinite dimensional Hilbert space and let A be the directed
set of its finite dimensional subspaces, ordered by inclusion. For V, W ∈ A, with V ≤ W ,
let πW

V : W → V be the projection from W onto V and iWV : V → W be the inclusion map.
One has that (V, πW

V )V,W∈A is a projective family of sets, while (V, iWV )V,W∈A forms a
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direct system on A. Let us consider the projective limit space EA := lim←−V ∈A
V , the direct

limit ẼA := lim−→V ∈A
V , the projection πV : EA → V and the inclusion maps iV : V → ẼA.

Considered on each V ∈ A the topology induced by the finite dimensional Hilbert space
structure of V , the space lim←−V ∈A

V is endowed with the weakest topology making all
the projections πV : EA → V continuous, while the space lim−→V ∈A

V is endowed with the

final topology, i.e. the strongest topology making all the inclusion maps iV : V → ẼA

continuous.
The inverse system (V, πW

V )V,W∈A and the direct system (V, iWV )V,W∈A are linked
by dualization. Indeed if we identify the dual of a finite dimensional vector space V

with itself, we have that the inclusion iWV : V → W , V ≤ W , can be identified with the
transpose map (πW

V )∗ : V ∗ → W ∗ of the projection πW
V : W → V . Further the direct

limit space ẼA can be naturally identified with a subspace of (EA)∗. Indeed any η ∈ ẼA

can be associated with the element of (EA)∗ whose action on any ω ∈ EA is given by

η(ω) := 〈v, πV ω〉, (25)

v ∈ V being any representative of the equivalence class of vectors associated to η. The
definition (25) is well posed, indeed chosen a different representative of the equivalence
class η, i.e. a vector v′ ∈ V ′ such that there exists a W ∈ A, with V ≤ W , V ′ ≤ W and
iWV v = iWV ′v

′, one has that:

〈v, πV ω〉 =
〈
v, πW

V ◦ πW ω
〉

=
〈
iWV v, πW ω

〉
=

〈
iWV ′v

′, πW ω
〉

= 〈v′, πV ′ω〉.

Further the explicit form (25) of the functional η shows its continuity on EA.
Analogously the transpose map π∗V : V ∗ → E∗

A can be identified with the map
iV : V → ẼA, giving:

〈v, πV ω〉 = E∗A〈iV v, ω〉EA
,

where the symbol 〈 , 〉 on the left hand side denotes the inner product in V , while the
symbol E∗A〈 , 〉EA

denotes the dual pairing between EA and E∗
A.

Let us consider on any V ∈ A the Borel σ-algebra ΣV and a bounded signed or
complex measure µV : ΣV → C in such a way that the family (µV )V ∈A satisfies the
compatibility condition (20). Let us also consider, for any V ∈ A, the Fourier transform
µ̂V : V → C of the measure µV , i.e.

µ̂V (v) =
∫

V

ei〈v′,v〉µV (dv′), v ∈ V.

By the projectivity condition (20) of the family of measures (µV )V ∈A, one deduces the
following relation (compatibility relation) among the Fourier transforms:

µ̂V (v) = µ̂W (iWV v), V ≤ W. (26)
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Let us now define the map F : ẼA → C by:

F (η) := µ̂V (v), η ∈ ẼA,

where v ∈ V is any representative of the equivalence class η ∈ ẼA. F is unambiguously
defined, indeed given a v′ ∼ v (in the sense that v, v′ are in the same equivalence class),
with v′ ∈ V ′, there exists a W ∈ A, with V ≤ W and V ′ ≤ W , such that iWV v = iWV ′v

′.
By the compatibility condition (26)

µ̂V (v) = µ̂W

(
iWV v

)
= µ̂W

(
iWV ′v

′) = µ̂V ′(v′).

Further, the map F is continuous on ẼA in the final topology.
If there exists a measure on µ on EA such that µV = πV ◦ µ for all V ∈ A, then its

Fourier transform µ̂ coincides with F on ẼA and

‖µ̂‖∞ = sup
η∈(EA)∗

|µ̂| ≤ |µ|,

where |µ| is the total variation of µ and ‖µ̂‖∞ stands for the sup-norm of µ̂.
Let us consider the projective system of functionals (LV , D(LV ))V ∈A, where

D(LV ) ≡ F(V ) is the space of functions f : V → C of the form f(v) =
∫

V
ei〈v′,v〉νf (dv′)

for some complex bounded measure νf on V and norm ‖f‖ = |νf |, |νf | being the total
variation of νf . Let LV : D(LV ) → C be the linear functional defined by

D(LV ) := F(V )

LV (f) :=
∫

V

µ̂V (v)µf (dv). (27)

One can easily verify that LV is continuous in the F(V )-norm and the family
(LV , D(LV ))V ∈A forms a projective system of functionals. If supV ∈A |µV | = +∞, ac-
cording to Theorem 3, there cannot exist a complex bounded measure µ on EA which
is the projective limit of the measures (µV )V ∈A. Hence there cannot exists a projective
extension (L,D(L)) of the projective system (LV , D(LV ))V ∈A of the form

D(L) := L1(EA, |µ|)

L(f) :=
∫

EA

f(ω)µ(dω). (28)

However, even if µ does not exist, the map F : ẼA → C is still well defined, and can
be used in the construction of an alternative projective extension of (LV , D(LV ))V ∈A,
alternative namely to (28).

Consider on ẼA the Borel σ-algebra B(ẼA), then one has that the continuous map
F : ẼA → C is measurable. If the condition:
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sup
V ∈A

‖µ̂V ‖∞ < +∞ (29)

is satisfied, then the functional L : D(L) → C given by

D(L) := F(EA)

L(f) =
∫

ẼA

F (η)νf (dη)

is well defined on the Banach algebra F(EA) of functions f : EA → C of the form
f(ω) =

∫
ẼA

ei〈η,ω〉νf (dη) for some complex bounded measure νf on ẼA. L is a projective
extension of the projective system of functionals (27).

Depending on the regularity properties of the function F : ẼA → C one can construct
different extensions, in other words construct the functional L on different domains. Let
B be a Banach space where ẼA is densely embedded, i.e. ẼA ⊂ B densely, and let
F be continuous with respect to the B-norm. Then F can be extended to a function
F̃ : B → C, with F̃ (η) = F (η) for all η ∈ ẼA. Let F(B∗) be the Banach algebra of
functions f : B∗ → C of the form

f(x) =
∫

B
ei〈y,x〉νf (dy), x ∈ B∗,

for some complex bounded variation measure νf on B. Then the functional L′ : F(B∗) →
C defined by

D(L′) := F(B∗)

L′(f) =
∫

B
F̃ (x)νf (dx)

is an alternative projective extension of the system of functionals (27). In particular,
if F (v) = e−(i~/2)‖v‖2 , as in the case of Fresnel integrals, the function F : ẼA → C is
continuous in the H-norm and the functional L′ becomes the infinite dimensional Fresnel
integral of Definition 1, i.e.

D(L′) := F(H)

L′(f) =
∫

H
e−(i~/2)‖x‖2νf (dx), f ∈ F(H), f = ν̂f .

We remark that analogous techniques can be applied in the construction of general-
ized Feynman–Kac formulae for the representation of the solution of any high-order heat
type equation of the form:





∂

∂t
u(t, x) = (−i)pα

∂p

∂xp
u(t, x)

u(0, x) = u0(x), x ∈ R, t ∈ [0,+∞)
(30)
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where p ∈ N, p ≥ 2, and α ∈ C is a complex constant. Indeed when p > 2, the funda-
mental solution Gp

t of (30), i.e. Gp
t (x, y) := (1/2π)

∫
eik(x−y)eαtkp

dk, x, y ∈ R, t > 0, is
not positive and can be interpreted as the density of a signed measure. Hence the projec-
tive family of functionals (LJ , Ê0

J) defined by formula (24), with Gp
t (x, y) replacing the

fundamental solution of the Schrödinger equation Gt(x, y), does not admit a projective
extension (L,D(L)) of the form L(f) =

∫
(Rd)[0,+∞) fdµ, with µ a signed measure with

finite total variation (see [38]). In fact a functional integral representation of the solution
of Equation (30) can be realized only in terms of linear continuous functionals on a suit-
able domain of “integrable functions” (for such realizations see [38], [29], [16], [24], [45],
[46]).
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