Double filtration of twisted logarithmic complex and Gauss-Manin connection

By Kazuhiko Аомото and Yoshinori Machida

(Received Oct. 3, 2012)
(Revised July 10, 2013)

Abstract

The twisted de Rham complex associated with hypergeometric integral of a power product of polynomials is quasi-isomorphic to the corresponding logarithmic complex. We show in this article that the latter has a double filtration with respect to degrees of polynomials and exterior algebras. By a combinatorial method we prove the quasi-isomorphism between the twisted de Rham cohomology and a specially filtered subcomplex in case of polynomials of the same degree. This fact gives a more detailed structure of a basis for the twisted de Rham cohomology.

1. Introduction.

Let $P_{k}(x)(1 \leq k \leq m)$ be polynomials of $x=\left(x_{1}, \ldots, x_{n}\right)$ in C^{n} over the coefficient field \boldsymbol{C}. We assume that each P_{k} is of the same degree $l(l \geq 1)$. Let D_{k} be the divisor in \boldsymbol{C}^{n} defined by $P_{k}(x)=0$ and the union $D=\bigcup_{k=1}^{m} D_{k}$. Let \mathcal{M} be the complement $\boldsymbol{C}^{n}-D$. Denote by $\Omega\left(\boldsymbol{C}^{n}\right)=\bigoplus_{p=0}^{n} \Omega^{p}\left(\boldsymbol{C}^{n}\right)$ the polynomial differential forms on \boldsymbol{C}^{n}, and by $\Omega \cdot(\log D)=\bigoplus_{p=0}^{n} \Omega^{p}(\log D)$ the space of logarithmic p-forms $(0 \leq p \leq n) \varphi$ on \mathcal{M} along D, i.e.,

$$
P_{1} \cdots P_{m} \varphi, P_{1} \cdots P_{m} d \varphi \in \Omega\left(\boldsymbol{C}^{n}\right)
$$

We define the total degree of $\varphi(\operatorname{denoted} \operatorname{by} \operatorname{tdeg}(\varphi))$ to $\operatorname{be} \operatorname{deg}(\varphi)+p$. Remark that $\operatorname{tdeg}\left(d P_{k} / P_{k}\right)=0$.

Let $F_{\mu} \Omega^{p}(\log D)(\mu \in \boldsymbol{Z})$ be the subspace of $\Omega^{p}(\log D)$ consisting of φ such that $\operatorname{tdeg}(\varphi) \leq \mu$. Note that $F_{\mu} \Omega^{p}(\log D)=\{0\}$ for $\mu<-l m+p$. Then we have the increasing filtration

$$
\{0\} \subset F_{0} \Omega^{p}(\log D) \subset F_{1} \Omega^{p}(\log D) \subset \cdots \subset F_{p}\left(\Omega^{p}(\log D)\right) \subset \cdots \subset \Omega^{p}(\log D) .
$$

By definition we have

$$
\Omega^{p}(\log D)=\bigcup_{\mu=0}^{\infty} F_{\mu} \Omega^{p}(\log D) .
$$

[^0]For $\lambda_{k} \in \boldsymbol{C}(1 \leq k \leq m)$, we consider the covariant differentiation ∇ on $\Omega \cdot(\log D)$ and the subcomplex $F_{\mu} \Omega(\log D)$ respectively by

$$
\nabla \psi=d \psi+\sum_{k=1}^{m} \lambda_{k} \frac{d P_{k}}{P_{k}} \wedge \psi
$$

assuming that $l \sum_{k=1}^{m} \lambda_{k} \notin \boldsymbol{Z} . H^{p}(\Omega \cdot(\log D), \nabla), H^{p}\left(F_{\mu} \Omega \cdot(\log D), \nabla\right)$ denote the respective twisted de Rham cohomologies. We also denote by $H^{p}(\Omega(* D), \nabla)$ the twisted de Rham cohomology for the complex $\Omega(* D)$ of rational differential forms on \mathcal{M} with poles only at D.

Similarly denote by \bar{P}_{k} the homogeneous part of highest degree of P_{k} and by \bar{D}_{k} the divisor $\bar{P}_{k}(x)=0$ in C^{n} and $\bar{D}=\bigcup_{k=1}^{m} \bar{D}_{k}$. By the differentiation $\bar{\nabla}$:

$$
\bar{\nabla} \psi=d \psi+\sum_{k=1}^{m} \lambda_{k} \frac{d \bar{P}_{k}}{\bar{P}_{k}} \wedge \psi
$$

we can also define the twisted de Rham cohomologies $H^{p}(\Omega \cdot(\log \bar{D}), \bar{\nabla}), H^{p}\left(F_{\mu} \Omega \cdot(\log \bar{D})\right.$, $\bar{\nabla}), H^{p}(\Omega \cdot(* \bar{D}), \bar{\nabla})$ respectively.

In the sequel we simply write $\Omega^{p}(\log D), \Omega(\log D)$ by Ω^{p}, Ω^{*} respectively. Denote by $[1, m]$ the set of natural numbers ν such that $1 \leq \nu \leq m$. For the set of indices $J=\left\{j_{1}, \ldots, j_{q}\right\} \subset[1, m],|J|$ denotes q the size of J.

The homogenization of an inhomogeneous polynomial $f(x)$ in $\boldsymbol{C}[x]$ is defined as a homogeneous polynomial in $\boldsymbol{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$

$$
\tilde{f}=H(f)=x_{0}^{l} f\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \quad(l=\operatorname{deg}(f))
$$

We also define the homogenization of $d f$ by

$$
\widetilde{d f}=H(d f)=\tilde{d} \tilde{f}=\sum_{k=1}^{n} \frac{\partial \widetilde{f}}{\partial x_{k}} d x_{k}
$$

For $\varphi \in \Omega \cdot(* D)$, the homogenizations of φ and $d \varphi$ are defined by

$$
\widetilde{d \varphi}=\tilde{d} \tilde{\varphi}, \quad \tilde{\varphi} \wedge \tilde{\psi}=\widetilde{\varphi \wedge \psi}
$$

An inhomogeneous ideal \mathfrak{I} in $\boldsymbol{C}[x]$ has the canonical homogenization $H(\mathfrak{I})$ in $\boldsymbol{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.

For $r+s$ polynomials f_{1}, \ldots, f_{r} and g_{1}, \ldots, g_{s}, we can consider the ideal generated by the differential forms $d f_{1} \wedge \cdots \wedge d f_{r}(1 \leq r \leq n)$ and g_{1}, \ldots, g_{s} :

$$
\mathfrak{I}=\left(d f_{1} \wedge \cdots \wedge d f_{r}, g_{1}, \ldots, g_{s}\right)
$$

We now settle "genericity condition" for the family of the polynomials $P_{k}(x)(1 \leq k \leq m)$.

The first condition is as follows:
$\left(\mathcal{C}_{1}\right) \quad$ Take any integer r such that $1 \leq r \leq \min \{m, n\}$ and $1 \leq j_{1}<\cdots<j_{r} \leq m$. Let $Q_{1}, Q_{2}, \ldots, Q_{r}(1 \leq r \leq m)$ be arbitrary different polynomials among $P_{k}(1 \leq k \leq$ $m)$. Then the homogeneous ideal $\left(H\left(d Q_{1} \wedge \cdots \wedge d Q_{r}, Q_{1}, \ldots, Q_{r}\right)\right)$ satisfies
(i) $\operatorname{height}\left(H\left(d Q_{1} \wedge \cdots \wedge d Q_{r}, Q_{1}, \ldots, Q_{r}\right)\right) \geq n+1\left(\right.$ in $\left.\boldsymbol{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]\right)$,
(ii) For $1 \leq s \leq \min \{m, n+1\}, H\left(Q_{1}\right), \ldots, H\left(Q_{s}\right)$ form a regular sequence in $\boldsymbol{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
The second condition is as follows:
$\left(\mathcal{C}_{2}\right) \quad$ Take any integer r such that $1 \leq r \leq \min \{m, n-1\}$ and $1 \leq j_{1}<\cdots<$ $j_{r} \leq m$. Let $\bar{Q}_{1}, \bar{Q}_{2}, \ldots, \bar{Q}_{r}(1 \leq r \leq m)$ be arbitrary different polynomials among \bar{P}_{k} $(1 \leq k \leq m)$. Then the homogeneous ideal $\left(d \bar{Q}_{1} \wedge \cdots \wedge d \bar{Q}_{r}, \bar{Q}_{1}, \ldots, \bar{Q}_{r}\right)$ satisfies
(i) $\operatorname{height}\left(d \bar{Q}_{1} \wedge \cdots \wedge d \bar{Q}_{r}, \bar{Q}_{1}, \ldots, \bar{Q}_{r}\right) \geq n\left(\right.$ in $\left.\boldsymbol{C}\left[x_{1}, \ldots, x_{n}\right]\right)$,
(ii) For $1 \leq s \leq \min \{m, n\}, \bar{Q}_{1}, \ldots, \bar{Q}_{s}$ form a regular sequence in $\boldsymbol{C}\left[x_{1}, \ldots, x_{n}\right]$.

Throughout our article we set the conditions $\left(\mathcal{C}_{1}\right),\left(\mathcal{C}_{2}\right)$.
Then the following Proposition is valid (see [1], [2], [3], [7]):
Proposition 1. (i) For $\mu \geq 0$ we have

$$
H^{p}(\Omega, \nabla) \cong H^{p}\left(F_{\mu} \Omega, \nabla\right) \cong\{0\} \quad(0 \leq p \leq n-1)
$$

(ii)

$$
\begin{aligned}
H^{n}(\Omega, \nabla) & \cong H^{n}(\Omega(* D), \nabla), \\
\operatorname{dim} H^{n}(\Omega, \nabla) & =(-1)^{n} \mathcal{E}(\mathcal{M}) \\
& =\sum_{\nu=0}^{n}\binom{m-1}{\nu}(l-1)^{n-\nu}\binom{m+n-\nu-1}{n-\nu},
\end{aligned}
$$

where $\mathcal{E}(\mathcal{M})$ denotes the Euler characteristic of \mathcal{M}.
Lemma 2. For $\psi \in \Omega^{p}(0 \leq p \leq n-1), \psi$ can be described as

$$
\begin{equation*}
\psi=\psi_{0}+\sum_{q=1}^{\min (p, m)} \sum_{J=\left\{j_{1}, \ldots, j_{q}\right\} \subset[1, m]} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \psi_{J} \tag{1}
\end{equation*}
$$

for $\psi_{0} \in \Omega^{p}\left(\boldsymbol{C}^{n}\right), \psi_{J} \in \Omega^{p-q}\left(\boldsymbol{C}^{n}\right)$.
For the proof, see [1, Proposition 3.1].
Proposition 3. For $\mu \geq 0$ we have

$$
\begin{aligned}
H^{p}(\Omega \cdot(* \bar{D}), \bar{\nabla}) & \cong H^{p}(\Omega \cdot(\log \bar{D}), \bar{\nabla}) \\
& \cong H^{p}\left(F_{\mu}(\Omega \cdot(\log \bar{D}), \bar{\nabla})\right) \cong\{0\} \quad(0 \leq p \leq n)
\end{aligned}
$$

As a Corollary of Lemma 2 and Proposition 3,

Lemma 4. Suppose that $\psi \in \Omega^{p}(0 \leq p \leq n-1)$ satisfies

$$
\nabla \psi \in F_{\mu} \Omega^{p+1} \quad(\mu \geq 0)
$$

then ψ can be described as (1) such that $\psi_{0} \in F_{\mu} \Omega^{p}\left(\boldsymbol{C}^{n}\right), \psi_{J} \in F_{\mu} \Omega^{p-q}\left(\boldsymbol{C}^{n}\right)$.
Definition 5. Denote by $F_{\mu, q} \Omega^{p}(0 \leq q \leq p)$ the subspace of $F_{\mu} \Omega^{p}$ consisting of φ such that φ can be written by

$$
\begin{equation*}
\varphi=\varphi_{0}+\sum_{\nu=1}^{q} \sum_{J=\left\{j_{1}<\cdots<j_{\nu}\right\} \subset[1, m]} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{\nu}}}{P_{j_{\nu}}} \wedge \varphi_{J} \tag{2}
\end{equation*}
$$

for $\varphi_{0} \in F_{\mu} \Omega^{p}\left(\boldsymbol{C}^{n}\right)$ and $\varphi_{J} \in F_{\mu} \Omega^{p-\nu}\left(\boldsymbol{C}^{n}\right)$. We have the double filtration

$$
\{0\} \subset F_{\mu, 0} \Omega^{p} \subset F_{\mu, 1} \Omega^{p} \subset \cdots \subset F_{\mu, p} \Omega^{p}=F_{\mu, p+1} \Omega^{p}=\cdots=F_{\mu, \infty} \Omega^{p} \subset F_{\mu} \Omega^{p} .
$$

In this article we shall give the decomposition formula for the n dimensional de Rham cohomology $H^{n}(\Omega, \nabla)$ associated to the double filtration (Theorem 18 and Theorem 28) and derive the corresponding formula of Gauss-Manin connection for the twisted integrals (Theorem 29).

2. Dimension formula.

From now on, we assume that $\mu \geq(l-1) n$.
The following Lemma is fundamental.
Lemma 6. Suppose that $\varphi \in F_{\mu, q} \Omega^{p}$ in (2) lies in $F_{\mu, q-1} \Omega^{p}(q+p \leq n)$, and hence

$$
d P_{j_{1}} \wedge \cdots \wedge d P_{j_{q}} \wedge \varphi_{J} \equiv 0 \quad \bmod \sum_{\nu=1}^{q} P_{j_{\nu}} F_{\mu+l(q-1)} \Omega^{p}\left(C^{n}\right)
$$

for each $\varphi_{J}\left(J=\left\{j_{1}, \ldots, j_{q}\right\}\right)$, then φ_{J} can be described as

$$
\begin{equation*}
\varphi_{J}=\sum_{\nu=1}^{q}\left(P_{j_{\nu}} \theta_{\nu}+d P_{j_{\nu}} \wedge \theta_{\nu}^{\prime}\right), \tag{3}
\end{equation*}
$$

where $\theta_{\nu} \in F_{\mu-l} \Omega^{p-q}\left(\boldsymbol{C}^{n}\right)$ and $\theta_{\nu}^{\prime} \in F_{\mu-l} \Omega^{p-q-1}\left(\boldsymbol{C}^{n}\right)$, in other words,

$$
\varphi_{J} \equiv 0 \quad \bmod \mathcal{F}_{\mu}^{p-q}(J),
$$

where $\mathcal{F}_{\mu}^{p-q}(J)$ denotes the subspace of $\Omega^{p-q}\left(\boldsymbol{C}^{n}\right)$:

$$
\mathcal{F}_{\mu}^{p-q}(J)=\sum_{\nu=1}^{q}\left(P_{j_{\nu}} F_{\mu-l} \Omega^{p-q}\left(\boldsymbol{C}^{n}\right)+d P_{j_{\nu}} \wedge F_{\mu-l} \Omega^{p-q-1}\left(\boldsymbol{C}^{n}\right)\right) .
$$

The proof can be done based on syzygies of Cohen-Macaulay H-ideals (homogeneous ideals) and on de Rham-Saito lemma (see [3, Lemma 2.19], replacing n by $n+1$, and [1], [8] for related topics).

We also note that

$$
F_{\mu, q} \Omega^{p} / F_{\mu, q-1} \Omega^{p} \cong \bigoplus_{J \subset[1, m] ;|J|=q} F_{\mu} \Omega^{p-q}\left(\boldsymbol{C}^{n}\right) / \mathcal{F}_{\mu} \Omega^{p-q}(J) .
$$

We now fix q. We want to give an explicit formula for the dimension of $F_{\mu} \Omega^{p-q}\left(\boldsymbol{C}^{n}\right) /$ $\mathcal{F}_{\mu} \Omega^{p-q}(J)$. A numerical computations based on Lemma 6 show the following Propositions 11 and 13.

We fix the set of indices $J=\left\{j_{1}, \ldots, j_{q}\right\}$. For simplicity we rewrite $P_{j_{\nu}}$ by Q_{ν}. Let σ_{0} denote the surjective morphism:

$$
\sigma_{0}: F_{\mu} \Omega^{p-q}\left(\boldsymbol{C}^{n}\right) \longrightarrow F_{\mu} \Omega^{p-q}\left(\boldsymbol{C}^{n}\right) / \mathcal{F}_{\mu}^{p-q}(J) \subset F_{\mu, q} \Omega^{p}(\log D) / F_{\mu, q-1} \Omega^{p}(\log D)
$$

which is defined by

$$
\begin{equation*}
\sigma_{0}\left(\varphi_{J}\right)=\frac{d Q_{1}}{Q_{1}} \wedge \cdots \wedge \frac{d Q_{q}}{Q_{q}} \wedge \varphi_{J} \tag{4}
\end{equation*}
$$

First we want to construct a resolution of the morphism σ_{0}.
Let $S=\bigoplus_{\nu=0}^{\infty} S_{\nu}$ be the polynomial ring over \boldsymbol{C} in the indeterminates y_{1}, \ldots, y_{q}, and $\Lambda=\bigoplus_{\nu=0}^{q} \Lambda^{\nu}$ be the exterior algebra over \boldsymbol{C} in the indeterminates $d y_{1}, \ldots, d y_{q}$. Here S_{ν} and Λ^{ν} denote the parts of ν-th degree of S and Λ respectively. Let $\mathcal{K}_{r, s}=S_{r} \otimes$ $\Lambda^{s} \wedge F_{\mu-(r+s) l} \Omega^{p-q-r}\left(\boldsymbol{C}^{n}\right)$, and put $\mathcal{K}_{\nu}=\bigoplus_{r+s=\nu ; 0 \leq r \leq p-q ; 0 \leq s \leq q} \mathcal{K}_{r, s}, \mathcal{K}=\bigoplus_{\nu=0}^{\infty} \mathcal{K}_{\nu}$. Remark that $\mathcal{K}_{\nu} \cong\{0\}$ for $\nu \geq p+1$. We can identify $F_{\mu} \Omega^{p-q}\left(\boldsymbol{C}^{n}\right)$ with $\mathcal{K}_{0}=\mathcal{K}_{0,0}$. An arbitrary element ψ of $\mathcal{K}_{r, s}$ can be uniquely written as

$$
\psi=\frac{1}{r!s!} \sum_{K, L} y_{k_{1}} \cdots y_{k_{r}} d y_{l_{1}} \wedge \cdots \wedge d y_{l_{s}} \wedge \psi(K ; L)
$$

where K moves over the set of sequences consisting of r indices $K=\left(k_{1}, \ldots, k_{r}\right) \in[1, q]^{r}$ and L moves over the set of sequences consisting of s different indices in $[1, q] .|K|$ and $|L|$ denote r the size of K and s the size of L respectively. $\psi(K ; L) \in F_{\mu-(r+s) l} \Omega^{p-q-r}\left(\boldsymbol{C}^{n}\right)$ are symmetric with respect to k_{1}, \ldots, k_{r} and alternating with respect to l_{1}, \ldots, l_{s}. In the sequel we shall call such $\psi(K ; L)$ "admissible".

We define the morphism

$$
\sigma_{\nu}: \mathcal{K}_{\nu} \rightarrow \mathcal{K}_{\nu-1} \quad(\nu \geq 1)
$$

by the differentiation

$$
\sigma_{\nu} \psi=\sum_{i=1}^{q}\left(Q_{i} \frac{\partial}{\partial d y_{i}}+d Q_{i} \wedge \frac{\partial}{\partial y_{i}}\right) \psi
$$

for $\psi \in \mathcal{K}_{\nu}$. In more detail, $\sigma_{\nu}(\nu=r+s)$ is a morphism from $\mathcal{K}_{r, s}$ into $\mathcal{K}_{r, s-1} \oplus \mathcal{K}_{r-1, s}$. Since

$$
\frac{\partial}{\partial y_{i}} \frac{\partial}{\partial y_{j}} \psi=\frac{\partial}{\partial y_{j}} \frac{\partial}{\partial y_{i}} \psi, \quad \frac{\partial}{\partial d y_{i}} \frac{\partial}{\partial d y_{j}} \psi=-\frac{\partial}{\partial d y_{j}} \frac{\partial}{\partial d y_{i}} \psi
$$

we have $\sigma_{\nu-1} \circ \sigma_{\nu}=0$. In this way, we can define the Cartan-Koszul double complex $\left\{\mathcal{K},\left(\sigma_{\nu}\right)_{\nu}\right\}:$

$$
\begin{equation*}
\{0\} \rightarrow \cdots \rightarrow \mathcal{K}_{\nu} \rightarrow \mathcal{K}_{\nu-1} \rightarrow \cdots \rightarrow \mathcal{K}_{0} \rightarrow F_{\mu} \Omega^{p-q}\left(\boldsymbol{C}^{n}\right) / \mathcal{F}_{\mu}^{p-q}(J) \rightarrow\{0\} \tag{5}
\end{equation*}
$$

(See [5, Chapter 7] for the definitions and basic properties of Cartan and Koszul complexes.)

We will show that the complex is a resolution of σ_{0} (Proposition 9).
The morphism σ_{ν} can be described in terms of indices as follows:

$$
\begin{align*}
\left(\sigma_{1} \psi\right)(\emptyset ; \emptyset)= & \sum_{i=1}^{q} Q_{i} \psi(\emptyset ;\{i\})+d Q_{i} \wedge \psi(\{i\} ; \emptyset) \quad(\nu=1) \tag{6}\\
\left(\sigma_{\nu} \psi\right)\left(K^{\prime} ; L\right)= & \sum_{i=1}^{q}\left\{Q_{i} \psi\left(K^{\prime} ;\{i\} \cup L\right)+(-1)^{s} d Q_{i} \wedge \psi\left(\{i\} \cup K^{\prime} ; L\right)\right\} \\
& \left(\left|K^{\prime}\right|=r-1,|L|=s, r+s=\nu\right) \tag{7}
\end{align*}
$$

The following Lemma corresponds to the acyclicity of the part of Cartan complex.
Lemma 7. Suppose that admissible $\psi(K ; L) \in F_{\mu-\nu l} \Omega^{p-q-r}\left(\boldsymbol{C}^{n}\right)(|K|=r,|L|=s$, $r+s=\nu$) satisfy, for $\left|K^{\prime}\right|=r-1$,

$$
\begin{align*}
& \sum_{i=1}^{q} d Q_{i} \wedge \psi\left(\{i\} \cup K^{\prime} ; L\right) \equiv 0 \\
& \quad \bmod \left(Q_{1} F_{\mu-\nu l} \Omega^{p-q-r+1}\left(\boldsymbol{C}^{n}\right)+\cdots+Q_{q} F_{\mu-\nu l} \Omega^{p-q-r+1}\left(\boldsymbol{C}^{n}\right)\right) \tag{8}
\end{align*}
$$

Then there exist admissible $\theta(\tilde{K} ; L) \in F_{\mu-(\nu+1) l} \Omega^{p-q-r-1}\left(\boldsymbol{C}^{n}\right)(|\tilde{K}|=r+1)$ such that

$$
\begin{align*}
\psi(K ; L) \equiv & (-1)^{s} \sum_{i=1}^{q} d Q_{i} \wedge \theta(\{i\} \cup K ; L) \\
& \bmod \left(Q_{1} F_{\mu-(\nu+1) l} \Omega^{p-q-r}\left(\boldsymbol{C}^{n}\right)+\cdots+Q_{q} F_{\mu-(\nu+1) l} \Omega^{p-q-r}\left(\boldsymbol{C}^{n}\right)\right) \tag{9}
\end{align*}
$$

Proof. We put E_{ρ} to be the set of ρ pieces of the label q contained in K such that $K=\left\{k_{1}, \ldots, k_{r-\rho}\right\} \cup E_{\rho}$ and $\left\{k_{1}, \ldots, k_{r-\rho}\right\} \subset[1, q-1]$. The proof can be done by double induction on lowering ρ and raising q.

In case where $q=0$ the lemma is trivial.
Suppose first that $q>0$ and $\rho=r$ i.e., $K=E_{r}$ consists of r pieces of only q. Then by Lemma $6,(8)$ implies that there exist admissible $\theta_{E_{r}}\left(k_{1} ; L\right) \in F_{\mu-(\nu+1) \iota} \Omega^{p-q-r-1}\left(C^{n}\right)$
such that

$$
\begin{equation*}
\psi\left(E_{r} ; L\right) \equiv(-1)^{s} \sum_{i=1}^{q} d Q_{i} \wedge \theta_{E_{r}}(i ; L) \tag{10}
\end{equation*}
$$

$\theta_{E_{r}}\left(k_{1} ; L\right)$ may be denoted by $\theta\left(\left\{k_{1}\right\} \cup E_{r} ; L\right)$ which can be made admissible too, so that (9) is valid in case of $K=E_{r}$.

And then (8) for $K^{\prime}=E_{r-1}(\rho=r-1)$ shows

$$
\sum_{i=1}^{q-1} d Q_{i} \wedge\left\{\psi\left(\{i\} \cup E_{r-1} ; L\right)-(-1)^{s} d Q_{q} \wedge \theta\left(\{i\} \cup E_{r} ; L\right)\right\} \equiv 0
$$

By induction hypothesis with respect to q, there exist admissible $\theta_{E_{r-1}}\left(k_{1} k_{2} ; L\right) \in$ $F_{\mu-(\nu+1) \iota} \Omega^{p-q-r-1}\left(C^{n}\right)$ such that

$$
\begin{array}{r}
\psi\left(\left\{k_{1}\right\} \cup E_{r-1} ; L\right) \equiv(-1)^{s} \sum_{i=1}^{q-1}\left\{d Q_{i} \wedge \theta_{E_{r-1}}\left(i k_{1} ; L\right)+d Q_{q} \wedge \theta\left(\left\{k_{1}\right\} \cup E_{r} ; L\right)\right\} \\
\quad\left(1 \leq k_{1} \leq q-1\right) . \tag{11}
\end{array}
$$

We may put $\theta\left(\left\{k_{1}, k_{2}\right\} \cup E_{r-1} ; L\right)=\theta_{E_{r-1}}\left(k_{1} k_{2} ; L\right)$, so that we have the identity (9) for $\rho=r-1$. $\theta(\tilde{K} ; L)$ thus defined for $|\tilde{K}|=r+1,|L|=s$ may be made admissible.

Suppose now that the Lemma has been proved in case of $\rho \geq \tau$. We want to prove it in case of $\rho=\tau-1$. The identity (8) implies that there exist $\theta\left(\left\{k_{1}, \ldots, k_{r-\tau+1}\right\} \cup E_{\tau} ; L\right) \in$ $F_{\mu-(\nu+1) \iota} \Omega^{p-q-r-1}\left(C^{n}\right)$ such that

$$
\begin{equation*}
\psi\left(\left\{k_{1}, \ldots, k_{r-\tau}\right\} \cup E_{\tau} ; L\right) \equiv(-1)^{s} \sum_{i=1}^{q} d Q_{i} \wedge \theta\left(\left\{i, k_{1}, \ldots, k_{r-\tau}\right\} \cup E_{\tau} ; L\right) \tag{12}
\end{equation*}
$$

We may assume that $\theta\left(\left\{k_{1}, \ldots, k_{r-\tau+1}\right\} \cup E_{\tau} ; L\right)$ is admissible. By substitution of (12) into (8) we have the identity

$$
\sum_{i=1}^{q-1}\left\{d Q_{i} \wedge \psi\left(\left\{i, k_{1}, \ldots, k_{r-\tau}\right\} \cup E_{\tau-1} ; L\right)-(-1)^{s} d Q_{q} \wedge \theta\left(\left\{i, k_{1}, \ldots, k_{r-\tau}\right\} \cup E_{\tau} ; L\right)\right\} \equiv 0
$$

By induction hypothesis, there exist admissible $\theta_{E_{\tau-1}}\left(k_{1} \cdots k_{r-\tau+2} ; L\right) \in F_{\mu-(\nu+1) l}$ $\cdot \Omega^{p-q-r-1}\left(\boldsymbol{C}^{n}\right)$ such that

$$
\begin{align*}
& \psi\left(\left\{k_{1}, \ldots, k_{r-\tau+1}\right\} \cup E_{\tau-1} ; L\right) \\
& \equiv(-1)^{s}\left\{\sum_{i=1}^{q-1} d Q_{i} \wedge \theta_{E_{\tau-1}}\left(i k_{1} \cdots k_{r-\tau+1} ; L\right)+d Q_{q} \wedge \theta\left(\left\{k_{1}, \ldots, k_{r-\tau+1}\right\} \cup E_{\tau} ; L\right)\right\} \\
& \quad\left(\left\{k_{1}, \ldots, k_{r-\tau+1}\right\} \subset[1, q-1]\right) . \tag{13}
\end{align*}
$$

We may put again

$$
\theta\left(\left\{k_{1}, \ldots, k_{r-\tau+2}\right\} \cup E_{\tau-1} ; L\right)=\theta_{E_{\tau-1}}\left(k_{1} \cdots k_{r-\tau+2} ; L\right) .
$$

Thus $\theta\left(\left\{k_{1}, \ldots, k_{r-\tau+2}\right\} \cup E_{\tau-1} ; L\right)$ are in $F_{\mu-(\nu+1) l} \Omega^{p-q-r-1}\left(\boldsymbol{C}^{n}\right)$ and made admissible. Hence we have the identity (9) for $E_{\tau-1}$. Lemma 7 has been proved for all K.

The following Lemma related to the acyclicity of the part of Koszul complex is well-known and can be proved similarly as above (see [5], [6]).

Lemma 8. \quad Suppose that admissible $\psi(K ; L) \in F_{\mu-\nu l} \Omega^{p-q-r}\left(\boldsymbol{C}^{n}\right)(|K|=r,|L|=s$, $r+s=\nu$) satisfy

$$
\begin{equation*}
\sum_{i=1}^{q} Q_{i} \psi\left(K ;\{i\} \cup L^{\prime}\right)=0 \quad\left(\left|L^{\prime}\right|=s-1\right) \tag{14}
\end{equation*}
$$

Then there exist admissible $\theta(K ; \tilde{L}) \in F_{\mu-(\nu+1) l} \Omega^{p-q-r}\left(\boldsymbol{C}^{n}\right)(|\tilde{L}|=s+1)$ such that

$$
\psi(K ; L)=\sum_{i=1}^{q} Q_{i} \theta(K ;\{i\} \cup L)
$$

Under this circumstance the following Proposition holds.
Proposition 9. The complex $\left\{\mathcal{K},\left(\sigma_{\nu}\right)_{\nu}\right\}$ is acyclic.
Proof. Suppose $\sigma_{0}\left(\varphi_{J}\right)=0$ for $\varphi_{J} \in F_{\mu} \Omega^{p-q}\left(\boldsymbol{C}^{n}\right)$. Then Lemma 6 shows that there exist $\psi(\{i\} ; \emptyset) \in F_{\mu-l} \Omega^{p-q-1}\left(\boldsymbol{C}^{n}\right), \psi(\emptyset ;\{i\}) \in F_{\mu-l} \Omega^{p-q}\left(\boldsymbol{C}^{n}\right)$ such that $\varphi_{J}=$ $\left(\sigma_{1} \psi\right)(\emptyset ; \emptyset)$.

Next suppose that $\sigma_{\nu} \psi=0$ for $\psi \in \mathcal{K}_{\nu}(\nu \geq 1)$. We must prove that there exists $\theta \in \mathcal{K}_{\nu+1}$ such that $\psi=\sigma_{\nu+1} \theta$. By (7) we have the identity (8). From Lemma 7 there exist admissible $\theta \in \mathcal{K}_{\nu+1}$ such that (9) is valid. We put $\tilde{\psi}=\psi-\sigma_{\nu+1} \theta$, namely, for $|K|=r,|L|=s,(r+s=\nu)$

$$
\begin{equation*}
\left.\tilde{\psi}(K ; L)=\psi(K ; L)-\sum_{i=1}^{q}\left\{Q_{i} \theta(K ;\{i\}) \cup L\right)+(-1)^{s} d Q_{i} \wedge \theta(\{i\} \cup K ; L)\right\} . \tag{15}
\end{equation*}
$$

Then Lemma 7 shows that $\tilde{\psi} \equiv 0$. In particular, for $|K|=\nu, L=\emptyset$ there exist admissible $\tilde{\theta}\left(K ;\left\{l_{1}\right\}\right) \in F_{\mu-(\nu+1) l} \Omega^{p-q-r}\left(\boldsymbol{C}^{n}\right)$ such that

$$
\tilde{\psi}(K ; \emptyset)=\sum_{i=1}^{q} Q_{i} \tilde{\theta}(K ;\{i\}) .
$$

We put further $\tilde{\theta}(\tilde{K} ; \emptyset)$ to be 0 for $|\tilde{K}|=\nu+1$. By induction on s, we can construct admissible $\tilde{\theta}(K ; \tilde{L})$ for $|K|=r,|\tilde{L}|=s+1$ such that

$$
\begin{equation*}
\tilde{\psi}(K ; L)=\sum_{i=1}^{q} Q_{i} \tilde{\theta}(K ;\{i\} \cup L)+(-1)^{s} \sum_{i=1}^{q} d Q_{i} \wedge \tilde{\theta}(\{i\} \cup K ; L) . \tag{16}
\end{equation*}
$$

In fact (16) is valid for $s=0$. Suppose that $\tilde{\theta}(\tilde{K} ; L)$ have been constructed for $|L|<s$. The identity $\sigma_{\nu} \tilde{\psi}=0$ implies the identity for $|K|=r,\left|L^{\prime}\right|=s-1, r+s=\nu$:

$$
\begin{equation*}
\sum_{i=1}^{q} Q_{i} \tilde{\psi}\left(K ;\{i\} \cup L^{\prime}\right)+(-1)^{s-1} d Q_{i} \wedge \tilde{\psi}\left(\{i\} \cup K ; L^{\prime}\right)=0 \tag{17}
\end{equation*}
$$

By the substitution of (16) for $\tilde{\psi}\left(\{i\} \cup K ; L^{\prime}\right)$ into (17) we have

$$
\sum_{i=1}^{q} Q_{i}\left\{\tilde{\psi}\left(K ;\{i\} \cup L^{\prime}\right)+(-1)^{s-1} \sum_{j=1}^{q} d Q_{j} \wedge \tilde{\theta}\left(\{j\} \cup K ;\{i\} \cup L^{\prime}\right)\right\}=0 .
$$

Hence from Lemma 8 there exist admissible $\tilde{\theta}(K ; \tilde{L}) \in F_{\mu-(\nu+1) l} \Omega^{p-q-r}\left(\boldsymbol{C}^{n}\right)$ for $|\tilde{L}|=$ $s+1$ such that (16) holds for $|L|=s$. In this way we have constructed $\tilde{\theta}(K ; L)$ for all K, L with $|K|+|L|=\nu+1$ such that $\tilde{\psi}=\sigma_{\nu+1} \tilde{\theta}$. Therefore the following identity holds:

$$
\psi=\sigma_{\nu+1}(\theta+\tilde{\theta})
$$

Proposition 9 has been proved.
As a result of Proposition 9 we have the equality
Corollary 10. We have

$$
\begin{equation*}
\operatorname{dim} F_{\mu} \Omega^{p-q}\left(\boldsymbol{C}^{n}\right) / \mathcal{F}_{\mu} \Omega^{p-q}(J)=\sum_{\nu=0}^{p}(-1)^{\nu} \operatorname{dim} \mathcal{K}_{\nu} . \tag{18}
\end{equation*}
$$

Proposition 11. Fix the set of indices $J=\left\{j_{1}, \ldots, j_{q}\right\} \subset[1, m]$. We have the dimension formula

$$
\operatorname{dim} F_{\mu} \Omega^{p-q}\left(\boldsymbol{C}^{n}\right) / \mathcal{F}_{\mu}^{p-q}(J)=N_{\mu, q}^{(p)},
$$

where

$$
\begin{aligned}
N_{\mu, q}^{(p)}= & \sum_{\alpha \geq 0, p-q \geq \beta \geq 0}(-1)^{\alpha+\beta}\binom{\mu+n-p+q-l \alpha-(l-1) \beta}{n} \\
& \cdot\binom{n}{p-q-\beta}\binom{q}{\alpha}\binom{q+\beta-1}{\beta} .
\end{aligned}
$$

In particular when $p=n$,

$$
N_{\mu, q}^{(n)}=\sum_{\alpha \geq 0 ; n-q \geq \beta \geq 0}(-1)^{\alpha+\beta}\binom{\mu+q-l \alpha-(l-1) \beta}{n}\binom{n}{n-q-\beta}\binom{q}{\alpha}\binom{q+\beta-1}{\beta}
$$

Proof. If $\mu \geq(l-1) n$, then $\mu+n-p+q-l \alpha-(l-1) \beta \geq 0$ for $q \geq \alpha \geq 0$, $p-q \geq \beta \geq 0$. The following formula

$$
\operatorname{dim} \mathcal{K}_{\beta, \alpha}=\binom{\mu+n-p+q-l \alpha-(l-1) \beta}{n}\binom{n}{p-q-\beta}\binom{q}{\alpha}\binom{q+\beta-1}{\beta}
$$

holds, since

$$
\operatorname{dim} S_{\beta}=\binom{q+\beta-1}{\beta}, \quad \operatorname{dim} \Lambda^{\alpha}=\binom{q}{\alpha}
$$

$\operatorname{dim} F_{\mu-(\alpha+\beta) l} \Omega^{p-q-\beta}\left(\boldsymbol{C}^{n}\right)=\binom{\mu+n-p+q-l \alpha-(l-1) \beta}{n}\binom{n}{p-q-\beta}$.
Hence (18) shows Proposition 11.
Corollary 12. We have

$$
\operatorname{dim} F_{\mu, q} \Omega^{p} / F_{\mu, q-1} \Omega^{p}=\binom{m}{q} N_{\mu, q}^{(p)} .
$$

From now on, we simply write $N_{q}^{(p)}$ instead of $N_{(l-1) n, q}^{(p)}$ for $\mu=(l-1) n$.
In particular, in case $p=n$, we have the following Proposition.
Proposition 13. We have

$$
\begin{equation*}
\operatorname{dim} F_{\mu} \Omega^{n}=\sum_{q=0}^{\min (n, m)}\binom{m}{q} N_{\mu, q}^{(n)}=\binom{\mu+l m}{n} . \tag{19}
\end{equation*}
$$

By inversion formula, the identity (19) is equivalent to say

$$
\begin{equation*}
N_{\mu, q}^{(n)}=(-1)^{q} \sum_{\nu=0}^{n}(-1)^{\nu}\binom{q}{\nu}\binom{\mu+l \nu}{n} \quad(0 \leq q \leq \min (n, m)) . \tag{20}
\end{equation*}
$$

As a result we have

$$
F_{\mu} \Omega^{n}=F_{\mu, n} \Omega^{n}
$$

In particular, for $\mu=(l-1) n$,

$$
\begin{equation*}
\operatorname{dim} F_{(l-1) n} \Omega^{n}=\binom{(l-1) n+l m}{n}=\sum_{q=0}^{\min (n, m)}\binom{m}{q} N_{q}^{(n)} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
N_{q}^{(n)}=(-1)^{q} \sum_{\nu=0}^{q}(-1)^{\nu}\binom{(l-1) n+l \nu}{n}\binom{q}{\nu} . \tag{22}
\end{equation*}
$$

Remark. The identity (20) is still valid for $q \geq n+1$ or $q \geq m+1$ in the sense that both sides of (20) vanish simultaneously.

Proof of Proposition 13. It is sufficient to prove the identity (20). We introduce the two generating functions as follows:

$$
\begin{align*}
& f(t)=\sum_{0 \leq \alpha \leq q, 0 \leq \beta \leq n-q}\binom{\mu+q-l \alpha-(l-1) \beta}{n}\binom{n}{n-q-\beta}\binom{q}{\alpha}\binom{q+\beta-1}{\beta} t^{\beta}, \tag{23}\\
& g(t)=\sum_{0 \leq \alpha \leq q, 0 \leq \beta \leq n-q}\binom{\mu+q-l \alpha-(l-1) \beta}{n}\binom{n}{n-q-\beta}\binom{q}{\alpha}\binom{q+\beta}{\beta} t^{\beta} . \tag{2}
\end{align*}
$$

By definition, we have

$$
f(1)=N_{\mu, q}^{(n)}, \quad g(t)=\left(1+\frac{1}{q} t \frac{d}{d t}\right) f(t) .
$$

Since $f(t), g(t)$ both are polynomials in t, we have

$$
\begin{equation*}
f(t)=q t^{-q} \int_{0}^{t} t^{q-1} g(t) d t \tag{25}
\end{equation*}
$$

We first want to find an integral representation of $g(t)$.
Lemma 14. $g(t)$ can be represented as the integral

$$
\begin{equation*}
g(t)=\binom{n}{q} \frac{1}{2 \pi i} \oint_{s=0} s^{-n-1}(1+s)^{\mu-(l-1) n}\left\{(1+s)^{l}-1\right\}^{q}\left\{(1+s)^{l-1}-t\right\}^{n-q} d s . \tag{26}
\end{equation*}
$$

Proof. In fact substituting the equality

$$
\begin{equation*}
\binom{\mu+q-l \alpha-(l-1) \beta}{n}=\frac{1}{2 \pi i} \oint_{s=0} s^{-n-1}(1+s)^{\mu+q-l \alpha-(l-1) \beta} d s \tag{27}
\end{equation*}
$$

into the RHS of (24),

$$
\begin{aligned}
g(t) & =\sum_{\alpha, \beta}(-1)^{\alpha+\beta}\binom{q}{\alpha} \frac{n!}{q!\beta!(n-q-\beta)!} t^{\beta} \cdot \frac{1}{2 \pi i} \oint_{s=0} s^{-n-1}(1+s)^{\mu+q-l \alpha-(l-1) \beta} d s \\
& =\binom{n}{q} \sum_{\alpha}(-1)^{\alpha}\binom{q}{\alpha} \frac{1}{2 \pi i} \oint_{s=0} s^{-n-1}(1+s)^{\mu+q-l \alpha}\left\{1-\frac{t}{(1+s)^{l-1}}\right\}^{n-q} d s \\
& =\binom{n}{q} \sum_{\alpha}(-1)^{\alpha}\binom{q}{\alpha} \frac{1}{2 \pi i} \oint_{s=0} s^{-n-1}(1+s)^{\mu-(l-1) n+l(q-\alpha)}\left\{(1+s)^{l-1}-t\right\}^{n-q} d s
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{n}{q} \frac{1}{2 \pi i} \oint_{s=0} s^{-n-1}(1+s)^{\mu-(l-1) n+l q}\left\{1-\frac{1}{(1+s)^{l}}\right\}^{q}\left\{(1+s)^{l-1}-t\right\}^{n-q} d s \\
& =\binom{n}{q} \frac{1}{2 \pi i} \oint_{s=0} s^{-n-1}(1+s)^{\mu-(l-1) n}\left\{(1+s)^{l}-1\right\}^{q}\left\{(1+s)^{l-1}-t\right\}^{n-q} d s .
\end{aligned}
$$

By substituting (26) into (25), we have the integral formula for $f(t)$:

$$
\begin{align*}
f(t)= & \frac{n!}{(q-1)!(n-q)!} t^{-q} \frac{1}{2 \pi i} \oint_{s=0} s^{-n-1}(1+s)^{\mu-(l-1) n}\left\{(1+s)^{l}-1\right\}^{q} d s \\
& \cdot \int_{0}^{t} t^{q-1}\left\{(1+s)^{l-1}-t\right\}^{n-q} d t . \tag{28}
\end{align*}
$$

Furthermore we have the following.
Lemma 15.

$$
\begin{align*}
\int_{0}^{t} t^{q-1}\left\{(1+s)^{l-1}-t\right\}^{n-q} d t= & -\sum_{\nu=1}^{q} \frac{(q-1)!t^{q-\nu}}{(n-q+1)_{\nu}(q-\nu)!}\left\{(1+s)^{l-1}-t\right\}^{n-q+\nu} \\
& +\frac{(q-1)!}{(n-q+1)_{q}}(1+s)^{n(l-1)} . \tag{29}
\end{align*}
$$

Proof. (29) can be proved by induction on q, while n being fixed. In fact, for $q=1$ both sides of (29) are equal to

$$
-\frac{1}{n}\left\{(1+s)^{l-1}-t\right\}^{n}+\frac{1}{n}(1+s)^{n(l-1)} .
$$

Suppose $1<q \leq n$. By integration by parts, the LHS of (29) is equal to

$$
-\frac{1}{n-q+1} t^{q-1}\left\{(1+s)^{l-1}-t\right\}^{n-q+1}+\frac{q-1}{n-q+1} \int_{0}^{t} t^{q-2}\left\{(1+s)^{l-1}-t\right\}^{n-q+1} d t .
$$

Applying the formula (29) for $q-1$ instead of q, we get the formula (29) for q.
Hence from (28) and Lemma 15, we have
LHS of $(20)=f(1)$

$$
\begin{align*}
= & \frac{n!}{(q-1)!(n-q)!} \frac{1}{2 \pi i} \oint_{s=0} s^{-n-1}(1+s)^{\mu-(l-1) n}\left\{(1+s)^{l}-1\right\}^{q} \\
& \cdot\left[-\sum_{\nu=1}^{q} \frac{(q-1)!}{(n-q+1)_{\nu}(q-\nu)!}\left\{(1+s)^{l-1}-1\right\}^{n-q+\nu}+\frac{(q-1)!}{(n-q+1)_{q}}(1+s)^{n(l-1)}\right] d s \\
= & \frac{n!}{(q-1)!(n-q)!} \frac{1}{2 \pi i} \oint_{s=0} s^{-n-1}(1+s)^{\mu}\left\{(1+s)^{l}-1\right\}^{q} \cdot \frac{(q-1)!}{(n-q+1)_{q}} d s \tag{30}
\end{align*}
$$

$$
\begin{equation*}
=\frac{1}{2 \pi i} \oint_{s=0} s^{-n-1}(1+s)^{\mu}\left\{(1+s)^{l}-1\right\}^{q} d s \tag{31}
\end{equation*}
$$

Here the relation (30) follows from the Taylor expansions near $s=0$:

$$
\left\{(1+s)^{l}-1\right\}^{q}\left\{(1+s)^{l-1}-1\right\}^{n-q+\nu}=A s^{n+\nu}+\cdots
$$

where A is a constant.
On the other hand, we have

$$
\begin{align*}
\text { RHS of }(20) & =(-1)^{q} \sum_{\nu=0}^{q}(-1)^{\nu}\binom{\mu+l \nu}{n}\binom{q}{\nu} \\
& =(-1)^{q} \frac{1}{2 \pi i} \oint_{s=0} \sum_{\nu=0}^{q}(-1)^{\nu} s^{-n-1}(1+s)^{\mu+l \nu}\binom{q}{\nu} d s \\
& =(-1)^{q} \frac{1}{2 \pi i} \oint_{s=0} s^{-n-1}(1+s)^{\mu}\left\{1-(1+s)^{l}\right\}^{q} d s \\
& =\frac{1}{2 \pi i} \oint_{s=0} s^{-n-1}(1+s)^{\mu}\left\{(1+s)^{l}-1\right\}^{q} d s \tag{32}
\end{align*}
$$

Hence (20) has been proved.
From now on we only consider the case where $\mu=(l-1) n$.
Definition 16. For each $J=\left\{j_{1}, \ldots, j_{q}\right\}$, there exists an $N_{q}^{(n)}$ dimensional subspace W_{J} of $F_{(l-1) n} \Omega^{n-q}\left(\boldsymbol{C}^{n}\right)$ such that

$$
F_{(l-1) n} \Omega^{n-q}\left(\boldsymbol{C}^{n}\right)=W_{J} \oplus \mathcal{F}_{(l-1) n}^{n-q}(J)
$$

We also put $W_{0}=F_{(l-1) n} \Omega^{n}\left(\boldsymbol{C}^{n}\right)$.
Then it is possible from Lemma 6 and Proposition 13 to make the following identification:

Corollary 17. We have the isomorphism

$$
\begin{equation*}
\rho: F_{(l-1) n} \Omega^{n} \cong W_{0} \oplus \sum_{q=1}^{n} \sum_{J \subset[1, m],|J|=q} W_{J} \tag{33}
\end{equation*}
$$

Remark. $\quad F_{\mu} \Omega^{n}$ coincides with the space spanned by

$$
\begin{equation*}
\varphi=\frac{f}{P_{1} P_{2} \cdots P_{m}} \varpi \quad(f \in \boldsymbol{C}[x]) \tag{34}
\end{equation*}
$$

such that $\operatorname{deg} f \leq \mu-n+l m$, where

$$
\varpi=d x_{1} \wedge \cdots \wedge d x_{n}
$$

As regards (34), there exist the unique $\varphi_{0} \in W_{0}, \varphi_{J} \in W_{J}$ such that

$$
\begin{equation*}
\varphi=\frac{f}{P_{1} \cdots P_{m}} \varpi=\varphi_{0}+\sum_{q=1}^{\min (n, m)} \sum_{J,|J|=q} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \varphi_{J} . \tag{35}
\end{equation*}
$$

This is a partial fraction decomposition with the denominators P_{1}, \ldots, P_{m}.

3. Main Results.

We first prove the following
Theorem 18. We have the isomorphism

$$
H^{n}(\Omega, \nabla) \cong H^{n}\left(F_{(l-1) n} \Omega, \nabla\right)
$$

Proof. It is enough to prove the following two facts:
(i) For an arbitrary $\varphi \in \Omega^{n}$, there exists $\varphi^{*} \in F_{(l-1) n} \Omega^{n}$ such that

$$
\varphi \sim \varphi^{*} .
$$

(ii) Two arbitrary $\varphi, \varphi^{*} \in F_{(l-1) n} \Omega^{n}$ which are cohomologous to each other in Ω are cohomologous in $F_{(l-1) n} \Omega$.
About (i):
Since $\Omega^{n}=\bigcup_{\mu=(l-1) n}^{\infty} F_{\mu} \Omega^{n}$, there exists $\mu(\mu \geq(l-1) n)$ such that $\varphi \in F_{\mu} \Omega^{n}$.
By the formula (35) φ has the expression

$$
\begin{equation*}
\varphi=\varphi_{0}+\sum_{q=1}^{\min (n, m)} \sum_{J \subset[1, m],|J|=q} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \varphi_{J}, \tag{36}
\end{equation*}
$$

where $\varphi_{0} \in F_{\mu} \Omega^{n}\left(\boldsymbol{C}^{n}\right)$ and $\varphi_{J} \in F_{\mu} \Omega^{n-q}\left(\boldsymbol{C}^{n}\right)$.
Suppose that $\mu>(l-1) n$. By taking the homogeneous part of highest degree,

$$
\bar{\varphi}=\bar{\varphi}_{0}+\sum_{q=1}^{\min (n, m)} \sum_{J,|J|=q} \frac{d \bar{P}_{j_{1}}}{\bar{P}_{j_{1}}} \wedge \cdots \wedge \frac{d \bar{P}_{j_{q}}}{\bar{P}_{j_{q}}} \wedge \bar{\varphi}_{J}
$$

Owing to Proposition 3 there exists a homogeneous $\bar{\psi} \in F_{\mu} \Omega^{n-1}(\log \bar{D})$:

$$
\bar{\psi}=\bar{\psi}_{0}+\sum_{q=1}^{\min (n-1, m)} \sum_{J,|J|=q} \frac{d \bar{P}_{j_{1}}}{\bar{P}_{j_{1}}} \wedge \cdots \wedge \frac{d \bar{P}_{j_{q}}}{\bar{P}_{j_{q}}} \wedge \bar{\psi}_{J}
$$

such that

$$
\bar{\varphi}=\bar{\nabla} \bar{\psi}
$$

Put

$$
\psi=\bar{\psi}_{0}+\sum_{q=1}^{\min (n-1, m)} \sum_{J,|J|=q} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \bar{\psi}_{J} .
$$

Then

$$
\varphi-\nabla \psi \in F_{\mu-1} \Omega^{n}
$$

By continuing this process we finally arrive at (i).
About (ii):
By assumption there exists $\psi \in F_{\mu} \Omega^{n-1}$ such that

$$
\varphi-\varphi^{*}=\nabla \psi
$$

where ψ has by Lemma 4 the expression

$$
\begin{equation*}
\psi=\psi_{0}+\sum_{q=1}^{\min (m, n-1)} \sum_{J,|J|=q} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \psi_{J} \tag{37}
\end{equation*}
$$

such that $\psi_{0} \in F_{\mu} \Omega^{n-1}\left(\boldsymbol{C}^{n}\right), \psi_{J} \in F_{\mu} \Omega^{n-q-1}\left(\boldsymbol{C}^{n}\right)$.
Suppose that $\mu>(l-1) n$. Then by taking the homogeneous part of highest degree we have

$$
0=\bar{\nabla} \bar{\psi}
$$

Due to Proposition 3 there exists $\chi \in F_{\mu} \Omega^{n-2}(\log \bar{D})$ such that

$$
\bar{\psi}=\bar{\nabla} \bar{\chi}
$$

Hence $\psi-\nabla \bar{\chi} \in F_{\mu-1} \Omega^{n-1}$ and $\nabla \psi=\nabla(\psi-\nabla \bar{\chi})$. By continuing this process, we finally arrive at (ii).

Remark. Theorem 18 may be generalized as the following conjecture under a weaker condition.

Let m polynomials P_{k} of degree l_{k} such that $l_{1} \geq l_{2} \geq \cdots \geq l_{m} \geq 1$ satisfy the two conditions $\mathcal{C}_{1}, \mathcal{C}_{2}$. We can similarly define the filtration F_{μ} for the logarithmic forms Ω and ∇ as in Section 1. Then we have the isomorphism

$$
H^{n}(\Omega, \nabla) \cong H^{n}\left(F_{\mu} \Omega, \nabla\right) \quad\left(\mu \geq\left(l_{1}-1\right) n\right) .
$$

It is evident that

$$
\nabla F_{\mu, q} \Omega^{p-1} \subset F_{\mu, q+1} \Omega^{p}
$$

Moreover the following is true:
Proposition 19. Suppose that $\psi \in F_{(l-1) n, q} \Omega^{p-1}(2 \leq p \leq n, 1 \leq q \leq p-1)$ satisfies

$$
\nabla \psi \equiv 0 \quad \bmod F_{(l-1) n, q} \Omega^{p}
$$

Then we have

$$
\psi \equiv 0 \quad \bmod \nabla F_{(l-1) n, q-1} \Omega^{p-2}+F_{(l-1) n, q-1} \Omega^{p-1}
$$

i.e.,

$$
\nabla^{-1}\left(F_{(l-1) n, q} \Omega^{p}\right) \cap F_{(l-1) n, q} \Omega^{p-1}=\nabla F_{(l-1) n, q-1} \Omega^{p-2}+F_{(l-1) n, q-1} \Omega^{p-1}
$$

so that we have

$$
\begin{equation*}
\nabla F_{(l-1) n, q} \Omega^{p-1} \cap F_{(l-1) n, q} \Omega^{p}=\nabla F_{(l-1) n, q-1} \Omega^{p-1} \tag{38}
\end{equation*}
$$

We want to prove this Proposition by induction on m. Before proving it we give three Lemmas.

Lemma 20. There exist $\chi^{(0)} \in F_{(l-1) n, q-1} \Omega^{p-2}, \psi^{(1)} \in F_{(l-1) n, q} \Omega^{p-1}:$

$$
\begin{aligned}
\chi^{(0)} & \equiv \sum_{J \subset[1, m-1],|J|=q-1} \frac{P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{P_{j_{q-1}}}{P_{j_{q-1}}} \wedge \chi_{J}^{(0)} \quad \bmod F_{(l-1) n, q-2} \Omega^{p-2} \\
\psi^{(1)} & \equiv \sum_{J \subset[1, m-1],|J|=q} \frac{P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{P_{j_{q}}}{P_{j_{q}}} \wedge \psi_{J}^{(1)} \quad \bmod F_{(l-1) n, q-1} \Omega^{p-1}
\end{aligned}
$$

such that

$$
\begin{equation*}
\psi \equiv \nabla \chi^{(0)}+\psi^{(1)} \quad \bmod F_{(l-1) n, q-1} \Omega^{p-1} \tag{39}
\end{equation*}
$$

Proof. $\psi \in F_{(l-1) n, q} \Omega^{p-1}$ can be described as

$$
\psi \equiv \sum_{J=\left\{j_{1}, \ldots, j_{q}\right\} \subset[1, m]} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \psi_{J} \quad \bmod F_{(l-1) n, q-1} \Omega^{p-1}
$$

where $\psi_{J} \in F_{(l-1) n} \Omega^{p-1-q}\left(\boldsymbol{C}^{n}\right)$, so that

$$
\nabla \psi \equiv \sum_{k=1}^{m} \lambda_{k} \frac{d P_{k}}{P_{k}} \wedge \sum_{J \subset[1, m],|J|=q} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \psi_{J} \quad \bmod F_{(l-1) n, q} \Omega^{p} .
$$

Hence in the representation (2) for $\varphi=\nabla \psi$ and $K=\left\{j_{1}, \ldots, j_{q+1}\right\} \subset[1, m]$,

$$
\begin{equation*}
\varphi_{K}=\sum_{\nu=1}^{q+1}(-1)^{\nu-1} \lambda_{j_{\nu}} \psi_{\partial_{\nu} K} \tag{40}
\end{equation*}
$$

$\left(\partial_{\nu} K\right.$ means the deletion of the suffix j_{ν} from $\left.K\right)$. Suppose further that

$$
\begin{equation*}
\nabla \psi \equiv 0 \quad \bmod F_{(l-1) n, q} \Omega^{p} . \tag{41}
\end{equation*}
$$

Lemma 6 implies for each K

$$
\begin{equation*}
\varphi_{K}=\sum_{\nu=1}^{q+1}\left(P_{j_{\nu}} \theta_{j_{\nu} ; K}+d P_{j_{\nu}} \wedge \theta_{j_{\nu} ; K}^{\prime}\right) \in \mathcal{F}_{(l-1) n}^{p-q-1}(K) \tag{42}
\end{equation*}
$$

where

$$
\theta_{j_{\nu} ; K} \in F_{(l-1) n-l} \Omega^{p-q-1}\left(\boldsymbol{C}^{n}\right), \quad \theta_{j_{\nu} ; K}^{\prime} \in F_{(l-1) n-l} \Omega^{p-q-2}\left(\boldsymbol{C}^{n}\right) .
$$

Case (i): $J \subset[1, m-1], K=\{J, m\}$.
From (40), (42)

$$
\begin{aligned}
\varphi_{K} & =\sum_{\nu=1}^{q}(-1)^{\nu-1} \lambda_{j_{\nu}} \psi_{\partial_{\nu} J, m}+(-1)^{q} \lambda_{m} \psi_{J} \\
& \equiv P_{m} \theta_{m ; K}+d P_{m} \wedge \theta_{m ; K}^{\prime} \quad \bmod \mathcal{F}_{(l-1) n}^{p-q-1}(J)
\end{aligned}
$$

Hence from (42)

$$
\begin{align*}
(-1)^{q} \lambda_{m} \psi_{J} \equiv-\sum_{\nu=1}^{q}(-1)^{\nu-1} \lambda_{j_{\nu}} \psi_{\partial_{\nu} J, m}+\varphi_{K}+P_{m} \theta_{m ; K}+d P_{m} \wedge & \theta_{m ; K}^{\prime} \\
& \bmod \mathcal{F}_{(l-1) n}^{p-q-1}(J) \tag{43}
\end{align*}
$$

Case (ii): $K \subset[1, m-1]$.
From (40), (42), (43)

$$
\begin{aligned}
\varphi_{K} & =\sum_{\nu=1}^{q+1}(-1)^{\nu-1} \lambda_{j_{\nu}} \psi_{\partial_{\nu} K} \\
\equiv & \frac{(-1)^{q}}{\lambda_{m}}\left[\sum _ { \nu = 1 } ^ { q + 1 } (- 1) ^ { \nu - 1 } \lambda _ { j _ { \nu } } \left\{-\sum_{1 \leq \kappa<\nu \leq q}(-1)^{\kappa-1} \lambda_{\kappa} \psi_{\partial_{\kappa} \partial_{\nu} K, m}\right.\right. \\
& \left.\left.-(-1)^{\kappa} \lambda_{\kappa} \sum_{1 \leq \nu \leq \kappa \leq q} \psi_{\partial_{\nu} \partial_{\kappa} K, m}+\varphi_{\partial_{\nu} K, m}\right\}\right] \bmod \mathcal{F}_{(l-1) n}^{p-q-1}(K)
\end{aligned}
$$

$$
\begin{equation*}
\equiv 0 \quad \bmod \mathcal{F}_{(l-1) n}^{p-q-1}(K) \tag{44}
\end{equation*}
$$

On the other hand, from (38), (42), (43)

$$
\begin{aligned}
\psi \equiv & \sum_{J \subset[1, m-1],|J|=q} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \psi_{J} \\
& +\sum_{J \subset[1, m-1],|J|=q-1} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q-1}}}{P_{j_{q-1}}} \wedge \frac{d P_{m}}{P_{m}} \wedge \psi_{J, m} \quad \bmod F_{(l-1) n, q-1} \Omega^{p-1} \\
= & \frac{(-1)^{q}}{\lambda_{m}} \sum_{J \subset[1, m-1],|J|=q} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge\left\{\sum_{\nu=1}^{q}(-1)^{\nu} \lambda_{j_{\nu}} \psi_{\partial \nu J, m}+\varphi_{J, m}\right\} \\
& +\sum_{J \subset[1, m-1],|J|=q-1} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q-1}}}{P_{j_{q-1}}} \wedge \frac{d P_{m}}{P_{m}} \wedge \psi_{J, m} \\
= & \sum_{k=1}^{m} \lambda_{k} \frac{d P_{k}}{P_{k}} \wedge \chi^{(0)}+\psi^{(1)},
\end{aligned}
$$

where

$$
\begin{aligned}
& \chi^{(0)}=-\frac{(-1)^{q}}{\lambda_{m}} \sum_{J \subset[1, m-1],|J|=q-1} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q-1}}}{P_{j_{q-1}}} \wedge \psi_{J, m} \in F_{(l-1) n, q-1} \Omega^{p-2}, \\
& \psi^{(1)}=\frac{(-1)^{q}}{\lambda_{m}} \sum_{J \subset[1, m-1],|J|=q} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \varphi_{J, m} \in F_{(l-1) n, q} \Omega^{p-1},
\end{aligned}
$$

which shows Lemma 20.
From the equality

$$
\nabla \psi \equiv 0 \quad \bmod F_{(l-1) n, q} \Omega^{p}
$$

the following Lemma is valid.
Lemma 21. We have

$$
\nabla \psi^{(1)} \equiv 0 \quad \bmod F_{(l-1) n, q} \Omega^{p} .
$$

Namely if we write $\psi^{(1)}$ as

$$
\psi^{(1)} \equiv \sum_{J \subset[1, m-1],|J|=q} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \psi_{J}^{(1)} \quad \bmod F_{(l-1) n, q-1} \Omega^{p-1}
$$

then for $J=\left\{j_{1}, \ldots, j_{q}\right\} \subset[1, m-1]$ we have

$$
\begin{equation*}
\psi_{J}^{(1)} \equiv 0 \quad \bmod \mathcal{F}_{(l-1) n}^{p-1-q}(J, m) \tag{45}
\end{equation*}
$$

and for $K=\left\{j_{1}, \ldots, j_{q+1}\right\} \subset[1, m-1]$ we have

$$
\begin{equation*}
\sum_{\nu=1}^{q+1}(-1)^{\nu-1} \lambda_{j_{\nu}} \psi_{\partial_{\nu} K}^{(1)} \equiv 0 \quad \bmod \mathcal{F}_{(l-1) n}^{p-q-1}(K) \tag{46}
\end{equation*}
$$

Continuing this process we can conclude the following assertion:
Lemma 22. There exist $\chi^{(s)} \in F_{(l-1) n, q-1} \Omega^{p-2}, \psi^{(s)} \in F_{(l-1) n, q} \Omega^{p-1}(s=$ $1,2,3, \ldots)$:

$$
\begin{aligned}
\chi^{(s)} & =\sum_{J=\left\{j_{1}, \ldots, j_{q-1}\right\} \subset[1, m-s-1]} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q-1}}}{P_{j_{q-1}}} \wedge \chi_{J}^{(s)} \in F_{(l-1) n, q-1} \Omega^{p-2}, \\
\psi^{(s)} & =\sum_{J=\left\{j_{1}, \ldots, j_{q}\right\} \subset[1, m-s]} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \psi_{J}^{(s)} \in F_{(l-1) n, q} \Omega^{p-1}, \\
\psi_{J}^{(s)} & \equiv 0 \quad \bmod \bigcap_{k=m-s+1}^{m} \mathcal{F}_{(l-1) n}^{p-q-1}(J, k),
\end{aligned}
$$

such that

$$
\begin{align*}
\nabla \psi^{(s)} & \equiv 0 \quad \bmod F_{(l-1) n, q} \Omega^{p}, \tag{47}\\
\psi^{(s)} & \equiv \nabla \chi^{(s)}+\psi^{(s+1)} \quad \bmod F_{(l-1) n, q-1} \Omega^{p-1} \tag{48}
\end{align*}
$$

Proof of Proposition 19. From (39), (47), (48) we get

$$
\psi \equiv \sum_{s=0}^{p-q+1} \nabla \chi^{(s)} \quad \bmod F_{(l-1) n, q-1} \Omega^{p-1}
$$

Since $\sum_{s=0}^{p-q+1} \chi^{(s)} \in F_{(l-1) n, q-1} \Omega^{p-2}$, Proposition 19 is proved.
Proposition 23. Suppose that $\psi \in F_{(l-1) n, q} \Omega^{p-1}(2 \leq p \leq n, 1 \leq q \leq p-1)$ satisfies

$$
\nabla \psi=0
$$

Then there exists $\chi \in F_{(l-1) n, q-1} \Omega^{p-2}$ such that

$$
\psi=\nabla \chi
$$

i.e.,

$$
\begin{equation*}
\operatorname{Ker} \nabla \cap F_{(l-1) n, q} \Omega^{p-1}=\nabla F_{(l-1) n, q-1} \Omega^{p-2} \tag{49}
\end{equation*}
$$

Proof. Indeed from Proposition $19, \psi$ can be described as

$$
\psi=\nabla \chi^{(0)}+\psi^{(1)} \quad\left(\chi^{(0)} \in F_{(l-1) n, q-1} \Omega^{p-2}, \psi^{(1)} \in F_{(l-1) n, q-1} \Omega^{p-1}\right)
$$

By hypothesis $\nabla \psi^{(1)}=0$. By the same Proposition we have

$$
\psi^{(1)}=\nabla \chi^{(1)}+\psi^{(2)} \quad\left(\chi^{(1)} \in F_{(l-1) n, q-2} \Omega^{p-2}, \psi^{(2)} \in F_{(l-1) n, q-2} \Omega^{p-1}\right)
$$

Repeating this process there exist $\chi^{(s)} \in F_{(l-1) n, q-s-1} \Omega^{p-2}, \psi^{(s)} \in F_{(l-1) n, q-s} \Omega^{p-1}$ such that

$$
\begin{aligned}
\nabla \psi^{(s)} & =0 \\
\psi^{(s)} & =\nabla \chi^{(s)}+\psi^{(s+1)} \quad(s=1,2,3, \ldots)
\end{aligned}
$$

Since $\psi^{(s)}=0(s \geq p-q)$, we have

$$
\psi^{(p-q-1)}=\nabla \chi^{(p-q-1)}
$$

Thus setting $\chi=\sum_{s=0}^{p-q-1} \chi^{(s)}$, we have

$$
\psi=\nabla \chi \equiv 0 \quad \bmod F_{(l-1) n, q-1} \Omega^{p-1}
$$

Corollary 24. For $1 \leq q \leq p-1$, we have

$$
\begin{align*}
\operatorname{dim} \operatorname{Ker} \nabla \cap F_{(l-1) n, q} \Omega^{p-1} & =\sum_{k=0}^{q-1}(-1)^{k} \operatorname{dim} F_{(l-1) n, q-1-k} \Omega^{p-2-k}, \tag{50}\\
\operatorname{dim} \nabla F_{(l-1) n, q} \Omega^{p-1} & =\sum_{k=0}^{q}(-1)^{k} \operatorname{dim} F_{(l-1) n, q-k} \Omega^{p-1-k} \tag{51}
\end{align*}
$$

Remark. Theorem 18, Proposition 19, Proposition 23, Corollary 24 are still true for $\mu(\mu \geq(l-1) n)$ instead of $\mu=(l-1) n$, seeing that the above proofs can proceed in the same way. In the sequel we shall only consider the case $\mu=(l-1) n$.

It is convenient to define $F_{(l-1) n, q} \Omega^{p}$ for $q=-1$ as follows:

Definition 25.

$$
\begin{aligned}
& F_{(l-1) n,-1} \Omega^{p}=\left\{\psi \in F_{(l-1) n, 0} \Omega^{p} \mid \nabla \psi \in F_{(l-1) n, 0} \Omega^{p+1}\right\} \quad(0 \leq p \leq n-1) \\
& F_{(l-1) n,-1} \Omega^{n}=\nabla F_{(l-1) n, 0} \Omega^{n-1} \cap F_{(l-1) n, 0} \Omega^{n}
\end{aligned}
$$

By definition we have

$$
\nabla F_{(l-1) n,-1} \Omega^{p}=\nabla F_{(l-1) n, 0} \Omega^{p} \cap F_{(l-1) n, 0} \Omega^{p+1} \quad(0 \leq p \leq n-1)
$$

Hence (38) is also true for $q=0$.
Lemma 26. Suppose $0 \leq p \leq n-1$.
(i) Case ($l-1) n-l m<0$, even more, case $m \geq n$. We always have

$$
\begin{equation*}
F_{(l-1) n,-1} \Omega^{p} \cong\{0\} . \tag{52}
\end{equation*}
$$

(ii) Case ($l-1) n-l m \geq 0$. If $p \leq m$ then (52) does not hold, while if $p>m$ then (52) holds true for $p>(l-1)(n-m)$, but it does not hold for $p \leq(l-1)(n-m)$.

Proof. Suppose first that $(l-1) n-l m<0 . \psi \in F_{(l-1) n,-1} \Omega^{p}(0 \leq p \leq n-1)$ can be described as

$$
\psi=P_{1} \cdots P_{m}\left(\psi_{0}+\sum_{q=1}^{p} \sum_{J=\left\{j_{1}, \ldots, j_{q}\right\} \subset[1, m],|J|=q} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \psi_{J}\right)
$$

where $\psi_{J} \in F_{(l-1) n-l m} \Omega^{p-q}(\boldsymbol{C})$, i.e., $\operatorname{deg} \psi_{J} \leq(l-1) n-l m-p+q$. Hence ψ_{0} and ψ_{J} vanish for all J.

On the other hand, suppose $(l-1) n-l m \geq 0$. If $p \leq m$, then for $|J|=p, \psi_{J}$ are possibly nonzero. If $p>m$, then for $|J|=m$, (52) holds true or does not hold according as $(l-1)(n-m)-p<0$ or $(l-1)(n-m)-p \geq 0$.

Definition 27. We can find a subspace V_{q} of $F_{(l-1) n, q} \Omega^{n}$ such that

$$
\begin{align*}
& F_{(l-1) n, q} \Omega^{n}=V_{q} \oplus\left(\nabla F_{(l-1) n, q-1} \Omega^{n-1}+F_{(l-1) n, q-1} \Omega^{n}\right) \quad(1 \leq q \leq \min (n, m)), \tag{53}\\
& F_{(l-1) n, 0} \Omega^{n}=V_{0} \oplus \nabla F_{(l-1) n, 0} \Omega^{n-1} \cap F_{(l-1) n, 0} \Omega^{n} \tag{54}
\end{align*}
$$

i.e.,

$$
V_{q} \cong \frac{F_{(l-1) n, q} \Omega^{n}}{\nabla F_{(l-1) n, q-1} \Omega^{n-1}+F_{(l-1) n, q-1} \Omega^{n}} \quad(0 \leq q \leq \min (n, m)) .
$$

We note that, if $m \leq n$,

$$
V_{m} \cong\{0\} .
$$

In fact, an arbitrary $\varphi \in F_{(l-1) n, m} \Omega^{n}$ can be expressed by

$$
\frac{d P_{1}}{P_{1}} \wedge \cdots \wedge \frac{d P_{m}}{P_{m}} \wedge \varphi_{12 \cdots m}
$$

for $\varphi_{12 \cdots m} \in F_{(l-1) n} \Omega^{n-m}\left(\boldsymbol{C}^{n}\right)$. We may assume $\lambda_{1} \neq 0$. If we take

$$
\psi=\frac{1}{\lambda_{1}} \frac{d P_{2}}{P_{2}} \wedge \cdots \wedge \frac{d P_{m}}{P_{m}} \wedge \varphi_{12 \cdots m} \in F_{(l-1) n, m-1} \Omega^{n-1},
$$

then $\varphi-\nabla \psi \equiv 0 \bmod F_{(l-1) n, m-1} \Omega^{n}$.
Theorem 28. We have the isomorphism

$$
\tilde{\rho}: H^{n}\left(F_{(l-1) n} \Omega, \nabla\right) \cong \bigoplus_{q=0}^{\min (n, m)} V_{q}
$$

so that the commutative diagram:

where \mathcal{H} are the projections and the equality

$$
\begin{equation*}
\operatorname{dim} V_{q}=(-1)^{q}\left(\sum_{\nu=1}^{q}(-1)^{\nu}\binom{m}{\nu} N_{\nu}^{(n-q+\nu)}+\tilde{N}_{0}^{(n-q)}\right) \quad(0 \leq q \leq \min (n, m)) \tag{55}
\end{equation*}
$$

hold where

$$
\tilde{N}_{0}^{(n-q)}=N_{0}^{(n-q)}-\operatorname{dim} F_{(l-1) n,-1} \Omega^{n-q} .
$$

Proof. Indeed, for $0 \leq q \leq \min (n, m)$,

$$
\begin{aligned}
\operatorname{dim} V_{q}= & \operatorname{dim} F_{(l-1) n, q} \Omega^{n}-\operatorname{dim} \nabla F_{(l-1) n, q-1} \Omega^{n-1}-\operatorname{dim} F_{(l-1) n, q-1} \Omega^{n} \\
& +\operatorname{dim}\left(\nabla F_{(l-1) n, q-1} \Omega^{n-1} \cap F_{(l-1) n, q-1} \Omega^{n}\right) \\
= & \operatorname{dim} F_{(l-1) n, q} \Omega^{n}-\operatorname{dim} \nabla F_{(l-1) n, q-1} \Omega^{n-1}-\operatorname{dim} F_{(l-1) n, q-1} \Omega^{n} \\
& +\operatorname{dim} \nabla F_{(l-1) n, q-2} \Omega^{n-1} \\
= & \operatorname{dim} F_{(l-1) n, q} \Omega^{n}-\operatorname{dim} F_{(l-1) n, q-1} \Omega^{n} \\
& -\sum_{k=0}^{q-1}(-1)^{k}\left(\operatorname{dim} F_{(l-1) n, q-1-k} \Omega^{n-1-k}-\operatorname{dim} F_{(l-1) n, q-2-k} \Omega^{n-1-k}\right) \\
= & \sum_{k=0}^{q}(-1)^{k}\left(\operatorname{dim} F_{(l-1) n, q-k} \Omega^{n-k}-\operatorname{dim} F_{(l-1) n, q-k-1} \Omega^{n-k}\right) \\
= & \sum_{k=0}^{q-1}(-1)^{k} N_{q-k}^{(n-k)}\binom{m}{q-k}+(-1)^{q} \tilde{N}_{0}^{(n-q)} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \sum_{q=0}^{\min (n, m)} \operatorname{dim} V_{q}= \sum_{q=0}^{\min (n, m)}\left(\operatorname{dim} F_{(l-1) n, q} \Omega^{n}-\operatorname{dim} \nabla F_{(l-1) n, q-1} \Omega^{n-1}\right. \\
&\left.-\operatorname{dim} F_{(l-1) n, q-1} \Omega^{n}+\operatorname{dim}\left(\nabla F_{(l-1) n, q-1} \Omega^{n-1} \cap F_{(l-1) n, q-1} \Omega^{n}\right)\right) \\
&= \sum_{q=0}^{\min (n, m)}\left(\operatorname{dim} F_{(l-1) n, q} \Omega^{n}-\operatorname{dim} \nabla F_{(l-1) n, q-1} \Omega^{n-1}\right. \\
&\left.\quad-\operatorname{dim} F_{(l-1) n, q-1} \Omega^{n}+\operatorname{dim} \nabla F_{(l-1) n, q-2} \Omega^{n-1}\right) \\
&= \operatorname{dim} F_{(l-1) n} \Omega^{n}-\operatorname{dim} \nabla F_{(l-1) n} \Omega^{n-1} \\
&= \operatorname{dim} H^{n}\left(F_{(l-1) n} \Omega, \nabla\right) .
\end{aligned}
$$

Example 1. Case $n=1$.
We have

$$
\begin{gathered}
\operatorname{dim} V_{0}=l-1, \quad \operatorname{dim} V_{1}=l(m-1), \\
H^{1}(\Omega, \nabla) \cong H^{1}\left(F_{l-1} \Omega, \nabla\right) \cong V_{0} \oplus V_{1}, \quad \operatorname{dim} H^{1}(\Omega, \nabla)=l m-1 .
\end{gathered}
$$

Example 2. Case $m=1$.
We have

$$
\begin{gathered}
V_{k} \cong\{0\} \quad(1 \leq k \leq n), \\
H^{n}(\Omega, \nabla) \cong V_{0}, \quad \operatorname{dim} V_{0}=\tilde{N}_{0}^{(n)}=(l-1)^{n} .
\end{gathered}
$$

In fact, it follows from Proposition 3 and Lemma 4 that

$$
\begin{aligned}
\tilde{N}_{0}^{(n)} & =N_{0}^{(n)}-\operatorname{dim} F_{(l-1) n,-1} \Omega^{n}=N_{0}^{(n)}-\sum_{\nu=1}^{n}(-1)^{\nu-1} \operatorname{dim} F_{(l-1) n-\nu l, 0} \Omega^{n-\nu} \\
& =(l-1)^{n},
\end{aligned}
$$

since

$$
\operatorname{dim} F_{(l-1) n-\nu l, 0} \Omega^{n-\nu}=\binom{(l-1) n+\nu(1-l)}{n} .
$$

Example 3. \quad Case $l=1$.
We have

$$
\begin{gathered}
V_{k} \cong\{0\} \quad(0 \leq k \leq n-1), \\
H^{n}(\Omega, \nabla) \cong H^{n}\left(F_{0} \Omega, \nabla\right) \cong V_{n}, \quad \operatorname{dim} V_{n}=\binom{m-1}{n} .
\end{gathered}
$$

Example 4. Case $l=2$.
In view of Lemma 26, we have $N_{0}^{(p)}=\tilde{N}_{0}^{(p)}$ for $p \geq n-m+1$ and

$$
\begin{gathered}
N_{0}^{(n)}=1, \quad N_{0}^{(n-1)}=n(n+1), \quad N_{0}^{(n-2)}=\frac{1}{4}(n+2)(n+1) n(n-1), \\
N_{1}^{(n)}=\frac{1}{2} n(n+3), \quad N_{1}^{(n-1)}=\frac{1}{24} n(n-1)(n+1)(3 n+14), \\
N_{2}^{(n)}=\frac{1}{24} n(n-1)\left(n^{2}+11 n+22\right) .
\end{gathered}
$$

Suppose first (i) $m \leq n$.
Theorem 28 shows that

$$
\begin{aligned}
\operatorname{dim} V_{q} & =\sum_{\nu=0}^{q}(-1)^{\nu}\binom{m}{q-\nu} N_{q-\nu}^{(n-\nu)} \quad(0 \leq q \leq m-1) \\
\operatorname{dim} V_{m} & =0
\end{aligned}
$$

For example,

$$
\begin{aligned}
& \cdot m=1: \operatorname{dim} V_{0}=1, \quad \operatorname{dim} H^{n}(\Omega, \nabla)=1 \\
& \cdot m=2: \operatorname{dim} V_{0}=1, \quad \operatorname{dim} V_{1}=2 n, \quad \operatorname{dim} H^{n}(\Omega, \nabla)=2 n+1 \\
& \cdot m=3: \operatorname{dim} V_{0}=1, \quad \operatorname{dim} V_{1}=\frac{1}{2} n(n+7), \quad \operatorname{dim} V_{2}=\frac{3}{2} n(n-1) \\
& \quad \operatorname{dim} H^{n}(\Omega, \nabla)=2 n^{2}+2 n+1 .
\end{aligned}
$$

Suppose next (ii) $m \geq n+1$.
Then it follows that

$$
\begin{aligned}
& \operatorname{dim} V_{q}=\sum_{\nu=0}^{q}(-1)^{\nu}\binom{m}{q-\nu} N_{q-\nu}^{(n-\nu)} \quad(0 \leq q \leq n), \\
& \operatorname{dim} V_{q}=0 \quad(q \geq n+1)
\end{aligned}
$$

In particular, for $m=n+1$,
$\operatorname{dim} V_{0}=1$,
$\operatorname{dim} V_{1}=\frac{1}{2} n(n+1)^{2}$,
$\operatorname{dim} V_{2}=\frac{1}{48} n(n+1)^{2}(n-1)\left(n^{2}+4 n-4\right)$,
$\operatorname{dim} V_{k}$ is a polynomial in n of degree $3 k$, or $3(n-k)+1$,
$\operatorname{dim} V_{n-1}=\frac{1}{6} n(n+1)\left(n^{2}+3 n-1\right)$,
$\operatorname{dim} V_{n}=n+1$,
and from Proposition 1 and Theorem 18,

$$
\operatorname{dim} H^{n}(\Omega, \nabla)=\operatorname{dim} H^{n}\left(F_{n} \Omega, \nabla\right)=\sum_{\nu=0}^{n}\binom{n}{\nu} \frac{(n+1)_{n-\nu}}{(n-\nu)!}
$$

For example, we have the decomposition formula into V_{q} :

$$
\begin{aligned}
& \cdot n=1: \operatorname{dim} H^{1}\left(F_{1} \Omega, \nabla\right)=1+2=3 . \\
& \cdot n=2: \operatorname{dim} H^{2}\left(F_{2} \Omega, \nabla\right)=1+9+3=13 . \\
& \cdot n=3: \operatorname{dim} H^{3}\left(F_{3} \Omega, \nabla\right)=1+24+34+4=63 . \\
& \cdot n=4: \operatorname{dim} H^{4}\left(F_{4} \Omega, \nabla\right)=1+50+175+90+5=321 .
\end{aligned}
$$

4. Gauss-Manin Connection.

We take the multiplicative function

$$
\Phi(x)=\prod_{k=1}^{m} P_{k}^{\lambda_{k}}(x)
$$

The integral of $\Phi \varphi$ attached to $\varphi \in F_{(l-1) n} \Omega^{n}$ over a twisted n dimensional cycle \mathfrak{z} in \mathcal{M} can be defined as a pairing between the cohomology class $[\varphi] \in H^{n}\left(F_{(l-1) n} \Omega^{n}, \nabla\right)$ and the homology class [\mathfrak{z}] of \mathfrak{z} :

$$
\langle\varphi, \mathfrak{z}\rangle=\int_{\mathfrak{z}} \Phi \varphi
$$

which is abbreviated by $\langle\varphi\rangle$ in the sequel (see [3] for details).
Theorem 28 shows that there exists the unique element $\mathcal{H}_{q}(\varphi) \in V_{q}$ such that

$$
\begin{equation*}
\varphi \sim \mathcal{H}(\varphi)=\sum_{q=0}^{\min (n, m)} \mathcal{H}_{q}(\varphi) \in \bigoplus_{q=0}^{\min (n, m)} V_{q} . \tag{56}
\end{equation*}
$$

We fix $\varphi \in V_{q}$ as

$$
\begin{equation*}
\varphi=\frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \varphi_{J} \quad\left(J=\left\{j_{1}, \ldots, j_{q}\right\}, \varphi_{J} \in F_{(l-1) n} \Omega^{n-q}\left(\boldsymbol{C}^{n}\right)\right) . \tag{57}
\end{equation*}
$$

We want to derive the differentiation formulae for $\langle\varphi\rangle$ with respect to the coefficients of P_{k}. We may assume $k=1$ without losing generality.

Suppose that $P_{1}(x)$ has the expression:

$$
P_{1}(x)=\sum_{\nu=\left(\nu_{1}, \ldots, \nu_{n}\right),|\boldsymbol{\nu}| \leq l} a_{\nu} x^{\nu} .
$$

We assume for simplicity that any φ_{J} does not depend on $a_{\boldsymbol{\nu}}$.
(i) Case $1 \notin J$.

Then we have

$$
\frac{\partial}{\partial a_{\nu}}\langle\varphi\rangle=\lambda_{1}\left\langle\frac{x^{\nu}}{P_{1}} \varphi\right\rangle=\lambda_{1}\left\langle\frac{x^{\nu}}{P_{1}} \frac{d P_{j_{1}}}{P_{j_{1}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \varphi_{J}\right\rangle .
$$

Seeing that $\operatorname{deg} \varphi_{J} \leq(l-2) n+q$ (i.e., $\left.\operatorname{tdeg} \varphi_{J} \leq(l-1) n\right)$, we have

$$
\frac{x^{\nu}}{P_{1}} \varphi \in F_{(l-1) n} \Omega^{n}
$$

Hence we have

$$
\frac{x^{\nu}}{P_{1}} \varphi \sim \mathcal{H}\left(\frac{x^{\nu}}{P_{1}} \varphi\right)
$$

that is,

$$
\begin{equation*}
\frac{\partial}{\partial a_{\nu}}\langle\varphi\rangle=\lambda_{1}\left\langle\mathcal{H}\left(\frac{x^{\nu}}{P_{1}} \varphi\right)\right\rangle \tag{58}
\end{equation*}
$$

where $\mathcal{H}\left(\left(x^{\nu} / P_{1}\right) \varphi\right)$ belongs to $V_{0} \oplus V_{1} \oplus \cdots \oplus V_{q+1}$.
(ii) Case $1 \in J$.

We may assume that $j_{1}=1$, i.e., $J=\left\{1, j_{2}, \ldots, j_{q}\right\}$. Then we have

$$
\begin{align*}
\frac{\partial}{\partial a_{\nu}}\langle\varphi\rangle= & \left(\lambda_{1}-1\right)\left\langle x^{\nu} \frac{d P_{1}}{P_{1}^{2}} \wedge \frac{d P_{j_{2}}}{P_{j_{2}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \varphi_{J}\right\rangle \\
& +\left\langle\frac{d\left(x^{\nu}\right)}{P_{1}} \wedge \frac{d P_{j_{2}}}{P_{j_{2}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \varphi_{J}\right\rangle . \tag{59}
\end{align*}
$$

On the other hand, if we take

$$
\psi=\frac{x^{\nu}}{P_{1}} \frac{d P_{j_{2}}}{P_{j_{2}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \varphi_{J}
$$

then

$$
\begin{align*}
0=\langle\nabla \psi\rangle= & \left(\lambda_{1}-1\right)\left\langle x^{\nu} \frac{d P_{1}}{P_{1}^{2}} \wedge \frac{d P_{j_{2}}}{P_{j_{2}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \varphi_{J}\right\rangle \\
& +\sum_{k \notin J} \lambda_{k}\left\langle\frac{x^{\nu}}{P_{1}} \frac{d P_{k}}{P_{k}} \wedge \frac{d P_{j_{2}}}{P_{j_{2}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \varphi_{J}\right\rangle \\
& +(-1)^{q-1}\left\langle\frac{1}{P_{1}} \frac{d P_{j_{2}}}{P_{j_{2}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge d\left(x^{\nu} \varphi_{J}\right)\right\rangle \tag{60}
\end{align*}
$$

By subtracting (60) from (59) side by side, we get

$$
\begin{aligned}
\frac{\partial}{\partial a_{\nu}}\langle\varphi\rangle= & -\sum_{k \notin J} \lambda_{k}\left\langle\frac{x^{\nu}}{P_{1}} \frac{d P_{k}}{P_{k}} \wedge \frac{d P_{j_{2}}}{P_{j_{2}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \varphi_{J}\right\rangle \\
& -(-1)^{q-1}\left\langle\frac{1}{P_{1}} \frac{d P_{j_{2}}}{P_{j_{2}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge d\left(x^{\nu} \varphi_{J}\right)\right\rangle \\
& +\left\langle\frac{d\left(x^{\nu}\right)}{P_{1}} \wedge \frac{d P_{j_{2}}}{P_{j_{2}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \varphi_{J}\right\rangle \\
= & -\sum_{k \notin J} \lambda_{k}\left\langle\frac{x^{\nu}}{P_{1}} \frac{d P_{k}}{P_{k}} \wedge \frac{d P_{j_{2}}}{P_{j_{2}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \varphi_{J}\right\rangle \\
& +(-1)^{q}\left\langle\frac{x^{\nu}}{P_{1}} \wedge \frac{d P_{j_{2}}}{P_{j_{2}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge d \varphi_{J}\right\rangle .
\end{aligned}
$$

As $\left(x^{\nu} / P_{1}\right)\left(d P_{k} / P_{k}\right) \wedge d P_{j_{2}} / P_{j_{2}} \wedge \cdots \wedge d P_{j_{q}} / P_{j_{q}} \wedge \varphi_{J}$ and $\left(x^{\nu} / P_{1}\right)\left(d P_{j_{2}} / P_{j_{2}}\right) \wedge \cdots \wedge$ $d P_{j_{q}} / P_{j_{q}} \wedge d \varphi_{J}$ both belong to $F_{(l-1) n} \Omega^{n}$, we get the formula

$$
\begin{align*}
\frac{\partial}{\partial a_{\nu}}\langle\varphi\rangle= & -\sum_{k \notin J} \lambda_{k}\left\langle\mathcal{H}\left(\frac{x^{\nu}}{P_{1}} \frac{d P_{k}}{P_{k}} \wedge \frac{d P_{j_{2}}}{P_{j_{2}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \varphi_{J}\right)\right\rangle \\
& +(-1)^{q}\left\langle\mathcal{H}\left(\frac{x^{\nu}}{P_{1}} \frac{d P_{j_{2}}}{P_{j_{2}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge d \varphi_{J}\right)\right\rangle \tag{61}
\end{align*}
$$

where

$$
\mathcal{H}\left(\frac{x^{\nu}}{P_{1}} \frac{d P_{k}}{P_{k}} \wedge \frac{d P_{j_{2}}}{P_{j_{2}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge \varphi_{J}\right), \quad \mathcal{H}\left(\frac{x^{\nu}}{P_{1}} \frac{d P_{j_{2}}}{P_{j_{2}}} \wedge \cdots \wedge \frac{d P_{j_{q}}}{P_{j_{q}}} \wedge d \varphi_{J}\right)
$$

both belong to $V_{0} \oplus \cdots \oplus V_{\min (q+1, m)}$.
The differentiation with respect to the other coefficients of P_{k} can be written similarly.

In this way we have proved
THEOREM 29. The differentiations for φ with respect to the coefficients of each P_{k} preserves $F_{(l-1) n} \Omega^{n}$. Therefore we can express the Gauss-Manin connection for the integral $\langle\varphi, \mathfrak{z}\rangle$ in the form (58), (61) through the projection \mathcal{H}.

If we take, as a basis of $V_{q}, e_{1}^{(q)}, \ldots, e_{\kappa_{q}}^{(q)}\left(\kappa_{q}=\operatorname{dim} V_{q}\right)$, then the above Theorem shows that the differential of $\left\langle e_{\nu}^{(q)}\right\rangle$ with respect to the coefficients \mathfrak{a} of the polynomials P_{1}, \ldots, P_{m} satisfies Gauss-Manin connection

$$
d_{\mathfrak{a}}\left\langle e_{\nu}^{(q)}\right\rangle=\sum_{r=0}^{\min (q+1, m)} \sum_{\iota=1}^{\kappa_{r}} \omega_{r, \nu}^{(q, \iota)}\left\langle e_{\iota}^{(r)}\right\rangle,
$$

where $\left(\omega_{r, \nu}^{(q, \nu)}\right)$ denotes a suitable matrix valued (with values in $\left.\mathfrak{g l}_{\kappa}(\boldsymbol{C}), \kappa=\sum_{q=0}^{\min (n, m)} \kappa_{q}\right)$ rational differential 1 -form over the field of the coefficients \mathfrak{a}.

References

[1] K. Aomoto, Les équations aux différences linéaires et les intégrales des fonctions multiformes, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22 (1975), 271-297.
[2] K. Aomoto, Une correction et un complément à l'article "Les équations aux différences linéaires et les intégrales des fonctions multiformes", J. Fac. Sci. Univ. Tokyo Sect. IA Math., 26 (1979), 519-523.
[3] K. Aomoto and M. Kita, Theory of Hypergeometric Functions, Springer Monogr. Math., SpringerVerlag, 2011.
[4] K. Aomoto, M. Kita, P. Orlik and H. Terao, Twisted de Rham cohomology groups of logarithmic forms, Adv. Math., 128 (1997), 119-152.
[5] D. Eisenbud, The Geometry of Syzygies, Grad. Texts in Math., 229, Springer-Verlag, 2005.
[6] W. Gröbner, Moderne Algebraische Geometrie, Springer-Verlag, 1949.
[7] M. Kita and M. Noumi, On the structure of cohomology groups attached to the integral of certain many-valued analytic functions, Japan J. Math. (N.S.), 9 (1983), 113-157.
[8] K. Saito, On a generalization of de-Rham lemma, Ann. Inst. Fourier (Grenoble), 26 (1976), 165-170.

Kazuhiko Aomoto
5-1307 Hara, Tenpaku-ku Nagoya-shi 468-0015, Japan
E-mail: kazuhiko@aba.ne.jp

Yoshinori MaCHIDA
Numazu College of Technology 3600 Ooka, Numazu-shi
Shizuoka 410-8501, Japan
E-mail: machida@numazu-ct.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 33C70; Secondary 14F40.
 Key Words and Phrases. hypergeometric integrals, twisted de Rham cohomology, logarithmic forms, de Rham-Saito Lemma, vanishing theorem, double filtration, Gauss-Manin connection.

 The second author was partially supported by Grant-in-Aid for Scientific Research (C) (No. 22540109).

