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Abstract. The twisted de Rham complex associated with hypergeo-
metric integral of a power product of polynomials is quasi-isomorphic to the
corresponding logarithmic complex. We show in this article that the latter
has a double filtration with respect to degrees of polynomials and exterior al-
gebras. By a combinatorial method we prove the quasi-isomorphism between
the twisted de Rham cohomology and a specially filtered subcomplex in case
of polynomials of the same degree. This fact gives a more detailed structure
of a basis for the twisted de Rham cohomology.

1. Introduction.

Let Pk(x) (1 ≤ k ≤ m) be polynomials of x = (x1, . . . , xn) in Cn over the coefficient
field C. We assume that each Pk is of the same degree l (l ≥ 1). Let Dk be the divisor
in Cn defined by Pk(x) = 0 and the union D =

⋃m
k=1 Dk. Let M be the complement

Cn −D. Denote by Ω·(Cn) =
⊕n

p=0 Ωp(Cn) the polynomial differential forms on Cn,
and by Ω·(log D) =

⊕n
p=0 Ωp(log D) the space of logarithmic p-forms (0 ≤ p ≤ n) ϕ on

M along D, i.e.,

P1 · · ·Pmϕ, P1 · · ·Pmdϕ ∈ Ω·(Cn).

We define the total degree of ϕ (denoted by tdeg(ϕ)) to be deg(ϕ)+p. Remark that
tdeg(dPk/Pk) = 0.

Let FµΩp(log D) (µ ∈ Z) be the subspace of Ωp(log D) consisting of ϕ such that
tdeg(ϕ) ≤ µ. Note that FµΩp(log D) = {0} for µ < −lm+p. Then we have the increasing
filtration

{0} ⊂ F0Ωp(log D) ⊂ F1Ωp(log D) ⊂ · · · ⊂ Fp(Ωp(log D)) ⊂ · · · ⊂ Ωp(log D).

By definition we have

Ωp(log D) =
∞⋃

µ=0

FµΩp(log D).
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For λk ∈ C (1 ≤ k ≤ m), we consider the covariant differentiation ∇ on Ω·(log D)
and the subcomplex FµΩ·(log D) respectively by

∇ψ = dψ +
m∑

k=1

λk
dPk

Pk
∧ ψ,

assuming that l
∑m

k=1 λk /∈ Z. Hp(Ω·(log D),∇),Hp(FµΩ·(log D),∇) denote the respec-
tive twisted de Rham cohomologies. We also denote by Hp(Ω·(∗D), ∇) the twisted de
Rham cohomology for the complex Ω·(∗D) of rational differential forms on M with poles
only at D.

Similarly denote by P k the homogeneous part of highest degree of Pk and by Dk

the divisor P k(x) = 0 in Cn and D =
⋃m

k=1 Dk. By the differentiation ∇:

∇ψ = dψ +
m∑

k=1

λk
dP k

P k

∧ ψ,

we can also define the twisted de Rham cohomologies Hp(Ω·(log D),∇), Hp(FµΩ·(log D),
∇), Hp(Ω·(∗D),∇) respectively.

In the sequel we simply write Ωp(log D),Ω·(log D) by Ωp,Ω· respectively. Denote
by [1,m] the set of natural numbers ν such that 1 ≤ ν ≤ m. For the set of indices
J = {j1, . . . , jq} ⊂ [1,m], |J | denotes q the size of J .

The homogenization of an inhomogeneous polynomial f(x) in C[x] is defined as a
homogeneous polynomial in C[x0, x1, . . . , xn]

f̃ = H(f) = xl
0f

(
x1

x0
, . . . ,

xn

x0

)
(l = deg(f)).

We also define the homogenization of df by

d̃f = H(df) = d̃f̃ =
n∑

k=1

∂f̃

∂xk
dxk.

For ϕ ∈ Ω·(∗D), the homogenizations of ϕ and dϕ are defined by

d̃ϕ = d̃ϕ̃, ϕ̃ ∧ ψ̃ = ϕ̃ ∧ ψ.

An inhomogeneous ideal I in C[x] has the canonical homogenization H(I) in
C[x0, x1, . . . , xn].

For r + s polynomials f1, . . . , fr and g1, . . . , gs, we can consider the ideal generated
by the differential forms df1 ∧ · · · ∧ dfr (1 ≤ r ≤ n) and g1, . . . , gs:

I = (df1 ∧ · · · ∧ dfr, g1, . . . , gs).

We now settle “genericity condition” for the family of the polynomials Pk(x) (1 ≤ k ≤ m).
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The first condition is as follows:
(C1) Take any integer r such that 1 ≤ r ≤ min{m,n} and 1 ≤ j1 < · · · < jr ≤ m.

Let Q1, Q2, . . . , Qr (1 ≤ r ≤ m) be arbitrary different polynomials among Pk (1 ≤ k ≤
m). Then the homogeneous ideal (H(dQ1 ∧ · · · ∧ dQr, Q1, . . . , Qr)) satisfies

( i ) height(H(dQ1 ∧ · · · ∧ dQr, Q1, . . . , Qr)) ≥ n + 1 (in C[x0, x1, . . . , xn]),
(ii) For 1 ≤ s ≤ min{m,n + 1}, H(Q1), . . . , H(Qs) form a regular sequence in

C[x0, x1, . . . , xn].

The second condition is as follows:
(C2) Take any integer r such that 1 ≤ r ≤ min{m,n − 1} and 1 ≤ j1 < · · · <

jr ≤ m. Let Q1, Q2, . . . , Qr (1 ≤ r ≤ m) be arbitrary different polynomials among P k

(1 ≤ k ≤ m). Then the homogeneous ideal (dQ1 ∧ · · · ∧ dQr, Q1, . . . , Qr) satisfies

( i ) height(dQ1 ∧ · · · ∧ dQr, Q1, . . . , Qr) ≥ n (in C[x1, . . . , xn]),
(ii) For 1 ≤ s ≤ min{m,n}, Q1, . . . , Qs form a regular sequence in C[x1, . . . , xn].

Throughout our article we set the conditions (C1), (C2).
Then the following Proposition is valid (see [1], [2], [3], [7]):

Proposition 1. ( i ) For µ ≥ 0 we have

Hp(Ω·,∇) ∼= Hp(FµΩ·,∇) ∼= {0} (0 ≤ p ≤ n− 1),

(ii) Hn(Ω·,∇) ∼= Hn(Ω·(∗D),∇),

dimHn(Ω·,∇) = (−1)nE(M)

=
n∑

ν=0

(
m− 1

ν

)
(l − 1)n−ν

(
m + n− ν − 1

n− ν

)
,

where E(M) denotes the Euler characteristic of M.

Lemma 2. For ψ ∈ Ωp (0 ≤ p ≤ n− 1), ψ can be described as

ψ = ψ0 +
min(p,m)∑

q=1

∑

J={j1,...,jq}⊂[1,m]

dPj1

Pj1

∧ · · · ∧ dPjq

Pjq

∧ ψJ (1)

for ψ0 ∈ Ωp(Cn), ψJ ∈ Ωp−q(Cn).

For the proof, see [1, Proposition 3.1].

Proposition 3. For µ ≥ 0 we have

Hp(Ω·(∗D),∇) ∼= Hp(Ω·(log D),∇)

∼= Hp(Fµ(Ω·(log D),∇)) ∼= {0} (0 ≤ p ≤ n).

As a Corollary of Lemma 2 and Proposition 3,
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Lemma 4. Suppose that ψ ∈ Ωp (0 ≤ p ≤ n− 1) satisfies

∇ψ ∈ FµΩp+1 (µ ≥ 0),

then ψ can be described as (1) such that ψ0 ∈ FµΩp(Cn), ψJ ∈ FµΩp−q(Cn).

Definition 5. Denote by Fµ,qΩp (0 ≤ q ≤ p) the subspace of FµΩp consisting of
ϕ such that ϕ can be written by

ϕ = ϕ0 +
q∑

ν=1

∑

J={j1<···<jν}⊂[1,m]

dPj1

Pj1

∧ · · · ∧ dPjν

Pjν

∧ ϕJ (2)

for ϕ0 ∈ FµΩp(Cn) and ϕJ ∈ FµΩp−ν(Cn). We have the double filtration

{0} ⊂ Fµ,0Ωp ⊂ Fµ,1Ωp ⊂ · · · ⊂ Fµ,pΩp = Fµ,p+1Ωp = · · · = Fµ,∞Ωp ⊂ FµΩp.

In this article we shall give the decomposition formula for the n dimensional de Rham
cohomology Hn(Ω·,∇) associated to the double filtration (Theorem 18 and Theorem 28)
and derive the corresponding formula of Gauss–Manin connection for the twisted integrals
(Theorem 29).

2. Dimension formula.

From now on, we assume that µ ≥ (l − 1)n.
The following Lemma is fundamental.

Lemma 6. Suppose that ϕ ∈ Fµ,qΩp in (2) lies in Fµ,q−1Ωp (q +p ≤ n), and hence

dPj1 ∧ · · · ∧ dPjq ∧ ϕJ ≡ 0 mod
q∑

ν=1

Pjν Fµ+l(q−1)Ωp(Cn)

for each ϕJ (J = {j1, . . . , jq}), then ϕJ can be described as

ϕJ =
q∑

ν=1

(
Pjν θν + dPjν ∧ θ′ν

)
, (3)

where θν ∈ Fµ−lΩp−q(Cn) and θ′ν ∈ Fµ−lΩp−q−1(Cn), in other words,

ϕJ ≡ 0 modFp−q
µ (J),

where Fp−q
µ (J) denotes the subspace of Ωp−q(Cn):

Fp−q
µ (J) =

q∑
ν=1

(
Pjν Fµ−lΩp−q(Cn) + dPjν ∧ Fµ−lΩp−q−1(Cn)

)
.
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The proof can be done based on syzygies of Cohen-Macaulay H-ideals (homogeneous
ideals) and on de Rham-Saito lemma (see [3, Lemma 2.19], replacing n by n+1, and [1],
[8] for related topics).

We also note that

Fµ,qΩp/Fµ,q−1Ωp ∼=
⊕

J⊂[1,m];|J|=q

FµΩp−q(Cn)/FµΩp−q(J).

We now fix q. We want to give an explicit formula for the dimension of FµΩp−q(Cn)/
FµΩp−q(J). A numerical computations based on Lemma 6 show the following Proposi-
tions 11 and 13.

We fix the set of indices J = {j1, . . . , jq}. For simplicity we rewrite Pjν
by Qν . Let

σ0 denote the surjective morphism:

σ0 : FµΩp−q(Cn) −→ FµΩp−q(Cn)/Fp−q
µ (J) ⊂ Fµ,qΩp(log D)/Fµ,q−1Ωp(log D),

which is defined by

σ0(ϕJ) =
dQ1

Q1
∧ · · · ∧ dQq

Qq
∧ ϕJ . (4)

First we want to construct a resolution of the morphism σ0.
Let S =

⊕∞
ν=0 Sν be the polynomial ring over C in the indeterminates y1, . . . , yq,

and Λ =
⊕q

ν=0 Λν be the exterior algebra over C in the indeterminates dy1, . . . , dyq.
Here Sν and Λν denote the parts of ν-th degree of S and Λ respectively. Let Kr,s = Sr⊗
Λs ∧ Fµ−(r+s)lΩp−q−r(Cn), and put Kν =

⊕
r+s=ν;0≤r≤p−q;0≤s≤q Kr,s, K =

⊕∞
ν=0Kν .

Remark that Kν
∼= {0} for ν ≥ p + 1. We can identify FµΩp−q(Cn) with K0 = K0,0. An

arbitrary element ψ of Kr,s can be uniquely written as

ψ =
1

r!s!

∑

K,L

yk1 · · · ykrdyl1 ∧ · · · ∧ dyls ∧ ψ(K;L),

where K moves over the set of sequences consisting of r indices K = (k1, . . . , kr) ∈ [1, q]r

and L moves over the set of sequences consisting of s different indices in [1, q]. |K| and |L|
denote r the size of K and s the size of L respectively. ψ(K;L) ∈ Fµ−(r+s)lΩp−q−r(Cn)
are symmetric with respect to k1, . . . , kr and alternating with respect to l1, . . . , ls. In the
sequel we shall call such ψ(K;L) “admissible”.

We define the morphism

σν : Kν → Kν−1 (ν ≥ 1)

by the differentiation

σνψ =
q∑

i=1

(
Qi

∂

∂dyi
+ dQi ∧ ∂

∂yi

)
ψ
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for ψ ∈ Kν . In more detail, σν (ν = r + s) is a morphism from Kr,s into Kr,s−1⊕Kr−1,s.
Since

∂

∂yi

∂

∂yj
ψ =

∂

∂yj

∂

∂yi
ψ,

∂

∂dyi

∂

∂dyj
ψ = − ∂

∂dyj

∂

∂dyi
ψ,

we have σν−1 ◦ σν = 0. In this way, we can define the Cartan–Koszul double complex
{K, (σν)ν}:

{0} → · · · → Kν → Kν−1 → · · · → K0 → FµΩp−q(Cn)/Fp−q
µ (J) → {0}. (5)

(See [5, Chapter 7] for the definitions and basic properties of Cartan and Koszul com-
plexes.)

We will show that the complex is a resolution of σ0 (Proposition 9).
The morphism σν can be described in terms of indices as follows:

(σ1ψ)(∅; ∅) =
q∑

i=1

Qiψ(∅; {i}) + dQi ∧ ψ({i}; ∅) (ν = 1), (6)

(σνψ)(K ′;L) =
q∑

i=1

{Qiψ(K ′; {i} ∪ L) + (−1)sdQi ∧ ψ({i} ∪K ′;L)},
(|K ′| = r − 1, |L| = s, r + s = ν). (7)

The following Lemma corresponds to the acyclicity of the part of Cartan complex.

Lemma 7. Suppose that admissible ψ(K;L) ∈ Fµ−νlΩp−q−r(Cn) (|K| = r, |L| = s,

r + s = ν) satisfy, for |K ′| = r − 1,

q∑

i=1

dQi ∧ ψ({i} ∪K ′;L) ≡ 0

mod (Q1Fµ−νlΩp−q−r+1(Cn) + · · ·+ QqFµ−νlΩp−q−r+1(Cn)). (8)

Then there exist admissible θ(K̃;L) ∈ Fµ−(ν+1)lΩp−q−r−1(Cn) (|K̃| = r + 1) such that

ψ(K;L) ≡ (−1)s

q∑

i=1

dQi ∧ θ({i} ∪K;L)

mod (Q1Fµ−(ν+1)lΩp−q−r(Cn) + · · ·+ QqFµ−(ν+1)lΩp−q−r(Cn)). (9)

Proof. We put Eρ to be the set of ρ pieces of the label q contained in K such
that K = {k1, . . . , kr−ρ} ∪Eρ and {k1, . . . , kr−ρ} ⊂ [1, q − 1]. The proof can be done by
double induction on lowering ρ and raising q.

In case where q = 0 the lemma is trivial.
Suppose first that q > 0 and ρ = r i.e., K = Er consists of r pieces of only q. Then

by Lemma 6, (8) implies that there exist admissible θEr
(k1;L) ∈ Fµ−(ν+1)lΩp−q−r−1(Cn)
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such that

ψ(Er;L) ≡ (−1)s

q∑

i=1

dQi ∧ θEr (i;L). (10)

θEr
(k1;L) may be denoted by θ({k1}∪Er;L) which can be made admissible too, so that

(9) is valid in case of K = Er.
And then (8) for K ′ = Er−1 (ρ = r − 1) shows

q−1∑

i=1

dQi ∧ {ψ({i} ∪ Er−1;L)− (−1)sdQq ∧ θ({i} ∪ Er;L)} ≡ 0.

By induction hypothesis with respect to q, there exist admissible θEr−1(k1k2;L) ∈
Fµ−(ν+1)lΩp−q−r−1(Cn) such that

ψ({k1} ∪ Er−1;L) ≡ (−1)s

q−1∑

i=1

{dQi ∧ θEr−1(ik1;L) + dQq ∧ θ({k1} ∪ Er;L)}

(1 ≤ k1 ≤ q − 1). (11)

We may put θ({k1, k2}∪Er−1;L) = θEr−1(k1k2;L), so that we have the identity (9)
for ρ = r − 1. θ(K̃;L) thus defined for |K̃| = r + 1, |L| = s may be made admissible.

Suppose now that the Lemma has been proved in case of ρ ≥ τ . We want to prove it
in case of ρ = τ−1. The identity (8) implies that there exist θ({k1, . . . , kr−τ+1}∪Eτ ;L) ∈
Fµ−(ν+1)lΩp−q−r−1(Cn) such that

ψ({k1, . . . , kr−τ} ∪ Eτ ;L) ≡ (−1)s

q∑

i=1

dQi ∧ θ({i, k1, . . . , kr−τ} ∪ Eτ ;L). (12)

We may assume that θ({k1, . . . , kr−τ+1} ∪ Eτ ;L) is admissible. By substitution of
(12) into (8) we have the identity

q−1∑

i=1

{dQi ∧ ψ({i, k1, . . . , kr−τ} ∪Eτ−1;L)− (−1)sdQq ∧ θ({i, k1, . . . , kr−τ} ∪Eτ ;L)} ≡ 0.

By induction hypothesis, there exist admissible θEτ−1(k1 · · · kr−τ+2;L) ∈ Fµ−(ν+1)l

·Ωp−q−r−1(Cn) such that

ψ({k1, . . . , kr−τ+1} ∪ Eτ−1;L)

≡ (−1)s

{ q−1∑

i=1

dQi ∧ θEτ−1(ik1 · · · kr−τ+1;L) + dQq ∧ θ({k1, . . . , kr−τ+1} ∪ Eτ ;L)
}

({k1, . . . , kr−τ+1} ⊂ [1, q − 1]). (13)
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We may put again

θ({k1, . . . , kr−τ+2} ∪ Eτ−1;L) = θEτ−1(k1 · · · kr−τ+2;L).

Thus θ({k1, . . . , kr−τ+2}∪Eτ−1;L) are in Fµ−(ν+1)lΩp−q−r−1(Cn) and made admissible.
Hence we have the identity (9) for Eτ−1. Lemma 7 has been proved for all K. ¤

The following Lemma related to the acyclicity of the part of Koszul complex is
well-known and can be proved similarly as above (see [5], [6]).

Lemma 8. Suppose that admissible ψ(K;L) ∈ Fµ−νlΩp−q−r(Cn) (|K| = r, |L| = s,

r + s = ν) satisfy

q∑

i=1

Qiψ(K; {i} ∪ L′) = 0 (|L′| = s− 1). (14)

Then there exist admissible θ(K; L̃) ∈ Fµ−(ν+1)lΩp−q−r(Cn) (|L̃| = s + 1) such that

ψ(K;L) =
q∑

i=1

Qiθ(K; {i} ∪ L).

Under this circumstance the following Proposition holds.

Proposition 9. The complex {K, (σν)ν} is acyclic.

Proof. Suppose σ0(ϕJ) = 0 for ϕJ ∈ FµΩp−q(Cn). Then Lemma 6 shows that
there exist ψ({i}; ∅) ∈ Fµ−lΩp−q−1(Cn), ψ(∅; {i}) ∈ Fµ−lΩp−q(Cn) such that ϕJ =
(σ1ψ)(∅; ∅).

Next suppose that σνψ = 0 for ψ ∈ Kν (ν ≥ 1). We must prove that there exists
θ ∈ Kν+1 such that ψ = σν+1θ. By (7) we have the identity (8). From Lemma 7 there
exist admissible θ ∈ Kν+1 such that (9) is valid. We put ψ̃ = ψ − σν+1θ, namely, for
|K| = r, |L| = s, (r + s = ν)

ψ̃(K;L) = ψ(K;L)−
q∑

i=1

{Qiθ(K; {i}) ∪ L) + (−1)sdQi ∧ θ({i} ∪K;L)}. (15)

Then Lemma 7 shows that ψ̃ ≡ 0. In particular, for |K| = ν, L = ∅ there exist
admissible θ̃(K; {l1}) ∈ Fµ−(ν+1)lΩp−q−r(Cn) such that

ψ̃(K; ∅) =
q∑

i=1

Qiθ̃(K; {i}).

We put further θ̃(K̃; ∅) to be 0 for |K̃| = ν +1. By induction on s, we can construct
admissible θ̃(K; L̃) for |K| = r, |L̃| = s + 1 such that
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ψ̃(K;L) =
q∑

i=1

Qiθ̃(K; {i} ∪ L) + (−1)s

q∑

i=1

dQi ∧ θ̃({i} ∪K;L). (16)

In fact (16) is valid for s = 0. Suppose that θ̃(K̃;L) have been constructed for |L| < s.
The identity σνψ̃ = 0 implies the identity for |K| = r, |L′| = s− 1, r + s = ν:

q∑

i=1

Qiψ̃(K; {i} ∪ L′) + (−1)s−1dQi ∧ ψ̃({i} ∪K;L′) = 0. (17)

By the substitution of (16) for ψ̃({i} ∪K;L′) into (17) we have

q∑

i=1

Qi

{
ψ̃(K; {i} ∪ L′) + (−1)s−1

q∑

j=1

dQj ∧ θ̃({j} ∪K; {i} ∪ L′)
}

= 0.

Hence from Lemma 8 there exist admissible θ̃(K; L̃) ∈ Fµ−(ν+1)lΩp−q−r(Cn) for |L̃| =
s + 1 such that (16) holds for |L| = s. In this way we have constructed θ̃(K;L) for all
K,L with |K|+ |L| = ν +1 such that ψ̃ = σν+1θ̃. Therefore the following identity holds:

ψ = σν+1(θ + θ̃).

Proposition 9 has been proved. ¤

As a result of Proposition 9 we have the equality

Corollary 10. We have

dimFµΩp−q(Cn)/FµΩp−q(J) =
p∑

ν=0

(−1)ν dimKν . (18)

Proposition 11. Fix the set of indices J = {j1, . . . , jq} ⊂ [1,m]. We have the
dimension formula

dimFµΩp−q(Cn)/Fp−q
µ (J) = N (p)

µ,q ,

where

N (p)
µ,q =

∑

α≥0,p−q≥β≥0

(−1)α+β

(
µ + n− p + q − lα− (l − 1)β

n

)

·
(

n

p− q − β

)(
q

α

)(
q + β − 1

β

)
.

In particular when p = n,
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N (n)
µ,q =

∑

α≥0;n−q≥β≥0

(−1)α+β

(
µ + q − lα− (l − 1)β

n

)(
n

n− q − β

)(
q

α

)(
q + β − 1

β

)
.

Proof. If µ ≥ (l − 1)n, then µ + n − p + q − lα − (l − 1)β ≥ 0 for q ≥ α ≥ 0,
p− q ≥ β ≥ 0. The following formula

dimKβ,α =
(

µ + n− p + q − lα− (l − 1)β
n

)(
n

p− q − β

)(
q

α

)(
q + β − 1

β

)

holds, since

dimSβ =
(

q + β − 1
β

)
, dimΛα =

(
q

α

)
,

dimFµ−(α+β)lΩp−q−β(Cn) =
(

µ + n− p + q − lα− (l − 1)β
n

)(
n

p− q − β

)
.

Hence (18) shows Proposition 11. ¤

Corollary 12. We have

dimFµ,qΩp/Fµ,q−1Ωp =
(

m

q

)
N (p)

µ,q .

From now on, we simply write N
(p)
q instead of N

(p)
(l−1)n,q for µ = (l − 1)n.

In particular, in case p = n, we have the following Proposition.

Proposition 13. We have

dimFµΩn =
min(n,m)∑

q=0

(
m

q

)
N (n)

µ,q =
(

µ + lm

n

)
. (19)

By inversion formula, the identity (19) is equivalent to say

N (n)
µ,q = (−1)q

n∑
ν=0

(−1)ν

(
q

ν

)(
µ + lν

n

)
(0 ≤ q ≤ min(n,m)). (20)

As a result we have

FµΩn = Fµ,nΩn.

In particular, for µ = (l − 1)n,

dimF(l−1)nΩn =
(

(l − 1)n + lm

n

)
=

min(n,m)∑
q=0

(
m

q

)
N (n)

q , (21)
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N (n)
q = (−1)q

q∑
ν=0

(−1)ν

(
(l − 1)n + lν

n

)(
q

ν

)
. (22)

Remark. The identity (20) is still valid for q ≥ n + 1 or q ≥ m + 1 in the sense
that both sides of (20) vanish simultaneously.

Proof of Proposition 13. It is sufficient to prove the identity (20). We intro-
duce the two generating functions as follows:

f(t) =
∑

0≤α≤q,0≤β≤n−q

(
µ + q − lα− (l − 1)β

n

)(
n

n− q − β

)(
q

α

)(
q + β − 1

β

)
tβ , (23)

g(t) =
∑

0≤α≤q,0≤β≤n−q

(
µ + q − lα− (l − 1)β

n

)(
n

n− q − β

)(
q

α

)(
q + β

β

)
tβ . (24)

By definition, we have

f(1) = N (n)
µ,q , g(t) =

(
1 +

1
q
t
d

dt

)
f(t).

Since f(t), g(t) both are polynomials in t, we have

f(t) = qt−q

∫ t

0

tq−1g(t)dt. (25)

We first want to find an integral representation of g(t).

Lemma 14. g(t) can be represented as the integral

g(t) =
(

n

q

)
1

2πi

∮

s=0

s−n−1(1 + s)µ−(l−1)n{(1 + s)l − 1}q{(1 + s)l−1 − t}n−qds. (26)

Proof. In fact substituting the equality

(
µ + q − lα− (l − 1)β

n

)
=

1
2πi

∮

s=0

s−n−1(1 + s)µ+q−lα−(l−1)βds (27)

into the RHS of (24),

g(t) =
∑

α,β

(−1)α+β

(
q

α

)
n!

q!β!(n− q − β)!
tβ · 1

2πi

∮

s=0

s−n−1(1 + s)µ+q−lα−(l−1)βds

=
(

n

q

) ∑
α

(−1)α

(
q

α

)
1

2πi

∮

s=0

s−n−1(1 + s)µ+q−lα

{
1− t

(1 + s)l−1

}n−q

ds

=
(

n

q

) ∑
α

(−1)α

(
q

α

)
1

2πi

∮

s=0

s−n−1(1 + s)µ−(l−1)n+l(q−α){(1 + s)l−1 − t}n−qds
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=
(

n

q

)
1

2πi

∮

s=0

s−n−1(1 + s)µ−(l−1)n+lq

{
1− 1

(1 + s)l

}q

{(1 + s)l−1 − t}n−qds

=
(

n

q

)
1

2πi

∮

s=0

s−n−1(1 + s)µ−(l−1)n{(1 + s)l − 1}q{(1 + s)l−1 − t}n−qds. ¤

By substituting (26) into (25), we have the integral formula for f(t):

f(t) =
n!

(q − 1)!(n− q)!
t−q 1

2πi

∮

s=0

s−n−1(1 + s)µ−(l−1)n{(1 + s)l − 1}qds

·
∫ t

0

tq−1{(1 + s)l−1 − t}n−qdt. (28)

Furthermore we have the following.

Lemma 15.

∫ t

0

tq−1{(1 + s)l−1 − t}n−qdt = −
q∑

ν=1

(q − 1)!tq−ν

(n− q + 1)ν(q − ν)!
{(1 + s)l−1 − t}n−q+ν

+
(q − 1)!

(n− q + 1)q
(1 + s)n(l−1). (29)

Proof. (29) can be proved by induction on q, while n being fixed. In fact, for
q = 1 both sides of (29) are equal to

− 1
n
{(1 + s)l−1 − t}n +

1
n

(1 + s)n(l−1).

Suppose 1 < q ≤ n. By integration by parts, the LHS of (29) is equal to

− 1
n− q + 1

tq−1{(1 + s)l−1 − t}n−q+1 +
q − 1

n− q + 1

∫ t

0

tq−2{(1 + s)l−1 − t}n−q+1dt.

Applying the formula (29) for q − 1 instead of q, we get the formula (29) for q. ¤

Hence from (28) and Lemma 15, we have

LHS of (20) = f(1)

=
n!

(q − 1)!(n− q)!
1

2πi

∮

s=0

s−n−1(1 + s)µ−(l−1)n{(1 + s)l − 1}q

·
[
−

q∑
ν=1

(q − 1)!
(n− q + 1)ν(q − ν)!

{(1 + s)l−1 − 1}n−q+ν +
(q − 1)!

(n− q + 1)q
(1 + s)n(l−1)

]
ds

=
n!

(q − 1)!(n− q)!
1

2πi

∮

s=0

s−n−1(1 + s)µ{(1 + s)l − 1}q · (q − 1)!
(n− q + 1)q

ds (30)
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=
1

2πi

∮

s=0

s−n−1(1 + s)µ{(1 + s)l − 1}qds. (31)

Here the relation (30) follows from the Taylor expansions near s = 0:

{(1 + s)l − 1}q{(1 + s)l−1 − 1}n−q+ν = Asn+ν + · · · ,

where A is a constant.
On the other hand, we have

RHS of (20) = (−1)q

q∑
ν=0

(−1)ν

(
µ + lν

n

)(
q

ν

)

= (−1)q 1
2πi

∮

s=0

q∑
ν=0

(−1)νs−n−1(1 + s)µ+lν

(
q

ν

)
ds

= (−1)q 1
2πi

∮

s=0

s−n−1(1 + s)µ{1− (1 + s)l}qds

=
1

2πi

∮

s=0

s−n−1(1 + s)µ{(1 + s)l − 1}qds. (32)

Hence (20) has been proved. ¤

From now on we only consider the case where µ = (l − 1)n.

Definition 16. For each J = {j1, . . . , jq}, there exists an N
(n)
q dimensional sub-

space WJ of F(l−1)nΩn−q(Cn) such that

F(l−1)nΩn−q(Cn) = WJ ⊕Fn−q
(l−1)n(J).

We also put W0 = F(l−1)nΩn(Cn).

Then it is possible from Lemma 6 and Proposition 13 to make the following identi-
fication:

Corollary 17. We have the isomorphism

ρ : F(l−1)nΩn ∼= W0 ⊕
n∑

q=1

∑

J⊂[1,m],|J|=q

WJ . (33)

Remark. FµΩn coincides with the space spanned by

ϕ =
f

P1P2 · · ·Pm
$ (f ∈ C[x]) (34)

such that deg f ≤ µ− n + lm, where
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$ = dx1 ∧ · · · ∧ dxn.

As regards (34), there exist the unique ϕ0 ∈ W0, ϕJ ∈ WJ such that

ϕ =
f

P1 · · ·Pm
$ = ϕ0 +

min(n,m)∑
q=1

∑

J,|J|=q

dPj1

Pj1

∧ · · · ∧ dPjq

Pjq

∧ ϕJ . (35)

This is a partial fraction decomposition with the denominators P1, . . . , Pm.

3. Main Results.

We first prove the following

Theorem 18. We have the isomorphism

Hn(Ω·,∇) ∼= Hn(F(l−1)nΩ·,∇).

Proof. It is enough to prove the following two facts:

( i ) For an arbitrary ϕ ∈ Ωn, there exists ϕ∗ ∈ F(l−1)nΩn such that

ϕ ∼ ϕ∗.

(ii) Two arbitrary ϕ,ϕ∗ ∈ F(l−1)nΩn which are cohomologous to each other in Ω· are
cohomologous in F(l−1)nΩ·.

About ( i ):
Since Ωn =

⋃∞
µ=(l−1)n FµΩn, there exists µ (µ ≥ (l − 1)n) such that ϕ ∈ FµΩn.

By the formula (35) ϕ has the expression

ϕ = ϕ0 +
min(n,m)∑

q=1

∑

J⊂[1,m],|J|=q

dPj1

Pj1

∧ · · · ∧ dPjq

Pjq

∧ ϕJ , (36)

where ϕ0 ∈ FµΩn(Cn) and ϕJ ∈ FµΩn−q(Cn).
Suppose that µ > (l − 1)n. By taking the homogeneous part of highest degree,

ϕ = ϕ0 +
min(n,m)∑

q=1

∑

J,|J|=q

dP j1

P j1

∧ · · · ∧ dP jq

P jq

∧ ϕJ .

Owing to Proposition 3 there exists a homogeneous ψ ∈ FµΩn−1(log D):

ψ = ψ0 +
min(n−1,m)∑

q=1

∑

J,|J|=q

dP j1

P j1

∧ · · · ∧ dP jq

P jq

∧ ψJ
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such that

ϕ = ∇ψ.

Put

ψ = ψ0 +
min(n−1,m)∑

q=1

∑

J,|J|=q

dPj1

Pj1

∧ · · · ∧ dPjq

Pjq

∧ ψJ .

Then

ϕ−∇ψ ∈ Fµ−1Ωn.

By continuing this process we finally arrive at ( i ).

About (ii):
By assumption there exists ψ ∈ FµΩn−1 such that

ϕ− ϕ∗ = ∇ψ,

where ψ has by Lemma 4 the expression

ψ = ψ0 +
min(m,n−1)∑

q=1

∑

J,|J|=q

dPj1

Pj1

∧ · · · ∧ dPjq

Pjq

∧ ψJ (37)

such that ψ0 ∈ FµΩn−1(Cn), ψJ ∈ FµΩn−q−1(Cn).
Suppose that µ > (l− 1)n. Then by taking the homogeneous part of highest degree

we have

0 = ∇ψ.

Due to Proposition 3 there exists χ ∈ FµΩn−2(log D) such that

ψ = ∇χ.

Hence ψ −∇χ ∈ Fµ−1Ωn−1 and ∇ψ = ∇(ψ −∇χ). By continuing this process, we
finally arrive at (ii). ¤

Remark. Theorem 18 may be generalized as the following conjecture under a
weaker condition.

Let m polynomials Pk of degree lk such that l1 ≥ l2 ≥ · · · ≥ lm ≥ 1 satisfy the two
conditions C1, C2. We can similarly define the filtration Fµ for the logarithmic forms Ω·

and ∇ as in Section 1. Then we have the isomorphism

Hn(Ω·,∇) ∼= Hn(FµΩ·,∇) (µ ≥ (l1 − 1)n).

It is evident that
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∇Fµ,qΩp−1 ⊂ Fµ,q+1Ωp.

Moreover the following is true:

Proposition 19. Suppose that ψ ∈ F(l−1)n,qΩp−1 (2 ≤ p ≤ n, 1 ≤ q ≤ p − 1)
satisfies

∇ψ ≡ 0 mod F(l−1)n,qΩp.

Then we have

ψ ≡ 0 mod∇F(l−1)n,q−1Ωp−2 + F(l−1)n,q−1Ωp−1,

i.e.,

∇−1(F(l−1)n,qΩp) ∩ F(l−1)n,qΩp−1 = ∇F(l−1)n,q−1Ωp−2 + F(l−1)n,q−1Ωp−1,

so that we have

∇F(l−1)n,qΩp−1 ∩ F(l−1)n,qΩp = ∇F(l−1)n,q−1Ωp−1. (38)

We want to prove this Proposition by induction on m. Before proving it we give
three Lemmas.

Lemma 20. There exist χ(0) ∈ F(l−1)n,q−1Ωp−2, ψ(1) ∈ F(l−1)n,qΩp−1 :

χ(0) ≡
∑

J⊂[1,m−1],|J|=q−1

Pj1

Pj1

∧ · · · ∧ Pjq−1

Pjq−1

∧ χ
(0)
J mod F(l−1)n,q−2Ωp−2

ψ(1) ≡
∑

J⊂[1,m−1],|J|=q

Pj1

Pj1

∧ · · · ∧ Pjq

Pjq

∧ ψ
(1)
J mod F(l−1)n,q−1Ωp−1

such that

ψ ≡ ∇χ(0) + ψ(1) mod F(l−1)n,q−1Ωp−1. (39)

Proof. ψ ∈ F(l−1)n,qΩp−1 can be described as

ψ ≡
∑

J={j1,...,jq}⊂[1,m]

dPj1

Pj1

∧ · · · ∧ dPjq

Pjq

∧ ψJ mod F(l−1)n,q−1Ωp−1,

where ψJ ∈ F(l−1)nΩp−1−q(Cn), so that

∇ψ ≡
m∑

k=1

λk
dPk

Pk
∧

∑

J⊂[1,m],|J|=q

dPj1

Pj1

∧ · · · ∧ dPjq

Pjq

∧ ψJ mod F(l−1)n,qΩp.
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Hence in the representation (2) for ϕ = ∇ψ and K = {j1, . . . , jq+1} ⊂ [1,m],

ϕK =
q+1∑
ν=1

(−1)ν−1λjν ψ∂νK (40)

(∂νK means the deletion of the suffix jν from K). Suppose further that

∇ψ ≡ 0 mod F(l−1)n,qΩp. (41)

Lemma 6 implies for each K

ϕK =
q+1∑
ν=1

(
Pjν θjν ;K + dPjν ∧ θ′jν ;K

) ∈ Fp−q−1
(l−1)n (K), (42)

where

θjν ;K ∈ F(l−1)n−lΩp−q−1(Cn), θ′jν ;K ∈ F(l−1)n−lΩp−q−2(Cn).

Case ( i ): J ⊂ [1,m− 1], K = {J,m}.
From (40), (42)

ϕK =
q∑

ν=1

(−1)ν−1λjν ψ∂νJ,m + (−1)qλmψJ

≡ Pmθm;K + dPm ∧ θ′m;K modFp−q−1
(l−1)n (J).

Hence from (42)

(−1)qλmψJ ≡ −
q∑

ν=1

(−1)ν−1λjν ψ∂νJ,m + ϕK + Pmθm;K + dPm ∧ θ′m;K

modFp−q−1
(l−1)n (J). (43)

Case (ii): K ⊂ [1,m− 1].
From (40), (42), (43)

ϕK =
q+1∑
ν=1

(−1)ν−1λjν ψ∂νK

≡ (−1)q

λm

[ q+1∑
ν=1

(−1)ν−1λjν

{
−

∑

1≤κ<ν≤q

(−1)κ−1λκψ∂κ∂νK,m

− (−1)κλκ

∑

1≤ν≤κ≤q

ψ∂ν∂κK,m + ϕ∂νK,m

}]
modFp−q−1

(l−1)n (K)
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≡ 0 modFp−q−1
(l−1)n (K). (44)

On the other hand, from (38), (42), (43)

ψ ≡
∑

J⊂[1,m−1],|J|=q

dPj1

Pj1

∧ · · · ∧ dPjq

Pjq

∧ ψJ

+
∑

J⊂[1,m−1],|J|=q−1

dPj1

Pj1

∧ · · · ∧ dPjq−1

Pjq−1

∧ dPm

Pm
∧ ψJ,m mod F(l−1)n,q−1Ωp−1

=
(−1)q

λm

∑

J⊂[1,m−1],|J|=q

dPj1

Pj1

∧ · · · ∧ dPjq

Pjq

∧
{ q∑

ν=1

(−1)νλjν ψ∂νJ,m + ϕJ,m

}

+
∑

J⊂[1,m−1],|J|=q−1

dPj1

Pj1

∧ · · · ∧ dPjq−1

Pjq−1

∧ dPm

Pm
∧ ψJ,m

=
m∑

k=1

λk
dPk

Pk
∧ χ(0) + ψ(1),

where

χ(0) = − (−1)q

λm

∑

J⊂[1,m−1],|J|=q−1

dPj1

Pj1

∧ · · · ∧ dPjq−1

Pjq−1

∧ ψJ,m ∈ F(l−1)n,q−1Ωp−2,

ψ(1) =
(−1)q

λm

∑

J⊂[1,m−1],|J|=q

dPj1

Pj1

∧ · · · ∧ dPjq

Pjq

∧ ϕJ,m ∈ F(l−1)n,qΩp−1,

which shows Lemma 20. ¤

From the equality

∇ψ ≡ 0 mod F(l−1)n,qΩp,

the following Lemma is valid.

Lemma 21. We have

∇ψ(1) ≡ 0 mod F(l−1)n,qΩp.

Namely if we write ψ(1) as

ψ(1) ≡
∑

J⊂[1,m−1],|J|=q

dPj1

Pj1

∧ · · · ∧ dPjq

Pjq

∧ ψ
(1)
J mod F(l−1)n,q−1Ωp−1,

then for J = {j1, . . . , jq} ⊂ [1,m− 1] we have
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ψ
(1)
J ≡ 0 modFp−1−q

(l−1)n (J,m) (45)

and for K = {j1, . . . , jq+1} ⊂ [1,m− 1] we have

q+1∑
ν=1

(−1)ν−1λjν
ψ

(1)
∂νK ≡ 0 modFp−q−1

(l−1)n (K). (46)

Continuing this process we can conclude the following assertion:

Lemma 22. There exist χ(s) ∈ F(l−1)n,q−1Ωp−2, ψ(s) ∈ F(l−1)n,qΩp−1 (s =
1, 2, 3, . . .) :

χ(s) =
∑

J={j1,...,jq−1}⊂[1,m−s−1]

dPj1

Pj1

∧ · · · ∧ dPjq−1

Pjq−1

∧ χ
(s)
J ∈ F(l−1)n,q−1Ωp−2,

ψ(s) =
∑

J={j1,...,jq}⊂[1,m−s]

dPj1

Pj1

∧ · · · ∧ dPjq

Pjq

∧ ψ
(s)
J ∈ F(l−1)n,qΩp−1,

ψ
(s)
J ≡ 0 mod

m⋂

k=m−s+1

Fp−q−1
(l−1)n (J, k),

such that

∇ψ(s) ≡ 0 mod F(l−1)n,qΩp, (47)

ψ(s) ≡ ∇χ(s) + ψ(s+1) mod F(l−1)n,q−1Ωp−1. (48)

Proof of Proposition 19. From (39), (47), (48) we get

ψ ≡
p−q+1∑

s=0

∇χ(s) mod F(l−1)n,q−1Ωp−1.

Since
∑p−q+1

s=0 χ(s) ∈ F(l−1)n,q−1Ωp−2, Proposition 19 is proved. ¤

Proposition 23. Suppose that ψ ∈ F(l−1)n,qΩp−1 (2 ≤ p ≤ n, 1 ≤ q ≤ p − 1)
satisfies

∇ψ = 0.

Then there exists χ ∈ F(l−1)n,q−1Ωp−2 such that

ψ = ∇χ,

i.e.,

Ker∇∩ F(l−1)n,qΩp−1 = ∇F(l−1)n,q−1Ωp−2. (49)
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Proof. Indeed from Proposition 19, ψ can be described as

ψ = ∇χ(0) + ψ(1) (χ(0) ∈ F(l−1)n,q−1Ωp−2, ψ(1) ∈ F(l−1)n,q−1Ωp−1).

By hypothesis ∇ψ(1) = 0. By the same Proposition we have

ψ(1) = ∇χ(1) + ψ(2) (χ(1) ∈ F(l−1)n,q−2Ωp−2, ψ(2) ∈ F(l−1)n,q−2Ωp−1).

Repeating this process there exist χ(s) ∈ F(l−1)n,q−s−1Ωp−2, ψ(s) ∈ F(l−1)n,q−sΩp−1 such
that

∇ψ(s) = 0,

ψ(s) = ∇χ(s) + ψ(s+1) (s = 1, 2, 3, . . .).

Since ψ(s) = 0 (s ≥ p− q), we have

ψ(p−q−1) = ∇χ(p−q−1).

Thus setting χ =
∑p−q−1

s=0 χ(s), we have

ψ = ∇χ ≡ 0 mod F(l−1)n,q−1Ωp−1. ¤

Corollary 24. For 1 ≤ q ≤ p− 1, we have

dimKer∇∩ F(l−1)n,qΩp−1 =
q−1∑

k=0

(−1)k dimF(l−1)n,q−1−kΩp−2−k, (50)

dim∇F(l−1)n,qΩp−1 =
q∑

k=0

(−1)k dimF(l−1)n,q−kΩp−1−k. (51)

Remark. Theorem 18, Proposition 19, Proposition 23, Corollary 24 are still true
for µ (µ ≥ (l− 1)n) instead of µ = (l− 1)n, seeing that the above proofs can proceed in
the same way. In the sequel we shall only consider the case µ = (l − 1)n.

It is convenient to define F(l−1)n,qΩp for q = −1 as follows:

Definition 25.

F(l−1)n,−1Ωp = {ψ ∈ F(l−1)n,0Ωp|∇ψ ∈ F(l−1)n,0Ωp+1} (0 ≤ p ≤ n− 1),

F(l−1)n,−1Ωn = ∇F(l−1)n,0Ωn−1 ∩ F(l−1)n,0Ωn.

By definition we have

∇F(l−1)n,−1Ωp = ∇F(l−1)n,0Ωp ∩ F(l−1)n,0Ωp+1 (0 ≤ p ≤ n− 1).
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Hence (38) is also true for q = 0.

Lemma 26. Suppose 0 ≤ p ≤ n− 1.

( i ) Case (l − 1)n− lm < 0, even more, case m ≥ n. We always have

F(l−1)n,−1Ωp ∼= {0}. (52)

(ii) Case (l − 1)n − lm ≥ 0. If p ≤ m then (52) does not hold, while if p > m then
(52) holds true for p > (l− 1)(n−m), but it does not hold for p ≤ (l− 1)(n−m).

Proof. Suppose first that (l − 1)n − lm < 0. ψ ∈ F(l−1)n,−1Ωp (0 ≤ p ≤ n − 1)
can be described as

ψ = P1 · · ·Pm

(
ψ0 +

p∑
q=1

∑

J={j1,...,jq}⊂[1,m],|J|=q

dPj1

Pj1

∧ · · · ∧ dPjq

Pjq

∧ ψJ

)
,

where ψJ ∈ F(l−1)n−lmΩp−q(C), i.e., deg ψJ ≤ (l − 1)n− lm− p + q. Hence ψ0 and ψJ

vanish for all J .
On the other hand, suppose (l − 1)n − lm ≥ 0. If p ≤ m, then for |J | = p, ψJ are

possibly nonzero. If p > m, then for |J | = m, (52) holds true or does not hold according
as (l − 1)(n−m)− p < 0 or (l − 1)(n−m)− p ≥ 0. ¤

Definition 27. We can find a subspace Vq of F(l−1)n,qΩn such that

F(l−1)n,qΩn = Vq ⊕
(∇F(l−1)n,q−1Ωn−1 + F(l−1)n,q−1Ωn

)
(1 ≤ q ≤ min(n,m)), (53)

F(l−1)n,0Ωn = V0 ⊕∇F(l−1)n,0Ωn−1 ∩ F(l−1)n,0Ωn, (54)

i.e.,

Vq
∼= F(l−1)n,qΩn

∇F(l−1)n,q−1Ωn−1 + F(l−1)n,q−1Ωn
(0 ≤ q ≤ min(n,m)).

We note that, if m ≤ n,

Vm
∼= {0}.

In fact, an arbitrary ϕ ∈ F(l−1)n,mΩn can be expressed by

dP1

P1
∧ · · · ∧ dPm

Pm
∧ ϕ12···m

for ϕ12···m ∈ F(l−1)nΩn−m(Cn). We may assume λ1 6= 0. If we take

ψ =
1
λ1

dP2

P2
∧ · · · ∧ dPm

Pm
∧ ϕ12···m ∈ F(l−1)n,m−1Ωn−1,
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then ϕ−∇ψ ≡ 0 mod F(l−1)n,m−1Ωn.

Theorem 28. We have the isomorphism

ρ̃ : Hn(F(l−1)nΩ·,∇) ∼=
min(n,m)⊕

q=0

Vq,

so that the commutative diagram:

F(l−1)nΩn ρ //

H
²²

W0 ⊕
∑min(n,m)

q=1

∑
J,|J|=q WJ

H
²²

Hn(F(l−1)nΩ·,∇)
ρ̃ // ⊕min(n,m)

q=0 Vq

where H are the projections and the equality

dimVq = (−1)q

( q∑
ν=1

(−1)ν

(
m

ν

)
N (n−q+ν)

ν + Ñ
(n−q)
0

)
(0 ≤ q ≤ min(n,m)) (55)

hold where

Ñ
(n−q)
0 = N

(n−q)
0 − dimF(l−1)n,−1Ωn−q.

Proof. Indeed, for 0 ≤ q ≤ min(n,m),

dimVq = dim F(l−1)n,qΩn − dim∇F(l−1)n,q−1Ωn−1 − dimF(l−1)n,q−1Ωn

+ dim(∇F(l−1)n,q−1Ωn−1 ∩ F(l−1)n,q−1Ωn)

= dim F(l−1)n,qΩn − dim∇F(l−1)n,q−1Ωn−1 − dimF(l−1)n,q−1Ωn

+ dim∇F(l−1)n,q−2Ωn−1

= dim F(l−1)n,qΩn − dimF(l−1)n,q−1Ωn

−
q−1∑

k=0

(−1)k
(
dimF(l−1)n,q−1−kΩn−1−k − dimF(l−1)n,q−2−kΩn−1−k

)

=
q∑

k=0

(−1)k
(
dimF(l−1)n,q−kΩn−k − dimF(l−1)n,q−k−1Ωn−k

)

=
q−1∑

k=0

(−1)kN
(n−k)
q−k

(
m

q − k

)
+ (−1)qÑ

(n−q)
0 .

On the other hand,
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min(n,m)∑
q=0

dimVq =
min(n,m)∑

q=0

(
dimF(l−1)n,qΩn − dim∇F(l−1)n,q−1Ωn−1

− dimF(l−1)n,q−1Ωn + dim(∇F(l−1)n,q−1Ωn−1 ∩ F(l−1)n,q−1Ωn)
)

=
min(n,m)∑

q=0

(
dimF(l−1)n,qΩn − dim∇F(l−1)n,q−1Ωn−1

− dimF(l−1)n,q−1Ωn + dim∇F(l−1)n,q−2Ωn−1
)

= dim F(l−1)nΩn − dim∇F(l−1)nΩn−1

= dim Hn(F(l−1)nΩ·,∇). ¤

Example 1. Case n = 1.
We have

dimV0 = l − 1, dimV1 = l(m− 1),

H1(Ω·,∇) ∼= H1(Fl−1Ω·,∇) ∼= V0 ⊕ V1, dimH1(Ω·,∇) = lm− 1.

Example 2. Case m = 1.
We have

Vk
∼= {0} (1 ≤ k ≤ n),

Hn(Ω·,∇) ∼= V0, dimV0 = Ñ
(n)
0 = (l − 1)n.

In fact, it follows from Proposition 3 and Lemma 4 that

Ñ
(n)
0 = N

(n)
0 − dimF(l−1)n,−1Ωn = N

(n)
0 −

n∑
ν=1

(−1)ν−1 dimF(l−1)n−νl,0Ωn−ν

= (l − 1)n,

since

dimF(l−1)n−νl,0Ωn−ν =
(

(l − 1)n + ν(1− l)
n

)
.

Example 3. Case l = 1.
We have

Vk
∼= {0} (0 ≤ k ≤ n− 1),

Hn(Ω·,∇) ∼= Hn(F0Ω·,∇) ∼= Vn, dimVn =
(

m− 1
n

)
.

Example 4. Case l = 2.
In view of Lemma 26, we have N

(p)
0 = Ñ

(p)
0 for p ≥ n−m + 1 and
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N
(n)
0 = 1, N

(n−1)
0 = n(n + 1), N

(n−2)
0 =

1
4
(n + 2)(n + 1)n(n− 1),

N
(n)
1 =

1
2
n(n + 3), N

(n−1)
1 =

1
24

n(n− 1)(n + 1)(3n + 14),

N
(n)
2 =

1
24

n(n− 1)(n2 + 11n + 22).

Suppose first ( i ) m ≤ n.
Theorem 28 shows that

dimVq =
q∑

ν=0

(−1)ν

(
m

q − ν

)
N

(n−ν)
q−ν (0 ≤ q ≤ m− 1),

dimVm = 0.

For example,

·m = 1 : dimV0 = 1, dimHn(Ω·,∇) = 1.

·m = 2 : dimV0 = 1, dimV1 = 2n, dimHn(Ω·,∇) = 2n + 1.

·m = 3 : dimV0 = 1, dimV1 =
1
2
n(n + 7), dimV2 =

3
2
n(n− 1),

dimHn(Ω·,∇) = 2n2 + 2n + 1.

Suppose next (ii) m ≥ n + 1.
Then it follows that

dimVq =
q∑

ν=0

(−1)ν

(
m

q − ν

)
N

(n−ν)
q−ν (0 ≤ q ≤ n),

dimVq = 0 (q ≥ n + 1).

In particular, for m = n + 1,

dimV0 = 1,

dimV1 =
1
2
n(n + 1)2,

dimV2 =
1
48

n(n + 1)2(n− 1)(n2 + 4n− 4),

dimVk is a polynomial in n of degree 3k, or 3(n− k) + 1,

dimVn−1 =
1
6
n(n + 1)(n2 + 3n− 1),

dimVn = n + 1,
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and from Proposition 1 and Theorem 18,

dimHn(Ω·,∇) = dimHn(FnΩ·,∇) =
n∑

ν=0

(
n

ν

)
(n + 1)n−ν

(n− ν)!
.

For example, we have the decomposition formula into Vq:

· n = 1 : dimH1(F1Ω·,∇) = 1 + 2 = 3.

· n = 2 : dimH2(F2Ω·,∇) = 1 + 9 + 3 = 13.

· n = 3 : dimH3(F3Ω·,∇) = 1 + 24 + 34 + 4 = 63.

· n = 4 : dimH4(F4Ω·,∇) = 1 + 50 + 175 + 90 + 5 = 321.

4. Gauss-Manin Connection.

We take the multiplicative function

Φ(x) =
m∏

k=1

Pλk

k (x).

The integral of Φϕ attached to ϕ ∈ F(l−1)nΩn over a twisted n dimensional cycle z in M
can be defined as a pairing between the cohomology class [ϕ] ∈ Hn(F(l−1)nΩn,∇) and
the homology class [z] of z:

〈ϕ, z〉 =
∫

z

Φϕ

which is abbreviated by 〈ϕ〉 in the sequel (see [3] for details).
Theorem 28 shows that there exists the unique element Hq(ϕ) ∈ Vq such that

ϕ ∼ H(ϕ) =
min(n,m)∑

q=0

Hq(ϕ) ∈
min(n,m)⊕

q=0

Vq. (56)

We fix ϕ ∈ Vq as

ϕ =
dPj1

Pj1

∧ · · · ∧ dPjq

Pjq

∧ ϕJ (J = {j1, . . . , jq}, ϕJ ∈ F(l−1)nΩn−q(Cn)). (57)

We want to derive the differentiation formulae for 〈ϕ〉 with respect to the coefficients
of Pk. We may assume k = 1 without losing generality.

Suppose that P1(x) has the expression:

P1(x) =
∑

ν=(ν1,...,νn),|ν|≤l

aνxν .
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We assume for simplicity that any ϕJ does not depend on aν .

( i ) Case 1 /∈ J .
Then we have

∂

∂aν
〈ϕ〉 = λ1

〈
xν

P1
ϕ

〉
= λ1

〈
xν

P1

dPj1

Pj1

∧ · · · ∧ dPjq

Pjq

∧ ϕJ

〉
.

Seeing that deg ϕJ ≤ (l − 2)n + q (i.e., tdeg ϕJ ≤ (l − 1)n), we have

xν

P1
ϕ ∈ F(l−1)nΩn.

Hence we have

xν

P1
ϕ ∼ H

(
xν

P1
ϕ

)
,

that is,

∂

∂aν
〈ϕ〉 = λ1

〈
H

(
xν

P1
ϕ

)〉
, (58)

where H((xν/P1)ϕ) belongs to V0 ⊕ V1 ⊕ · · · ⊕ Vq+1.

(ii) Case 1 ∈ J .
We may assume that j1 = 1, i.e., J = {1, j2, . . . , jq}. Then we have

∂

∂aν
〈ϕ〉 = (λ1 − 1)

〈
xν dP1

P 2
1

∧ dPj2

Pj2

∧ · · · ∧ dPjq

Pjq

∧ ϕJ

〉

+
〈

d(xν)
P1

∧ dPj2

Pj2

∧ · · · ∧ dPjq

Pjq

∧ ϕJ

〉
. (59)

On the other hand, if we take

ψ =
xν

P1

dPj2

Pj2

∧ · · · ∧ dPjq

Pjq

∧ ϕJ ,

then

0 = 〈∇ψ〉 = (λ1 − 1)
〈

xν dP1

P 2
1

∧ dPj2

Pj2

∧ · · · ∧ dPjq

Pjq

∧ ϕJ

〉

+
∑

k/∈J

λk

〈
xν

P1

dPk

Pk
∧ dPj2

Pj2

∧ · · · ∧ dPjq

Pjq

∧ ϕJ

〉

+ (−1)q−1

〈
1
P1

dPj2

Pj2

∧ · · · ∧ dPjq

Pjq

∧ d(xνϕJ)
〉

. (60)
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By subtracting (60) from (59) side by side, we get

∂

∂aν
〈ϕ〉 = −

∑

k/∈J

λk

〈
xν

P1

dPk

Pk
∧ dPj2

Pj2

∧ · · · ∧ dPjq

Pjq

∧ ϕJ

〉

− (−1)q−1

〈
1
P1

dPj2

Pj2

∧ · · · ∧ dPjq

Pjq

∧ d(xνϕJ)
〉

+
〈

d(xν)
P1

∧ dPj2

Pj2

∧ · · · ∧ dPjq

Pjq

∧ ϕJ

〉

= −
∑

k/∈J

λk

〈
xν

P1

dPk

Pk
∧ dPj2

Pj2

∧ · · · ∧ dPjq

Pjq

∧ ϕJ

〉

+ (−1)q

〈
xν

P1
∧ dPj2

Pj2

∧ · · · ∧ dPjq

Pjq

∧ dϕJ

〉
.

As (xν/P1)(dPk/Pk)∧ dPj2/Pj2 ∧ · · · ∧ dPjq
/Pjq

∧ϕJ and (xν/P1)(dPj2/Pj2)∧ · · · ∧
dPjq/Pjq ∧ dϕJ both belong to F(l−1)nΩn, we get the formula

∂

∂aν
〈ϕ〉 = −

∑

k/∈J

λk

〈
H

(
xν

P1

dPk

Pk
∧ dPj2

Pj2

∧ · · · ∧ dPjq

Pjq

∧ ϕJ

)〉

+ (−1)q

〈
H

(
xν

P1

dPj2

Pj2

∧ · · · ∧ dPjq

Pjq

∧ dϕJ

)〉
, (61)

where

H
(

xν

P1

dPk

Pk
∧ dPj2

Pj2

∧ · · · ∧ dPjq

Pjq

∧ ϕJ

)
, H

(
xν

P1

dPj2

Pj2

∧ · · · ∧ dPjq

Pjq

∧ dϕJ

)

both belong to V0 ⊕ · · · ⊕ Vmin (q+1,m).
The differentiation with respect to the other coefficients of Pk can be written simi-

larly.
In this way we have proved

Theorem 29. The differentiations for ϕ with respect to the coefficients of each
Pk preserves F(l−1)nΩn. Therefore we can express the Gauss–Manin connection for the
integral 〈ϕ, z〉 in the form (58), (61) through the projection H.

If we take, as a basis of Vq, e
(q)
1 , . . . , e

(q)
κq (κq = dim Vq), then the above Theorem

shows that the differential of 〈e(q)
ν 〉 with respect to the coefficients a of the polynomials

P1, . . . , Pm satisfies Gauss–Manin connection

da〈e(q)
ν 〉 =

min (q+1,m)∑
r=0

κr∑
ι=1

ω(q,ι)
r,ν 〈e(r)

ι 〉,
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where (ω(q,ι)
r,ν ) denotes a suitable matrix valued (with values in glκ(C), κ =

∑min(n,m)
q=0 κq)

rational differential 1-form over the field of the coefficients a.
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