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Abstract. Let m > 2 and define the multilinear Littlewood—Paley g-

function by
2 g\ 1/2
T

s = ([ | [ o (52 ﬁlfj(w—yj)dyj
-

In this paper, we establish the strong LP1(wi) X -+ X LPm (wym) to LP(vz)
boundedness and weak type LP! (w1) X -+ X LPm (wym, ) to LP»*° (v3) estimate for

the multilinear g-function. The weighted strong and end-point estimates for
P/pi

i

the iterated commutators of g-function are also given. Here vg = []/%; w
and each w; is a nonnegative function on R".

1. Introduction.

In order to study the dyadic decomposition of Fourier series, Littlewood and Paley
[25], [26], [27] introduced the g-function of one dimension as follows:

1/2

9()0) = (/01(1 —p)@’(ﬂeie)Izd/)) ,

where ®(z) is a function which is analytic in |z| < 1, and whose real part has boundary
value f(#). The function g is basic in the Littlewood—Paley theory of Fourier series [41].
Littlewood and Paley proved that

ApllFllp < llg(Hllp < Bpllfllp» (L.1)

where in the left side of the above inequality, it was assumed that fo% f(0)dd = 0. Later,
Stein defined the following n-dimensional form of the Littlewood—Paley g-function and
get the same norm inequality as (1.1),

1/2

o)) = ([ ivutear)
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where u(z,t) = P; * f(z) denotes the Poisson integral of f. From then on, efforts have
been made by many mathematicians to study Littlewood—Paley g-function of higher
dimensions with more general kernels. Among such achievement there are celebrated
works of Taibleson [35], Stein and Wainger [34], Stein [33], Uchiyama [36], Lerner [22].
In particular, Stein expanded Littlewood—Paley theory by using more singular kernels
in place of P;, to make it applicable to interesting geometrical and Fourier analytical
questions (see e.g. [20] and [21] and the references therein). A more general type of
Littlewood—Paley g-function with a kernel much weaker than P; was studied by Wang
[37] in 1989.

Now we recall some background of multilinear Littlewood—Paley g-function. We
begin by a quick review of the development of multilinear type operators. The multilinear
Calderén—Zygmund theory was originated in the works of Coifman and Meyer in the 70s
(see e.g. [4], [5]), and it was oriented towards the work on the Calderén-Zygmund
commutator. This topic was retaken by several authors, including Christ and Journé
[8], Kenig and Stein [19], Perez et all [29], [30], and Grafakos and Torres [18]. Coifman
and Meyer ([5] and [7]) considered the following multilinear Calderén—Zygmund singular
integral operator,

(7)) = pv. [

Ky, ym) [ [ file — vi) dyi. (1.2)
(Rm)™ i=1

They proved that T was bounded from LP* x --- x LPm to LP, with 1 < p, p; < oo
and 1/p = 1/p1 + -+ 4+ 1/pm. Later on, Kenig and Stein [19] showed that T" was also
bounded from L' x --- x L' to L}/™>_ In [6], Coifman and Meyer introduced a class of
multilinear operators as a multilinearization of Littlewood—Paley’s g-function (bilinear,
one dimensional) as follows:

Bla.f)= [ (1600 2™ P, (1.3

where m(t) € L*°, a € BMO, ¢ and ® have compact support 0 ¢ supp ®. They studied L2
estimates of such operators, using the notion of Carleson measures. In 1982, Yabuta [40]
obtained the LP(p > 1) boundedness and BMO type estimates of B(a, f) by weakening
the assumptions in [6]. In 2001, under suitable conditions assumed on each kernel ¢;,
Sato and Yabuta studied the LP* x - - -x LP™ to LP boundedness of multilinear Littlewood—
Paley g-functions with p > 1/m for m > 2 as follows,

7,(7)@) = [ T s 1)@ (1.4)

=1

To show the importance of the multilinear Littlewood—Paley g-function and related
multilinear Littlewood—Paley type estimates, we now list some related important ap-
plications. In 1982, Fabes, Jerison and Kenig [11] studied a collections of multilinear
Littlewood—Paley estimates and then applied them to two problems in partial differen-
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tial equations. In 1984, Fabes, Jerison and Kenig [11] obtained necessary and sufficient
conditions for absolute continuity of elliptic-harmonic measure, the most important tool
in the proof of sufficiency is a multilinear Littlewood—Paley estimate. Related estimates
were previously obtained and applied to different problems by Coifman, McIntosh and
Meyer in [3], Coifman, Deng and Meyer in [2], David and Journe in [9]. In 1985, Fabes,
Jerison and Kenig [13] studied a class of multilinear square functions and applied it to
Kato’s problem.

In (1.3) and (1.4), the kernels are restricted to separable variable kernels, and it
is only a special case of the kernel in (1.2). Therefore, we consider the multilinear
Littlewood—Paley g-function with the same kind of homogeneous kernel as in (1.2). This
leads to the following definition:

DEFINITION 1.1.  For any f: (fi,-- s fm) € S(R™) x S(R™) x --- x S(R™), and
x ¢ ﬂ;nzl supp f;, define the multilinear Littlewood-Paley g-function by

o) = [ o f‘mﬁ‘f)m, (15)

where
wt*f(x):/(\ ) yla"'7ym H yj dy]7 (16>

with ¥ (y1, ..., ym) = (1/t™™)(y1/t, . .., ym/t), here the kernel 1) is a function defined
n (R™)™ satisfying:

(1) Size condition: For any (y1,...,ym) € (R™)™, there is a constant C' > 0, such that
C

e Ym)| < , f 6> 0.
W’(yl Y )| > (1+|y1|+~~~+|ym|)mn+5 or some

(ii) Smoothness condition: there is a C' > 0, such that

|’l/)(y1a7yl +Zaaym) 7w(y1a7y27aym)|
Cle|”
“ 1+ |yl ++ |ym|)mn+6+'y

for some v > 0, 2|z| < max;=1,..m |y:| and all (y1,...,ym) € (R™)™
REMARK 1.2. The conditions assumed on the kernel in the above definition were

weaker than the ones studied by Wang [37], even in the case for m = 1.

Throughout this paper, we assume that g can be extended to be a bounded operator
for some 1 < qq,...,¢m < oo with 1/¢=1/g1 + -+ 1/qm, that is

L9 x ... x LI — L9, (1.7)
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In fact, consider the bilinear case, the bilinear Littlewood—Paley g functlon can be rewrit-
ten as a 4-linear Fourier multiplier with symbol m(&,n) = [~ ¢(t€)y(tn)(dt/t). By the
results of Grafakos-Miyachi-Tomita [17] and assume the kernel is Suﬂi(nent smooth, we
know that the bilinear Littlewood—Paley g-function does satisfy the boundedness in (1.7),
which shows our assumption (1.7) is reasonable.

Our main results in this paper are as follows:

THEOREM 1.1.  The operator g satisfies the endpoint estimate L' x --- x L' —
LY e if fi,..., fm € LY, for any X\ > 0, there exists a constant C' > 0 such that

[{z € R™: g(f)(x) > A}| < Al/mH(/ |fz)1/m, (1.8)

Let vz be the multiple weights defined in Section 2. Then we obtain:

THEOREM 1.2. Suppose & € Ay and 1 <p1,...,pm <00 with1/p=1/p1+---+
1/pm.

(i) If there is no p; = 1, then g is of type LP*(w1) X -+ X LPm(w,,) — LP(vgz), i.e.,
there is a C' > 0 such that

||9(JF)||LP(VQ) < CH Il fill Loi (i) (1.9)
=1

(ii) If there is a p; =1, then g is of weak type LP* (wy) X -+ X LP™(wp,) — LP>(vz),
i.e., there exists a constant C > 0 such that

lg() oo uay < CTTIfillos - (1.10)
i=1

Given any positive integer m, the iterated commutators of the multilinear
Littlewood—Paley g-function are defined by

g(F) (@) = (/OOO | B, %1 % f1(x) Nﬁf)w, (1.11)

where b= (by,...,by) € BMO™ and
bois ) = [ == | T =) T i
) j=1 i=1
We will prove the following strong and end-point estimates for g;;.

THEOREM 1.3.  Letd € Ay with1/p =1/p1+--4+1/pm, 1 <p; <o0,j=1,...,m.
Ifge BMO™. Then there exists a constant C' > 0 such that
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1905 Lr sy < C T Ibillento T 11027 ;- (1.12)

i=1 j=1

THEOREM 1.4. Letd € Ay, b € BMO™. Then there exists a constant C depending
on b such that

vs({z € R™ : |g3(F) ()] > t™}) <0H(/ (m)(|fj§x)|>wj(a:)dx)l/m7 (1.13)

—
where ®(t) = t(1 4+ log™t) and &™) = ®o ... 0 ®. The estimate is sharp in the sense
that ®™) can not be replaced by ®*) for k < m.

2. Definitions and notations.

DEFINITION 2.1 ([23] Multiple weights). Let 1 < p1,...,pm < 00, p satisfies
1/p=1/p1+ -+ 1/pm. Given & = (wy,...,wn), set vz = H:nlwp/pl We say that &
satisfies the Az condition if

1 s p/Di e 1-p; e
sup —/ w; ") ( / ) < 00,
e (i [ 114) 1L

when

. ( 1 / 1p,.>1/17§
pi = 1, T w; !
' |Bl /g "

is understood as (infz w;) .

A kind of new multilinear maximal operator M was introduced in [23] in the fol-
lowing way

SupH|Q|/|fv )|dy,

where the supremum is taken over all cubes ) containing x.
The authors also gave the weighted estimates for M as follows:

(1) If1<p1,...,pm < 00, both M can be extended to be a bounded operator
LPY(wy) X -+ X LP™ (wy,) — LP(vz). (2.1)
(ii) If 1 < p1,...,pm < 00, both M can be extended to be a bounded operator

LP (wi) X - X LP™ (wi) — LP™(u3). (2.2)
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DEFINITION 2.2 (Orlicz norms [28]).  For ®(t) = t(1 4+ log™ ) and a cube @ in R
we will consider the average || f||¢ o of a function f given by the Luxemburg norm

I fllz10g 2,0 = 1nf{>\>0 |Q|/ (If >d <1}

We need some basic estimates of Orlicz spaces. First

|l fllo.o >1 if and only if ﬁ /Q (| f(y)])dy > 1. (2.3)

Then, using the generalized Holder inequality in Orlicz spaces and the John-Nirenberg’s
inequality, we get

1
- 16=8)IF < ClBlloriol g 1.0 (2.4)
QI /s
The maximal function (see [38] and [23])
M (10 1) (f)(x) = ng IlfllLaog ),

will be used, which satisfies the pointwise equivalence

Mpog 1y (f)(x) = M? f (), (2.5)

where M is the Hardy—Littlewood maximal operator. Multilinear maximal type operator
M og 1y (see [23]) will also be used:

L(log L) (f) SupHHfz“LlogL

where the supremum is taken over all cubes ) containing z.

DEFINITION 2.3 (Sharp maximal functions (see [15] and [23])). For § > 0, M; is
the maximal function

M f(x) = M(|f|°)° (x) = (sup |Q|/ () |5dy)1/6.

In addition, M* is the Sharp maximal function of Fefferman and Stein [15],

F () = sup inf —— ldy ~ sup -
M?* f(z) = sup inf |Q/Q|f c|dy ~ sup |Q|/Q|f foldy

Q3 ¢ Qo

and
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M f(x) = ME(|f1)2 ().

The famous Fefferman—Stein type inequality is also needed.

LEMMA 2.1 ([15]). Let 0 < p,d < oo and let w be any Mackenhoupt Ao weight.
Then there exists a constant C independent of f such that the inequality

/n(M(;f(x))pw(a:)dz <C . (Mgf(as))pw(a:)dx, (2.6)

holds for any function f for which the left-hand side is finite.
Moreover, if ¢ : (0,00) — (0,00) is doubling, then there is a C depending on the
Ay, constant of w and the doubling condition of ¢, such that

sup eNw({z € R" : M f(x) < A}) < Cililgw( Jw({z € R™: Mif(z) <A}), (2.7)

again for any f such that the left hand side is finite.

3. Endpoint estimate for g.
First we give a pointwise estimate for 1; f(a:)

LEMMA 3.1 (Uniform pointwise estimate).  There exists a constant C > 0 indepen-
dent of t such that

—

by fz) < CM(F) (). (3.1)

PROOF. Tt is easy to see that (3.1) follows by only invoking the size estimate of .
In fact, write simply

(R™)™ =(Q,...,Q)UE, U (Q°,...,Q°) = Q1 UQ2UQ3,

m m

where in @2, @ appears £ times and Q¢ appears m — £ times for 1 < ¢ < m, @ is a
n-dimensional cube centered at = and its measure is (2¢)™. Then

|wt>‘< | < CZ/ t+2 |y| mn+5 H|f] —Yj |dy]
i=1

Therefore, (3.1) follows by analyzing each terms on the right side of the above inequality,
which is a pretty much easy task. O

Proof of Theorem 1.1.

PrROOF. Without loss of generalities, we assume each || f;||z1 = 1. Initially we
perform a Calderén—Zygmund decomposition of each f;. Write f; = d; + b;, then there is



542 Q. XUE, X. PENG and K. YABUTA

a non—overlapping collection of cubes {ng)} such that supp{bgki)} C ngi) where each

bi =, b; . Moreover, we have
(k) _ k)| < _©
o5 AMQE dillzs < XY™ il < ONYTEL(3.3)

For each s = 1,...,2™, denote By, = {z € R™ : |g(h)(z)| > A}, where h = (hy, ..., hm),
h; € {d;,b;}, i = 1,...,m, and every E; is distinct from each other. In particular,
denote b = (by,...,bw), d = (di,...,dy) and write By = {z € R" : [g(d)(z)| > A} and
Eym = {z € R" : |g(b)(z)| > A}. It suffices to show that for every s there is a constant
C > 0, such that

C

|Es| < Nm (3.4)
instead of (1.8).
By Chebychev’s inequalities, the boundedness (1.7) and (3.3) for d;, we have
C 17114 C Y7 \ajma. . C
Bl < ||g TH Idi 130 < E[[lv “ = (3.5)

For usual Fj, it is clear that

n e 7 th 2
|Es| = |9z eR™: |t * h(z)] ?>)\
0

N " L[t - dt
SerR:$mWﬂhuM>AH+ z e R : e+ h(2)| S > AL (3.6)
t>0 0 t

By (3.6) and (3.1), it is enough to prove

Feo - dt C
Without lost of generalities, we suppose the bad functions appear at the entries 1,...,¢,

where 1 < ¢ < m, and the good functions appear at other entries, that is
b;,, i=1,...,¢
h; =
di, Z:f+1,7m

Let cgki) be the center of ng) and ngi) be a certain dimensional dilation of ng) with
the same center cgk"'). Write S; = U, Bi(kl), we will obtain a pointwise estimate for
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> |1y % h(z)|(dt/t) with z outside _, S; and employ the size estimate for S; to
0 =1
show (3.7).

o
| i@
0

< Z / ‘/ wt(ﬂﬁ—yh--.,ﬂ?—ym)n yl H gl Yi dy
Kiyoike V0 (Rm)™ =
Z / /5?, Jw (3'8)

where F{Y = [ 0@ =y, @ = yan) Ty 0 () T4y 96(9:)d7-
For fixed ki, ..., ks, we have the following claim:

CramM.  Foranyx ¢ Ule S;, there is a constant C > 0 independent of k1, ..., ke,
such that

J4

) dt bl(kz) . ngz) 1/n\v/¢
/0 FY w7 <C H i | L H x” e € 1) . (39)

ki ki n\n
el L (|2 = FO| 4 QU |1 /mynse

PrROOF. To show the above claim is true, we first fix = ¢ Ule S; and set a; =
(1/2)|z — cgki) . Without lost of generalities, we suppose that |Q§k1)| is the smallest size

of {|Q§k1)|, cee |Q5,lf7")\} and assume a1 < ag < -+ < a;. Now, split the left hand side of
(3.9) into three parts and consider several cases.

[es} + ai aj41
/0 Féf)k|=(/ +Z/ / ) kl, k({—_J1+J2+J5

Case 1. When 2|y; — c§k1)| < maxi<i<m (T — yil).
We split it into three subcases.

e Estimate for J; in the case 2|y; — 01 \ < maxi<i<m (| — yil).

When 2|y; — ¢ 1)| < maxi<;<m(|z — yi|), by the cancelation condition in (3.2) and
(1.1) we have

k1 k1 n
o B ol e
= Jotu ( 1'

e — )WY (y1)d it
'/Qum Y1 , @ = ym)by " (y1)dyr t+ S o — i )mntoty

Multiplying the above derived inequalities by all the good functions and integrating over
all y; at the entries {£+ 1,...,m} and taking 0 < € < 4, we have
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‘/R) Z/ o @ =1, w =y )dy [ dily)dys

i=0+1
D () 1477722
=C H il e /(k ) nl+5—e+vy dyr
i=0+1 a,
% / H;‘Ze-u dy; (3.10)
(Rn)m—l (t —+ E:il |aj — yi|)(m—€)n+6 : .
Observe that
Hﬁieﬂ dyi
= <Ot 3.1
/mn)mz (t+ Tyl — ) ok = (3.11)
Thus, multiplying left bad functions and integrating over all y; at other entries, we
get
‘/ Gel@ =y @ = ym Hb( Y (y)dy: dezdyz
(o i=041
5- 15| | Q5
S H Il H n+('y+5)/£ P (3.12)
i=0+1
Therefore,

ks ks n
B[ 1| Q) /e

. (|3
o Rty H il oo H DI
i=0+1

Hence, recall our definition of a; and |z — cz(.ki)\ ~ d(z, QE’“)), we obtain

a1 ai 46— m (ks) (ki) |y /ne
0 dt t 16" 1|22 [Q;"" |
/O Fkl,...,kz|? S C/ dt H il o= H n+('y+5 )/t

i=0+1

1685 || 1 | QU /e

(3.13)

<C H i | oo H

kg ki n\n ’
el L (|l = FO| QW) [mynase

e Estimate for Jy when 2|y, — c(lkl)\ < maxi<i<m (| — yil).

By almost the same argument as in (3.10) and (3.12) and the inequalities above, we
obtain
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aj+1 dt té € m Hb(ki)” 1|Q(ki)|7/n£
(t) L' &5
[ G <c / at [ Nl H ozl
a; i=0+1 ay
[ PR
<C H sl mH " — . (3.14)
41 v (Jo = M| 4 QU 1/myntvse

Hence, we have shown that

1685 || 1 | Q) /e

Z/ RO % <o T Nl ooH

(3.15)
i=0+1 (|

ki ki n\n ’
— FO| QU |1 /myna e

e Estimate for J3 when 2|y; — c§k1)| <maxi<i<m (| — ¥il).

Observe that H in (3.10) can be changed as

k m
’/}Rn . /”nQ(’“” (@ =y, w =yt )y T di(ys)dys

i=C+1
B ) l1QE™
<C H lld; || Lo~ /(k ) nlto—1~ dyr
i=0+1 ay
m
A_ dy;
y / mHz,m AN (3.16)
(R )m—¢ (t + Zi:l ‘LL' - yl‘)(m Jn+
Now, repeating the step from (3.11)—(3.12) with necessary changes, we obtain
m (k1) |y /n 48
} (k1) Q™ >,
aec I] I [ o0l S it
i=0+1 1
m £ (ks /nl
_ k [
<ot T il 108l [T e (3.17)
i=f+1 i=1 Gy
Therefore,
m L i (ki)
_ b 1 ‘Q
F® < Ot ts Il || oo (L2 (VA (0% .
’ kl,...,lw,| 1:111 };[1 (|lz — C§k1)| + ‘ngi)|1/n)n+(v+5)/2—1
Hence, we obtain
> dt T Qe
F,St) i <C ||| e i ‘- . (3.18)
/al 1o e| lgl H (|SC _ Cl('kZ)| 4 |Q§kl)‘1/n)n+"//£
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Case 2. When 2|y; — c§k1)| > maxi<i<m{|® — yi|}-
By the size condition of 1, we have

k
/ - )wt(x*yum,w*ym)bg () dys
R*NQ; *

t& |y1 _ c(k1)|’y
<C b L d
- /ng’l (yl)’(wz’" [ — g™ maxy<iem e — i}
kl n
Q)

dyl .

t&
< C’/ b
T Jokw ™ )l (t+ 220 o — gl )0 maxi <i<m {2 — wil}?

Therefore, we may estimate each J; similar as what we have done to deal (3.11)—(3.18),
here we omit the detail.

Thus, we finish the proof of (3.9).

Next, by (3.3), (3.8), (3.9), we have if z ¢ [J'_, S;, then

||b( i

[ i@ <o ]l H -
0 1 (lz—¢

k1,...,ke i=£+1

)n+’y/é

< CA H (@
where
(k n+y /¢
Tt = 0 c(&-"% + |Q£’1”|:/">"+v/f
is the Marcinkiewicz function associated with the union of the cubes {Q; ‘)}ki. It has
been shown in [14] that
U

/ Tiyje < CZ Q)
R™ .

Now, invoking the property of the Marcinkiewicz function and (3.3), we obtain

Hw@ls/ [ t<>ldt>AH %/ S)c( f[ W)w

=1

4 1/¢ 1
SCH</RHZ77/Z> SOW-

i=1

Moreover, since
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14

Us.

i=1

< C
— Al/m

which is a consequence of (3.2) and the condition that {ng")}ki are nonoverlapping, we
proved (3.7).

Finally, we can finish the proof of Theorem 1.1 by combining (3.5), (3.6), (2.2) and
(3.7). O

4. 'Weighted estimate for g.

To prove the weighted boundedness of g, we need the following lemma.

LEMMA 4.1 (Kolmogorov’s inequality, [10]).  Suppose that 0 < a < n and p,q > 0
satisfying 1/q = 1/p — a/n. Then for any measurable function f and cube Q,

1/p q 1/p
( /Q W) s(q_p) QL. (4.1)

LEMMA 4.2 (Pointwise sharp estimate for g). Let 0 < 0 < 1/m, then there exists
a constant C > 0 only depending on 0 such that

Mi(g(f))(@) < OM(f) (@), (4.2)

where

. B 1/6
ME(g(F)) () = (sup inf - /Q lo(F) - |c|5|) .

1
Q>z c€ER |Q|

PrROOF. Fix x € R" and a cube @ > z, the length of which is d. Denote f? =
fix20, then f2° = f; — f2, we have

[Tr=TIut+m=T1#+ X e hs

i=1 i=1 i=1 ri€{0,00},3r;=00

where the latter term is abbreviated to f_;".
Now, we denote ¢1(z,2,7) = ¥e(x — Y1, .., & — Ym) —¥e(z2 —Y1,..., 2 — Ym). Then

F fr 1 F fr z)|dz
9(F) (@) - (a(F))a] < @'/Qw(f)(x) — g(f7)(2)ld

1 /’(/‘X’ 1 / (x—zn x—ym>m
Si T ¢ ) fzyldyz
QI Jo I\ Jo t™|Jmnym t t 11;11 ()
* 1 zZ—1U Z = UYm 7m 2 dt 1/2
(/0 tmn/(n)mw( T )f Edy -

2@ 1/2
t

dz
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<@+ S ﬁ /Q ok (F) (&, 2)dz, (4.3)

r;€{0,00},3r;=00

where

2@ 1/2
t

We will estimate both of the two terms in the right side of (4.3), respectively. Using the
Kolmogorov’s inequality (4.1) in the case p = §, ¢ = 1/m and (1.8), we deduce

(P = (7| [ o= L

1 L N1/8 . .
(a1 [ 190) < ot mianpon < EMEPNw). (44)
For the latter term, we claim a pointwise inequality that for any z € @

g (F) (2, 2)] < CM(f)(). (4.5)

We may assume that there exists jo such that r;, = co. Clearly, we can see that

2d m N th 1/2

9 (F) (@, 2)| < </ (/(Rn)m e o= 1 <yi>dyi> t)
2d m N th 1/2

+ </0 </(]R7L)m |wt(z_y1,72—ym)|g‘fl (yZ)dyl) t)

o ) m 2 4\ 1/2
+( / ( / |wt<x,z,ﬁ>|Hf[i<yi>dyi> t) S
2d (Rm)m i=1

First, we estimate I;. Note that there exists a jo such that |z — y;,| > 2d, then

m 2d 12641 ¢ 1/2
T4
Il < CH n fz (yl)</(; (t+zx_yi|)2nzn+25> dyl

i=1

T fi (i) 2 251 12
H = J2rQ\2k 1@ (3o |z — y;)mrto\ Jo

i=1k
Z ) H |2k|5|1/n| /Zkazr7(yz)dyz < OM(f)(x).

Similarly, we get I, < CM(f)(z).
For I3,
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oo x_zpt& m v th 1/2
! <C(/ (/ | [ (yi dyi> )
3 2d \J (@)™ (t+le—yi\)m"+5+W1;[1 i ) t

d* [Tisy fi () dy -
=5 1= 3 S CM T 7
(R7)m (Zj=1 ‘x — yj|)mn+5 (f )( )

<C

where v > ¢ > 0.
Until now, we have proved that

—

|9(fM) (@) = (9(f") o] < CM(F) (), (4.6)

where (g(f_;))Q =(1/Q) ng(f_;). Combining (4.4) with (4.6), we can obtain (4.2). O

In order to employ the Fefferman—Stein’s inequalities, we need to introduce another
lemma as follows.

LEMMA 4.3.  Suppose f; € C(R™) for any i =1,...,m, and supp f; C B(0, R).
Then there exists a constant Cf depending on f such that for any x € R™ and |z| > 2R

9(f)(@) < CpM(f)(x) (4.7)
holds uniformly.

PrOOF. When |z| > 2R,

s ([T ], e [T o) %)

i=1
oo m 2 g\ 1/2
(O] e =) [ Gan) )
ol \JB0,R)" a1
= Il —|— 12.

It is easy to see that |z — y;| ~ |z|, since |x — y;| > |#|/2 and |z — y;| < 3|z|/2. So we
have |z — y;| ~ |z|. For I

! t ﬁ ) 2 dt
I1S</ (/ S (i dyi) )
0 (Bo,R)™ (L4 20 e —y)m+0 15 t

1 mo .
’ ‘ i=1

1/2

<C

For I,



550 Q. XUE, X. PENG and K. YABUTA

I < </Oo (/ i ﬁf”(y-)dy->2dt)1/2
2= || (B, Ry (t+ 2 & —y;|)mnts Pl )t

<C f i(Qi)(/ mndt) dyi
(B(0,R))™ o £

<CM(f _H I fill e

The proof of this lemma is finished. O
After having the above preparations, we are in a position to prove Theorem 1.2.
Proof of Theorem 1.2.

PROOF. First, we show that Theorem 1.2 (i) holds. By (2.1), we can assume that

([ wuiyms) " <o

Without loss of generality, we may suppose f; > 0 and f € (CX(R™)™, we will first
show that

/n (g(j?))pvg,dx < 0.

We may only consider the special case that the weights vz are bounded functions. For the
general case, denote vg, = inf{vg, N}, then [vg,]a. < Clrgla. Since |g(f)[Pray (x)
converges everywhere to |g(f)[Prg(z) as N — oo, by Fatou’s lemma, we can obtain the
results for the general case.

To see the proof for the special case with f € (C°(R™))™, note that

/n (9(f)) vade < /23 (g(f))pvadx—&-/ (9(f) vada.

(2B)°

From the assumption of M and (4.7), we get

/ (9(f)) vads < Cr (M(f)) vz < oc.
(2B)°

Rn

Using the Holder’s inequality, we have

/23 (9(f)) vadr < (/23 vé/(l”)dm>1_p</23 g(f)”/pdl“)p

< CR"1-0) Huw |[/pit/ (1= P>H||f|\m

=1 =1
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Hence, we obtain

([ 7 >>%)1/p <o, (4.

By Lemma 2.1, we only need to prove that

([ utsiiFyrms) <o (1.9)

Since w € Ao, then there exists pg > 1, such that w € A,,. We can take p > 0 small
enough and p/p > po such that w € 4,,,. The LP/? bounds of M and (4.8) yield

([ ttoiorue) e [ wimm) " <o

Thus, we obtain the desired estimates by applying Fefferman—Stein’s inequality,

([ )< ([ onains)” <( [ osoy)

<o [ >)%)”p < cﬁ ([ |fz»|mwi)1/m.

The proof of Theorem 1.2 (ii) can be treated as that of Theorem 1.2 (i) with only a slight
modifications, we omit its proof here. O

5. Commutators of multilinear g-function.

Recently, the iterated commutators of multilinear Calderén—Zygmund operators
given below are defined and studied, including the strong type and weak end-point esti-
mates with multiple Ay weights [31].

Tt (f) (@) = [b1, [b2 - - (b1, [bms Thinlm—1 -+ J2J1 (F) (). (5.1)

Inspired by the above results, we studied the iterated commutators of multilinear g-
function defined by

I () (@) = [[b1, 2, - o1, oo e 5 (@)1 -T2l (F) (@),

(5.2)
H

_ H/( . wt@_yl,...,x_ym[ﬁ(bj(x) —bj<yj>>] if:[lfi(yndyi

Jj=1

where 1 x f(z)(z) is the same as before, H = {h : (f;* |h|2dt/t)}/? < oo} and b =
(b1,...,bn) € BMO™.
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5.1. Strong weighted estimate.

The proof of the Theorem 1.3 needs a pointwise estimate using sharp maximal
functions.

Following [30], for positive integers m and j with 1 < j < m, denote by C" the
family of all finite subsets 0 = {o(1),...,0(5)} of {1,...,m} of j different elements, where
we always take o (k) < o(f) if k < £. For any o € C}", we associate the complementary
sequence o’ € CJ_, given by o’ = {1,...,m}\o with the convention C¢* = (). Given an
m-~tuple of function b and C7", we also use the notation gg for the j-tuple obtained from
b given by (bg(l), ey bg(j)).

Similar to (5.2), we define for Littlewood-Paley g-function g, o € C7",
(bo(1)s - -+ bo(s)) In BMO’, the iterated commutator

ou, D@ = ([T ([ wte =)

< [T10m )| T 00) ) 59

and gg =

Clearly, gz = gy as defined before when o = {1,...,m} and g;; = ggj when o = {j}.
The pointwise estimate that will serve our purposes is as follows.

LEMMA 5.1.  Assume that gy is a multilinear commutator with b € BMO™ and
let 0 < <e, with0 < § < 1/m. Then there exists a constant C > 0 depending on ¢
and € such that

M (grz(F) (@) < C T Ibillmao (Mrgog ) (F) (@) + Me(g(F)) ()

i=1

m—1 J
+C>° 5 T1be, HBMOME(QHEU,(f))(m) (5.4)

j=1 ceCyi=1

for all m-tuples f: (f1,...,m) of bounded measurable functions with compact support.
PrROOF. The way to interpret (5.4) is

m

M (gr(£)) (@) S T IbsllBrMoMog £y () () + “lower order terms”,
=1

as it will become apparent in its application. Here we only consider the case m = 2, our
method still holds for general m with little modifications. Hence we will limit ourselves
to establish the following version of (5.4).

For b1, b, € BMO, we need to show
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Mﬁ(gng(fl,fz))(:v) < C|lb1llBmo1b2]lBMO (M Lgiog 1) (f1, f2) () + Mc(g9(f1, f2))(x))
+ C(Ib2llBMmo M= (g5, (f1, f2))(@) + [|b1]lBMO M= (g3, (f1, f2))(2)),

where

g, (f1, f2)(@) = bi(2)g(f1, f2)(z) — g(br f1, f2) (@),
952(f1,jb)($) ::bQ(m)g(jlajé)(x)‘4'g(f17b21§)(m)'

For any constant A\; and Ag, fix z € R", a cube Q) centered at z and a constant ¢, since
0 < ¢ < 1/2, we then have

(lel/Q”gnz(f)(z)|6 _ |C|6|dz>1/6

C e o

< <|Q|/Q|(b1(z) A1) (ba(2) = X2)g(f1, f2)(2)] dz)
1% Ao N o 1/5

’ (|Q|/Q'(b1( )= Mgl () - M) )2
1/6

+ (éA|(b2<z)_)\2)9((1)1(')_)‘l)fl7f2)(2’)|6dz)

c 1/6
+ (g L1000 =2 020) = M) o) 2) = ez )
1Rl Jo
= ]i AF ]é ‘F ]é AF 14.
We will analyze each term separately by selecting appropriate constants. Let Q* = 3Q

and A; = (bj)o+ be the average of b; on Q*, j = 1,2. For any 1 < q1,¢2,¢3 < oo with
1=1/q1+1/g2+ 1/q3 and g3 < €/, we have by the Holder’s inequality,

1 s 1/6q1 1 s 1/6q2
L <C —/b z) — A ‘“dz) (/b z)— A ‘”dz)
<o ROCEEY CEACERY

1/5Q3
x (@ /Q |g<f1,f2><z>|5%dz>

< C [T Ibsllevo Msg, (g(f1, f2))(x) < C T IbillBrio Me(g(f1, f2)) ().

i=1 i=1

Since I and I3 are symmetric, we only study I. Let 1 < t1, to < co with 1 =1/t1+1/ty
and ty < /4. Then, by the Holder’s inequality and the Jensen’s inequality, we obtain
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1 1/6ty 1
I < C<Q|/le(2) - A16t1d2> <|Q|/Q|glg2Az(flafz)(z)dZPthz)

< C|lb1|lBMoMst, (93, — x, (f1, f2)) (@) < Cllb1llBMOMe (g3, (f1, f2)) ().

1/6t2

Similarly,
Iy < C||ba|lBMo M (gy, x, (f1, f2)) (@) = C||b2||[BMo M= (g5, (f1, f2)) ().
As for the the last term I3, we split each f; as f; = f2 + f°, where f0 = fxo- and

fE=r-f.
Let ¢ = 23_1 ¢j, where ¢; = g((by — A1) fY, (b2 — X2)f5°), c2 = g((b1 — A1) f°,

(b2 — A2) f9), c3 = g((b1 — A1) f°, (b2 — X2) f5°). Then, we have
I < (é'/ l9((b1(-) = M) AT, (ba() — A2>f2°)(z)|5dz)1/§

<|QI/ 9B ) = M) f7 (o) - A2>f§°><z>—a|5dz)1/6

<'Q'/ 901 () = M) 1% (b2 = A2>f§><z>—c2|5dz)1/6

1/6
(7 L 19000 = 257 a0 = 0 ) (2) = otz
=In + lao + Lz + Lua.

For I, take 1 < p < 1/24. Since pd < 1/2, using the Holder’s inequality we get

In < <|Q|/ 19((b1(-) = M) 7, (b2() — )\z)fg)(Z)lp‘st)l/pd

< Cllg((by — M) fY, (b2 — A2) f) | L1/2.00 (0,d2 /1))

2
< CH llbillBMOM L(10g L) (f1, f2) ().

=1

Since 145 and Iy3 are symmetric, we only consider I4s.

|9((b1() = M) (B2() = A2) f5°)(2) = g((b1 () = Au) i, (B2() = A2) f5°) ()]

2

2d 2 1/2
<(f (L 1=z =TT = MRl ) )

j=1
2

2d 2 1/2
e (L = =i L) 30500 57 e ) )

j=1
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+(/ (/ ez = y1s 2 — 92) — e — Yoz — o)
2d (R)2

2

2 1/2
< TL103 ) = A ) 57 )l ) T )

= Iyo1 + Isoo + I423.

Similar to the proof of Lemma 4.2, we have

Loy < Od‘;/ |(b2(y2) — A2) f2(y2)|dy2
= 50 |z — yo|2nH0

/ |(b1(y1) — A1) f1(y1)ldys
3Q

© é/n

Z 3k|£2c|21|/n 3n+o (/SWQ |(b2(y2) — /\2)f2(y2)|dy2)

<(f g ) =Ml

2
<C H l|b:llBMOM L(10g 1) (f1, f2)(2);

=1

2
Iygs < CH 1bi]BMOM L(10g L) (f1, f2)(2);

=1

and

b -\ d
Iyo3 < Cds/ |(b2(y2) 2)2{?%2” Y2
R™\3Q |z — 2|

/ (b (52) — M) i ()|
3Q

2
< CH llbillBMOM L(10g L) (1, f2)(T),

i=1

where v > ¢ > 0.
From Iy21, I422, and I403, we get the estimate of Iys:

2
Iy < CH billBMOM L(10g L) (f1, f2) ().

i=1

Similarly as I;2, we can get the following estimate

2
Iy < CH llbi] BMOM L(10g L) (f1, f2) ().

i=1

The proof is completed. i
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We can also obtain analogous estimates to (5.4) for m-linear commutators involving
j < m functions in BMO. That is estimates of term

J
Mg(gnz(, (f)x) < H 6o, IBMOM L(10g 1), (f ) () + “lower order terms”, (5.5)
k=1

where M0 1), denotes the analog of My (e 1) but with only log factors in the f;
functions (Noting My (10g 1), = MJL(IOg ) When o = {j}). The lower order terms are
now of the form

J4
LT 1w sy lmaeo M- (915, (F)) ()
k=1

for £ < j, where 7 is subset of o of cardinality ¢, and nU7n’ = o. Note also that

M iog 1), (F) (@) € Mrgog ) () (@). (5.6)

LEMMA 5.2.  Suppose f; € C(R™) and supp f; C B(0,R) for any i =1,...,m.
Then there ezists a constant Cf depending on f such that for any |x| > 2R and bounded
function bj(x) (j =1,...,m), the following inequality holds

g (f) (@) < CeM(f)(2), (5.7)
uniformly.
ProOF. Noting that b € (L°°)™, the proof is almost the same as (4.7). O

These pointwise estimates are the key for the strong and weak-type estimates with
multiple weights. In particular, they yield an appropriate version of the following
Fefferman—Stein inequalities [1].

THEOREM 5.3.  Let w be an Ay, weight and let ®(t) = t(1+logt t) and 0 < p < occ.
Suppose that b € BMO™. Then, there exists a constant C,, (independent of b) and a
constant C,,(b) such that

|t PPte)ds < LT[ Ilovo | Migosny FlaPslade. (63)

i=1

At the endpoint case, we have

sup el € B g1 )| > 7))
< CLB)sup gy € R : Mg 1) 7) > 7)) (59)

t>0 ®™(1/1)
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for all bounded vector function f: (f1,---, fm) with compact support.
PROOF. The proof is routine, we refer the reader to [23] for details. O
Proof of Theorem 1.3.

PrOOF. Since for & € Ay, the weight vz is in Ay, we can use one more result
from [23] on strong bounds for M 1o, 1) and conclude from (5.8) that

—

| lawgFypesde < Cu TT I [ (Mgos 1 (Fla))) v

i=1

«MHMMHMMW» -

j=1

5.2. Endpoint estimate.
We need a weak-type end point estimate for My g 1)-

THEOREM 5.4 ([31]). Let & € Ay. Then there exists a constant C' such that

Vg ({.73 eR": ML(log L)(f)('r) > tm})

< Of[1 (/R o(m) (W)wj(x)dm>l/m. (5.10)

Moreover, this estimate is sharp in the sense that ®("™) can not be replaced by ®*) for
k<m.

Given (5.9) and (5.10) the proof of Theorem 1.4 is almost routine. We refer the
reader to [31] for the proof of (5.10).

REMARK 5.1.  To show ®(™) can not be replaced by ®*) for k < m. We consider
m = 2, n = 1 simply, and the functions b () = ba(x) = log |1 + x|, f1 = f2 = x(0,1) and
Y(y1,y2) = 1/(|Jy1| + |y2)>T°. Then for z > e, we have

|gH(b1,b2) (f17 fg)((E)|

| q r— o 2

- (/0 ﬁ/(R)zd’( ¢ =, y2> 1;[ ;) f1(y1) f2(y2) dyrdyo

2x 2 1/2
(/ / / logxlzijxltédyldyz Cit)

2x 4268 1/2 2
c / t—dt log” [1 + x| ZCIOg \1+:13|.
- t I2+5 2

2 0\ /2
t

I \/

Y

Now, by using almost the same argument as in [31, p. 5], we can show that ®(™) can not
be replaced by ®*) for k < m. Thus we finish the proof.
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